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Biography

Born in 1707, Leonhard Euler was the son of
a Protestant minister from the vicinity of
Basel, Switzerland. With the aim of pursuing
a career in theology, Euler entered the
University of Basel at the age of thirteen,
where he was tutored in mathematics by
Johann Bernoulli (of the famous Bernoulli
family of mathematicians). He developed an
interest in mathematics, which consequently
led him to abandon his plans to follow in his
father’s footsteps. 

At the age of 16, Euler completed a master’s
degree in Philosophy and, in 1727, Peter the
Great invited Euler to join the Academy of
Sciences in St Petersburg, where he became a
Professor of Physics in 1730, and a Professor
of Mathematics in 1733 — the same year he
married Catherina Gsell. In 1741, at the invi-
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tation of Frederick II, Euler became director of
Mathematics and Physics at the Royal
Academy of Berlin, but after a disagreement
with Frederick, he returned to the Academy in
St Petersburg in 1766, on invitation of
Catherine the Great. 

Euler was incredibly prolific, writing more
than 700 books and papers. His papers accu-
mulated at such a rapid rate that he left a pile
of papers to be published by the Academy.
However, they published the top papers first
so that later results were published before the
results they superseded or depended on.
Euler’s unusual productivity continued
throughout the last twelve years of his life
when he was entirely blind (as a consequence
of not taking necessary care of himself after a
cataract operation). Incredibly, after his return
to St Petersburg, Euler produced almost half
of his total works. Euler also had thirteen chil-
dren, only five of which survived, and was able
to continue his research while a child or two
bounced on his knees. He has been quoted as
saying that he made some of his greatest
discoveries while holding a baby in his arms. 

On 18 September 1783, Euler died from a
brain haemorrhage not long after giving one of
his grandchildren a mathematics lesson. He
left so much unpublished work that the
Academy did not finish publication of his work
for forty-seven years after his death. The
publication of the collected works and letters
of Euler, the Opera Omnia, by the Swiss
Academy of Sciences will require more than
eighty-five large volumes of which seventy-six
have already been published (as of late 1999). 
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Algebraic number theory

Euler’s work on the solution to Diophantine
equations (equations with integer solutions)
marks the early history of algebraic number
theory. A technique for finding integer solu-
tions of equations of the form

z3 = ax2 + by2, a, b integers, a > 0

was one particular problem considered by
Euler. After developing a method of solution,
he specialised by setting a = 1, b = 2, and
y = ±1 to solve z3 = x2 + 2. Euler first factored
this equation over the complex numbers to
get:

.

Now consider the set of all numbers of the
form 

;

we denote this set . Euler used the
arithmetic properties of this set to solve the
equation. (This was very bold of Euler since
most mathematicians of that era were reluc-
tant to use complex numbers in their
research). He made the following two assump-
tions:

1. If α, β, γ are in with α, β rela-
tively prime (i.e. α, β have no common
factors) in and αβ = γ3, then α,β
are cubes of numbers in     . 

2. If u and v are relatively prime integers,
then and are rela-
tively prime in . 

Under the above assumptions, Euler estab-
lished that

and

for some integers a, b, and therefore

so that

z = a2 + 2b2. 

z3 = a + b −2( )3
a − b −2( )3

= a2 + 2b2( )3

x − −2 = a − b −2( )3

x + −2 = a + b −2( )3

Z −2[ ]
u − v −2u + v −2

Z −2[ ]
Z −2[ ]

Z −2[ ]
a + b −2 | a, b integers{ }

z3 = x2 + 2 = x + −2( ) x − −2( )

If we expand the right-hand
side of

and equate real and imaginary
parts, we get 1 = b(3a2 – 2b2).
Thus, it is easily deduced that
b = 1, a = ±1, z = 3, x = ±5.
Using similar ideas, Euler also
presented a proof of Fermat’s
Last Theorem for n = 3; that is,
he claimed to have proved that there are no
non-trivial integer solutions of z3 = x3 + y3.
His proof involved numbers in

but there were problems with his approach
since there were several gaps and errors in
this reasoning. In fact, in this particular area
of number theory, Euler did not justify many
of his assumptions, and stated many claims
without proof. A deeper knowledge of factori-
sation in algebraic number fields is required
for a more complete treatment. However, this
very subject is still of great research interest
today.

Z −3[ ] = a + b −3 | a, b integers{ }

x + −2 = a + b −2( )3

Z −2[ ]

Exercise

Show that is closed under addition, subtrac-
tion, multiplication and division (not by zero). That is,
if a, b belong to , then so do a ± b, a.b, and
a/b (b ≠ 0). 

is an example of a field.Z −2[ ]
Z −2[ ]

Z −2[ ]

Analytic number theory

From the time of Fermat (1601–1665) to that
of Euler, the development of analysis was of
primary interest. Consequently, there was very
little progress in number theory during this
period. Euler not only revived number theory,
but applied analytic methods to his studies.
Perhaps the result that brought Euler the
most fame in his earlier years was his solution
to what had become known as the Basel
problem. This was to find an expression for the
sum of the infinite series 

1+ 1

22
+ 1

32
+ 1

42
+ 1

52
+…
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Many of the top mathematicians, including the
Bernoulli family, had tried unsuccessfully to
find this sum. However, in 1735, Euler
succeeded where they had failed by verifying
not only numerically, but exactly, the value of
π2/6 for the above sum. Euler’s investigations
did not stop there, and he proceeded to
consider the sums of the reciprocals of higher
powers. In 1736 he discovered that

where the B2k are the Bernoulli numbers
defined by

After discovering this result on 

Euler’s attention turned to the zeta function:

With some difficulty, he established that

where the infinite product on the right is taken
over all the primes 2, 3, 5, 7… It is known
today as the Euler Product Formula.

ζ s( ) = 1− 1

2s






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 1− 1

3s







 1− 1

5s
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
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
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 1− 1

7s
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




…

ζ s( ) = 1+ 1

2s
+ 1

3s
+ 1

4s
+…

1

n2k∑

x

ex −1
= B0 + B1x

1!
+ B2x2

2!
+ B3x3

3!
+…

1+ 1

22k
+ 1

32k
+ 1

42k
+ 1

52k
+… = 22k−1|B2k |π 2k

2k( )!

2. if p is a prime and a is a positive integer
not divisible by p, then ap–1–1 is exactly
divisible by p.

The first of these conjectures had simply
been stated by Fermat, who left it unproven.
In 1732, Euler set out to prove this result, but
after several attempts he was unable to find a
proof. He then tried to disprove Fermat’s
claim, and succeeded by finding that the fifth
Fermat number, = 4 294 967 297,
is divisible by 641. For the second of these
conjectures, known as Fermat’s Little
Theorem, Euler published a surprisingly
elementary proof in 1736, simply using math-
ematical induction on the natural number a.
Having proved this result, Euler also estab-
lished a somewhat more general statement, in
which he used the now well-known Euler phi-
function. For a positive integer n, he defined
φ(n) to be the number of integers between 1
and n that are relatively prime to n (i.e. have no
common factor with n greater than 1). For
example, φ(4) = 2. Clearly, if p is a prime then
φ(p) = p – 1, and it can be proved that

where p1, p2, … pr are the distinct prime
factors of n. Using this result, Euler gener-
alised Fermat's Little Theorem by proving that
if a and m are relatively prime, then m divides
aφ(m) – 1. That is, if a, m are relatively prime,
then aφ(m) ≡ 1 (mod m). This is now known as
Euler’s Theorem, although the congruence
notation was later introduced by Gauss in
1801. In addition to the phi-function, Euler
also introduced the following arithmetic func-
tions:

d(n) = number of positive divisors of n;
σ(n) = sum of the positive divisors of n.

These functions are multiplicative in the sense
that if m, n are relatively prime then
f(mn) = f(m)f(n). If is the
factorisation of a positive integer n into its
prime powers, then by the assumption of
multiplicativity, Euler showed that

d(n) = (α1 + 1)(α2 +1 ) … (αr + 1).

This is immediately evident from the fact that
the positive divisors of pα are 1, p, p2, … pα so

n = p1
α1.p2

α2 … pr
αr

φ n( ) = n 1− 1
p1
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F5 = 225

−1

Exercise

In the formula defining the Bernouilli numbers,
substitute the series for ex, multiply the right hand
series by the series for ex – 1 (first few terms,
assuming the operation is valid), and hence evaluate
the first few Bernouilli numbers.

Arithmetic functions

Euler was no stranger to
cleaning up Fermat’s
incompleteness. Fermat
had asserted, among other
things, that:
1. the numbers of the

form (the nth
Fermat number) are
always prime; and

22n

−1
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that d(pα) = α + 1. It is also a simple exercise
to derive

.

Euler’s memoir on σ(n) contains many
beautiful results relating to primes and parti-
tions. The study of such arithmetic functions
allowed Euler to experiment, guess results,
and verify their plausibility.

σ n( ) = p1
α1 +1 −1
p1 −1









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p2
α2 +1 −1
p2 −1
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


 … pr

αr +1 −1
pr −1
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





 From this, Euler then proved that the number

of partitions of n into distinct parts is the coef-
ficient of xn in the series for

(1 + x + …)(1 + x2 + …)(1 + x3 + …)(1 + x4 + …) …
and in fact, the number of partitions of n into
distinct parts equals the number of partitions
of n into odd parts. 

The theory of partitions was a perfect
subject for Euler to exercise his great skill in
formal manipulation, and he went on to prove
numerous important identities. Apart from
partitions, Euler also realised an even wider
use for power series in number theory. He
stated in a letter to Goldbach that the coeffi-
cient an in the series

is the number of ways to express n as a sum
of four integer squares. Thus, if it could be
proved that an > 0, for all n, then Fermat’s
conjecture, that every positive integer is the
sum of four squares, would be true. This very
representation was used in the 1800s by
Jacobi (1804–1851) when he used the theory
of elliptic functions to prove Fermat’s claim
was indeed true.

an xn∑ = xn 2∑ 


4

1+ p 1( )x + p 2( )x2 +… = 1
1− x


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
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1

1− x2









1

1− x3
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
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 …

Exercise

Evaluate the first few Fermat numbers. Are
they prime?
Evaluate φ(n), d(n), σ(n) for the first few
values of n. Can you make any observations
about them?
Can you think of any other multiplicative
functions?

Partitions

Many of Euler’s contributions to number
theory arose from his enthusiasm for inter-
esting questions about the integers. One
particular question that caught Euler’s atten-
tion was raised by the Berlin mathematician,
Naude. In 1740, Naude wrote to Euler to ask
in how many ways a given positive integer can
be expressed as a sum of r distinct positive
integers. This problem was quickly solved by
Euler and, within few months, he sent a
memoir on the subject to the St Petersburg
Academy. He had created a new area of
number theory, which intrigued him for many
years to follow.

First Euler introduced the idea of a parti-
tion of a positive number n into r parts as a
sequence, n1 < n2 < … < nr, of positive integers
such that

n = n1 + n2 + … + nr

where the ni are the parts. For example, the
partitions of 4 are:

1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, 4.
He then let p(n) denote the number of parti-
tions of n into any number of parts, where
p(0) = 1. In order to study the sequence {p(n)},
he introduced the series (or generating func-
tion) Σ p(n)xn, and showed that

Exercise

List the possible partitions of the first few integers n.
Count the number of partitions for each n, and then
compare this with the calculated value using Euler’s
formula.
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