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Abstract 
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a 
mathematics learning platform used by middle and high school students in several African countries. Using this 
dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly 
challenging student answers. In experiment 1, we use a variety of LLM-driven approaches, including zero-shot, few-
shot, and chain-of-thought prompting, to grade the 1% of student answers that a rule-based classifier fails to grade 
accurately. We find that the best-performing approach — chain-of-thought prompting — accurately scored 97% of 
these edge cases, effectively boosting the overall accuracy of the grading from 96% to 97%. In experiment 2, we 
aim to better understand the consequential validity of the improved grading accuracy by passing grades generated 
by the best-performing LLM-based approach to a Bayesian Knowledge Tracing (BKT) model, which estimated 
student mastery of specific lessons. We find that modest improvements in model accuracy can lead to significant 
changes in mastery estimation. Where the rule-based classifier misclassified the mastery status of 6.9% of students 
across completed lessons, using the LLM chain-of-thought approach reduced this to 2.6%. These findings suggest 
that LLMs could be valuable for grading fill-in questions in mathematics education, potentially enabling wider 
adoption of open-response questions in learning systems. 
 

Notes for Practice 

• The AMMORE dataset is a new resource for learning analytics research into student math practice 
drawn from an understudied, real-world educational context. 

• We find that when trying to grade the most ambiguous student answers, using a large language 
model–based approach can slightly outperform sophisticated text-processing–based approaches. 

• We also find that modest improvements in grading accuracy at the question-level leads to 
substantially improved estimates of student mastery across lessons.  
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1. Introduction 
Effective learning systems rely on accurate, real-time evaluation of student knowledge states to optimize learning trajectories 
and provide targeted support (Black & Wiliam, 2010; Gikandi et al., 2011). While multiple-choice questions enable rapid 
knowledge state assessment within digital platforms, they can inadvertently measure test-navigation skills rather than true 
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knowledge states and may not capture the full complexity of student understanding (Johnson & Green, 2006; Rupp et al., 
2006). Open-response questions, particularly in mathematics, offer richer insights into student thinking and problem-solving 
processes, providing learning systems with more nuanced data about knowledge construction and application (Magliano & 
Graesser, 2012; O’Neil & Brown, 1998). Most common in mathematics is fill-in responses, where grading is simple for exact 
matches but becomes more challenging when flexibility is required. The complexity of automatically evaluating these 
responses presents significant technical challenges for learning platforms, particularly when students express correct solutions 
through diverse mathematical notations or explanations, or when chat-based interfaces lead students to respond using natural 
language, which can be difficult to interpret. Hence, supporting automated, accurate assessment of student answers is a major 
goal of such platforms because it allows students to receive immediate feedback and creates better learning experiences (Black 
& Wiliam, 2010; Funk & Dickson, 2011). 

The challenge of automatically marking open-response fill-in math questions presents a critical opportunity for learning 
analytics (LA) to support the evaluation of student performance during learning, which is key to many essential functions of 
educational technology (e.g., mastery evaluation, automated feedback, reporting performance to educators). While many 
student responses can be evaluated through straightforward text processing techniques, a considerable subset of responses pose 
complex challenges — they may be formatted unconventionally, contain extraneous information, or require nuanced 
interpretation (Botelho et al., 2023; Hahn et al., 2021). The prevalence of these challenging responses, particularly in large-
scale online learning platforms, creates a pressing need for more sophisticated assessment approaches. 

While various automated approaches have been attempted (Allen et al., 2014; Burrows et al., 2015; Crossley et al., 2019), 
most have required extensive technical expertise and large datasets (Mayfield & Black, 2020; Pulman & Sukkarieh, 2005). 
Recent evidence suggests that LLMs can accurately evaluate responses with minimal prompt engineering (Gilardi et al., 2023; 
Henkel et al., 2024), potentially enabling more frequent and effective formative assessment while reducing educator workload. 
However, questions remain about their reliability across diverse educational contexts and their ability to handle increasingly 
complex assessment scenarios. Furthermore, the field lacks sufficient publicly available educational datasets to thoroughly 
evaluate these approaches. This paper makes two contributions in response to these gaps. 

First, we introduce a novel dataset, the African Middle-School Math Open REsponse (AMMORE) dataset, which consists 
of 53,000 responses to middle school math questions from students in West Africa. The data for AMMORE was collected from 
Rori, an AI-powered chat-based math tutor that allows students in West Africa to independently practise math concepts free of 
charge. The dataset’s rich structure, which includes question-level data, user IDs, learning standard designators, and students’ 
self-reported age, enables various potential analyses, such as investigating student skill mastery across lessons, analyzing the 
relative difficulty of specific questions or lessons across students, or exploring how the judgments of different grading models 
compared to those of humans. Beyond automated scoring research, this dataset offers LA researchers a unique opportunity to 
study student engagement patterns, learning trajectories, and interaction behaviours within a free digital math education 
platform. The temporal and sequential nature of the data allows for investigation of how students navigate content, persist 
through challenges, and utilize automated feedback — critical questions for understanding and improving online learning 
environments. As noted by Motz et al. (2023), there is a surprising lack of research in LA focused on learning outcome data 
derived from applied learning systems. AMMORE provides a unique opportunity to explore learning outcomes from diverse 
students in a real-world educational context. Second, LA research has historically focused primarily on data from the North 
America and Europe (Cechinel et al., 2020), and this data set can facilitate LA research in a less commonly studied region 
(West Africa) and context, informal chat-based learning. 

Second, we conducted an extensive empirical evaluation of LLM-based approaches to grade a difficult-to-grade subset of 
AMMORE. We explore various automated methods — including string matching, text processing, and different LLM 
prompting techniques — to evaluate their accuracy and consistency in assessing student responses. We find that LLM-based 
approaches, particularly chain-of-thought prompting (CoT), outperform traditional methods in grading accuracy, 
demonstrating their ability to handle the complexity and variability of student responses to fill-in math questions. The superior 
performance of LLM-based methods is especially evident in cases where students provide correct answers in unexpected 
formats or use equivalent mathematical expressions. We also explore whether relatively modest improvements in answer 
scoring accuracy at the individual question level can lead to significantly more accurate estimates of student concept mastery 
and more optimal next lesson recommendations. Our findings also suggest that the use of LLM-based grading could encourage 
wider adoption of open-response questions in digital learning platforms, leveraging their pedagogical benefits without 
increasing the grading burden on educators. 

2. Description of Learning Platform 
Rising Academies (2024), an educational network based in Ghana, has created Rori, an AI-powered chat-based math tutor 
available on WhatsApp. Students chat with Rori using natural language like any WhatsApp contact and are expected to write 
their responses to math questions using the mobile keyboard. Rori’s curriculum is built upon the comprehensive, evidence-
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based Global Proficiency Framework (GPF; USAID, 2019). The GPF was developed by key global education organizations 
to create uniform global standards for reading and mathematics across the world. The GPF covers grades 1 to 9, aligns with 
national standards globally, and is linked across grade levels. The GPF organizes content by domain constructs, then 
subconstructs, and then into specific skills that a student in each grade should be able to demonstrate. For example, the domain 
“Numbers and Operations” has a topic “Integers and Exponents” with skills such as “Add and subtract” and “Multiply and 
divide.” 

The Rori curriculum has one or more lessons for each skill in the math GPF, with over 700 lessons to date. Each lesson 
includes a brief student-friendly explanation of the skill and 10 practice questions of the same difficulty. Many of these 
questions require fill-in responses, a decision made for pedagogical reasons. If students answer a question incorrectly, they are 
first shown a hint to help them solve the question and are given another chance to solve it, as shown in Figure 1. If their second 
attempt is unsuccessful, they are shown a worked solution and then given the next question. When students finish a lesson, 
they are encouraged to continue with the next as lain out by the GPF, meaning they incrementally increase in difficulty. Rori 
will suggest students move either backwards or forwards in the curriculum if they find a lesson too difficult or too easy.1 

 

Figure 1. Example of lesson experience. 

3. Prior Work 
3.1. Challenges of Evaluating Student Work in Online Learning Platforms 
Accurately estimating a student’s current knowledge state and tracking their progress and understanding of the subject enables 
learning systems to deliver a better learning experience (Abdelrahman et al., 2023; Chrysafiadi & Virvou, 2013). For example, 
student modelling can be used for making key decisions such as which problem a student should attempt, how much practice 
is needed to master a skill before moving to a more advanced topic, and when to provide immediate feedback to struggling 
students (Cukurova et al., 2022; Feng et al., 2009). In the context of a learning environment, even a small number of mis-
graded answers can lead to vastly different judgments of student ability when aggregated across questions (Dey et al., 2024; 
Pelánek, 2015). In the specific case of Rori, there are diverse fill-in answer types, including fractions, floating-point numbers, 
and expressions with exponents. Because the interface is conversational, students also frequently type messages that are not 
attempted answers or mix a natural language response and their answer. A core challenge of this type of learning system is 
being able to distinguish between student messages that are and are not answer attempts, and between correct and incorrect 
answer attempts. Table 1 presents a range of student responses for a given question. 

 

1 For more context, see Henkel (2024). 
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Table 1. Example Student Answers and Labels 
question_id: G7.N2.2.3.6 

question_text: Fill in the missing number: 1/5 × 2/3 = _ /15 

expected_answer: 2 

student_id student_answer model_grade human_grade 

514 2 correct correct 

1073 Hold am solving it other wrong 

876 is 2 correct correct 

1203 30 wrong wrong 

324 2/15 wrong correct 

While Rori was already using a relatively sophisticated mix of text processing and NLP classification models to interpret 
and score student responses, which had already undergone several rounds of improvement, after human review we found that 
approximately 1% (1,186) of classifications were false negatives and found no false positives. From a pedagogical perspective, 
it is important to avoid misclassifying correct student responses (i.e., false negatives) as much as possible — particularly in 
independent learning environments — as telling a student they made a mistake when they were in fact correct can lead to 
confusion and frustration (Hsu et al., 2021; Rajendran et al., 2019). For example, from the responses in Table 1, requiring a 
perfect answer match would mean only student 514’s answer would be accepted; being too permissive and only students 1073 
and 1203 would be marked incorrect. Looking at the response given by student 324, an expert human reviewer can understand 
that the student did the core mathematical operation correctly and gave the full answer rather than only giving the missing 
number. While there might be a pedagogical reason to encourage the student to use the correct formatting, treating their answer 
as wrong would be suboptimal. This long tail of particularly subtle and difficult-to-grade student responses may benefit from 
combining more traditional NLP-based approaches with LLMs. 

3.2. Potential of Generative LLMs for ASAG 
The current generation of LLMs, including ChatGPT, GPT-4, Claude, Llama, Mistral, and Gemini, underwent various 
“instruction fine-tuning” steps to enhance their usability and ability to generalize to new tasks, often with minimal exposure 
to examples (Ouyang et al., 2022). This also improved their interpretation of human-written natural language instructions (i.e., 
prompting), allowing non-technical users to make requests and adapt a model to new tasks by modifying their prompts, rather 
than requiring further training or fine-tuning (Stiennon et al., 2022). Current LLMs can perform various linguistic tasks that 
previously required the use of task-specific, fine-tuned LLMs (Kojima et al., 2023; Wei et al., 2022). Therefore, it is 
unsurprising that evidence is growing that LLMs can be used for certain types of grading tasks (Kortemeyer, 2023). 

There is a growing body of research on using generative LLMs to evaluate student work. Morjaria et al. (2024) found that 
ChatGPT graded six short answer assessments from an undergraduate medical program similarly to a single expert rater. 
Cochran et al. (2022) found that GPT-4 successfully graded student answers to high school science questions. However, 
Kortemeyer (2023) found that LLMs fell short in certain aspects of grading introductory physics assignments. Recently, LLMs 
have been used to autograde student responses to math questions. Botelho et al. (2023) used a pre-trained Sentence-BERT to 
assess student responses to open‐ended math questions, predict student scores, and recommend appropriate feedback. Shen et 
al. (2023) created MathBERT, which outperformed prior methods and BERT on various math tasks including grading responses 
to fill-in math questions. Injeti et al. (2024) used MathBert to specifically grade algebraic questions. A review by Schneider et 
al. (2024) concluded that “while ‘out-of-the-box’ LLMs provide a valuable tool to offer a complementary perspective, their 
readiness for independent automated grading remains a work in progress.” More exploration is needed into the ability of 
generative LLMs to grade responses to math questions, and there is a growing collection of publicly available datasets that 
could be used for this purpose. 

3.3. Overview of Existing Short Answer Datasets 
While there are several math question datasets in the literature (see Table 2 for a more detailed overview), they present some 
limitations that undermine their relevance for understanding student behaviour on real-world learning platforms. Some datasets 
(e.g., MATH) contain questions and correct answers but do not contain information about how students answered. Other 
datasets (e.g., EEDI and MathE) contain information about student multiple-choice responses. Of the datasets listed below, 
only ASSISTments contains information allowing researchers to track progression through a curriculum. None of these datasets 
contain information from students from lower-resourced and underrepresented populations. These limitations are the main 
motivation behind our dataset AMMORE, which we discuss in more detail in Section 4. 
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Table 2. Summary of Publicly Available Math Datasets 

Dataset Topic Answers / 
Age Country Response  

Type 
Number of 
Responses 

MATH Competition Mathematics No / N/A N/A Open Response 12,500 

GSM8K Primary School Mathematics No / N/A N/A Open Response 8,000+ 

MathE College Mathematics Yes / No Multiple Multiple Choice 9,546 

COMAT Primary, Middle & High School 
Mathematics Yes / No United States Conversations & 

Open Response 188 

EEDI Primary, Middle & High School 
Mathematics Yes / No United Kingdom Multiple Choice 17 million+ 

NAEP Grade 4, Grade 8 Mathematics Yes / Yes United States Constructed 
Response 250,000+ 

ASSISTments Middle School Mathematics Yes/ No United States Multiple Choice & 
Open Response 1,000,000+ 

4. The AMMORE Dataset 
In this section, we present the African Middle-School Math Open REsponse (AMMORE) Dataset, which contains 53,298 
student answers to open-response practice questions, assembled from a subset of math practice sessions on Rori from 2,508 
at-home users that took place between 1 January and 30 April 2024. 

4.1. Description of Dataset 
The AMMORE dataset is composed of student responses to math questions from Rori lessons from grade levels 6 to 9 in the 
domains of “Algebra” and “Number and Operations.” Within these domains, there are 151 unique lessons — corresponding to 
a specific knowledge component and/or skill — which cover 35 distinct constructs (please see repository for a more complete 
description and a data dictionary). Each response in our dataset was scored by a pre-existing, rules-based classification model, 
or answer evaluation API, native to Rori, which classifies answer attempts as “correct,” “wrong,” or “other.” The latter was 
typically returned when a student entered something besides an answer attempt, such as a voice note or a sticker. Humans then 
manually reviewed these classifications. Two math educators inspected the student responses classified as “wrong” or “other” 
to determine where they disagreed with the model. Any ambiguous responses were discussed until agreement was reached. 
This means that the dataset also has a ground truth score for each student response. The human raters also noted any errors in 
the Rori questions or expected responses. 

Table 3 shows the structure of the dataset. Each student response is paired with the corresponding question, the expected 
response, a ground-truth correct/incorrect score, the specific learning standard evaluated by the question, the time the student 
answered, and a UID number that can be used to link student responses across the dataset. 

Table 3. Structure of AMMORE dataset 
Summary Information  Example attributes of single entry 

Total Answers 53,031  lesson G9.N5.2.1.1 
Correct Answers 34,668  question_number 2 
Incorrect Answers 15,278  question_text 3^2 + 3^1 = __ 
Other Answers 3,085  expected_answer 12 

Unique Students 2,508  student_response =6+6 
=12 

Grade Levels 
Covered 6–9  model_grade wrong 

Domains Covered Algebra, Numbers 
and Operations  human_grade correct 

Number of Lessons 151  time 1/9/24 7:57 
Learning Constructs 35  user_id 17 
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The dataset also includes matched but anonymized demographic data on the 2,508 users, such as when they first started 
using Rori, their country code, self-reported age, number of messages they sent, and active days on Rori. At-home users tend 
to come from Nigeria, Ghana, and South Africa and are mostly between the ages of 10 and 30 and could be using their own or 
a family member’s phone to access Rori. 

4.2. Potential Uses of the AMMORE Rising Dataset 
The dataset’s structure enables various potential analyses. For example, 1) investigating student mastery across lessons, 2) 
analyzing the relative difficulty of lessons for students, or 3) exploring how the classification model’s judgments compared to 
those of human raters. 

For example, as discussed above, a lesson is a set of 10 interchangeable questions of equivalent difficulty level focusing 
on a specific learning standard from the GPF. If we were to posit that a student could be considered to have mastered the skill 
associated with a lesson if they get 80% of the questions correct, we would find that students “mastered” 48% of lessons in the 
dataset. To further this analysis, one could consider student progress at the construct level, which is a collection of closely 
related lessons. The dataset includes 151 different lessons covering 35 constructs. Also, because the same student practises 
skills at different grade levels, it is possible to compare student age to the grade level of the lesson they are practising to 
estimate whether students are performing at grade level. Our dataset’s lessons span grades 6 to 9. Yet another approach would 
be to use this dataset to test different analytics approaches, such as Bayesian Knowledge Tracing (BKT), which we explore in 
experiment 2, or other mastery prediction models. The rich data available, including question-level responses and progression 
through lessons over time, makes this dataset particularly suitable for such analyses. 

These are just a few potential uses for this novel dataset. The combination of detailed student responses, demographic 
information, and curriculum structure provides a unique opportunity for researchers to explore various aspects of learning 
analytics, from individual student progress to broader trends in mathematical skill development across grade levels. 

5. Experiment 1: LLM-Based Approaches to Grading Math Questions 
Using a carefully curated subset of difficult-to-grade student responses from the AMMORE dataset, we investigate six different 
automatic grading strategies, ranging from simple string matching to sophisticated LLM-based methods, evaluating their 
respective performance relative to human scores. We also consider how consistent the models are between repeated runs, if 
the prompting strategy affects the intra-rater reliability between the model’s responses, and how prompting strategy impacts 
the model response time. Our analysis aims to shed light on the potential of these approaches to improve grading accuracy, 
particularly when dealing with diverse answer types and formatting variations. 

5.1. Experimental Design 
From the larger AMMORE dataset, we create a smaller dataset, which we refer to as AMMORE-hard. This dataset is composed 
of difficult-to-grade student responses, which we used to evaluate the performance of different automatic grading strategies. 
The resulting dataset comprises 4,463 responses, including 1,528 unique non-trivially correct answers and 2,935 unique, non-
trivially wrong answers. 

AMMORE-hard was created using the following steps: 1) remove answers labelled as “other” by a human labeller; 2) 
remove duplicate occurrences where question, expected answer, and student answer were identical, leaving only one 
occurrence of each unique combination; 3) remove trivially correct answers, where the student response was identical to the 
expected answer; 4) remove trivially wrong answers, where the expected answer was one character long and the student’s 
response was one character long (mostly multiple-choice questions with wrong answer); 5) remove wrong answers, where the 
student response was an integer but was different from the integer expected. The result is a subset of student answers that 
require some nontrivial amount of interpretation. 

Then using the six different approaches described in Table 4, we scored student responses from AMMORE. To make a 
prediction, each approach was given the same information from the dataset: the question text, the expected answer to the 
question, and the student’s response. The evaluation approach would predict if the answer were “correct” or “wrong.” The 
resulting prediction was recorded. At the time of writing, the model with the strongest performance score on math benchmarks 
is OpenAI’s GPT-4 (Chatbot Arena, 2024). Hence, each experiment of a prompt approach used GPT-4 as the LLM. Its 
temperature was set to 0 to reduce the variability of model outputs. No student demographic information was fed to the LLM, 
nor was it shown the human labels of a student answer. 
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Table 4. Different Approaches to Grading Student Answers 

“Naive” string matching Simple rule-based evaluation of matching the expected answer with the  
student response. 

Text processing Evaluation with additional text substitutions and symbolic evaluations. 
LLM Zero-shot prompting Evaluation using an LLM prompt without specific examples. 
LLM Few-shot prompting Evaluation using an LLM prompt with a small set of examples. 
LLM Chain-of-thought prompting Evaluation using an LLM prompt instructing it to show its reasoning process. 

Naive string matching, text 
processing, and zero-shot 
prompting 

Evaluation proceeded through the evaluations until a correct answer was found 
or all three evaluations had run: simple rule-based evaluation, text substitutions 
and symbolic evaluations, and an LLM prompt without examples. 

5.2. Prompting Strategy 
We employ a relatively simple prompting strategy, as the task is straightforward. The base part of the prompt was similar across 
all strategies. The zero-shot prompt included a description of the core task and slots for the dataset values. The few-shot prompt 
added three examples of correct answers. These examples represented common student response patterns of equivalent 
answers: 1) where a student wrote the answer and 2) where a student wrote out their work to arrive at the answer. Instead of 
providing examples, the chain-of-thought prompt instructed the model to think step-by-step and present a rationale for the 
classification chosen. The chain-of-thought evaluation used the DSPy framework (2023), which dynamically created a chain-
of-thought prompt. Table 5 shows the prompts for each strategy. 

Table 5. System Prompts Used in Experiment 

Zero-shot Prompt Few-shot Prompt Chain-of-thought Prompt 
You are a math assistant. You 
are evaluating whether a 
student’s submission to a math 
question is right or wrong. The 
student may have submitted a 
correct answer in a variety of 
acceptable, equivalent ways. 
You must tell whether their 
submission correctly solves 
the problem or whether their 
submission contains a valid 
answer that is equivalent to the 
expected answer. If the 
student’s submission is correct 
or equivalent, write, “yes.” If 
the submission is incorrect and 
not equivalent, write, “no.” 
You should only write “yes” or 
“no.” 
 
## Question 
{question} 
 
## Expected Answer 
{expected_answer} 
 
## Student Submission 
{student_message} 
 

You are a math assistant. You are evaluating whether 
a student’s submission to a math question is right or 
wrong. The student may have submitted a correct 
answer in a variety of acceptable, equivalent ways. 
You must tell whether their submission correctly 
solves the problem or whether their submission 
contains a valid answer that is equivalent to the 
expected answer. If the student’s submission is 
correct or equivalent, write, “yes.” If the submission 
is incorrect and not equivalent, write, “no.” You 
should only write “yes” or “no.” 
 
## Examples 

### Example 1: The student gave their work and 
showed the correct answer. 
- Question: Solve for z in the proportion: 9/3 = 27/z. 
- Expected Answer: 9 
- Student Submission: 
9/3=27/a.9×z=3×27.9z/9=91/9.z=9 
- is_correct: yes 

### Example 2: The student wrote the correct 
answer option and its value. 
- Question: 9 / ___ = 0.25 A) 18 B) 36 C) 81 D) 72 
- Expected Answer: B 
- Student Submission: B.36 
- is_correct: yes 

## Question 
{question} 
## Expected Answer 
{expected_answer} 
## Student Submission 
{student_message} 

You are a math assistant. You are 
evaluating whether a student’s 
submission to a math question is right 
or wrong. The student may have 
submitted a correct answer in a variety 
of acceptable, equivalent ways. You 
must tell whether their submission 
correctly solves the problem or 
whether their submission contains a 
valid answer that is equivalent to the 
expected answer. 
 
Use the following format. 
Question: the math question 
Expected Answer: the student’s 
response to the question 
Reasoning: Let’s think step-by-step in 
order to produce the correct answer 
 
We... 
 
Answer: correct_answer if the student 
correctly solves the problem or 
whether their submission contains a 
valid answer that is equivalent to the 
expected answer, wrong_answer 
otherwise 
 
Question: {question} 
Expected Answer: {expected_answer} 
Student Answer: {student_answer} 
Reasoning: Let’s think step-by-step in 
order to solve the equation {question} 
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To establish a baseline and evaluate the individual prompt strategies, we first implemented a simple text processing pipeline 
using regular expressions. This pipeline included normalizing case, removing extra whitespace, standardizing number formats 
(e.g., converting written numbers like “ninety-nine” to “99”), and applying basic string-matching rules. For each student 
response, we first processed both the expected answer and student answer through this pipeline, then compared them for exact 
matches. Responses that matched exactly after processing were labelled as correct, while non-matches were labelled as 
incorrect. These automated labels were then compared against expert human-annotated ground truth labels to evaluate the 
baseline performance. For the prompt strategy evaluations, we used this same dataset but instead passed the original question 
text, expected answer, and student answer through OpenAI’s API using our various prompting approaches. The script recorded 
all evaluation outputs (i.e., the predicted class) for each method. 

5.3. Results 
Table 6 shows the results of the six approaches. As mentioned earlier, each answer evaluation would label a student’s response 
as “correct” or “wrong.” These predictions were compared against the label assigned by a human rater. In Table 6, a result 
closer to one indicates that the human label and the prediction were similar (e.g., both labelled a student answer as 
“wrong_answer”). A lower score would indicate that the human label and the predicted label differed (e.g., the human label 
marked “correct_answer” and the predicted label “wrong_answer”). 

In Table 6, we report a set of widely used metrics in classification problems that measure model performance after 
accounting for imbalanced classes in the dataset: precision, recall, and F1 score (Banerjee et al., 1999). Precision measures the 
proportion of correctly identified positive cases among all predicted positives, recall indicates the proportion of actual positive 
cases correctly identified, and F1 score is the harmonic mean of precision and recall, providing a balanced measure of the 
model’s accuracy. We calculate these metrics separately for both correct and incorrect student answers to assess model 
performance across both response categories. We also report the Kappa scores, which are chance-adjusted metrics of 
agreement, with values ranging from -1 to 1. A value of 1 indicates perfect agreement, 0 suggests that the agreement is only 
what would be expected by chance, and a value of less than 0 indicates agreement worse than random chance. While there are 
several different measures of chance-adjusted agreement, because we are evaluating 2-class ratings (wrong/correct), we use 
Cohen’s Kappa. 

Table 6. Performance of Answer Evaluation Approaches on 2-Class Task 

 Prediction Accuracy Precision Recall  F1 Kappa 

String Matching 
Wrong 0.79 0.76 0.99 0.86 

0.44 
Correct 0.79 0.97 0.39 0.56 

Text processing 
Wrong 0.96 0.96 0.97 0.97 

0.90 
Correct 0.96 0.94 0.93 0.94 

LLM Zero-shot 
Wrong 0.94 0.93 0.98 0.95 

0.86 
Correct 0.94 0.96 0.85 0.90 

LLM Few-shot 
Wrong 0.93 0.91 0.99 0.95 

0.83 
Correct 0.93 0.97 0.81 0.88 

LLM Chain-of-thought 
Wrong 0.97 0.97 0.98 0.98 

0.93 
Correct 0.97 0.96 0.94 0.95 

Text processing and 
LLM Zero-shot 

Wrong 0.96 0.97 0.97 0.97 
0.92 

Correct 0.96 0.94 0.95 0.95 

Our analysis revealed that all evaluation techniques generally performed better when attempting to predict a wrong answer 
rather than a correct answer. The lower recall and F1 scores observed in the zero-shot and few-shot results suggest that these 
techniques have difficulty handling the variety of unique correct answer formats present in the dataset. This limitation led to 
more false negatives, which is particularly problematic in educational scenarios where failing to recognize correct answers can 
impact student assessment. 
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Surprisingly, enhancing the prompt with examples did not necessarily lead to improved performance. When evaluating 
student messages, we found that combining text processing with LLM zero-shot prompting achieved similar performance to 
the Chain-of-Thought (CoT) prompting approach. The strong performance of CoT prompting suggests an improved capability 
of the latest LLMs to deal with mathematical tasks and solve math problems, as demonstrated in the example presented in 
Table 7. 

Table 7. Output of Different LLM (GPT-4o) Strategies on a Sample Question-Answer Pair 
question_id: G6.N1.2.2.1.7 
question_text: 3^2 + 3^1 = __ 
expected_answer: 12 
student_response: =6+6 

=12 
human_category: correct_answer 
llm_cot_category: wrong_answer 
llm_cot_rationale: We need to evaluate the student’s response to see if it correctly solves the problem or contains a valid 

answer that is equivalent to the expected answer. 
First, let’s solve the problem step-by-step: 
- Calculate \(3^2\): \(3^2 = 9\) 
- Calculate \(3^1\): \(3^1 = 3\) 
- Add the results: \(9 + 3 = 12\) 
The expected answer is 12. 
Now, let’s examine the student’s answer: 
- The student wrote, “=6+6 =12” 
The student’s answer is not a correct step-by-step solution to the problem. The student incorrectly broke 
down the calculation into \(6 + 6\), which is not how \(3^2 + 3^1\) should be computed. 

While a more lenient educator might credit the student for arriving at the correct answer, the model chose to rate the 
response as wrong due to incorrect solution steps. Similarly, the model chose to mark wrong responses that contained Unicode 
analogs of the expected answer (e.g., À instead of A), badly formatted numbers (e.g., 9.34.5 instead of 9.345), and similar 
small variations that human labellers tended to classify as “correct,” taking into account the student’s limitations when using a 
mobile keyboard to type an answer. Looking further into CoT, the responses reveal that the model will sometimes make a 
mistake in its mathematical reasoning. This can lead to the model ignoring the expected answer, resulting in an inaccurate 
evaluation. Table 8 provides an example of this behaviour. 

Table 8. Example of LLM with CoT Prompt Containing Faulty Mathematical Reasoning 
question_id: G6.N1.2.2.1.7 
question_text: What is the value of 7 in 4,170,348? 

A. 7,000,000 
B. 7,000 
C. 700,000 
D. 70,000 

expected_answer: D 
student_response: d 
human_grade: correct_answer 
llm_cot_grade: wrong_answer 
llm_cot_rationale: We need to determine the place value of the digit 7 in the number 4,170,348. 

1. The digit 7 is in the hundred thousand places. 
2. The value of a digit in the hundred thousand place is the digit multiplied by 100,000. 
3. Therefore, the value of 7 in 4,170,348 is 7 * 100,000 = 700,000. 
The correct answer is C (700,000). The student’s answer is d, which corresponds to 70,000. 

5.3.1. Performance vs. Latency 
Table 9 shows the average and longest processing times each evaluation took to make a prediction. While CoT prompting 
resulted in small but stable improvements over the string processing and symbolic evaluations, it also significantly increased 
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response latency. On average, CoT responses took 2.79 seconds, compared to 0.73 seconds for few-shot LLM calls. The few-
shot evaluation took slightly longer than the zero-shot approach. Text processing evaluations took considerably less time than 
all prompt-based approaches, which is expected given that this approach did not require connection to the model over the 
internet or the execution of a large-scale machine learning model. 

Table 9. Latency of Four Answer Evaluation Approaches on 2-Class Task in Seconds 

 Average Processing Time Longest Processing Time 

Text Processing 0.006 0.269 

LLM Zero-shot 0.68 5.687 

LLM Few-shot 0.73 5.937 

LLM Chain-of-thought 2.79 16.281 

These results indicate that LLM processing time can be affected by the amount of input tokens the model needs to consume 
in the case of a longer prompt (such as in a few-shot prompts), and can be increased significantly when the model needs to 
generate a significant amount of output tokens (such as in the case of chain-of-thought prompting). Additionally, prompt-based 
approaches could experience more fluctuation in processing time. String processing and symbolic evaluation, while less 
flexible and less accurate ones have much lower latency and more consistent processing time. 

5.3.2. Model Reliability 
While deterministic approaches like text processing provide consistent results, generative LLMs produce their output using 
probabilistic methods, and therefore can return different outputs given the same inputs. This variation may occur even when 
the temperature is set to 0. In some respects, this is similar to human raters, who occasionally will award different ratings to 
the same student response, when asked to re-rate it after a period of time. Measures of intra-rater reliability are intended to 
evaluate the extent to which a single rater agrees with their own judgment over time. To investigate the consistency of prompt-
based methods, zero-shot and CoT approaches were rerun 10 times on a smaller dataset of 100 examples. As shown earlier, 
these two approaches scored the highest of the prompt-based approaches. For each run, the model labels were compared against 
the predicted labels to get a Cohen’s Kappa score to measure inter-rater reliability for the run. All runs were then compared 
against one other to arrive at a Fleiss Kappa to represent inter-run reliability. Table 10 shows the results of these runs. 

Table 10. Intra-Rater Reliability: Per-Run Agreement 
with Human Labels and Inter-Run Consistency 

 Per-Run Agreement with Human Labels (Cohen’s Kappa) Intra-Run 

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Fleiss’s Kappa 

LLM 
Zero-shot 0.66 0.66 0.68 0.70 0.66 0.62 0.66 0.70 0.66 0.66 0.90 

LLM 
Chain-of-thought 0.86 0.72 0.74 0.74 0.74 0.72 0.74 0.66 0.70 0.72 0.88 

Both CoT and zero-shot approaches had relatively high inter-run reliability as measured by Fleiss Kappa. However, the 
results indicate that CoT grading, while showing higher answer validity (represented by higher agreement with human 
labellers), has lower reliability between individual runs, and in one case scores worse than zero-shot prompting. This suggests 
that CoT prompting may experience more variation in how it scores responses, which may stem from its reasoning differing 
between runs. This could lead to accepting answers with typographical errors or other discrepancies outlined earlier, while 
rejecting them in other instances. While a student may not answer the same question multiple times, this variation could cause 
student confusion when the LLM does not consistently handle a particular answer pattern (such as substituting Unicode 
characters). 

6. Experiment 2: Impact of Improved Grading on Student Ability Estimates 
While improving model performance in grading short answer questions is a key area of research, we also seek to better 
understand the impact of such models on the analysis of student learning. In our second experiment, we investigated whether 
improved accuracy in model grading corresponded to changes in our estimates of student ability. 
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6.1. Experimental Design 
To quantify the effect of different automated grading algorithms on predicting individual student mastery, we apply the 
algorithms described in the previous section to generate answer correctness labels for the entire dataset. We exclude questions 
labelled by human annotators as “other,” as there are no straightforward ways to incorporate student non-attempts into the 
BKT evaluation. 

Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1994) is one of the most widely used algorithms to model student 
knowledge in ITS (Abdelrahman et al., 2023). For any given skill, BKT assumes that a student either does or does not know 
it. Every time a student attempts the skill, the probability of them knowing the skill is updated based on their performance up 
to that point and whether they were able to demonstrate the skill correctly. Standard BKT uses four parameters to model student 
knowledge. Two parameters are related to learner knowledge. When first attempting to demonstrate a skill, a student has the 
initial probability P(L0) of knowing the skill. This probability is updated each time the student attempts to demonstrate the skill 
(i.e., after t attempts, the probability of knowing the skill is P(L t)). At each practice opportunity, a student has a probability 
P(T) of learning the skill. The other two BKT parameters are related to learner performance. The probability of a student 
knowing the skill and yet making a mistake when attempting to demonstrate the skill is P(S). P(G) represents the probability 
of a student correctly guessing the answer even when not knowing the skill. 

We calculated BKT scores for each student on every lesson they attempted, using only their first attempts to respond to 
each question. To calculate these scores, we used the following default parameters for every lesson, as suggested by Nguyen 
et al. (2020): P(L0)=0.4, P(T)=0.05, P(S)=0.299, and P(G)=0.299. To determine if a student had mastered a lesson, we used 
the last BKT score calculated for that student in each lesson. While mastery thresholds for BKT scores vary between sources, 
we chose a threshold of 0.9 to signify that a student had mastered the lesson. This specific threshold for mastery was determined 
based on previous experiments, rather than theoretically, but could also plausibly be set lower or higher. 

Next, to investigate the effect of grading mechanisms on evaluating individual student mastery, we calculated the number 
of lessons each student mastered according to different grading algorithms. We then compared these numbers between the 
worst-performing algorithm (naive string matching) and the best-performing algorithm (CoT), using human labels of the 
student responses as the gold standard. 

6.2. Results 
When comparing the number of lessons that reach our threshold for mastery (BKT score of 0.9) according to different grading 
approaches, we find that 6.9% (165 out of 2,388) of students had their knowledge states incorrectly estimated by the baseline 
text processing approach. In contrast, the most successful grading approach, LLM CoT grading, only underestimated lesson 
mastery for 2.6% (61 out of 2,388) of students. This difference is illustrated in Table 11, which shows the effect of the grading 
approach by looking at a specific lesson, G7.N3.2.2.2. This lesson deals with changing forms and asks the student to present a 
given decimal number as a fraction. As there are multiple correct answers to this question and string-matching evaluation 
struggles with identifying equivalent fractions, the string-matching algorithm would regularly grade mathematically correct 
results as wrong. 

Table 11. Change in BKT Score on Lesson G7.N3.2.2.2 
by Grading Method for Example Students 

user_id BKT Estimate with 
String Match Grading 

BKT Estimate with 
LLM CoT Grading 

BKT Estimate with  
Human Grading 

996 0.349435 0.845858 0.845858 
1165 0.629638 0.966567 0.966567 
1235 0.173999 0.809262 0.809262 
1239 0.895698 0.973051 0.973051 
1841 0.128321 0.913219 0.913219 
2037 0.295264 0.994347 0.994347 

Anecdotally, we observe that while the overall number of mis-graded responses by simpler methods like string-matching 
was relatively small, these errors tended to be concentrated around certain students or specific lessons. Additionally, certain 
lessons that allowed for multiple correct answer formats or required understanding of equivalent expressions — such as 
fractions — seemed to be more susceptible to grading errors from simpler methods. For one student, #1190, using string-
matching to grade their answers resulted in BKT estimating that they mastered zero lessons, while both human and LLM-based 
grading resulted in a BKT estimate of over 0.90 for all the lessons they completed. 

Another interesting case demonstrates the impact of inaccurate grading on both student experience and behaviour, as well 
as mastery estimation. Student #994 began their practice with multiple-choice questions in lesson G6.N1.3.6.1. However, 
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because they were not following the expected answer format, their correct answers were graded as wrong. This presumably 
caused the student to abandon the lesson midway and start a different lesson, where the situation repeated itself. The student 
then switched to another lesson again after just three questions. However, once they started a lesson where the answer format 
was less ambiguous, the grading quality improved. From that point on, not only did the student start completing the lessons, 
solving all 10 questions, but the estimation of their mastery also became more aligned with their actual performance. 

7. Discussion and Conclusion 
In this paper, we make two contributions to the field of automated short answer grading (ASAG) and learning analytics. First, 
through AMMORE, we expand the landscape of publicly available datasets, particularly in representing underserved 
educational contexts. The collection of natural language interactions from a chat-based learning environment enables research 
into how students engage with and learn from these increasingly common interfaces, and by providing data from West African 
students, AMMORE enables investigation of learning patterns and knowledge construction across different cultural contexts. 
Second, our experimental results demonstrate both methodological advances in interpreting student interactions with the 
learning platform and improvements in tracking student learning. More specifically, we find that augmenting traditional NLP 
methods with an LLM-driven approach allows us to improve our ability to correctly interpret the long tail of difficult-to-grade 
responses. This improved interpretation, in turn, can lead to significant changes in the estimation of student concept mastery.  

7.1. Advancing ASAG Methodology 
Our findings regarding LLM performance in grading fill-in math responses contribute to an ongoing evolution in ASAG 
approaches. Traditional rule-based and statistical methods, as documented by Burrows et al. (2015), have historically struggled 
with the variability of student responses. Our results align with recent work by Botelho et al. (2023), who found that deep 
learning approaches could effectively handle diverse mathematical expressions. However, we achieved high levels of accuracy 
using relatively simple prompting approaches such as CoT, and without requiring extensive training data needed in previous 
neural approaches (e.g., Shen et al.’s [2023] MathBERT). 

This performance advantage particularly manifests in handling what Sung et al. (2019) termed “boundary cases” — 
responses that are semantically correct but syntactically variant. Where earlier work by Lan et al. (2015) required sophisticated 
mathematical language processing rules to handle these boundary cases, our LLM-based approach automatically adapts to 
different expression formats. This aligns with Gilardi et al.’s (2023) findings about LLMs’ superior flexibility in text annotation 
tasks, though we extend their work to the specific domain of mathematical responses. 

However, our results also reveal limitations similar to those noted by Kortemeyer (2023) in physics grading — particularly 
regarding occasional mathematical reasoning errors and sensitivity to prompt construction. These findings suggest that while 
LLMs offer significant advantages, they may best serve as part of a hybrid approach rather than a complete replacement for 
traditional methods, which echoes Schneider et al.’s (2024) conclusions about the current state of LLM-based grading. 

7.2. Implications for Learning Analytics 
The results of our experiments have important implications for the field of LA, particularly as educational technologies 
increasingly adopt chat-based interfaces. These interfaces generate rich streams of natural language data that capture student 
thinking and learning processes in unprecedented detail. However, this shift also presents substantial challenges for LA systems 
in processing and deriving meaningful insights from these interactions.  

Traditional text-processing and NLP approaches, while computationally efficient and deterministic, struggle with the long 
tail of unexpected but valid student responses. Previous research has shown that building rule-based systems to handle this 
variability requires extensive engineering effort and domain expertise (Burrows et al., 2015; Lan et al., 2015), making it 
impractical for many learning platforms. This limitation has influenced system design significantly. Where earlier platforms 
often defaulted to multiple-choice questions for reliability, our results suggest that open-response questions can be reliably 
graded at scale, supporting Magliano and Graesser’s (2012) arguments for their pedagogical value. 

The superior performance of LLM-based approaches with CoT prompting suggests a promising direction for handling this 
variability in student interactions. The success of our approach in handling diverse response formats is especially relevant 
given Johnson and Green’s (2006) findings about the importance of allowing multiple answer representations in mathematics 
assessment. Moreover, our work extends recent findings by Gurung et al. (2024) comparing multiple-choice and fill-in 
problems. While they focused on learning outcomes, our results address the practical implementation challenges that have 
historically limited the use of open-response questions in digital platforms. 

Our results also complement work by Cukurova et al. (2022) on the quality of online tutoring interactions. Where they 
focused on process metrics, our findings demonstrate how improved response interpretation can enhance outcome 
measurements. The substantial reduction in misclassified mastery states (from 6.9% to 2.6%) supports Motz et al.’s (2023) 
argument for focusing LA research more directly on learning outcomes in applied systems. Our findings suggest that improving 
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the accuracy of response interpretation, even for a relatively small subset of challenging cases, can lead to significantly better 
estimates of student knowledge states. This improvement, in turn, enables more accurate modelling of learning trajectories. 

7.3. Limitations and Further Research 
Despite the promising results, our study has several limitations that suggest directions for future research. First, our dataset is 
limited to middle school mathematics questions from specific domains (“Algebra” and “Numbers and Operations”). Given 
Crossley et al.’s (2019) findings about domain-specific variations in automated assessment performance, future work should 
investigate how these approaches generalize across subject areas, complexity levels, and age groups. Second, our experiments 
focused on a binary classification of answers as correct or incorrect. This simplification, while useful for our analysis, does 
not capture the full spectrum of partial understanding that students may demonstrate. Future research could explore how LLM-
based approaches might support more nuanced scoring rubrics, building on work by Mayfield and Black (2020) on automated 
essay scoring. Third, while LLMs offer impressive flexibility in handling unexpected inputs, their computational and financial 
costs at scale, combined with occasional unpredictability through hallucination and mathematical reasoning errors, suggest the 
need for research into robust verification methods, perhaps building on recent work in LLM output validation (Henkel et al., 
2024). Finally, our findings indicate that learning systems will likely need to adopt hybrid approaches: using well-understood, 
deterministic NLP methods for common interaction patterns while reserving LLMs for handling edge cases. More research is 
needed on optimal architectures for such systems, including methods for automatically determining when to use each approach 
based on input characteristics, extending work by Allen et al. (2014) on adaptive assessment strategies. 

7.4. Conclusion 
Our work demonstrates both the potential and current limitations of LLM-based approaches in educational technology. While 
LLMs offer powerful capabilities for handling unexpected student interactions, their effective integration requires careful 
consideration of practical constraints and strategic deployment alongside traditional methods. As educational platforms 
increasingly generate rich natural language data, the LA community must continue developing scalable approaches for 
extracting meaningful insights about learning processes. 
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