THE

EVENT

An event based on ‘find the rule’ problems has
been part of the University of Canberra Maths
Day since 1985. This paper discusses the type
of problems used, and how they are used in an
event at the maths day. It also discusses how
the event evens out the competition and stops
strong schools dominating.

Try this problem! From the table below,
deduce the values of y for the extra values of

X; or, equivalently, deduce the function y = f(x).

8 4 |20 17 | 40 7 1 /25| 0

19 | 11 43 | 37

‘Find the rule’ problems such as this are
used in the ‘Swiss’ event, one of the events
that comprise the University of Canberra
Maths Day. The Swiss event was introduced
into the maths day in 1985. In this paper we
will describe the Swiss event, its context, its
aims, its logistics and give examples of prob-
lems used in past events.

Since 1982 the University of Canberra has run
a maths day for final year secondary students
from schools in the Canberra region. It is held
in the University of Canberra gymnasium and
is sponsored jointly by the University, its
School of Mathematics and Statistics, and the
Australian Mathematics Trust.

The UC Maths Day aims to be an exciting,
enjoyable, light-hearted but nonetheless chal-
lenging day which provides an opportunity for
mathematically able students to celebrate
their talents. Up to forty teams, each of five
students, compete in a number of events and
there are trophies and prizes for the winning
team overall, and for the teams with the
greatest improvement over their school’s
performance in previous years.

Each team is accompanied by a teacher
(who supervises the team from another
school). The teachers are encouraged to take
back ideas and materials from the day’s events
to use in the classroom.

There are five events.

* Poster Contest

An open-ended challenge problem is sent to

teams a month in advance and teams

present their solutions on large, colourful
and often amusing posters which are
displayed and judged on the day.

* Group Contest

Teams work together on a set of ten story-

type problems.
* Swiss Contest

Pairs of teams compete in ‘find the rule’

problems as described in this paper.
* Cross Contest

Students attempt to solve a crossnumber

puzzle. Each team is split into two, with one

half seeing the across clues and the other
half seeing the down clues.
* Relay Contest

Each team is split into two and the halves
alternate in attempting the next available
question from a set of twenty. Questions
are on a range of topics and at a variety of
levels of difficulty. Questions can be
attempted several times and/or abandoned
but must be done in sequence.

More details can be found in the Maths Day
books [1], and in the paper describing the
Cross Contest [2].

There is a wide range of ability in the
students representing their schools. Some of

Problems

1996, number 2

X 100 | 30 | 600 350 540 | 70 | 710
Y 14| 4 8 | 50

2000, number 4
X 3 4 15 7 9 6 12
y 2 0 5 5

1997, number 5
X 9 15 36 63 18 81 50

y 10 16 40 70
1997, number 2
X 4 5 11 12 6 3 9
y 61 52
1992, number 2

121 | 441

111

25

55

74

the larger city schools have students up to
Mathematics Olympiad ability, while the
smaller country schools may have to send the
whole of their Year 12 advanced mathematics
class. The UC Maths Day adapts to this
disparity in a number of ways. For the Maths
Day as a whole trophies are awarded for the
most improved city and country schools as
well as for the overall winner. Further, each
event has specific ways of adapting to the
disparity in students’ abilities. Those of the
Swiss event are described in this paper.

In find the rule problems, students have to
relate a y value with a given x value. Or, equiv-
alently, to find a function f so that y = f{x).
Students are given an initial set of four (x, y)
pairs, and are asked to find the y values corre-
sponding to an additional sixteen x values. A
simple example was given in the introduction
(where, of course, f{x) = 2x + 3).

It is something of a balancing act to
construct problems of the appropriate level of
difficulty. If the problem is too easy, there is no
challenge. If it is too hard, students may
become frustrated or discouraged. While the
above example may be too simple, particularly

321 | 777 | 666 555 | 888 | 620 339 | 594

1999, 30 | 49 11 | 999 | 70 | 125 99

80 90 | 100 | 77 99 | 111 222 | 333

10 7 13 15 14 25 19 17

84 | 139 | 149 181 | -73 | 226 | 228 1000

after the results of a few more guesses are
known, a problem which seems obvious to its
constructor can seem far from obvious to
others. We address this by careful moderation
and by providing hints. Each problem is
provided with a cryptic hint and sometimes a
broad hint. How and when these hints are
Our
current practice is to print the cryptic hint on
the display sheet and to give the supervisor
discretion on when and if to give the broad
hints.

Below are some examples of problems

provided has varied over the years.

which have been used in the past, together
with their cryptic hints and solutions. So that
the reader can get a feel for solving the
problem, all of the problems are given, then
the next few y values, then the cryptic hints,
then the solution.

Next four y values

1996, #2: 77, 10, 101, 15
2000, #4: 2,2,8,0
1997, #5: 20, 100, 55, 61
1997, #2: 63, 9, 18, 46
1992, #2: 5, 23, 59, 79

Cryptic hints

1996, #2: A dwarfs share?

2000, #4: A Y2K problem?

1997, #5: A game for the under-10s, basi-
cally.

1997, #2: It all depends on which way you
look at it.

1992, #2: Farmers (and other primary
producers) should do well in this
round.

Solutions

1996, #2: y=xdiv7

2000, #4: y = 2000 mod x

1997, #5: y = x written to base 9

1997, #2: y = x* backwards

1992, #2: y is the first prime greater than x

amt 60 (1)

The logistics of the Swiss event

The Swiss event at the UC Maths Day is organ-
ised as a series of 4 to 6 rounds depending on
the time available. In each round a school
competes against one other school. Thus each
round consists of 15-20 separate ‘matches’.
This is in contrast to the other events where
each school competes directly against every
other school.

In each match the students from the two
schools are interleaved. They sit in a crescent
with the (x, y) values printed on a large sheet
of paper on the floor in front of them.

x| 8| 4120(17|40| 7| 1 (25| O
y (191143 (37

B1 A5
A2 B4

B2 A4
A3 B3

Students take turns in guessing the next y
value. If the guess is correct a point is awarded
to the student’s school. There is no penalty for
an incorrect guess. All students hear each
guess and the supervisors ‘right’ or ‘wrong’
response. Irrespective of whether a student’s
guess is right or wrong, the student has to
wait until all other nine students have had a
turn before guessing again. Students continue
to guess the y value corresponding to a partic-
ular x value until a guess is correct. At this
point the new y value is written onto the sheet.
Then they move onto the next x value. If
students are stuck, the supervisor may give
hints (see ‘Rationale for the Swiss event’
below).

The pairings at the Swiss event

Round robin competitions are familiar to
followers of games ranging from football to
chess. They are organised as a series of
rounds, each of which consists of a number of
matches. In a single round robin competition
contestants play each other exactly once and
the number of rounds is one fewer than the
number of contestants.

‘Swiss’ competitions were introduced by the
Swiss chess federation to enable a large field of

candidates to be ranked without having a full
round robin. There is a great deal of flexibility
in choosing who will play who in the first
round. In choosing the pairings for subse-
quent round two considerations need to be
taken into account. Firstly no contestant
should play the same opponent more than
once. Secondly, the contestants are ranked
more effectively if the pairings are of contes-
tants with roughly equal ability.

At the UC Maths Day there is already a
ranking based on the schools’ performances in
the Group event. In the first round the top
team is paired with the second team, the third
with the fourth, etc. In subsequent rounds the
pairings minimise the difference in rankings,
subject to no school competing against the
same school more than once. The rankings are
updated between rounds. More details are
given in ‘The Swiss Algorithm’ below.

Victory points

Victory points are widely used in bridge
competitions. The aim is to prevent a blow-out
in scores if one team happens to dominate

another. When victory points are used the
total number of victory points is fixed. If there
were, say, 20 victory points available and one
team was awarded 14, then their opponents
would be awarded 6. Awarding victory points
is a two stage process. Firstly raw points are
decided by the results of the match. Then a
formula is used to convert the raw points into
victory points. The raw points relate to the
context of the competition. For instance, when
Swiss scoring is used in contract bridge, the
raw points are the difference in points earned
by the two teams in a hand of bridge. In our
‘find the rule’ problems, the raw points are the
number of correct answers by each team.
These are converted to victory points using the
formula 6 * the difference in raw scores, with
a maximum of 12 and a minimum of 0.

Rationale for the Swiss event

There is a wide range of ability in the students
who compete at the UC Maths Day. This differ-
ence in ability is both between schools and
within schools. One of the aims of the organ-
isers is to give a sense of achievement to all

amt 60 (1)

BLIDQUE JO AJISIDATU[) AS91IN0D 0)0UJ

students from all schools. In the Swiss
contest, this is addressed in a number of
ways.

Firstly, advantage is taken of the number of
rounds being much smaller than the number
of teams. The algorithm described below
ensures that the difference in ranking of
competing schools is minimised. This makes it
unlikely that there will be a mismatch between
schools.

Secondly the use of victory points rather
than raw scores puts a limit on the spread of
points awarded for the event. In particular, it
prevents a blow-out if there is a mismatch in
one of the matches. It also prevents a good
school for benefiting too much if they happen
to be paired with a weak opponent.

Thirdly, because students are interleaved,
the next guess is always by a member of the
opposing team. Further, having students wait
before answering their next question also has
the benefit of preventing a quick thinking
student from dominating others in the mini-
competition. This includes students from his
or her own school as well as the opposing
school.

Finally, supervisors have discretion about
when to give the cryptic hint and the broad
hint. Hints may be given earlier if the students
seem to be struggling. In addition, supervisors
may make up their own hints if the ones
supplied prove ineffective. This does not disad-
vantage any other team as the hints are only
heard by students in teams who are directly
competing against each other, and the scoring
system uses the difference in the number of
questions answered correctly.

The Swiss Algorithm

In order to run the Swiss event it is necessary
to find the pairings of schools for each round.
Finding pairings which do not conflict with
previous rounds’ pairings is not difficult, and
solutions are well known. They have been
used in contract bridge competitions for
several decades. What makes finding the pair-
ings more difficult for the UC Maths Day is the
requirement of not pairing teams with widely
differing abilities. A further problem is that the
rankings are updated between rounds, so that
it is not possible to find pairings for all rounds

amt 60 (1)

based on the teams’ rankings in the previous
event, the Group Contest (the Swiss Contest is
the second event of the day). On the other
hand, there are only 4 to 6 rounds, so that the
problem is still manageable.

When the Swiss event was first introduced,
one of the organisers of the UC Maths Day
would work out the pairings by hand. Having
run many bridge competitions he is highly
skilled at finding pairings. Nevertheless, it
becomes non-trivial as the number of rounds
increases, and given the necessity of entering
marks for the previous round and the over-
head of relocating teams between rounds we
often got through fewer rounds of the Swiss
than we had prepared.

Recently one of the authors wrote a small
computer program to do the pairings between
rounds. This was incorporated into the score-
keeping software used on the maths day. This
has worked well since, as it eliminates the
time taken to determine the pairings. The
delay caused by entering the results has also
been eliminated by determining the pairings
on the rankings one round further back. That
is, the pairings for the first two rounds of the
Swiss are based on the team rankings after the
Group contest, the pairings for the third round
of the Swiss is based on the team rankings
after the first round of the Swiss, etc. This
allows the scores for a round to be entered as
the students are doing the next one.

A branch and bound algorithm was devel-
oped to find the pairings. It is described in the
appendix.

Where to get more

The University of Canberra Maths Day home
page can be found at

http:/ /www.blis.canberra.edu.au/
MathStat/frames/maths_frset.htm.

References

Brooks, M. S. (Ed.). University of Canberra Maths Day books for
the years 1985 to 1991 are available from the Australian
Mathematics Trust, PO box 1, Belconnen ACT 2616.

Clark, David (2002). Crossnumber Puzzles at the University of
Canberra Maths Day. The Australian Mathematics Teacher 58
(3), 24-29.

The University of Canberra Maths Day home page
http:/ /www.canberra.edu.au/mathsday

Appendix: The branch and
bound algorithm to program to
determine Swiss pairings

The cost function

The Swiss algorithm finds the pairings with
the lowest cost. Suppose the teams are t;, t,,
..., tp (in rank order). Then the cost of a match
between t; and t;is 10|i-j| - 1 if t; and t; have
not already competed against each other, and
~ if they have. The cost of the whole pairing is
the sum of the costs of the individual matches.
For example, a paring of {(t;, t4). (ta, t3), (t5, t7),
(te» tg)} would have a cost of 121. A useful
consequence of this cost formula is the infor-
mation it gives. For example, with 34 teams a
cost of 359 means that the pairing has 3
matches where the contestants are 3 apart in
ranking, 5 matches where the contestants are
2 apart in ranking and 9 matches where the
contestants are 1 apart in ranking.

The branch and bound algorithm

The algorithm used is a classic branch and
bound algorithm. Pairings are built up in a
systematic way. All possible pairings are eval-
uated using the cost function, and the best is
chosen. This is the ‘branch’ part of the algo-
rithm. The diagram below shows part of the
tree of solutions for a 6 teams (3 pairs) compe-
tition, with teams A, B, C, D, E and F.

— (AB)(CD) (AB)(CD)(EF)
(AB) (AB)(CE) (AB)(CE)(DF)

— (AB)(CF) (AB)(CF)(DF)

— (AC)(BD) (AC)(BD)(EF)
(AC) (AC)(BE) (AC)(BE)(DF)

— (AC)(BF) (AC)(BF)(DE)
(AD)

Constructing and evaluating all possible
pairings is not practicable. Even for only 30
schools there are about 6 x 10*° possible pair-
ings. At one million per second this would take
200 years. We are not convinced that we could
keep the students’ attention for quite that long
between rounds.

Instead, when the cost of a partial pairings
exceeds the cost of the best solution so far, it
is abandoned. This is the ‘bound’ part of the
algorithm. The diagram below demonstrates
this. An initial solution {(AB)(CD)(EF)} is found.
The cost of the partial solutions {(AB)(CE)} and
{(AB)(CF)} both exceed the cost of
{(AB)(CD)(EF)}, so their solutions are not
completed. Then the branch {(AC)} is entered.
It is found that A and C have played against
each other in a previous round, so that whole
branch is abandoned. The next full solution
evaluated is {{AD)(BC)(EF)}.

’/ (AB)(CD) (AB)(CD)(EF)
(AB) (AB)(CE)
‘— (AB)(CF)
(AC)
’/(AD)(BC) (AD) (BC) (EF)
(AD) L

The algorithm was
JavaScript. The source code is available from
the first author.

implemented in

David Clark

School of Information Sciences and Engineering
University of Canberra
davidc@ise.canberra.edu.au

Malcolm Brooks

School of Information Sciences and Engineering
University of Canberra
malcolmb@ise.canberra.edu.au

amt 60 (1)

