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Model-Eliciting Activities (MEAs) were initially 
created in the mid 1970s by mathematics 
educators (Chamberlin, 2002; Lesh, Hoover, 

Hold, Kelly, & Post, 2000; Lesh & Lamon, 1992). These 
activities have also been called Case Studies for Kids and 
Thought Revealing Activities, but in this article Model-
Eliciting Activities will be used to refer to them, because 
this name is the one currently being used by most MEA 
developers and because the name best explicates the math-
ematical goals of the activities. 

MEA developers had two objectives in mind when 
they created MEAs. First, MEAs would encourage students 
to create mathematical models to solve complex problems, 
just as applied mathematicians do in the real world (Lesh 
& Doerr, 2003). Second, MEAs were designed to enable 
researchers to investigate students’ mathematical think-
ing—a task endorsed by the National Council of Teachers 
of Mathematics (NCTM; 2000) and leading math edu-
cators (Hiebert et al., 1997; Wood, Merkel, & Uerkwitz, 
1996). MEAs have the potential to develop mathematical 
talent, because they engage students in complex mathe-

matical tasks similar to the tasks that applied mathemati-
cians complete. 

It is the thesis of this paper that MEAs may be used 
to accomplish a third goal, which is to develop and iden-
tify students who are creatively gifted in mathematics. The 
paper begins by defining mathematical creativity. We then 
describe MEAs in some detail, and interwoven into the 
description of MEAs is a discussion of the potential of these 
activities for developing mathematical creativity. Finally, 
we suggest a role for MEAs in identifying creatively gifted 
mathematicians, using tools such as the Quality Assurance 
Guide (Lesh et al., 2000) and the Ways of Thinking Sheets 
(Chamberlin, 2004).

Creativity and Mathematics

	 There are many definitions and theories of creativity 
(Fishkin, Cramond, & Olszewski-Kubilius, 1999; Starko, 
1995; Sternberg, 1999). There is also considerable debate 
about whether creativity consists primarily of domain-gen-
eral processes, such as divergent thinking, or of domain-
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specific processes, such as the ability to generate novel 
representations of the human form using the medium 
of photography. There are some who see creativity as a 
phenomenon constructed from the interactions between 
a domain, a field, and an individual (Csikszentmihalyi, 
1999), and others who see creativity as residing primarily 
in the individual (Gruber, 1989; Gruber & Davis, 1988). 
Many of the current definitions of creativity are only rel-
evant to adults who are operating on the frontiers of an 
established domain after years of training and preparation 
(Fishkin et al.). These definitions are not very useful for 
identifying or developing creative thinking processes in 
young people. 

In this paper, creativity refers to the domain-specific 
thinking processes used by mathematicians when engaged 
in nonroutine problem solving. More specifically, the focus 
of the article is on developing and identifying students 
who have an unusual ability to generate novel and use-
ful solutions to simulated or real applied problems using 
mathematical modeling. Students who have these abilities 
are defined in this paper as having creative mathematical 
talent. 
	 The value of creativity in mathematics should not be 
underestimated. Lamon (2003) suggested that instruction 
that de-emphasizes different ways of thinking is “incon-
gruous with today’s world” (p. 436). Mathematically, 
creativity may be existent when a nonstandard solution 
is created to solve a problem that may be solved with a 
standard algorithm. Divergent thinking (Guilford, 1956) 
and evaluative thinking (Fasko, 2001) appear to be two 
prevalent descriptors of mathematical creativity. 
	 Several individuals have stressed the significance of cre-
ativity in mathematics. Sternberg (1999) has underscored 
the importance of creativity in the application of classroom 
material. He stated that in order for one to be an effective 
mathematician in the real world, one must be able to cre-
atively apply material that has been learned as opposed to 
merely regurgitating it for a test. He further stated that 
possessing analytical (mathematical) reasoning skills is 
not always consistent with being able to apply knowledge 
to real-world problems. The creative, applied mathema-
tician needs a strong combination of creative, practical, 
and analytical abilities. Going even further, Piirto (1998) 
stated that without creativity, gifted mathematicians com-
promise the ability to think abstractly. In addition, oth-
ers have suggested that thinking abstractly and engaging 
in higher order thinking are both gateways to success in 
upper-level mathematics (Hjalmarson, 2001; Schoenfeld, 
1992). Higher order thinking, in turn, involves both ana-
lytic and synthetic thinking. In other words, logical, math-
ematical thinking is necessary but not sufficient for success 

in upper-level mathematics. Creative thinking abilities are 
also needed. 

A requisite component of problem solving is that the 
problem is novel and therefore the solution is not immedi-
ately known (Carpenter & Moser, 1983; NCTM, 2000). 
Problem solving should not be a process whereby one 
simply remembers and regurgitates algorithmic processes 
(Schoenfeld, 1992). Instead, problem solving should be 
a process whereby one has the opportunity to use vari-
ous processes to solve the task. By focusing on nonroutine 
problem solving as a critical component of mathematics, 
creativity will become more significant and creative talent 
can be developed.
	 Several themes exist in math creativity research. A 
recurring theme in the literature deals with viewing cre-
ativity as conceptual and imaginal thinking abilities: flex-
ibility, fluency, and originality of thinking (Bejat, 1972; 
Tuli, 1982). Second, creativity in mathematics is not con-
sistent with creativity in other disciplines as a result of 
domain specificity (Feist, 2005; Kaufman, 2004; Milgram 
& Livne, 2005). For example, individuals creative in lan-
guage arts may not be creative in mathematics, and vice 
versa. Third, and likely a result of the poor correlation 
between creativity in other domains and mathematics, 
teachers can not accurately predict creativity in mathemat-
ics unless they have the opportunity to observe students 
working on problems that elicit mathematical creativity 
(Houtz, Lewis, Shaning, & Denmark, 1983). 

Sadly, little has been accomplished in recent years to 
develop creative mathematical talent and identify students 
who are creatively gifted in mathematics. Instead, most of 
the focus of mathematical talent development programs 
has been on accelerating students through the K–12 math-
ematical curriculum as quickly as possible (Chamberlin, 
2005). MEAs provide gifted educators with an alterative 
to acceleration. MEAs engage students in interdisciplinary, 
nonroutine problem solving and provide opportunities for 
students to develop the type of creative mathematical tal-
ent needed in fields such as business and engineering, as 
well as the mathematical modeling abilities needed for 
higher level mathematics. 

Model Eliciting Activity Description

The purpose of this section of the paper is to describe 
MEAs and explore their usefulness for developing creative 
mathematical talent. A typical MEA is described in some 
detail. The design principles are described and their curric-
ular and learning characteristics are reviewed, with special 
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emphasis on the aspects of MEAs that foster the develop-
ment of mathematical creativity. 

MEAs are mathematically based activities designed for 
use with students in grades 4–12, with special emphasis on 
grades 5–8. The value of MEAs is that they help educators 
accomplish goals determined to be best practices by math-
ematics educators. For example, MEAs foster communi-
cation and problem solving, two principles outlined in 
the NCTM principles and standards document (NCTM, 
2000). Examples of MEAs may be found at online (see 
http://www.edci.purdue.edu/casestudiesforkids).

 
Description of a Typical MEA

Each MEA is comprised of four sections. The first two 
sections set up the problem context and parameters, and 
the final two sections present the problem. The first sec-
tion of an MEA is a reading passage. Passages are one-page 
simulated newspaper articles written to generate student 
interest and discussion about the context of the prob-
lem. As an example, an MEA entitled Sue the Dinosaur 
(Carmona, 2001) has a reading passage about students 
visiting a museum where they see a dinosaur recreation. 
Students are subsequently asked to create a model that will 
enable them to reassemble Sue. The second section of an 
MEA is the readiness question section. These are questions 
a student answers about the preceding article. Some ques-
tions are simple comprehension questions, such as “Who 
was the director of the sports camp?” Other questions are 
inference questions, such as “Why might arriving on time 
be more important to some travelers than other travelers?” 
A third type of question asks for an interpretation of data, 
such as “Review the charts on the next page. In what year 
was the quickest average time recorded for the 400-meter 
run?” The purpose of this section is to ensure that students 
have the foundational knowledge they need to solve the 
problem. In these first two sections, there is little empha-
sis on creativity development; rather, the emphasis is on 
helping students understand the context of the problem 
situation. 

The third section of an MEA is the data section. This 
section can take many forms, including a diagram, chart, 
map, table of times or performances, table of sales, and so 
forth. The third section is often referenced in the readiness 
question session and it is always used in the final question. 
The fourth section of an MEA is the problem-solving task. 
This question or statement is generally no longer than a 
paragraph and it asks students to solve a mathematically 
complex problem for a hypothetical client. One unique 
characteristic of MEAs is that students solve the problem 
given to them and then generalize their model to subse-

quent situations. These last two sections comprise the bulk 
of the mathematics of the MEA and create an ill-struc-
tured problem for students to solve, eliciting mathematical 
creativity, as well as mathematical modeling. The fourth 
section is the one in which creativity may become most 
apparent. Interestingly, anecdotal data suggests that some 
students gifted in mathematics strive to finish the problem 
as quickly as possible and their solutions are often mini-
mally creative. Students who complete the problem in a 
longer period of time may seek particularly creative solu-
tions. Time spent on task is not indicative of creativity per 
se and the extent to which students are creative in this sec-
tion is most indicative of students’ mathematical creativity 
in MEAs. 

Six Principles for Designing MEAs

To create MEAs, researchers in mathematics educa-
tion at universities throughout the United States and 
New Zealand follow specific guidelines. These guidelines 
are referred to as the six principles for designing MEAs 
(Chamberlin, 2004; Lesh et al., 2000). The principles 
ensure that each MEA will have the intended curricular and 
learning characteristics. It is possible for anyone to create 
MEAs, but it is difficult to succeed in this task without at 
least minimal training from individuals who are intimately 
acquainted with how they are constructed. For this reason, 
most teachers and curriculum coordinators may choose 
to use the preexisting database of problems found on the 
aforementioned Web site. Closely following the principles 
enhances the likelihood that the MEA meets all standards 
and will stimulate model-eliciting behaviors. Field test-
ing must occur and interviews typically are performed 
to ensure that these principles have been adequately met. 
This careful attention to the design of MEAs is one reason 
why they are such powerful tools for the development and 
identification of mathematical creativity. 
	 Model Construction Principle. The model construction 
principle states that a successful response to the problem 
demands the creation of a model. A model is a system that 
consists of elements, relationships among those elements, 
operations that describe how those elements interact, 
and patterns or rules that apply to the relationships and 
operations. A model is evident when one system describes 
another system. This first and most important character-
istic of MEAs suggests that these activities are inherently 
designed to elicit creative behaviors and higher level think-
ing, especially at the level of synthesis. 
	 The Reality Principle. The reality principle has also been 
referred to as the meaningfulness principle. This principle 
states that the scenario presented should be one that real-
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istically could occur in the life of a student. Paying close 
attention to the reality principle is intended to increase 
student interest and simulate the kinds of activities that 
real, applied mathematicians engage in when solving prob-
lems for clients. It is possible that the more realistic the 
problem, the more potential that exists for creative solu-
tions due to students’ familiarity with the problem. 
	 The Self-Assessment Principle. The self-assessment 
principle states that students must be able to measure the 
appropriateness and usefulness of solutions without input 
from the teacher. In turn, students may use this informa-
tion to refine responses in subsequent iterations. Again, 
this principle is consistent with the development of cre-
ativity because individuals engaged in creative work must 
be skilled in self-evaluation.
	 The Construct Documentation Principle. This principle 
is the reason these activities have sometimes been called 
“thought revealing activities” (Lesh et al., 2000). The con-
struct documentation principle indicates that students 
must be able to reveal their own thinking while working 
on the MEA and that their thinking processes must be 
documented in their response. This principle is related 
to the self-assessment principle, which requires students 
to evaluate how closely their solution is reflected in their 
final documentation. The demands of documenting the 
solution involve technical writing. As such, MEAs are 
instrumental for the gifted community because writing 
technically may facilitate higher level thinking and meta-
cognition. The construct documentation principle also 
helps to ensure that teachers who implement MEAs focus 
on the thinking processes of their students during problem 
solving, as well as on their final answer or model. A focus 
on process helps to nurture creative thinking. 
	 The Construct Shareability and Reusability Principle. 
The construct shareability and reusability principle states 
that the product should be able to be used in a parallel sit-
uation. If the model developed can be generalized to other 
situations requiring a similar model, then the response is a 
successful one. This principle is closely related to the next 
one. 

The Effective Prototype Principle. The effective proto-
type principle suggests that the model created should be 
easily interpretable by others. This principle differs from 
the construct shareability and reusability principle in 
that students may use this prototype in a similar, but not 
parallel situation. These final two principles help young 
mathematicians to learn that creative solutions to applied 
mathematical problems are useful and generalizable. The 
best solutions to nonroutine mathematical problems are 
robust enough to work in different situations and easy for 
others to understand. Very similar prototype design prin-

ciples are used in creative fields like engineering, computer 
technology, and even applied chemistry.

Summary. Taken together, the six design principles 
highlight the most important characteristics of a good 
MEA and clearly demonstrate why these activities are help-
ful in nurturing mathematical creativity. MEAs require the 
creation of something new—a mathematical model—and 
engage students in a creative process that is very similar to 
the process used in applied design fields. The design prin-
ciples are used to guide the creative process of developing 
new MEA problems. MEAs that are designed according 
to the six principles have specific curricular and learning 
characteristics, which are discussed below. 

Curricular Characteristics of MEAs

	 MEAs have five curricular characteristics: interdiscipli-
narity, well-structured problems, realistic problems, meta-
cognitive coaching, and explication of student thinking. 
These are not characteristics that developers use to cre-
ate MEAs. Instead, they are characteristics that flow from 
the design principles and are inherent in well-designed 
MEAs. 

The interdisciplinary nature of MEAs enables educa-
tors to integrate other disciplines. The primary content 
emphasis of MEAs is mathematics. MEAs, however, cannot 
be completed without reading, communicating with peers, 
and writing an explanation of the solution. In addition to 
math and literacy, MEAs have a context related to social 
studies, science, art, and/or physical education. For exam-
ple, the MEA entitled Historic Hotels (Carmona, 2002) 
has a historical context, Aluminum Bats (Chamberlin & 
Hjalmarson, 2002) has a materials engineering context, the 
Quilt Problem (Carmona & Hjalmarson, 2001) has a cre-
ative arts context, and Summer Sports Camp (Chamberlin, 
2000) has a physical education context. Enabling students 
to use knowledge from various subjects may increase the 
likelihood that highly creative solutions will be produced. 
In routine mathematics problems, students simply mimic 
the process previously illustrated by the teacher (Hiebert 
et al., 1997). However, in nonroutine problems and inter-
disciplinary problems, students may use a wider range 
of knowledge, and potentially increase the likelihood of 
using creativity. 

MEAs are well-structured problems. An ill-structured 
problem is one in which persons solving the problem 
need to do research to find data or information to solve it 
(Boyce, VanTassel-Baska, Burruss, Sher, & Johnson, 1997; 
Hmelo & Ferrari, 1997; Stepien & Gallagher, 1993; 
Stepien, Gallagher, & Workman, 1993). On the other 
hand, a well-structured problem is one in which informa-
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tion necessary to solve the problem is contained within 
the problem so that no research is required to solve the 
problem. In each MEA, the third page contains adequate 
information to solve the problem. 

MEAs are realistic problems that are relevant to the 
lives of students (Lesh et al., 2000). The use of realistic 
problems in mathematics is likely to better promote learn-
ing for understanding than the use of problems without a 
context (Cooper & Harries, 2003). For instance, elemen-
tary and secondary students are likely to have engaged in a 
summer book reading contest, played softball, attended a 
track and field camp, mowed a lawn, attended an amuse-
ment park, and so forth. Many problem-solving tasks 
advertise the reality of the problem, but they are not real at 
all. Authors of MEAs have invested extensive time ensur-
ing that contexts in the problems are in fact realistic by 
field-testing the problems with students and gathering 
informal qualitative data, in the form of interviews, after 
the problems have been administered. Realistic problems 
may increase the likelihood for creative solutions because 
students are acquainted with the context. 

For MEAs to be successfully administered, the teacher 
serves as a metacognitive coach. As a metacognitive 
coach, a teacher interacts with students by posing rather 
than answering questions. For instance, students might 
ask a teacher if a solution is correct. Because one of the 
six principles of MEAs is self-assessment, a teacher may 
respond by asking students if their reasoning makes sense. 
As a metacognitive coach, a teacher indicates that wrong 
answers do exist, along with varying degrees of correct 
answers. However, steering students to a single, correct 
way of thinking is not an element of metacognitive coach-
ing (Gallagher & Stepien, 1995). Hence, metacognitive 
coaching encourages creative thinking.

MEAs provide teachers with the opportunity to inves-
tigate students’ thinking. This investigation often leads to 
insight regarding how to refine curricula. MEAs provide 
richer information on students’ thought processes than a 
worksheet, a closed-answer test, or a simple word problem. 
After gaining authentic information about students’ rea-
soning, a teacher can decide whether to reteach a concept, 
to stay with the initial curriculum plan, or to accelerate 
to an advanced topic. MEAs thus have great assessment 
potential and, in particular, they may help teachers iden-
tify creative solutions. 

The curricular characteristics of MEAs are consistent 
with other curricular approaches designed to enhance stu-
dent creativity such as creative problem solving (Schack, 
1993), problem-based learning (Gallagher, 1997), and 
independent study (Chamberlin, 2005). The most cre-
ativity friendly curricular characteristics of MEAs are 

interdisciplinarity, metacognitive coaching, and problem 
solving. These same characteristics are seen in other prob-
lem-solving programs, such as the Future Problem Solving 
Program, designed to enhance student creativity (Hoomes, 
1986). The difference is that MEAs are specifically focused 
on developing mathematical creativity.

Learning Characteristics of MEAs

MEAs have five learning characteristics when viewed 
in relation to student learning: collaboration, multiple 
processes, self-directed learning and self-assessment, fos-
tering of ownership, and model development. As with the 
curricular characteristics, these characteristics are not used 
as a guide to create MEAs. Instead, they can be viewed as 
tasks in which a student might ordinarily engage to suc-
cessfully solve an MEA. Student collaboration is fostered 
when doing MEAs because students work in groups of 
three or four. When engaging in MEAs, students depend 
on the expertise of peers in mathematics, literacy, and the 
context for the specific MEA. If, for example, a student has 
a relative who is a doctor and the context for the MEA is 
epidemiology, then student background knowledge may 
be an asset. Pulling on the expertise of peers mimics what 
happens in real life and workers operate in teams like they 
do in the real workforce (Dark, 2003). 

Students focus on multiple processes when doing 
MEAs. Unlike simplistic word problems, one or two sim-
ple computations will not solve any MEA. For instance, a 
group cannot merely add up a series of numbers and divide 
by the number of entries in that column to solve an MEA. 
The answer would be inadequate. Processes required and 
models created to solve MEAs are in much greater depth 
than simple algorithmic solutions and thus promote cre-
ative thinking because they are nonroutine. Hence, higher 
order thinking (Wieczerkowski, Cropley, & Prado, 2000) 
is required to complete each MEA. Students must also 
engage in metacognition to solve MEAs (Lesh, Lester, & 
Hjalmarson, 2003). As an example, students may create 
a plan to solve the problem and monitor their progress as 
they execute the plan. 

Self-directed learning and self-assessment are also 
trademarks of MEAs. Once the problem statement has 
been discussed in class, students work in groups. The 
process used to solve the problem is a decision made by 
students. Identifying efficient mathematical processes 
requires some creativity while it simultaneously forces stu-
dents to be consumers of mathematics. Self-assessment is 
promoted when doing MEAs because students are regu-
larly reminded by the teacher that they are producing a 
product for a client/customer (Lesh et al., 2000). Thus, 



42      The Journal of Secondary Gifted Education

the students must decide whether or not the product 
meets the demand(s) of the client. For instance, in the 
MEA entitled Summer Sports Camp (Chamberlin, 2000), 
students are asked to form rules to equitably design a track 
team. Scott Memmer, the client, expresses concern that 
their current system of friends selecting friends for teams 
has not worked in the past. Each year one team defeats the 
other team by a significant margin. To solve this problem, 
students can create a model to form teams and then score 
the meet to see if their scores are close. Not only does this 
level of autonomy foster independent learning, but it also 
alters responsibilities for the teacher from lecturer to meta-
cognitive coach. 

Moreover, MEAs foster ownership because students 
create their own models to solve realistic mathematical 
problems. Students are no longer seeking the single appro-
priate answer known only by the teacher. Prior to intro-
ducing an MEA, teachers do not illustrate an algorithmic 
process to solve the problem, as is done in a didactic 
approach (Steiner & Stoecklin, 1997). Instead, students 
are encouraged to work heuristically, inventing methods 
and models that will solve the problem. As a result of 
increased ownership, students often take pride in describ-
ing their solution to peers. Discussing and describing 
solutions, also referred to as debriefing, in which students 
engage during the presentation, show that although simi-
larities may exist in reasoning, each group solved the prob-
lem using their own methods. This solution debriefing 
is nothing new to many teachers and classrooms because 
it is a tool frequently used to create meaning and infuse 
communication into mathematics. When students create 
specific solutions, a context for talking about mathemat-
ics can be developed (Wood, Merkel, & Uerkwitz, 1996). 
Ownership often fosters increased persistence in problem 
solving (Prenzel, 1992) and this is another potential out-
come of MEAs. 

Finally, MEAs require students to create mathematical 
models for successful solutions to problems. The creation 
of models by students is one of the most powerful math-
ematical activities in which a student may engage (Glas, 
2002). Additionally, modeling may often be neglected in 
school systems due to its complexity and unfamiliarity 
to students and teachers. Creating mathematical models 
through MEAs provides a venue for engaging students 
in precollege mathematical thinking, which may not be 
accomplished with other curricular approaches (Lesh et 
al., 2000). Indeed, as a result of rapid acceleration, gifted 
students may view mathematics as a series of discrete sub-
jects (e.g., algebra has no relation to statistics). Creating 
mathematical models serves to illustrate the interconnect-
edness of mathematics (Lesh et al.). Glas lists four educa-

tional outcomes achieved by modeling in the mathematics 
classroom. Models and modeling help students (a) recog-
nize the interconnectedness inside and outside of math-
ematics, (b) recognize various perspectives on a domain of 
knowledge, (c) be creative in mathematical thought, and 
(d) view mathematics in a practical and applicable way. 

A rich discussion of models and the modeling pro-
cess can be found Lesh and Doerr’s (2003) Beyond 
Constructivism: Models and Modeling Perspectives on 
Mathematics Problem Solving, Learning, and Teaching. In 
the book, Lesh and Doerr have outlined numerous assets 
of models and modeling and have presented a compelling 
argument for incorporating them into the math curricu-
lum. MEAs may be the most available method for infusing 
models and modeling into the mathematics curriculum. 
With the curricular and learning components of MEAs 
described, the final section of the paper will complete the 
picture by showing how MEAs can be used as tools to 
identify individuals creatively gifted in mathematics. 

Creativity and its Relationship to MEAs

	 MEAs lend themselves to being solved creatively and 
they serve as an exemplar of how to identify creatively gifted 
mathematicians. The first goal of MEAs is to get students to 
create mathematical models to solve complex mathemati-
cal tasks (Lesh & Doerr, 2003). A principal difference in 
algorithmic problems and problem solving is that prob-
lem-solving tasks rely on the solver(s) to create and then 
to implement the process for success (Hiebert et. al, 1997). 
Conversely, algorithmic problems rely on the solver(s) to 
implement the process just illustrated by the instructor. 
	 Creativity is at the heart of MEAs, and it plays a signif-
icant role in student success in mathematics. With respect 
to math solutions, diversity in thinking is a process that is 
paramount to the successful development of models (Lesh 
& Doerr, 2003). However, the significance of creativity in 
school mathematics may be minimized because it is not 
formally assessed on standardized tests, which purport to 
thoroughly measure mathematical learning. MEAs can act 
to fill the assessment void created by standardized tests, 
and they provide performance-based assessment of the 
ability of students to generate creative mathematical ideas 
in response to a well-structured problem. 

Why Should MEAs Be Used to Identify Students 
Creatively Gifted in Mathematics?

By third grade, students already are “predisposed to 
thinking in different ways” (Lamon, 2003, p. 438). This 
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is one premise for the design of MEAs. An objective of 
MEAs is to provide rich information for students’ think-
ing. If only one method to solve each MEA existed, then 
investigating students’ thinking would be a pointless task 
because multiple solutions would not exist. No consider-
ation for process would exist because the product would be 
the only consideration. Furthermore, MEAs would be rel-
egated to the status of algorithmic problems such as those 
found on worksheets and many standardized tests. MEAs 
are different from other problem-solving tasks because the 
process is the product and creativity is a major emphasis 
in solving MEAs. 

Practically speaking, curricular resources do not exist 
to identify students considered to be creatively gifted in 
mathematics. Curricula such as Creative Problem Solving, 
Math Olympiad, Mathcounts, and so forth may foster 
creative thinking by engaging students in mathematical 
problem solving. The intent of such curricula is to fos-
ter creative thinking, but they were not necessarily created 
with identification in mind. MEAs may be viewed as a 
tool to identify individuals with a high amount of creativ-
ity and tacit knowledge in mathematics through the use of 
the Quality Assurance Guide (Lesh et al., 2000), in coor-
dination with the Ways of Thinking Sheet (Chamberlin, 
2004).
	 The Quality Assurance Guide (Lesh et al., 2000; 
see Appendix A) is a rubric used by teachers to rate the 
comprehensiveness of students’ solutions. Creativity was 
not an initial emphasis of this instrument, but the instru-
ment includes a strong emphasis on the “usefulness” of 
the model developed, and usefulness is one aspect of the 
definition of applied mathematical creativity. In addition, 
the instrument could be modified quite easily to include 
a second column focusing on the novelty of student solu-
tions. Also, it can be adapted by superimposing creativity 
on each of the three sections outlined in the introduction. 
For instance, creativity can be measured with respect to 
the development of a conceptual tool, the satisfying of the 
client’s needs and purposes, and the usefulness of the solu-
tion. When using the Quality Assurance Guide, students 
are provided with a score of 1 to 5, with 5 being regarded 
as an exemplary answer and 1 being regarded as an answer 
that is completely unacceptable. Usually, the most creative 
solutions receive the highest scores because high amounts 
of creativity are required to develop level 5 solutions. For 
example, models that both fit the data and generalize to 
other situations would elicit a score of 5.
	 In addition, teachers may use the Ways of Thinking 
Sheet (Chamberlin, 2004) in Appendix B in order to docu-
ment (unique) mathematical strategies created by students, 
and when possible, excerpts from student work should be 

included. Ways of Thinking Sheets are imperative because 
MEAs have been specifically designed to identify and nur-
ture mathematically creative students (Zawojewski, Lesh, 
& English, 2003). As with the quality assurance guide, 
these sheets were initially designed for general use with 
MEAs. However, they lend themselves to assessing cre-
ativity better than any other instrument created so far for 
assessment use with MEAs.
	 Parts of MEAs are left intentionally ambiguous to 
enable students and groups to interpret meanings. In turn, 
students’ interpretations of meanings significantly impact 
the way they solve problems. Interpreting words literally 
may lead to fairly straightforward responses. However, 
interpreting parts of the problem in unconventional ways 
may lend itself to more creative answers than might oth-
erwise be attained with a conventional interpretation of 
terminology. 

As an example of an ambiguous definition, in the prob-
lem On-Time Arrival (Chamberlin & Chamberlin, 2001), 
students are asked to identify which airline is most likely 
to be on time. To successfully solve this problem, students 
analyze 30 days of data from five airlines and they often 
use one or more combinations of central tendency (mean, 
median, or mode), range, or standard deviation. Anecdotal 
information suggests that students who interpret on time to 
mean something other than zero minutes late often arrive 
at models that have a higher degree of creativity than those 
who confine their interpretation of on time to only mean 
zero minutes late. Individuals who interpret on time to 
mean literally zero minutes late often only use a frequency 
count, such as mode, to identify the most on-time airline, 
which trivializes the problem. Alternatively, students may 
simply find the mean of all arrivals and select the mean 
closest to zero. Thus, by restricting the definition of on 
time, the task becomes a very simplistic one that does not 
lend itself to a creative solution. Simply implementing an 
algorithm solves the problem, but not satisfactorily nor 
creatively. Practically speaking, zero to 10 minutes late is 
on-time in airline jargon due to variations in the official 
time. 
	 Similarly, in the O’Hare Airport Problem (Zawojewski 
& Lesh, 1999), students are asked to design a model to get 
to the airport from a north suburb of Chicago for various 
times of the day, thus accounting for various traffic pat-
terns. The specific question asks, “What is the best way 
to get from here, a north suburb of Chicago, to O’Hare 
Airport?” As Zawojewski and colleagues (2003) have 
pointed out, “The term best was left undefined in this 
problem because a goal was to have students investigate 
processes involved in problem formulation, information 
interpretation, and trial solution evaluation” (p. 348). 
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Thus, the term best was used intentionally because it is 
ambiguous and it fosters creativity. It is likely that the stu-
dents who limit and closely define the term often have 
models of limited creativity. To the contrary, students who 
creatively define the word best are more likely to have cre-
ative models. Creative students may use multiple modes or 
intelligences to solve problems, while students with lim-
ited creativity may be seeking the “quick-fix” solution. 
	 Authentic math learning should replace the showing 
of algorithms as a means to math instruction (NCTM, 
2000). MEAs enable teachers to closely investigate student 
thinking through three avenues. First, teachers may follow 
students’ thinking as they are creating the model. While 
doing MEAs, teachers act as a metacognitive coach by pos-
ing questions to students. Hence, teachers can be apprised 
of students’ thinking as it unfolds. Second, in each MEA, 
students are asked to document their model in written 
form (Lesh et al., 2000). This written form enables teach-
ers to engage in a detailed analysis of students’ thinking 
at a later time. Third, students present their results to the 
class in a formal presentation called debriefing and peers 
are provided the opportunity to ask questions of each pre-
senter. Thus, teachers can investigate students’ thinking as 
they are engaging in thought, when they document it, and 
when they present the model.

Limitations of MEAs

	 As with any curricular approach, MEAs have limita-
tions. For instance, the interplay between Ways of Thinking 
Sheets (Chamberlin, 2004) and the Quality Assurance Guide 
(Lesh et al., 2000) has not been empirically researched. 
While the instruments have provided detailed information 
about students in field tests, they have not been used in har-
mony and creativity was not a major focus when they were 
initially created. Validation studies of these instruments for 
use in measuring mathematical creativity and identifying 
creatively gifted mathematicians are needed.
	 Another concern is that MEAs are largely available 
online at this point and it is difficult for classroom teachers 
to create MEAs without some training. Classroom teach-
ers may read example activities online, but they may not 
understand how to write these activities. Moreover, inter-
pretation of student thinking is the sole responsibility of 
the teacher (until the assessment instruments are formal-
ized with respect to creativity). 

Areas for Future Research

	 The areas outlined in the limitations are an excellent 
place to start with areas for future research. Reliable and 

valid instruments would precipitate greater trust in using 
the instruments and therefore provide more accurate data 
for teachers. Creativity assessment instruments need to be 
teacher-friendly and tips for implementation should be 
provided for teachers. In addition, a definition of creativity 
as it relates to mathematics may need to be reformulated 
given the complexity of nonroutine mathematical tasks. 
Perhaps the greatest challenge in reformulating the defini-
tion will come in establishing a definition that is proven 
empirically. 

MEAs appear to hold great promise for identifying 
and developing the type of applied mathematical creativ-
ity needed in fields like engineering, computer program-
ming, and economics. It would be interesting to conduct 
longitudinal research on middle school students who seem 
particularly talented in working with MEAs to determine 
their educational and career paths. It would also be inter-
esting to compare creative performances on MEA activities 
with scores on generic, divergent thinking measures to see 
if the two are correlated. There are many possible avenues 
for future research on how to identify and develop applied 
mathematical creativity using activities like MEAs. It is 
hoped that this article will stimulate interest in research 
on mathematical creativity in general, and MEAs in par-
ticular. 
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This Quality Assurance Guide is designed to help teachers 
(and students) evaluate the products that are developed in 
response to Model-Eliciting Activities with the following 
characteristics: (a) the goal is to develop a conceptual tool, 

(b) the client’s purposes are known and met, and (c) the tool 
must be sharable with other people and must be useful in 
situations where the data are different than those specified 
in the problem. 

Performance Level How useful is the product? What might the client say?

Level one: 
Requires Redirection

The product is on the wrong track. 
Working longer or harder won’t 
work. The students may require 
some additional feedback from the 
teacher.

“Start over. This won’t work.  Think 
about it differently. Use different ideas 
or procedures.” 

Level two:
Requires Major Extensions or 
Refinements

The product is a good start toward 
meeting the client’s needs, but a lot 
more work is needed to respond to 
all of the issues.

“You’re on the right track, but this still 
needs a lot more work before it’ll be in 
a form that’s useful.”

Level three: 
Requires Only Minor Editing 

The product is nearly ready to be 
used. It still needs a few small modifi
cations, additions, or refinements.

“Hmmm, this is close to what I need. 
You just need to add or change a few 
small things.”

Level four: 
Useful for this Specific Data Given

No changes will be needed to meets 
the immediate needs of the client.

“Ahhh, this will work well as it is. I 
won’t even need to do any editing.”

Level five: 
Sharable or Reusable 

The tool not only works for the 
immediate situation, but it also 
would be easy for others to modify 
and use it in similar situations.

“Excellent, this tool will be easy for me 
to modify or use in other similar situ-
ations— when the data are slightly 
different.”

Appendix A
Quality Assurance Guide

The Ways of Thinking Sheet, initially created by 
Chamberlin (2004), has been adapted to measure creativ-
ity. In the initial iteration of this document, teachers con-
sidered many components in assessing students’ ways of 
thinking in addition to creativity. For instance, teachers 
initially discussed the ease of use of the model with other 
clients and how well it met clients’ needs. This instrument 

has been adapted to focus on creativity. By document-
ing the mathematics used (e.g., the use of a nonstandard 
solution to one that lends itself to being solved by a stan-
dard algorithm), teachers may measure the effectiveness 
and creativity of the solution. Only minor changes have 
been made to the sheet so teachers may use it to cater their 
assessment needs.

Description of Strategy and 
Examples of Students’ Work

Mathematics: Concepts 
covered

Effectiveness in Creativity

Thinking Strategy #1

Thinking Strategy #2

Thinking Strategy #3

Thinking Strategy #4

Appendix B
Ways of Thinking Sheet

Note. From “Principles for Developing Thought-Revealing Activities for Students and Teachers,” by R. Lesh, M. Hoover, B. Hole, A. Kelly, and T. Post, in Handbook of Research in Mathematics and Science Education 
(p. 145), by A. Kelly and R. Lesh (Eds.), 2000, Mahwah, NJ: Lawrence Erlbaum and Associates. Copyright ©2000 by Laurence Erlbaum and Associates. Reprinted with permission.


