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Computer algebra is here to stay!

Not so long ago, the common response of
teachers to high school use of computer
algebra systems (CAS) was invariably along
the lines of, ‘What will be left to teach if our
students have access to devices which solve,
factorise, do calculus and more?’ and ‘If
students use such tools, then they will never
learn how to do their mathematics, and their
algebra skills will deteriorate,’; and the classic
cry, ‘What will be left for us to put into our
examinations?’.

Perhaps it is the ongoing research into the
classroom use of computer algebra tools, both
here and overseas, which strongly points, not
only to greater understanding and better atti-
tudes as a result of access to such facilities,
but indeed to no loss whatever of algebraic
manipulation capabilities on the part of
students.

Perhaps it is the growing wisdom of prac-
tice, as more and more classroom teachers
experiment with computer algebra systems,
first as tools for teaching and, later as tools for
learning, and observe for themselves the bene-
fits that follow from giving their students more
and more control over the mathematics they
are learning, and the ways in which they may
learn it.

Perhaps it is the softening effect of
increased access to ‘normal’ graphic calcula-
tors over the past few years, as teachers and

students have come to see the powerful bene-
fits of access to technology designed
specifically for the teaching and learning of
mathematics, tools which make our students
active participants rather than passive specta-
tors in the learning process. We begin to
appreciate the possibility that you can never
put ‘too much power’ in the hands of learners.

Perhaps it is simply the slightly embar-
rassed realisation that the comments above
were the same comments we made some five
or so years ago, concerning graphic calcula-
tors and, indeed, were precisely the same
comments some of us made twenty or more
years ago, concerning the use of scientific and
four-function calculators in our classrooms.
There are few among us now who would be
happy to teach our subject without access to
some form of supporting technology. As
always, it is not the tool itself but how it may
best be used that lies at the heart of teaching
and learning issues: good teachers, as always,
make use of technology in different ways at
different times, and there will always remain
times when a good teacher instructs students
to put aside their calculators (of whatever
variety) and work unaided.

So where do we stand after some fifteen
years of exploring the possibilities for the use
of computer algebra systems in high school
mathematics classrooms? At the heart of all
the issues and possibilities lies a single central
thought: learning to use the new tools is really
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about learning to ask new questions. Many
traditional questions become trivial, some
traditional approaches are revealed as, at best,
unnecessary and, at worst, a distraction from
the mathematics to be learnt.

Consider, for example, the important ques-
tion of what a solution should look like in a
CAS environment: should students still be
required to record every step of the process as
if it were being solved by traditional means?
When four-function calculators were first
allowed in classrooms, there were many of us
then who believed that students still needed to
show all working, as if they were doing the
long multiplication or the long division by
hand! The instant answer available using the
technology was, initially, simply a check that
the correct steps had been taken. Few of us,
now, however, expect all the steps of a long
division to be demonstrated in a solution: we
have realised that the process itself was not
the point of the exercise: rather it was a means
to an end — so with computer algebra tools.

We are likely, in the next few years, to see
such time-honoured and treasured mathemat-
ical processes as expanding and factorising,
even differentiation and integration, be rele-
gated to the growing pile of ‘historically
interesting’ mathematical procedures; hard to
conceive for those of us brought up on almost
a complete diet of such processes — and,
indeed, proud of our ability to succeed with
such where so many others of our peers failed
and fell by the wayside of mathematics.

Herein, too, lies a critical issue regarding
the acceptance and use of CAS: algebraic
facility has long served a gatekeeper role for
deciding who will earn entry to the hallowed
halls of higher mathematics and, through
these, to the many and increasing rewards an
understanding of mathematical thinking and,
consequently, technology, will bring.

As our society becomes ever more depen-
dent on technology for functioning at all levels,
can we afford to continue to limit so drastically
those who would maintain and extend these
operations? Think for a moment of those
without a strong facility in their multiplication
tables who, in the past, were weeded out early
and denied access to senior mathematics
courses. The universal availability of hand
calculators has exposed this culling process as
unnecessary. Many now teach capable and

motivated students who, in fact, succeed in
their study of mathematics despite not being
good at their tables, since they can rely on
technological support when necessary.

The same type of barrier is now being
confronted by computer algebra tools: why
should those who are motivated and able to
understand the concepts and processes of
higher mathematics be denied access when
scaffolding tools are now so readily available?
Question your assumptions concerning those
who are ‘worthy’ to progress to the study of
higher mathematics, and realise that there are
now important social priorities at stake: can
we afford to continue to deny access to those
who are willing and capable, simply because
their skills of algebraic manipulation are not
as strong as we have required in the past.

In fact, it remains true that the effective use
of such tools usually requires greater mathe-
matical understanding and concept
development rather than less. Knowing which
operation to choose, knowing which process to
follow, and interpreting the result intelligently
are all higher cognitive functions than
knowing the steps of a manipulative process.

I have long been impatient with those well-
meaning proponents of computer algebra
systems who parade a series of mathematical
‘tricks’ before teachers and students as a
demonstration of the power and worth of such
tools. To me the ability to spit out 1000
decimal places of Pi, or to instantly solve a
difficult equation with exact solutions, or to
factorise a degree five polynomial are little
more than gimmicks, and are quickly revealed
as such when placed in the crucible of the
classroom. Students are far more critical
users of technology than we, and are
frequently unimpressed by such displays of
computing power: they want to know ‘Why?’
and quite rightly so.

In my pursuit of ‘good questions’ of worth-
while applications for teaching and learning, I
am usually far more interested in what such
systems cannot do than what they can! A
question to which a computer algebra system
can produce an immediate answer (no matter
how complicated) is often of little value. Rather
we pursue questions which require interven-
tion by the user, which demand input of
mathematical knowledge and understanding
in order to access the kernel of a solution that
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lies at its heart; or perhaps there is no single
solution: rather an investigation which leads
the traveler on a mathematical journey, rich
with understanding and insight, while never
reaching a well-defined conclusion?

Consider the questions which follow in this
context, as exposing in some ways the ‘inade-
quacies’ or ‘short-comings’ of these powerful
tools, but, in so doing, revealing rich and
powerful mathematics along the way.

Question 1

Solve the following four equations (giving both
exact and approximate solutions where
possible).

(i)

(iii)

(iii)

(iv)

(v) Why?
(vi) What other numbers can be represented

in these ways?

While examples (ii) and (iii) are readily
solved using a computer algebra system (and
revealed as being closely related) it takes
considerable mathematical insight to see their
connection with the other two equations, even
though all have the same solution(s) and, at
heart, express the same quadratic form.

When provided with a powerful computer
algebra tool, students (and their teachers)
expect much of algebra and calculus to
become trivial — they are disappointed at how
often they are unable to simply enter a stan-
dard form and produce a ‘correct’ result.
Instead, the reality is that there is usually
some work required: first, in identifying an
algebraic or mathematical object upon which
to act, then, choosing an appropriate action;
evaluating the result of that action: does it
move me forward in my solution process or
investigation? This last usually leads to
another round of mathematical action.

Of course, the real advantage of access to

computer algebra is the ‘grunt’ it adds to your
mathematical toolkit! It represents the ulti-
mate mathematical investigative assistant.
Consider, for example, the problems above: by
simply adding the questions at the end,
students are sent off in search of patterns and
relationships and, at last, they are really
‘doing mathematics’!

Teachers frequently ask, ‘Of what use is a
device which merely produces a result?’. My
response has always been, ‘It is a very small
step from verifying results to verifying conjec-
tures.’

Question 2

A suitable extension activity, following on from
the previous investigation, could involve a
study of recursive equations. The equations
given above are examples of such recursive
equations since the main variable is described
in terms of itself. It is surprisingly easy to
create such an equation.

Consider, for example, a simple quadratic,
such as x2 – 3x – 4 = 0. Simply isolating the 
x-term from the middle of the equation results
in:

Students may investigate such equations,
especially their application to approximation
methods of equation solving. Try entering a
guess, and then using the ans feature of any
graphic calculator in this formula to observe
the effect of repeated applications. What might
be advantages and disadvantages of such a
method? How ‘good’ does your first guess need
to be? Could such a method be used to solve
any equation?
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Question 3

At exactly what value of a do the graphs of 
y = ax and y = loga(x) kiss?
[NOTE the use of the technical term for the
tangential meeting of two curves at a point!]

First attempts to solve the two equations
quickly reveal the problems associated with
having two variables! (Although an even earlier
problem may arise in trying to find an appro-
priate way to represent the second function: in
this case, sending students back to the loga-
rithm laws, from which may be derived the
change of base rule.)

Thus, loga(x) becomes .

A variety of investigative devices are avail-
able to students in such a context, even on a
‘normal’ graphic calculator. Consider, for
example, setting the value of the variable a as
a list of numbers, such as {1, 1.2, 1.4, 1.6} as
shown.

The marvelous ‘slider’ available within
TI Interactive! seems perfectly suited to this
task. Simply set the range of values for a, and
then move the slider until the desired effect is
achieved, quickly narrowing the solution down
to a value between 1.4 and 1.5 (shown).

Such a question, however, requires more
than trial and error, especially if an exact solu-
tion is specified. The importance of the initial
trial-and-error approach, however, should not
be underestimated. Students who use it are
taking control of the problem: checking to see
if it is a reasonable question, and where to
look for their answer or answers.

It might be hoped that the next step
towards a solution would involve the recogni-
tion of the two functions as inverses of each
other, and a subsequent recognition of the role
of the identity function, y = x, in this scenario.
This should suggest, to some, that another
property of the point of intersection of the two
curves lies in the value of the gradient of the
tangent to both curves being equal to 1.

This gives a more promising approach,
solving two equations with derivatives equal to
1, to produce two solutions in terms of a.

Equating these two solutions leads to an
exact answer, as required. The level of mathe-
matical knowledge and insight required,
however, puts paid to any suggestion that use
of CAS will lead to a degrading of mathemat-
ical capabilities.

a = 1.45
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Question 4

Designing roller coasters and water slides
provide nice opportunities for students to
increase their familiarity with graphical forms,
and the effects of various transformations
upon them. Consider the following example.

(i) Design a roller coaster which will fit into
a 10 metre section of the fair-ground, to
be no more than 10 metres high. Use a
cubic equation as the model for your
ride, such as that shown. Evaluate the
effectiveness of your design.

(ii) Describe the ways in which a quartic
design would improve your ride. Find a
suitable quartic function which will
serve as the model for your roller
coaster.

(iii) CHALLENGE: Use two different function
types (quadratic/cubic, quartic/sine,
etc.) to design an improved roller coaster
which will fit into the space allowed.
Ensure that the ride is smooth, and
explain clearly any improvements which
your design will have over the previous
two models.

The first two components of this question
may be suitably attempted on any graphic
calculator (in fact, the simplest solution
involves entering points into statistical lists
and doing a regression on these!), but the last
question would benefit from the support
offered by computer algebra. In particular,
ensuring that the curves join smoothly
requires that the gradients of both are equal at
their point of intersection, and this is indeed
an interesting requirement, mathematically.

Conclusion

Such questions offer ideal illustrations of the
power of computer algebra as a classroom
learning tool. These tools clearly support
students, not in mindlessly producing results,
but in purposeful and strategic investigation of
problems, which are likely to be beyond the
reach of many, working unaided. This is, after
all, the purpose of all scaffolding: it allows
users to see beyond and to reach further than
they could without such assistance. And
finally, when no longer required, perhaps to be
put aside, leaving an independent and free-
standing structure.

Computer algebra tools are sometimes
referred to as ‘symbolic manipulators’ as,
indeed, they are: devices which support the
manipulation of symbols. Our students in
such an environment, however, are much
more than mere manipulators of symbols.
They potentially become active, insightful
explorers of mathematical concepts and rela-
tionships, ably supported in this process by
powerful technological aids, which not only
serve to relieve the syntactical burden. They
make public the mathematical thinking of the
user, helping to expose tacit knowledge in the
domain of algebraic thinking which is so often
difficult to articulate. They offer explicit sign-
posts along the path of mathematical
discovery (when unsure of the next step, one
can always browse the menus and see what
options are available). They are a regular
source of mathematical surprise, even for
experienced users. So powerful are these
tools, in fact, that some might say they provide
mathematical wings to soar when others are
forced to walk! Whatever the rhetoric, it is time
for teachers of mathematics to become better
acquainted with the possibilities as the tools
become increasingly appropriate and afford-
able, the guidelines for their effective use
become better defined and, as a result, the
widespread classroom use of computer algebra
tools draws ever closer.
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