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1A major goal of education has been to produce changes 
in the knowledge and skill levels of students. Although 
measuring change over time is important for all educators, it 
is especially important for teachers who are in charge of 
students with learning difficulties and must monitor 
individual students’ progress over time and evaluate the 
effects of instructional programs for those students. The 
academic growth of students with learning difficulties, 
unfortunately, is often so minimal as to go undetected by 
typical published, standardized achievement tests, especially 
over short periods of time. In addition, it is not easy to find 
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testing instruments that generate reliable and valid repeated 
measures of student performance over time, especially within 
a short time period (e.g., one year). For example, published 
standardized achievement tests are designed to be given at 
approximately one-year time intervals; they are not designed 
for multiple administrations within a one-year time frame.  

Over the past 20 years, a system of measurement 
referred to as Curriculum-Based Measurement (CBM) has 
been developed that can be used to measure student 
performance reliably, validly, and repeatedly to represent 
academic growth over time (Deno, 1985; Good & Jefferson, 
1998; Marston, 1989; Shin, Deno, & Espin, 2000). CBM has 
been used primarily as a method for teachers to evaluate the 
progress of individual students over time so that teachers can 
evaluate the effectiveness of their instruction. However, 
CBM also has great potential for enabling researchers to 
examine the academic growth patterns and rates for groups of 
students, and further, to examine the relationship between 
student growth and relevant correlates (i.e., variables 
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assumed to be associated with student growth such as 
homework, class participation, and motivation to learn).  

Repeated measurement of student performance, a 
hallmark characteristic of CBM, allows educators to make 
instructional decisions based on student growth over time 
rather than student status at a given time. CBM, as a multi-
wave growth monitoring system, has technical, psychometric 
advantages in assessing student growth and its relations to 
correlates. In that regard, CBM holds promise for assessing 
the slow development of students with learning difficulties 
(Deno, 1985; Deno & Fuchs, 1987; Marston, Deno, & Tindal, 
1983).  

The main purpose of this paper is to demonstrate how to 
use CBM as a multi-wave growth monitoring system for 
assessing student growth in combination with a statistical 
method called Hierarchical Linear Modeling (HLM) (Bryk & 
Raudenbush, 1987, 1992). Before describing specific 
procedures for modeling student growth using CBM and 
HLM, we briefly present (a) psychometric features of CBM 
for modeling academic growth and (b) statistical methods that 
handle multiple data points for assessing student growth over 
time (i.e., HLM, Structural Equation Modeling, and repeated 
measures ANOVA). We then demonstrate how to model 
student growth and how to examine the effects of student- 
and instruction-related variables on student growth using 
multi-wave CBM math measures with HLM. Finally, we 
discuss research questions related to the investigation of 
academic growth of students with learning difficulties using 
CBM procedures. 

 
CBM and Its’ Psychometric Features 

 
CBM has been used to monitor students’ progress in the 

academic skills of reading, mathematics, and writing, and its’ 
technical adequacy in validity and reliability has been well 
established (Deno, 1985; Marston & Magnusson, 1985). 
Students’ academic performance is assessed with testing 
items developed on the basis of school curricula. Equivalent 
forms of tests in each skill area are provided for measuring 
students’ progress over time, and their testing scores are 
graphed and provided for teachers and students themselves.  

The first advantage of using CBM for assessing student 
growth relates to the technical adequacy of the measures 
(Good & Jefferson, 1998; Marston, 1989). The validity and 
reliability of performance measures are important if tests are 
to be used in educational decision-making, as well as in the 
study of growth. An extensive body of research shows that 

CBM measures as static measures (e.g., measures obtained on 
a given testing occasion) have strong criterion-related validity 
with standardized achievement tests (Good & Jefferson, 
1998; Marston, 1989). Further, the growth rates estimated on 
repeated CBM measures collected over time have good 
predictive validity on later student achievement on 
standardized tests (Shin, Deno, & Espin, 2000).  

With regard to reliability, research shows that most 
reliability coefficients of CBM measures are above .90 
(Marston, 1989). This high reliability indicates that CBM 
measures can be used to make educational decisions on 
individual students for identification purposes (Salvia & 
Ysseldyke, 1995). Related to the study of student growth, the 
high reliability of CBM measures increases the reliability of 
estimated growth parameters by decreasing the measurement 
error. The increased reliability results in more dependable 
examination of the relations between growth parameters and 
correlates (Willet, 1989b). 

The second advantage of using CBM measures for the 
study of student growth is its logistical efficiency in obtaining 
multiple data points over short time periods. As the number 
of data points increases, the measurement error associated 
with growth estimates decreases, leading to higher reliability 
of growth parameters (Willet, 1989a, 1989b). Subsequently, 
increased reliability of growth parameters enables more 
accurate examination of the effects of students’ background 
variables (both static, like SES, and variable, like motivation) 
on academic growth.  

In addition, various growth trajectories (e.g., a quadratic 
growth model that can estimate acceleration or deceleration 
of growth rates over time) can be examined by using multiple 
data points. In contrast, with two data points, student growth 
must be assumed to be linear (Willet, 1989a); however, 
psychological or behavioral traits of human beings rarely 
develop at a constant rate over time.  

The third advantage of using CBM for assessing student 
growth is its sensitivity to changes over short periods of time. 
Using sensitive measures is important, especially when 
timely instructional decisions for individual students are to be 
made on the basis of student growth. Research shows that 
CBM measures are more sensitive to changes in student 
performance over short time periods than standardized 
achievement tests (Marston, Deno, & Tindal, 1983; Marston 
& Magnusson, 1985), and to inter-individual differences in 
rates of growth over time (Shin, Deno, & Espin, 2000).  

Finally, CBM employs behavioral measures of student 
performance (e.g., number of words read correctly per 
minute) such that individual differences in academic    
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performance are allowed to increase over time. Individual 
differences in academic skill development are likely to 
increase over time because every individual does not develop 
academic skills at the same rate (Labouvie, 1982); therefore, 
a measure for assessing student growth should be sensitive to 
such increase of individual differences over time. Increased 
variances in test scores across time lead to increased 
variability in individual growth rates across time. 
Subsequently, such increased heterogeneity of growth rates 
among individuals is expected to result in higher reliability of 
growth-rate estimates (Bryk & Raudenbush, 1987, 1992; 
Willet, 1989b; Zimmerman & Williams, 1982).  

 
Statistical Methods Handling Multiple Data 

Points for the Study of Student Growth 
 

Using multi-wave data points in the study of academic 
growth provides (a) more reliable estimation of growth 
parameters, (b) a method for examining growth patterns, and 
(c) a method for more systematically investigating relations 
between growth parameters and correlates. Statistical 
methods that handle multiple data points for the study of 
student growth include repeated measures ANOVA (Hertzog 
& Rovine, 1985; McCall & Appelbaum, 1973), Structural 
Equation Modeling (SEM) (Loehlin, 1998; Maruyama, 1998; 
Willet & Sayer, 1994), and Hierarchical Linear Modeling 
(HLM) (Bryk & Raudenbush, 1987, 1992). Each of these 
statistical methods has distinctive technical characteristics 
related to statistical assumptions, intervals between testing 
occasions, missing-data handling, characteristics of correlates, 
and the number of subjects required to get reliable growth 
estimates. In this section, we describe and compare each of 
the three statistical methods for the study of student growth 
based on multi-wave performance data. 

 
Repeated Measures ANOVA 

 
Repeated Measures ANOVA is a statistical method that 

deals with differences among sample means obtained from 
the same participants. Using this method, researchers can 
examine developmental patterns of student performance over 
time and the effect of correlates on performance changes 
based on repeated measures of student performance. In this 
case, repeated measures become a within-individual variable 
and correlates (e. g., high-, average-, and low-achieving 
students) become a between-individual variable. 

Repeated Measures ANOVA requires meeting strict 
assumptions on repeated measures of student performance. 

First, the method requires relations among repeated measures 
of student performance to be consistent across testing 
occasions (i. e., compatible variance and covariance matrixes), 
called the “sphericity” assumption (Hertzog & Rovine, 1985; 
McCall & Appelbaum, 1973). In reality, the relation between 
closely located measures is likely to be different from the 
relation between distantly located measures. When the 
sphericity assumption is not met, either correction procedures 
(i.e., adjusting the degree of freedom for statistical tests) or 
multivariate statistics (e. g., Wilk’s λ ) is suggested as an 
alternative to ordinary univariate F tests (Hertzog & Rovine, 
1985). 

A second assumption of Repeated Measures ANOVA is 
that repeated measures of student performance are obtained at 
the same time for all participants with equal intervals 
between testing occasions. Repeated Measures ANOVA, 
therefore, is not appropriate for repeated measures obtained at 
different time points among students or with different time 
intervals between testing. When conducting frequent repeated 
measurement of students over time (e. g., over an entire 
school year), it becomes difficult to test all students on the 
same occasions and with the same time intervals between 
testing. Therefore, the flexibility of research design for the 
study of student growth is decreased when using Repeated 
Measures ANOVA.  

An additional problem with Repeated Measures 
ANOVA is the way in which missing data are handled. If 
cases have any missing data, they are automatically excluded 
from analysis. In reality, when students are repeatedly 
assessed over time (e. g., an academic year), it is likely some 
students will miss a test on a certain occasion. Eliminating all 
students who have incomplete data reduces the statistical 
power to detect relations between student growth and 
correlates, resulting in misrepresentative outcomes. 

Finally, only discrete variables (e. g., group classification, 
gender, and ethnicity) can be used in Repeated Measures 
ANOVA as correlates (predictors) to explain inter-individual 
differences in performance changes. Therefore, when 
continuous variables (e. g., motivation, active responding to 
teacher’s requests, and age) are considered as a correlate, 
other statistical methods (e. g., SEM and HLM) must be used. 

 
Structural Equation Modeling 
 

Structural Equation Modeling (SEM) is a regression-
based statistical method that deals with relationships among 
measures including repeated measures of  student 
performance. Similar to Repeated Measures ANOVA, SEM 
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requires strictly defined repeated performance data (Loehlin, 
1998; Maruyama, 1998; Willet & Sayer, 1994). First, 
performance data must be collected with equal time intervals 
between testing occasions over time. If testing occasions are 
not evenly distributed, the reliability and accuracy of growth 
estimation is reduced. Second, as with Repeated Measures 
ANOVA, SEM requires all individuals to have complete data. 
That is, cases having missing data are automatically 
eliminated from analysis. 

In contrast to Repeated Measures ANOVA, SEM 
enables researchers to use both discrete and continuous 
variables as correlates to examine factors associated with 
higher growth rates over time. In addition, multiple indicators 
can be used to estimate true (more reliable) performance 
levels at each time point (Loehlin, 1998; Maruyama, 1998). 
CBM easily produces multiple testing scores in a testing 
occasion; therefore, these multiple indicators can be used in 
SEM to estimate more stable student performance, resulting 
in more accurate and dependable growth rates.  

Large sample sizes, however, are required when SEM is 
used for assessing student growth and examining its relations 
to correlates. When small sample sizes are used, estimation of 
growth parameters and examination of relations between 
student growth and correlates become less reliable (Loehlin, 
1998). 

 
Hierarchical Linear Modeling 
 

Hierarchical Linear Modeling (HLM) is a regression-
based statistical method that deals with multi-level data 
including repeated measures of student performance (i.e., 
repeated scores nested within individual students) (Bryk & 
Raudenbush, 1992). HLM enables researchers to examine 
students’ academic skill development using more flexible and 
practically plausible research designs than those possible with 
Repeated Measures ANOVA or SEM. First, HLM does not 
require all individual students to be tested at the same time 
points. Student performance data can be collected on 
different time schedules, which is often necessary for large-
scale assessment at a school, district, or state level. Second, 
HLM efficiently handles missing data. Each testing occasion 
for an individual student is treated as a separate case so that 
only missing data points, not individuals having missing data, 
are excluded from the analysis. Third, researchers can use 
both continuous and categorical predictors when employing 
HLM to examine relations between growth rates and 
correlates. Furthermore, HLM allows differential weights to 
be used in examining relations between growth rates and 

correlates (Bryk & Raudenbush, 1987, 1992). For example, 
individuals whose growth rates are estimated more reliably 
(i.e., smaller standard errors of estimation of growth rates) 
are given higher weights than those with less reliable 
estimates. Finally, HLM allows for a relatively small number 
of students to be used to estimate growth parameters, in 
contrast to SEM (Bryk & Raudenbush, 1992). For these 
reasons, HLM appears to be a better tool for examining 
academic skill development and its relations to correlates 
than other statistical methods.  

 
Application of Hierarchical Linear Modeling to the Study 
of Growth Monitoring  
 

In this section, we demonstrate how educators and 
educational researchers can use HLM to examine patterns 
and rates of students’ academic skill development and to 
identify instructional factors facilitating student growth over 
time. In HLM, the examination of academic growth based on 
multiple data points is conceptually divided into two different 
stages: within- and between-individual stages (Bryk & 
Raudenbush, 1987, 1992; Raudenbush & Bryk, 1989). The 
main focus of the within-individual stage is on (a) identifying 
an appropriate growth trajectory and then (b) estimating 
growth parameters on the basis of a selected growth 
trajectory. This contrasts with the between-individual stage 
where emphasis shifts to testing models that account for 
individual differences in growth rates with correlates as 
predictors. 

 
Description of Data Used for Demonstration 

 
For the purposes of demonstration, CBM math data were 

used that had been collected monthly from November 1998 to 
May 1999 in an elementary school in the Midwest of the 
United States. A main purpose of the data collection was to 
examine the effects of the computer-based, instructional 
system called Discourse (see Shin, Deno, Robinson, & 
Marston, 2000, for detailed description) on students’ 
participation in class activities and academic achievements.  

The CBM math data were from 63 third graders and 74 
fourth graders, whose basic skills of addition, subtraction, 
multiplication, and division were tested through the Discourse 
system. One minute was allowed to students for the test, and 
the number of problems answered correctly was used for 
analysis. Means and standard deviations of CBM math scores 
on each testing occasion were reported in Table 1. 

Fifteen participants (10.9%) were those having learning 
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disabilities (LD), and 70 students (62.5%) received free or 
reduced lunch in the school. Forty-eight percent of the 
participants were female and 52% were male. They took the 
Metropolitan Achievement Tests-7 (MAT-7) at the beginning 
of the 1998/99 school year. Descriptive statistics of the 
MAT-7 reading, mathematics, and complete battery scores 
were displayed in Table 2. 

 
Within-Individual Stage: Growth Pattern Examination 

 
During the within-individual stage, an appropriate 

growth model is usually selected by using theoretical 
hypotheses of developmental patterns, visually inspecting 
individual growth curves, and examining the goodness of fit 
to existing data (Willet, 1989a). Growth models in which 
growth parameters are interpretable, however, should be 
selected. For example, less than a cubic term would be 
recommended because linear and quadratic terms can be 
interpreted meaningfully as constant rates of change and 
positive or negative acceleration of linear rates, respectively 
(Shaywitz & Shaywitz, 1994).  

Using the CBM math data for students with and without 
learning disabilities (LD), we considered a developmental lag 
hypothesis as a theoretical rationale for selecting a growth 
model (Stanovich, Nathan, & Zolman, 1988). According to 
this hypothesis, students with LD develop math skills slowly 
at the beginning stage of learning and then develop the skills 
at faster rates than their peers without disabilities do. This 

hypothesis provides a theoretical basis for selecting a 
quadratic growth model, as follows: 

 
ititiitiiit raaY +×+×+= 2

210 πππ , 
 
where itY is an observed score at time t for individual i, 

i0π  the intercept, i1π  the linear growth rate at the time point 
of zero (i. e., intercept), i2π the quadratic growth rate 
indicating acceleration of the linear growth rate, ita time of 
data collection, and itr  the random error (Bryk & Raudenbush, 
1992).  

Visual inspection of individual students’ growth curves 
provides another basis for determining an appropriate growth 
model. Individual students’ growth curves displayed in 
Figure 1 suggest that students’ math scores increase over time, 
but that the amounts of change appear to decrease slightly 
toward the end of the school year.  

A statistical test can be used to examine the degree of 
model fit to data in HLM, called the likelihood-ratio test on 
deviance statistics (Bryk & Raudenbush, 1992). HLM reports 
a deviance statistic of a growth model selected to estimate 
growth parameters. The deviance statistic indexes the degree 
of model fit to data. The higher the deviance statistic, the 
poorer the model fit. The difference between deviance 
statistics of different growth models (e. g., linear and 
quadratic models), therefore, serves as an indicator of how 
much we could increase the degree of model fit to data by 
choosing a certain growth model. Furthermore, the difference 

Table 1. Means and Standard Deviations of Monthly CBM Math Scores 

 November December January February March April May 

Grade 3 7.77 (5.90) 10.04 (6.45) 13.04 (6.26) 13.72 (7.21) 14.54 (7.55) 16.17 (7.73) 18.80 (10.39)

Grade 4 14.95 (7.30) 15.23 (7.87) 19.90 (7.57) 22.91 (9.66) 24.47 (11.50) 30.25 (16.75) 29.16 (15.02)

All 11.54 (7.56) 12.90 (7.69) 16.74 (7.77) 18.65 (9.73) 20.06 (11.08) 23.82 (15.09) 24.03 (13.89)

Note. Numbers in parenthesis are standard deviations.

 
Table 2. Means and Standard Deviations of Scaled Scores (SS) and Normal Curve Equivalents (NCE) of Math, Reading, and 

Complete Batteries of the Metropolitan Achievement Tests-7 

 Math battery Reading battery Complete battery 

 SS NCE SS NCE SS NCE 

Grade 3 540.93 (37.46) 44.92 (23.29) 565.19 (48.27) 49.56 (22.92) 558.74 (34.46) 46.04 (23.29) 

Grade 4 568.16 (35.72) 46.08 (21.24) 575.87 (41.72) 40.08 (20.75) 576.03 (33.25) 41.50 (21.03) 

All 555.84 (38.83) 45.55 (22.11) 571.04 (44.93) 44.37 (22.18) 568.21 (34.76) 43.56 (22.11) 

Note. Numbers in parenthesis are standard deviations. 



Growth Modeling 

141 

of deviance statistics between different growth models can be 
statistically tested because the difference score is known to 
have a χ2 distribution with the degrees of freedom equal to 
the difference in the number of estimated parameters between 
two models (Bryk & Raudenbush, 1992).   

For the purposes of demonstration, deviance statistics 
were examined for linear and quadratic growth curves 
delineating students’ math-skills development. The deviance 
statistic of a linear growth model was 4756.49, whereas the 
value for the quadratic model was 4717.44. A smaller 
deviance statistic for the quadratic model suggests that it 
might be a better fit to the data than a linear model. 
Furthermore, a statistical test using χ2 statistics indicates that 
the difference of deviance statistics (i. e., difference score of 
39.05) between the two models was statistically significant 
(χ2  = 39.05, df = 3, p < .01). Based on the result, the 
quadratic model was adopted for further analyses. 

 
Within-Individual Stage: Growth Rate Estimation 
 

After selecting an appropriate growth model, research 
interest shifts to estimating group means and variances of 
growth parameters (e.g., initial status, linear growth rates, and 
acceleration of linear rates in a quadratic growth model), as 
well as individual students’ growth parameters. In HLM, 
group-mean estimates of growth parameters are referred to as 
“fixed effects,” whereas variance estimates (e. g., variations 
of intercepts and growth rates among students) are referred to 
as “random effects.” HLM reports estimates of fixed and 
random effects (i. e., group means and variances) when a 
selected growth model is applied (see Table 3).  

Table 3 shows that mean performance toward the 
beginning of the school year (i. e., November of 1998) for all 
students was 11.58 problems answered correctly, which was 

statistically different from the initial status of zero. In 
addition, students as a group showed a positive linear growth 
rate of 2.62 problems increased per month. The linear growth 
rate estimated was also statistically different from the growth 
rate of zero. In contrast, the group mean of quadratic growth 
rates was statistically non-significant, though the group-mean 
linear growth rate looked to decrease at a rate of .06 problems 
per month. The result of the statistical non-significance did 
not mean that the quadratic growth model would not fit the 
data. Even though the group mean of quadratic growth rates 
was not significant, there would be significant inter-
individual differences in quadratic growth rates. In this case, 
the quadratic model should be adopted.  

Examination of random effects (see bottom of Table 3) 
shows that significant inter-individual differences (i. e., 
variance) were found in initial status, linear growth rates, and 
quadratic growth rates. In other words, these variances tell us 
that individual differences existed in the levels of math basic 
skills at the start of the school year (i. e., initial status), in the 
simple rates of growth, and in the amounts of deceleration of 
linear growth rates among individual students. 

The “level 1 error” of random effects (see bottom of 
Table 3) indicates the average prediction error of individual 
students’ observed scores using a quadratic growth model. 
This index of average prediction error also can be used to 
determine which growth model better depicts developmental 
patterns of individual students. For example, in the CBM 
math data used for demonstration, the average prediction 
error was smaller for the quadratic model (i. e., 23.32) than 
that for the linear model (i. e., 27.15). Again, the results 
suggest that a quadratic model better fit the CBM math data. 

 
Between-Individual Stage: Test of Developmental Lag 
Hypothesis  

 
Table 3. Group Mean and Variance Estimates of Growth Parameters in a Quadratic Growth Model 

Fixed effect Coefficient SE t ratio p value 

 Initial status ( 00β ) 11.58 0.68 17.08 .00 

Linear slope ( 10β )   2.62 0.39   6.69 .00 

Quadratic slope ( 20β )   -.06 0.07   0.81 .42 

Random effect Variance component df χ2 p value 

Initial status ( iu0 ) 31.91 107 295.84 .00 

Linear slope ( iu1 )   4.48 107 150.90 .00 

Quadratic slope ( iu2 )     .25 107 190.00 .00 

Level 1 error ( tie ) 23.32  
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In the between-individual stage, researchers can test 
whether significant differences exist in growth parameters 
between distinctive groups of students (e. g., students with 
LD and those achieving typically). Before relations between 
growth parameters and correlates (e. g., group membership) 
are investigated, it is important to examine whether growth 
parameters are estimated reliably (Willet, 1989a, 1989b).  

The reliability of estimated growth parameters in HLM 
is the ratio of the true parameter variance to the observed 
variance that consists of the true and error variances (Bryk & 
Raudenbush, 1987, 1992). If inter-individual differences in 
growth parameters are mostly due to measurement error, 
reliable examination of relations between growth parameters 
and correlates is almost impossible. 

Three factors are known to influence the reliability of 
growth parameters (Willet, 1989b): (a) number of data points, 
(b) heterogeneity of true growth parameters of individual 
students, and (c) measurement error. As the number of data 
points increases, the reliability of growth parameters 
increases. In addition, the heterogeneity of individual 
students in true growth parameters is positively related to the 
reliability of growth parameters. Finally, a smaller 
measurement error is associated with higher reliability of 
growth parameters. 

HLM-estimated reliability of the initial status parameter 
of the CBM math data was .60, suggesting 60% of individual 
differences in the initial status could be attributed to true 
variations among individuals rather than measurement or 
sampling errors. In addition, HLM-estimated reliability of the 
linear growth parameter was .26, whereas the reliability of 
the quadratic growth parameter was .41. These results 
indicate that relations between growth rates and correlates (e. 
g., group membership of LD and non-LD) could be examined 
somewhat more reliably in the initial status and quadratic 
growth rate than in the linear growth rate. 

Collecting longitudinal data of students with and without 
LD allows researchers to test the developmental lag hypothesis 
used earlier as a theoretical basis for selecting a growth 
model. If the developmental lag hypothesis were to be true, 
the amounts of math-skill increase should be larger (i. e., 
higher linear growth rates and smaller deceleration of growth 
rates) over time for LD students than those for their normal 
peers. That is, quadratic growth rates for students with LD 
should be larger than those for students without LD, because 
the quadratic term shows the amounts of increase in linear 
growth rates. 

To test the developmental lag hypothesis, we used the 
linear and quadratic growth terms as dependent variables, and 
group membership (e.g., LD versus non-LD) as an independent 
variable in the level-two models of HLM. In addition, 

background variables affecting students’ math achievements 
(e.g., grade, gender, free/ reduced lunch status) were 
controlled by including them as covariates, because they are 
known to have significant relations to individual differences 
in mathematics achievements. The level-two models used in 
the analyses were as follows:  

 
iiiiii uLunchGenderGradeLD 114131211101 )()()()( +++++= βββββπ , 
iiiiii uLunchGenderGradeLD 224232221202 )()()()( +++++= βββββπ , 

 
where i1π  and i2π  are the linear and quadratic growth 

rates for individual i, 10β  and 20β  the mean linear and 
quadratic growth rates for third graders who were female, 
general education students not receiving a free or reduced 
cost lunch (i.e., independent variables were dummy coded in 
the analyses), 11β  and 21β  the partial regression coefficients 
indicating the mean group differences in the linear and 
quadratic growth rates, respectively, between LD and non-
LD students with the effects of the other independent 
variables controlled for, 12β  and 22β  the partial regression 
coefficients indicating the mean group differences between 

third and fourth graders, 13β  and 23β  the partial regression 
coefficients indicating the mean group differences between 
males and females, 14β  and 24β  the partial regression 
coefficients indicating the mean group differences between 
students who received and did not receive a free or reduced 

cost lunch, and iu1  and iu2  the random errors. In addition, a 

group difference in initial status ( i0π ) between students with 
and without LD was examined using the same level-two 
HLM equation described above with the growth parameter of 
initial status as a dependent variable.  

Table 4 shows that a mean initial status for students 
without LD was higher than that for students with LD by 1.23 
problems answered correctly, when the effects of the other 
covariates were controlled. The mean difference between the 
two groups, however, was not statistically significant. Mean 
differences in linear and quadratic growth rates (i. e., 1.80 for 
linear growth rates and -.42 for quadratic growth rates) were 
also observed between LD and non-LD groups; however, 
again, the differences were not statistically significant, when 
the effects of the other predictors were controlled. 

In summary, the results of HLM analyses show that 
students with LD looked to have lower initial levels of math 
basic skills at the beginning of the school year, but that they 
seemed to show similar growth rates to those of their normal 
peers. When the effects of gender and free or reduced cost 
lunch status were controlled, HLM-estimated group growth 
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curves for third and fourth graders with and without LD were 
displayed in Figure 2.  

In spite of the observed group differences, the analysis 
results of statistical significance did not support the 
developmental lag hypothesis. On the contrary, students with 
LD showed comparable growth trajectories in math skill 
development with the trajectories of students without LD. 
The results may be partly due to the fact that the LD 
participants in the study had been identified as having 
learning disabilities mainly because of severe reading 
problems rather than math problems. 

 
Between-Individual Stage: Instructional Factors Facilitating 

Academic Growth  
 

One of the major research interests in growth curve 
analysis is to identify instructional and ecological variables 
that increase students’ growth trajectories. All individual 
students do not share the same initial status and growth rates 
because of individual differences in background variables 
(Bryk & Raudenbush, 1987). For example, one might 
hypothesize that students who spend more time on homework 
would show more rapid growth over time than do those who 
spend less time. Thus, the main focus of the between-
individual stage is explaining why some students grow faster 
than others with student-, instruction-, or ecology-related  

Table 4. Differences in Initial Status, Linear Growth, and Quadratic Growth Parameters between Students with and without 
Learning Disabilities 

Fixed effect Coefficient SE t ratio df p value 

For initial status      

Intercept ( 00β ) 9.86 1.53 6.45 107 .00 

LD ( 01β ) -1.23 2.07 0.59 107 .55 

Grade ( 02β ) 5.37 1.33 4.05 107 .00 

Gender ( 03β ) -.26 1.34 .20 107 .85 

Lunch ( 04β ) -.86 .68 1.28 107 .20 

For linear slope      

Intercept ( 10β ) 3.10 .91 3.42 107 .00 

LD ( 11β ) 1.80 1.24 1.45 107 .15 

Grade ( 12β )   .92 .80 1.15 107 .25 

Gender ( 13β ) -1.38 .87 1.72 107 .09 

Lunch ( 14β ) -.43 .41 1.04 107 .30 

For quadratic slope      

Intercept ( 20β ) -.34 .17 2.01 107 .04 

LD ( 21β ) -.42 .23 1.83 107 .07 

Grade ( 22β ) .08 .15 .56 107 .58 

Gender ( 23β ) .32 .15 2.14 107 .03 

Lunch ( 24β ) .10 .08 1.35 107 .18 

Random effect SD Variance  df χ2 p value 

Initial status ( iu0 ) 5.07 25.72 103 249.43 .00 

Linear slope ( iu1 ) 1.99 3.98 103 138.44 .01 

Quadratic slope ( iu2 )   .48   .23 103 178.67 .00 

Level 1 error ( tie ) 4.83 23.29    
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 variables as predictors.  
For the purposes of demonstration, we examined 

whether students’ active participation in class activities 
would have a positive relationship with developmental rates 
of math basic skills. The measure of students’ active 
participation was collected with the Discourse system in the 
study. Using the system, students typed in their answers and 

questions during the class activities, and their responses were 
saved into a file. The number of characters typed in per 
minute was used for analysis as a measure of students’ active 
participation (see Shin, Deno, Robinson, & Marston, 2000 
for more detail). 

To investigate the effect of students’ active participation 
on growth rates, we also controlled for the effects of  

Table 5. Prediction of Inter-individual Differences in Initial Status, and Linear and Quadratic Slopes on Class Participation, 
Grade, LD Membership, Gender, and Free/ Reduced Lunch Status 

Fixed effect Coefficient SE t ratio df p value 

For initial status      

Intercept ( 00β ) 5.48 2.10 2.61 106 .01 

Participation ( 01β )   .17   .06 2.94 106 .00 

Grade ( 02β ) 5.08 1.29 3.94 106 .00 

LD ( 03β ) -1.21 2.01   .61 106 .55 

Gender ( 04β )   .21 1.30  .16 106 .87 

Lunch ( 05β ) -.55   .66  .82 106 .41 

For linear slope      

Intercept ( 10β ) 1.05 1.29   .82 106 .41 

Participation ( 11β )   .08   .03 2.23 106 .02 

Grade ( 12β )   .73   .79   .93 106 .35 

LD ( 13β ) 1.88 1.22 1.54 106 .12 

Gender ( 14β ) -1.16   .80 1.45 106 .15 

Lunch ( 15β ) -.32   .41   .79 106 .43 

For quadratic slope      

Intercept ( 20β ) -.01 .24   .04 106 .97 

Participation ( 21β ) -.01 .01 1.93 106 .05 

Grade ( 22β ) .12 .15   .79 106 .43 

LD ( 23β ) -.44 .23 1.92 106 .05 

Gender ( 24β )   .29 .15 1.90 106 .06 

Lunch ( 25β )   .09 .08 1.14 106 .25 

Random effect SD Variance  df χ2 p value 

Intercept ( iu0 ) 4.78 22.82 102 232.86 .00 

Linear slope ( iu1 ) 1.90 3.61 102 135.21 .02 

Quadratic slope ( iu2 )   .47   .22 102 175.72 .00 

Level 1 error ( tie ) 4.82 23.26 102   
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covariates such as grade, LD membership, gender, and free/ 
reduced cost lunch status. Level-two models used in these 
analyses were as follows: 

iiiiii uLunchLDGradeionParticipat 114131211101 )()()()( +++++= βββββπ , 

iiiiii uLunchLDGradeionParticipat 224232221202 )()()()( +++++= βββββπ  

where i1π  and i2π  are the linear and quadratic growth 
rates for individual i, 10β  and 20β  the intercepts of linear and 
quadratic growth rates, the other β ’s the partial regression 
coefficients showing the effects of each independent variable 
on the linear and quadratic growth rates when the effect of 
the other predictors are controlled, and iu1  and iu2  the 
random errors. In addition, the effects of the independent 
variables on the initial status were examined with the growth 
parameter of initial status ( i0π ) as a dependent variable. 

The results of HLM analysis show that higher active 
participation was significantly related to higher initial levels 
of math basic skills, when the other factors were controlled 
(see Table 5). Specifically, students with higher participation 
rates showed higher achievement by .17 problems than those 
with lower participation rates. In addition, students who 
participated more showed higher linear growth rates by .08 
problems per month than who did less. Finally, the amounts 
of decrease of the linear growth rate were larger by .01 
problems per month for students with higher participation 
rates than that for students with lower participation rates. 

In summary, the results indicate that students 
participating more actively in class activities had higher 
levels of math basic skills and developed their math skills 
more rapidly than those participating less actively, but that 
their rates of growth tended to decrease slightly more quickly 
over time. The results suggest that instructional methods to 
facilitate students’ class participation should be employed 
more commonly to enhance students’ achievement, which is 
in agreement with the results of previous research on student 
participation. 

 
Research on Student Growth Using CBM and HLM 

 
As shown with CBM math data, growth patterns, growth 

rates, and relationship between growth parameters and 
correlates can be investigated more reliably and accurately by 
using multiple data points of student performance. In 
combination with HLM, CBM creates an alternative to the 
use of difference scores computed with two data points in 
assessing students’ academic growth and its relations to 
correlates because it produces repeated measures of student 

performance in a logistically efficient, technically sound way 
within relatively short time periods. We believe that the value 
of using CBM and HLM will increase our understanding of 
developmental characteristics of students with learning 
difficulties and of educational practices leading to improved 
learning outcomes over time. 

Studies are necessary to examine developmental 
characteristics of students with learning difficulties in various 
subject areas, their typical growth rates, and instructional, 
ecological variables associated with higher rates of academic 
development. Regarding developmental characteristics, 
researchers might be interested whether students with 
learning difficulties would catch up with their normal peers 
when intensive, effective instructional supports are provided. 
According to the developmental lag model, students with 
learning difficulties would show slow growth at the 
beginning and then would gradually develop academic skills 
at faster rates over time. As a result, these students might 
reach the same performance levels with their average-
achieving peers due to the effects of intensive, continuous 
educational services (Francis, Shaywitz, Stuebing, Shaywitz, 
& Fletcher, 1996). Comparison of individual- and group-
growth curves between students with learning difficulties and 
average-achieving students will enable researchers to 
examine developmental characteristics of the two types of 
students.  

The study of typical growth rates for students with 
learning difficulties at each grade level is necessary to 
establish more sensitive criteria for monitoring these 
students’ progress and evaluating the effectiveness of 
instructional programs (Deno, Fuchs, Marston, & Shin, in 
press). Students with learning difficulties develop academic 
skills at much slower rates than do their peers (Bast & 
Reitsma, 1998; Francis, 1992). Therefore, using normative 
information on growth rates estimated mainly from the 
academic performance of average-achieving students might 
be too conservative to accurately evaluate the progress of 
students with learning difficulties and the effectiveness of 
programs implemented for these students. 

Further research is also needed to identify student- and 
instruction-related factors that facilitate student growth over 
time. Student-related factors (e. g., active participation in 
class activities, motivation to learn, and hours of homework) 
and instruction-related factors (e. g., instructional-planning 
time, time allocated to instruction, and formative evaluation 
of student performance) could be associated with inter-
individual differences in growth rates. The multi-wave 
measures of CBM in combination with HLM allow  
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researchers to investigate such relations between growth rates 
and student- and instruction-related variables in a more 
reliable and accurate way.  

Furthermore, research on student growth could be 
extended to program evaluation of different educational 
services on the basis of changes in growth rates or growth 
patterns. That is, researchers could evaluate the effectiveness 
of a special program for students with learning difficulties by 
examining whether growth trajectories for individuals and 
groups have changed positively or negatively after 
implementing the program. Evaluation of program 
effectiveness can be done more reliably using the growth 
model approach with multiple data points rather than using 
simple mean comparisons of static measures. 

Examining growth of students with learning difficulties 
could have important implications for educational decision-
making. First, investigating growth patterns of these students 
across grade levels could help administrators at the school, 
district, and state levels to determine when resources are most 
likely to have the greatest impact. For example, suppose that 
students with severe learning difficulties do not develop their 
reading fluency until fourth grade. But after fourth grade, 
these students’ growth rates of reading-fluency development 
are similar to their average-achieving peers (Shin, 1999). In 
such a case, intensive reading programs might be 
implemented for students with learning difficulties in the 
early grades to provide a boost in their reading development.  

A second educational implication is that examining 
typical growth rates of students could provide teachers with 
guidelines on how much growth they could expect from their 
students (Fuchs, Fuchs, Hamlett, Walz, & Germann, 1993). 
For instance, suppose that students receiving direct-
instruction programs in a resource room setting typically 
show an increase of 3 words-read-correctly per week on 
CBM reading measures. Resource-room teachers who adopt 
similar reading programs could expect their students to show 
at least a three-word increase per week based on such 
normative information. If a student did not improve his or her 
reading skills as quickly as expected, the teacher could 
consider modifying or changing the student’s instructional 
program to increase the rate of student performance.  

A final educational implication is that examining 
relations between school characteristics and student growth 
could help parents to choose schools that would be most 
appropriate for their children. In addition, administrators 
could make more accurate decisions regarding which schools 
in the district best serve students based on examination of the 
relationship between school characteristics and student 

growth. 
CBM as a multi-wave growth monitoring system holds 

promise for using the emerging statistical tool of HLM for 
assessing the development of the knowledge and skill levels 
of students with learning difficulties because of its distinctive 
characteristics. We believe that measuring growth over time 
better represents the amount of learning of these students, and 
that CBM and HLM will provide educational researchers 
with reliable and sensitive tools for assessing growth and 
making timely educational decisions on individual students. 
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