

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 169

Volume 12(1), 169–185. https://doi.org/10.18608/jla.2025.8575

Qualitative Coding with GPT-4: Where it Works Better
Xiner Liu1, Andres Felipe Zambrano2, Ryan S. Baker3, Amanda Barany4, Jaclyn Ocumpaugh5,
Jiayi Zhang6, Maciej Pankiewicz7, Nidhi Nasiar8 and Zhanlan Wei9

Abstract
This study explores the potential of the large language model GPT-4 as an automated tool for qualitative data
analysis by educational researchers, exploring which techniques are most successful for different types of
constructs. Specifically, we assess three different prompt engineering strategies — Zero-shot, Few-shot, and Few-
shot with contextual information — as well as the use of embeddings. We do so in the context of qualitatively coding
three distinct educational datasets: Algebra I semi-personalized tutoring session transcripts, student observations
in a game-based learning environment, and debugging behaviours in an introductory programming course. We
evaluated the performance of each approach based on its inter-rater agreement with human coders and explored
how different methods vary in effectiveness depending on a construct’s degree of clarity, concreteness, objectivity,
granularity, and specificity. Our findings suggest that while GPT-4 can code a broad range of constructs, no single
method consistently outperforms the others, and the selection of a particular method should be tailored to the specific
properties of the construct and context being analyzed. We also found that GPT-4 has the most difficulty with the
same constructs than human coders find more difficult to reach inter-rater reliability on.

Notes for Practice

• GPT-4 can be used to code qualitative data for educationally relevant constructs.

• Using embeddings and examples can improve agreement with humans. Examples are more useful for
constructs that are more difficult to define.

• Constructs that human beings find difficult to agree on are also difficult for GPT-4.

Keywords: Qualitative coding, GPT-4, large language model, quantitative ethnography, automated coding
Submitted: 27/07/2024 — Accepted: 11/02/2025 — Published: 17/03/2025

Corresponding author 1Email: xiner@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104,
USA. ORCID iD: https://orcid.org/0009-0004-3796-2251
2Email: azamb13@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0000-0003-0692-1209
3Email: ryanshaunbaker@gmail.com Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID
iD: https://orcid.org/0000-0002-3051-3232
4Email: abarany@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0000-0003-2239-2271
5Email: ojaclyn@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0000-0002-9667-8523
6Email: joycez@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0000-0002-7334-4256
7Email: mpank@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0000-0002-6945-0523
8Email: nasiar@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0009-0006-7063-5433
9Email: zhanlanw@upenn.edu Address: Graduate School of Education, University of Pennsylvania, Philadelphia, PA 19104, USA. ORCID iD:
https://orcid.org/0009-0002-3931-6398

1. Introduction and Literature Review
Qualitative coding is a vital component of educational research. This process involves systematically labelling, categorizing,
and organizing data into themes, constructs, concepts, or patterns to identify recurring ideas or concepts within the data
(Saldaña, 2016). The qualitative coding pipeline (e.g., developing coding categories, coding data according to them, and
validating codes) is often time-consuming and labour-intensive (Shaffer & Ruis, 2021), especially in research involving large
datasets and complex or numerous constructs. This issue is exacerbated when understanding the patterns in a dataset requires

https://doi.org/10.18608/jla.2025.8575
mailto:xiner@upenn.edu
https://orcid.org/0009-0004-3796-2251
mailto:azamb13@upenn.edu
https://orcid.org/0000-0003-0692-1209
mailto:ryanshaunbaker@gmail.com
https://orcid.org/0000-0002-3051-3232
mailto:abarany@upenn.edu
https://orcid.org/0000-0003-2239-2271
mailto:ojaclyn@upenn.edu
https://orcid.org/0000-0002-9667-8523
mailto:joycez@upenn.edu
https://orcid.org/0000-0002-7334-4256
mailto:mpank@upenn.edu
https://orcid.org/0000-0002-6945-0523
mailto:nasiar@upenn.edu
https://orcid.org/0009-0006-7063-5433
mailto:zhanlanw@upenn.edu
https://orcid.org/0009-0002-3931-6398

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 170

contextual knowledge of a culture or domain, or when specific types of semiotic and semantic literacy are needed for reliable
interpretation (e.g., programming data, interaction log data).

Automated coding has been proposed for decades as a response to this issue (Weber, 1984; Shapiro, 1997), within a
variety of data contexts and approaches, including content analysis for literature review in ecology research (Nunez-Mir et al.,
2016), classification of opinions in government transcripts (Hopkins & King, 2010), latent semantic analyses of student
interviews around science concept developments (Sherin, 2012), and student cognition (Kovanović et al., 2016). Approaches
for doing so have ranged from the use of count data (Kovanović et al., 2016) to regular expression authoring (Cai et al., 2019;
Crowston et al., 2010).

With the advent of large language models (LLM), a rapidly increasing number of studies both within and outside of the
learning analytics community are exploring the use of these models for qualitative coding (e.g., Tai et al., 2024; Zambrano et
al., 2023; Kirsten et al., 2024; Chew et al., 2023; Xiao et al., 2023; Hutt et al., 2024). Qualitative data coding using LLMs
potentially offers a more cost-effective and time-efficient way of analyzing text than fully human coding, particularly for large
datasets. There is also demonstrated potential for LLMs to serve as “co-researchers” that can support human refinement of
qualitative codebooks or improve coding accuracy (Chew et al., 2023; Zambrano et al., 2023). OpenAI’s Generative Pre-
trained Transformers (GPT) LLM has been increasingly used for this purpose and has obtained promising results for coding a
range of constructs (e.g., Morgan, 2023; Zambrano et al., 2023; Kirsten et al., 2024; Chew et al., 2023).

In these studies, prompts are given to ChatGPT (OpenAI, 2022) to tell it how to code, along with definitions and, in some
cases examples. For instance, in Zambrano et al. (2023), ChatGPT (GPT-4) was instructed to code the topic and valence of
press releases. Similarly, Chew et al. (2023) used GPT-3.5 to qualitatively code a range of categories in reports, news articles,
blog posts, and social media. In educational domains, Xiao et al. (2023) used ChatGPT (GPT-3) to code different types of
student help-seeking behaviours, and Hutt et al. (2024) used ChatGPT (GPT-4) to rate the quality of peer feedback. Results
were promising, with GPT generally achieving good agreement with human-coded labels, but coding performance varied
across constructs/coding categories and GPT in some cases performed worse than more traditional NLP approaches such as
regular expression authoring (Zambrano et al., 2023).

Although GPT can accurately code some types of qualitative data (Chew et al., 2023), it is unclear which constructs GPT
handles best. Many constructs are hard for humans to code (Gao et al., 2023; Kirsten et al., 2024) — will the same constructs
be hard to code for GPT, or different ones? Furthermore, although there are now many examples of qualitative coding with
GPT, it is unclear which approach is best, and whether the answer may differ across constructs and datasets.

Several methods for using GPT for qualitative coding have been investigated. For example, Zero-shot prompting involves
giving instructions for a task without any labelled examples, whereas one-shot or Few-shot prompting involves using labelled
data that provide examples for the model to learn from in addition to the instructions. When studying student help-seeking
behaviours, Xiao et al. (2023) found that GPT achieved higher rates of inter-rater reliability with human experts when given
prompts that included examples (One-shot and Few-shot) than when given Zero-shot prompts. Comparable results have been
found in other domains (Brown et al., 2020; Prabhumoye et al., 2021). Liu et al. (2023) found that choices in example selection
and ordering can also impact model performance. Within this paper, we will more systematically investigate the trade-offs
associated with these choices of how to use an LLM for qualitative coding.

In addition to the use of examples, this study also investigates the details of prompt engineering, the process of designing
inputs to guide a language model’s behaviour and responses (Giray, 2023) in qualitative coding. Previous research (in domains
other than qualitative coding) has shown how the structure of prompts (White et al., 2023), the phrasing and specificity of
instruction (Ekin, 2023), the inclusion of guiding keywords or phrases (Spasić & Janković, 2023), and the formulation of tasks
(e.g., requiring direct results or applying chain-of-thought reasoning for step-by-step problem-solving; Lo, 2023b) may all
influence the results of prompting. A growing body of literature has also highlighted the role of contextual information in
determining what output an LLM produces in response to differences in prompts. For instance, Hou et al. (2024) demonstrate
that explicitly defining the model’s role or persona within a task helps align its responses with role-specific expectations and
requirements. Lo (2023a) highlights that including contextual elements, such as the objectives of the tasks, increases precision
and reduces ambiguity in the output. Femepid et al. (2024) show that adding domain-specific information improves both the
relevance and accuracy of the model’s responses by grounding them in established norms and knowledge within the field.
Building on these insights, we also integrated contextual elements related to the research purpose and data into the prompts
used in this study to assess their impact on qualitative coding.

We also investigate the potential use of embeddings in qualitative coding. Embeddings are numerical representations of
data points in a multi-dimensional space that transform qualitative data into a format suitable for computational analysis
(Alvarez & Bast, 2017). While they have been extensively used in areas such as clustering, classification, and information
retrieval (see review by Asudani et al., 2023) and play an essential role in retrieval-augmented generation within various
applications of large language models (Zhao et al., 2024), their application in qualitative coding remains largely unexplored.
Their primary use thus far has been to support clustering of text for the discovery of qualitative categories (Katz et al., 2024),

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 171

but they also have the potential to support the coding process by providing a way to quantify semantic similarities (Alvarez &
Bast, 2017) between different pieces of text.

With these areas of potential enhancement in mind (e.g., prompt types, the use of examples, embeddings), this paper
investigates five approaches for automated coding with GPT-4: 1) Zero-shot prompts, 2) Few-shot prompts with only positive
examples, 3) Few-shot prompts with positive and negative examples, 4) Few-shot prompts with contextual information (e.g.,
related background information, the purpose of the conversation, or the surrounding text), and 5) the use of Embeddings. We
test subsets of these variations on three different studies/datasets drawn from different educational tasks and domains. In Study
1, we examine transcripts from semi-personalized virtual tutoring sessions, specifically assessing how different prompt
engineering strategies affect coding accuracy for constructs varying in clarity, concreteness, objectivity, granularity, and
specificity. In Study 2, we evaluate the same approaches, plus embeddings, in learners studying astronomy within Minecraft.
Finally, Study 3 extends this analysis to programming code from novice computer science students, testing GPT’s ability for
qualitative coding outside the context of natural language. For each study, we use slightly different methodologies (see
discussion below) to account for the unique characteristics of each dataset. By combining insights from the three
complementary studies, we aim to advance the field’s understanding of how to utilize GPT-4 and similar LLMs most
effectively for qualitative coding, identifying which coding methods work best for which types of constructs.

2. Study 1: Virtual Tutoring Session Transcripts
2.1. Dataset
The Study 1 dataset was obtained from the Saga Education platform, where trained tutors provided personalized mathematics
support to students attending high-poverty schools in the United States. The dataset consists of de-identified transcripts,
including timestamps of lines spoken and speaker type (instructor and student), from four 60-minute virtual tutoring Algebra
I sessions with six 9th-grade students (two sessions involving two students, two sessions involving one student).

2.2. Codebook Development
This dataset has previously been used to explore the potential of LLMs (specifically GPT-4) to support codebook development
for investigating teaching methodologies from transcripts (Barany et al., 2024). The prior study compared four codebooks
inductively developed with different approaches: 1) a fully manual method using only human analysis, 2) a fully automated
method using only ChatGPT, 3) a hybrid approach where GPT refined a codebook initially proposed by a human, and 4)
another hybrid method where GPT proposed an initial codebook that was subsequently refined by a human. For our analysis,
we selected the third codebook (initially crafted by humans and then refined by GPT) because its constructs encompass the
broadest range of thematic meanings among the developed approaches, enabling a more comprehensive evaluation of GPT’s
effectiveness in coding constructs with various levels of complexity. This codebook, originally proposed in Barany et al.
(2024), is presented in Table 1.

Table 1. Codebook for Study 1
Construct Definitions & Examples

Greetings Lines unrelated to learning, useful for rapport. Lines during the start or mid-session as an
engagement check. Example: “What’s good, [Redacted]?”

Direct
Instruction

Providing information or demonstrating methods without immediate student participation.
• Definitions/Explanations: Stating mathematical rules or properties.
• Demonstrating Steps: Giving instructions of how to solve a problem.
Example: “We got twelve equals one over x minus five.”

Guided
Practice

Engaging students in problem-solving with support. Instructions include explanations, illustrations,
reminders, and invites understanding.
Example: “Do that and then I want to see if you can solve from there.”

Questioning Prompting students to think, respond, or elaborate.
• Recall & Comprehension: Asking students to remember or use something previously learned.
• Higher Order Thinking: Questions that push students to analyze, evaluate, or plan next steps.
Example: “Twelve times x gives you what?”

Connecting
to Prior
Knowledge

Linking current topics to previously learned concepts for cohesive understanding.
Example: “What kind of math is a fraction?”

Clarification Reiterating or paraphrasing for clearer understanding, helping move from abstract to concrete
thinking. Example: “Anytime we multiply, we always multiply what’s in the denominator.”

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 172

Feedback Offering constructive comments on student performance or understanding.
• Positive Reinforcement: Confirming correct understanding or steps, or offering words of

encouragement or praise to motivate or acknowledge effort.
• Corrective: Pointing out an error, with or without explicitly giving the correction.
• Yes, and: Acknowledging student understanding and extending it.
Example: “The first one is right.”

Engagement
Checks

Actively seeking signs of student attention and participation.
• Direct Check: Directly asking or observing student involvement.
• Engagement Probes: Using strategies to pull students back into the lesson.
Example: “You working or you phased out?”

Software/
Tool Use

Reference to or assistance with using the tutoring software itself.
Example: “Touch the screen; you can pinch and move it around.”

Session
Logistics

Addressing or organizing the structural aspects of the session. Indicating goals and tasks. Could be
instances at the start, during, and end of the session. Example: “Try out number nine.”

Source: Barany et al. (2024).

2.3. Automated Coding Process
In our study, two new researchers independently coded the transcript using the codebook’s construct definitions (see Table 1).
Their initial Cohen’s Kappa (κ) values varied significantly, ranging from 0.24 to 0.87 (see Table 2), in line with the kappa
values reported in Barany et al.’s (2024) study using the same codebook. Given the insufficient agreement obtained, researchers
in our study resolved discrepancies through social moderation (Herrenkohl & Cornelius, 2013), aiming to achieve consensus
and establish a single, accurate categorization for each transcript line. This coded data serves as the ground truth for training
and evaluating the coding performance of GPT.

We then utilized GPT-4 (gpt-4-turbo-2024-04-09, the most recent version at the time of the research) for coding the data,
accessed via Open AI’s application programming interface (API). We employed the default hyperparameter settings, except
for setting the temperature to 0 to ensure consistent output.

We used a binary (prompt-engineered) classifier for coding each construct to reduce the complexity of the coding task, as
proposed by Zambrano et al. (2023), an approach that aligns with common practice in qualitative coding, particularly within
the learning analytics community. When coding the data, GPT was specifically asked to assign binary labels, either 0 or 1.
However, in rare instances where transcriptions were poor (e.g., lines that were transcribed as “Huh?” or [?: equals.]”, which
indicate that audio quality was so low that transcription was impossible,) GPT produced non-binary responses (e.g., “Sure,
please provide the line you’d like to code”). We treated any response from GPT that did not provide binary labels as being
incorrect, regardless of the ground truth value, since these responses would not be usable by a coder going forward. This was
the only study where we observed such a case; this issue did not occur in the other two studies below.

Across all three studies, the strategy for developing effective prompts involved an iterative process of refinement to align
GPT’s responses with the coding task requirements. The goal was to craft clear, precise, structured prompts that reduced
ambiguity, minimized variability, and maximized reliability across repeated outputs. Each prompt was evaluated using
validation data (randomly drawn from the dataset but separate from the testing data) across multiple sessions, accounts, and
computers. Insights from these iterations guided adjustments to improve prompt clarity and accuracy in representing the
constructs being coded. Key adjustments included rephrasing instructions and specifying the expected format of responses. A
prompt was finalized only when it consistently produced reliable binary outputs with minimal inconsistency across different
attempts.

In this particular study, we compared three different prompt engineering approaches for coding the data: Zero-shot, Few-
shot, and Few-shot with context (defined below). Due to the stochastic nature of GPT models, which can result in variable
outputs, we ran the coding process three times to enhance the accuracy and thoroughness of our evaluation for each coding
approach. We then computed the average values for Kappa (κ), precision, and recall, across all three iterations to assess GPT’s
performance. Given the emphasis on analyzing tutors’ teaching methodologies, we excluded student-spoken lines from the
model evaluation process. This approach yielded a dataset of 990 lines. However, for the third method, where context is crucial
for coding, we included student lines as reference material. Although presented, these lines were not coded by GPT; instead,
they were used solely for reference to enhance the contextual understanding of the instructor’s lines.

2.3.1. Method 1: Coding with Zero-Shot Prompting
For Zero-shot prompting, we first provided the GPT-4 model with the definition of each construct. Then, we prompted the
model to code each line in the entire dataset using the following specific prompt:

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 173

Please review the provided text and code it based on the construct: {construct}. The definition of this construct is
{definition}. After reviewing the text, assign a code of ʻ1’ if you believe the text exemplifies {construct}, or a ʻ0’ if it does
not. Your response should only be ʻ1’ or ʻ0’.

This prompt was sent as a system message to the Chat Completions endpoint, followed by the specific line of data that GPT
should code, sent as a user message.

2.3.2. Method 2: Coding with Few-shot Prompting
This method extends the Zero-shot technique by including annotated examples as well as the line to be coded, including
explanations of how the constructs should be interpreted and applied. Providing annotated examples — rather than only
example texts without explanations — aims to enhance accuracy in identifying and classifying relevant content and addressing
edge cases. Below are the annotated examples for the construct Direct Instruction:

1) “Yeah, so track five on both sides first” because it specifies an action to be taken to solve a problem.
2) “We got twelve equals one over x minus five” because it guides the student through a step in the process of solving an

equation.
3) “Remember, remember we’re trying to get x by itself.” because it provides guidance on what the focus should be during

the task.

2.3.3. Method 3: Few-Shot with Context
In this dataset, some utterances might span multiple lines due to the transcription process, and some constructs in the codebook
specify when they are likely to occur during the 60-minute tutoring session (e.g., Greetings typically occur at the start, whereas
Engagement Checks occur later). Given this structure, we incorporated context into the coding prompt in addition to the
construct definition and annotated examples used in the second method. Contextual information consisted of three parts: 1) a
summary background of the study covering how the data was collected, the subjects taught, and the recording of transcripts;
2) the three lines preceding the current line (if not coding the first three lines), and 3) each line’s timestamp and speaker
(instructor or student). The decision to include three lines was based on a preliminary analysis of 20 randomly selected lines.
For example, when coding the fourth line in the second tutoring session, the model will receive the following contextual
information along with the study background:

CONTEXT (3 lines before the text you should code. Use this for context understanding, but do not code this part):
00:07 - [Instructor]: “Okay, so you should remember this from last time.”
00:12 - [Instructor]: “We’re gonna go ahead and use our grouping method.”
00:17 - [Instructor]: “So factor these equations using our grouping method.”

2.4. Results
2.4.1. Coding with Zero-Shot Prompting
The performance of Zero-shot prompting varied considerably (Table 2) from excellent (Questioning κ=-0.91, Greetings
κ=0.79) to poor (κ<0.2 for Direct Instruction, Session Logistics, Guided Practice, Connect Prior Knowledge). GPT often
struggled in cases where contextual understanding is required. For example, GPT (Zero-shot) coded the line “How you doing
over there, [Redacted]?” as 1 for Greetings, but this line occurred in the middle of a class session, where it represents an
Engagement Check. Similarly, GPT coded every instance of the word “Perfect” as Feedback, even in cases where the instructor
appeared to be using “Perfect” as a filler word without offering actual feedback or encouragement. GPT also did not perform
as well for constructs that span multiple related lines of the same dialogue. For example, for the construct Feedback, human
coders identified the consecutive lines “No.” and “We’re not going to multiply here.” as Feedback (1). However, GPT only
coded the second line as 1. This indicates that for coding highly conversational data or constructs that require understanding
context across multiple lines, the context-free Zero-shot approach may not be ideal.

We also observed that this approach tends to expect direct matches to the definitions in the codebook. For example, for
the construct Direct Instruction, GPT correctly identified “So we got X minus three equals six,” but did not identify “You want
to get another six.” The latter case may have been harder for GPT to correctly identify because the instruction is implied and
conversational. Inter-rater agreement metrics for each approach (in Table 2) suggest that the Zero-shot approach was most
successful in only two cases, but that Zero-shot often overlooks relevant instances that are less explicitly stated. This tendency
is reflected in the higher precision than recall for 8 out of the 10 constructs, suggesting that clear and comprehensive definitions
in a qualitative codebook were essential for the Zero-shot approach.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 174

Table 2. Performance Metrics for Automated Coding
Construct Freq. in

Data
Hum–
Hum κ

Method Hum–
GPT κ

Hum–GPT
Prec.

Hum–GPT
Recall

Greetings 2% 0.70 Zero-shot 0.79 0.69 0.96
Few-shot 0.50 0.37 0.85
Few-shot with context 0.74 0.82 0.69

Direct
Instruction

14% 0.24 Zero-shot 0.11 1.00 0.06
Few-shot 0.79 0.75 0.71
Few-shot with context 0.62 0.56 0.89

Guided
Practice

26% 0.35 Zero-shot 0.16 1.00 0.11
Few-shot 0.55 0.56 0.83
Few-shot with context 0.86 0.91 0.87

Questioning 18% 0.87 Zero-shot 0.91 0.91 0.93
Few-shot 0.89 0.85 0.97
Few-shot with context 0.60 0.53 0.98

Connect
Prior
Knowledge

12% 0.45 Zero-shot 0.18 1.00 0.10
Few-shot 0.38 0.27 0.94
Few-shot with context 0.78 0.78 0.83

Clarification 7% 0.72 Zero-shot 0.30 0.70 0.20
Few-shot 0.56 0.46 0.90
Few-shot with context 0.30 0.23 0.87

Feedback 5% 0.66 Zero-shot 0.27 0.40 0.24
Few-shot 0.26 0.25 0.35
Few-shot with context 0.15 0.13 0.67

Engagement
Checks

6% 0.48 Zero-shot 0.45 0.66 0.37
Few-shot 0.82 0.80 0.86
Few-shot with context 0.53 0.48 0.68

Software 1% 0.45 Zero-shot 0.25 0.67 0.15
Few-shot 0.71 0.67 0.77
Few-shot with context 0.60 0.43 1.00

Session
Logistics

4% 0.33 Zero-shot 0.15 1.00 0.09
Few-shot 0.85 0.80 0.91
Few-shot with context 0.41 0.28 0.97

Note: For each construct, the best coding method is highlighted/in bold if it also obtains a minimum of κ≥0.70.
Constructs with κ≤0.70 are still included in the subsequent correlation analysis.

2.4.2. Coding with Few-Shot Prompting
The Few-shot prompting approach generally obtained better results than the Zero-shot prompting (Table 2). Several of the
constructs had substantial improvements in inter-rater reliability, including Direct Instruction (κ=0.79 with Few-shot vs.
κ=0.11 with Zero-shot), Guided Practice (κ=0.55 with Few-shot vs. κ=0.16 with Zero-shot), and Session Logistics (κ=0.85
with Few-shot vs. κ=0.15 with Zero-shot). In contrast, the performance for coding Greetings decreased by κ=0.29 compared
to the Zero-shot approach. The Few-shot approach improved recall across all constructs but tended to overgeneralize based on
the provided examples, resulting in a lower precision for all but one construct. For example, when the interjection “All right,
fellas” was included as an example for Greetings, GPT overgeneralized part of that phrase. As a result, 23 instances of “All
right” were misclassified as Greetings, even when it was used in an adverbial/adjectival form (i.e., “All right, let’s look at
number one.”). When “All right, fellas” was removed as an example, misclassification dropped significantly. A similar
overgeneralization issue arose with the Feedback construct, where GPT incorrectly coded 10 out of 11 instances that contained
only the word “No” as containing Feedback after being given the following example: “No, not quite one x because you divided
the negative three by three but did you divide the x by x?” Both examples highlight the importance of carefully selecting
examples that minimize the risk of overgeneralization, and reviewing results in detail to identify unanticipated cases where it
occurs.

2.4.3. Few-Shot with Context
Finally, as Table 2 shows, the Few-shot with context approach was most effective for constructs that typically involve
repetition or continuation of a construct across consecutive lines, such as Guided Practice (κ=0.86) and Connect Prior

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 175

Knowledge (κ=0.78). However, for other constructs that typically occur in a single line (e.g., Clarification and Session
Logistics), GPT sometimes coded the construct in the context lines rather than in the target line.

2.5. Evaluating Construct Complexity
Next, we explored the relationship between the characteristics of a construct and GPT-4’s coding performance. We evaluated
each construct in terms of five dimensions: 1) clarity, 2) concreteness, 3) objectivity, 4) granularity, and 5) specificity. We also
evaluated the usefulness of the three examples in improving understanding of the construct. These evaluation criteria were
developed based on our prior experience with qualitative coding, where we observed that the difficulty of coding and agreement
between coders can be affected by the way such characteristics of a construct are presented. We distributed the rubric in Table 3
and descriptions of the ten constructs to a group of eleven researchers experienced in qualitative coding and analysis. For each
construct, we provided its definition and asked the researchers to rate each dimension of the rubric on a scale from 1 to 5, with
1 being the lowest and 5 being the highest.

Table 3. The Dimensions Used to Evaluate Constructs
Dimension Definition
Clarity Well-defined and easily comprehensible; without ambiguity or confusion (antonym ambiguity).
Concreteness Specific, tangible, and perceptible by the senses (antonym abstractness).
Objectivity Verifiable based on facts and evidence; not based on feelings, opinions, or emotions (antonym subjectivity).
Granularity Involving finer, detailed elements (antonym coarseness).
Specificity Distinct and clearly distinguishable from other related concepts; not conflated or overlapping with other

constructs (antonym generality).
Example Were the examples useful in improving understanding of the construct.

For each construct, we calculated the average ratings for the dimensions (Table 4). To assess the reliability of the survey

responses, we used Cronbach’s Alpha, a statistical measure of internal consistency that evaluates how well a group of questions
collectively measure the same concept. Alpha values range from 0 to 1, with higher scores reflecting greater consistency.
Standard interpretation guidelines suggest that α ≥ 0.9 indicates excellent reliability, 0.8 ≤ α < 0.9 signifies good reliability,
0.7 ≤ α < 0.8 represents acceptable reliability, and α < 0.7 points to low reliability. For each construct, we grouped six related
questions (five addressing specific dimensions and one evaluating the usefulness of examples) and calculated Cronbach’s
Alpha to assess whether those questions collectively measure the corresponding construct. The Alpha values ranged from 0.75
to 0.93, with an average of 0.87, which indicates that the constructs demonstrate acceptable to excellent internal consistency
overall.

Table 4. Average Scores of Evaluated Dimensions for Each Construct
Construct Best

Method
Hum–
Hum κ

Hum–
GPT κ

Clarity Concrete. Obj. Gran. Spec. Ex.

Questioning Zero-shot 0.87 0.91 4.82 4.45 4.45 4.27 4.27 3.64

Guided Practice Few-shot w/context 0.35 0.86 3.64 3.55 2.82 2.91 3.27 3.64

Session Logistics Few-shot 0.33 0.85 3.36 3.45 4.00 3.55 3.73 3.91

Engagement Checks Few-shot 0.48 0.82 3.64 3.18 2.73 3.36 3.18 4.55

Greetings Zero-shot 0.70 0.79 4.64 4.18 3.45 3.82 3.45 3.64

Direct Instruction Few-shot 0.24 0.79 3.73 3.64 2.82 3.73 3.09 4.45

Connect Prior Knowledge Few-shot w/context 0.45 0.78 3.91 3.27 3.36 2.82 3.27 3.64

Software Few-shot 0.45 0.71 3.45 3.91 4.45 3.55 3.73 4.64

Clarification NA* 0.72 0.56 3.55 2.73 3.00 3.00 3.18 3.73

Feedback NA* 0.66 0.27 3.82 2.82 3.00 3.55 3.18 3.64

Notes: * All approaches failed to reach κ >0.70. None of the methods obtained κ over 0.70 for Clarification and Feedback.

Interestingly, the human–GPT κ values were more closely aligned with the clarity ratings than the human–human κ values,
which indicates that GPT’s performance may be more sensitive to well-defined constructs than that of human raters. In other

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 176

words, GPT may rely more on explicit definitions and structure when making coding decisions, whereas human raters might
bring in additional context or subjective interpretation, even when constructs are less clear.

Due to non-normality in the data, we used Spearman correlations to investigate the relationship between each pair of
dimensions. Correlations were moderate (see Figure 1), with an average Spearman correlation coefficient of 0.36 (SD = 0.49).
Notably, there was a remarkably high correlation (0.87) between objectivity and specificity.

 Figure 1. Spearman correlation coefficients across dimensions.

Standard deviations are provided in parentheses below each correlation coefficient.

We next calculate Spearman correlations between the average values for the dimensions and the κ values achieved by
GPT-4 in coding tasks for each of the three methods (Table 5). The positive relationship between performance in Zero-shot
coding and construct clarity (Spearman coefficient of 0.50) demonstrates the value of clear and unambiguous definitions when
employing this approach. Interestingly, this correlation decreases for Few-shot with context (0.40) and becomes negative for
the Few-shot approach (-0.24), which speaks to the ability of GPT to identify patterns that humans find harder to define but
can find examples of. There were positive correlations between concreteness and performance for Few-shot (0.39) and Few-
shot with context (0.55), possibly indicating that Concreteness is best leveraged by GPT when concrete examples or context
are available. The Zero-shot and Few-shot approaches achieve better performance for more granular constructs; in these cases,
extra context may not be useful (as the construct only needs one line due to its high granularity) and therefore only serves as
a distraction. Examples that humans found useful were associated with better performance for the Few-shot approach (0.48),
but the reverse seemed to be true for Few-shot with context (-0.33). It is possible that the additional context could be
overwhelming GPT, causing it to rely less on the examples and more on the surrounding information.

Table 5. Summary of Spearman Correlation Coefficients Across Different Methods
Construct Clarity Concreteness Objectivity Granularity Specificity Example

Zero-shot 0.50 0.15 0.24 0.34 0.28 -
Few-shot -0.24 0.39 0.20 0.41 0.36 0.48
Few-shot with context 0.40 0.55 -0.05 -0.12 0.17 -0.33

3. Study 2: Middle-School Students In-Game Astronomy Observations
3.1. Dataset
The Study 2 dataset consists of scientific observations made by students while exploring educational worlds in Minecraft.
These observations were obtained from What-if Hypothetical Implementations in Minecraft (WHIMC; Lane et al., 2022),
where learners explore scenarios (e.g., “What if Earth had no moon?” or “What if the sun was cooler?”) during informal
settings like summer camps. The WHIMC server includes a NASA-inspired launch site, a lunar base, a space station, a Mars
map with real Martian terrain data, various known exoplanets, and phenomena such as black holes and quasars. Learners are
assisted by automated pedagogical agents and human facilitators to use scientific tools to measure critical habitability
factors — temperature, air pressure, radiation, gravity, and atmospheric composition — and write descriptive, comparative,
and inferential observations that assess the habitability of each world. Students post their observations in the game space and
the observations are visible in real time to other players in their cohort.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 177

The dataset comprises data from 76 learners (49 male, 20 female, and 7 who reported another category or preferred not
to answer) collected in 2022. Learners used the system in five locations across three states, with participants drawn from
populations living in rural, suburban, and urban areas. They also represented a wide range of racial backgrounds (12
Black/African American, 3 American Indian, 2 Asian/Pacific Islander, 10 Hispanic/Latino, 22 White/Caucasian, 1 who
selected multiple categories, 6 other, and 19 who preferred not to answer). Socioeconomic backgrounds also varied
considerably between locations, with nearly half of students coming from high-income counties and the rest from areas with
mixed or lower-income groups.

3.2. Codebook Development
Prior qualitative research on this learning environment categorized student observations into four categories: Noun,
Measure/Descriptive, Comparison, and Hypothesis (Yi et al., 2020). These categories were specifically developed to identify
and study observations that align with the learning objectives of WHIMC. In our study, we extended this classification
framework by applying an inductive thematic analysis to identify additional themes within the data (Thornberg & Charmaz,
2014). Specifically, we introduce six new codes to capture additional aspects of game-related interactions and social
communication that were not fully captured within the original coding scheme. The final version of the codebook is shown in
Table 6. Since these constructs are not mutually exclusive, some observations may be categorized under multiple labels.

Table 6. Inductively Developed Themes/Constructs
Code Name Definition/Example
Noun Definition: Stating nouns without any elaboration. (Previously labelled as “factual” in [Yi et al., 2020].)

Example: “I see trees.”
Measure/
Descriptive

Definition: Related to measures of physical attributes that learners are encouraged to take in each of the
different planets and moons they visit, including colour, temperature, quantity, weight or size, radiation,
temperature, airflow, pressure, altitude, etc. Example: “The temp is -20.6 C, -5.1 F, 252,5 K.”

Comparison Definition: Observations that compare or contrast conditions either (a) among in-game worlds (e.g., two
different planets they’ve been asked to explore) or (b) their real-life experiences on Earth to the in-game
worlds. Also includes examples that suggest that their expectations were violated. Example: “The grass
is greener in the habitable strip.”

Hypothesis Definition: Making hypotheses or guesses, showing speculative thinking, forming conjectures, or
making predictions or explanations. Example: “This world is probably closer to the sun.”

Questioning Definition: Asking questions about game mechanics or world elements; Seeking to understand the game
better, showing curiosity. Example: “Why is there no grass?”

Exclamations Definition: Pure exclamations without any accompanying explanation of observations, including
exclamatory grammatical markers or words. Example: “Wow!”

Continuing
Discussion

Definition: The same user’s observations represent the continuation of discussion around a specific
topic. Example: “Can’t find [NAME].” “[NAME] where are you?”

Non-game:
True Nonsense

Definition: A sequence of characters, emojis, or symbols repeated excessively, including Random
numbers or letters without associated explanations or observations.
Example: “AAAAAAAAAAAAAAAAAAAAAAAA.”

Non-game:
Unrelated Phrases

Definition: Sentences or phrases unrelated to the purpose of making observations during Minecraft
gameplay. Example: “This will expire in a week.”

Non-game:
Out-of-Context Ref.

Definition: References to movies, books, celebrities, etc., without relevance to the game.
Example: “Subscribe to MrBeast Gaming.”

Source: The table includes four Constructs from Yi et al. (2020).

3.3. Automated Coding Process
Two researchers independently coded 200 observations to determine the presence or absence of each construct using
predefined definitions. After coding about 100 observations each, they checked inter-rater reliability (IRR). Constructs for
which human coders had low agreement were discussed before coding the remaining data. Upon completing the 200
observations, IRR was checked again. The two human coders resolved any discrepancies through social moderation
(Herrenkohl & Cornelius, 2013) before evaluating the performance of GPT for coding each construct, mirroring the approach
used in Study 1.

For coding this dataset, we used gpt-4-turbo-2024-04-09 (default hyperparameters and temperature=0). We coded the
entire dataset three times and calculated the average performance metrics. We used the same Zero-shot and Few-shot prompt
approaches as in Study 1. In this case, we generally did not leverage the Few-shot with context approach because consecutive
observations posted in WHIMC are not necessarily linked, and human coders noted that the construct can be coded
independently of the surrounding context.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 178

However, an exception was made for the construct Continuing Discussion, which identifies the occurrence of two
consecutive thematically related observations that occur near each other. For coding this construct, we adopted the coding
with context approach by 1) providing context (basic information about the game and the preceding observation made by the
same student) when coding the current observation, and 2) adding three paired (previous and current) examples along with the
context.

Given the potential of embeddings for calculating semantic similarities (Alvarez & Bast, 2017), we also explored the use
of OpenAI’s text embedding model (text-embedding-3-small) in coding instances for Continuing Discussion. Embedding is a
process that converts words, phrases, or larger texts into numerical vectors that can be compared. Each observation was first
converted into embeddings using OpenAI’s text embedding model. Then, we computed the cosine similarity in the spatial
domain between the current observation’s embedding and the embedding of the previous line, treating similarity scores greater
than 0.6 as positive examples. This cutoff was selected as it yielded the best performance based on initial experiments
conducted on a subset of the data (50%; 100 lines). The use of embeddings was limited to this construct because Continuing
Discussion specifically required identifying the relationship between two consecutive student posts. Embeddings are well
suited for capturing semantic relationships beyond surface-level matching of words. In other words, even if students use
slightly different phrasing across observations, embeddings can detect the underlying thematic connection based on meaning
rather than exact wording.

3.4. Results
Table 7 presents the Kappa scores between two human coders prior to resolving disagreements through social moderation, as
well as the performance metrics — Kappa, Precision, and Recall — for each coding category, comparing GPT’s coding to
human coding. Kappa scores between GPT and human coders ranged from 0.72 to 0.95 — consistently higher than in Study
1. The Zero-shot approach yielded high inter-rater reliability (IRR) for constructs where the human coders also had high initial
agreement before discrepancies were addressed, such as Questioning, Exclamation, and True Nonsense. Conversely, for
nuanced constructs that elicited more coder disagreements (e.g., Comparison, Measure/Descriptive, and Unrelated Phrases)
the Few-shot approach was more effective. For the construct Continuing Discussion, where it was necessary to assess multiple
lines at once, using a text embedding model led to better performance than the Context Only or Few-shot with context
approaches. These findings align with those in Study 1: examples were likely to improve coding outcomes for complex
constructs without a sufficiently clear definition, and additional context was required only for the construct that needed more
information beyond the target line to be accurately coded.

Table 7. Performance Metrics for Each Automated Model
Construct Freq. Hum–

Hum κ

Method Hum–
GPT κ

Hum–
GPT Prec.

Hum–GPT
Recall

Noun 17% 0.85 Zero-shot 0.84 0.88 0.83
Few-shot 0.77 0.71 0.92

Measure/
Descriptive

36% 0.80 Zero-shot 0.74 0.88 0.77
Few-shot 0.78 0.88 0.83

Comparison 14% 0.73 Zero-shot 0.69 0.84 0.64
Few-shot 0.74 0.74 0.79

Questioning 9% 0.96 Zero-shot 0.95 0.90 1.00
Few-shot 0.93 0.88 1.00

Hypotheses 6% 0.73 Zero-shot 0.77 0.81 0.76
Few-shot 0.69 0.69 0.77

Exclamation 6%

0.95 Zero-shot 0.86 0.81 0.96
Few-shot 0.76 0.70 0.88

Continuing
Discussion

13%

0.88 Context only 0.85 0.91 0.83
Few-shot with context 0.88 0.88 0.91
Embedding 0.93 0.97 0.95

Non-game:
True Nonsense

4%

0.97 Zero-shot 0.95 0.94 0.97
Few-shot 0.85 0.82 0.90

Non-game:
Unrelated Phrases

7%

0.75 Zero-shot 0.77 0.82 0.75
Few-shot 0.77 0.82 0.91

Non-game: Out-of-
Context Reference

3%

0.88 Zero-shot 0.82 0.88 0.78
Few-shot 0.86 0.93 0.81

Note: The best coding method (highlighted/in bold) for each construct is selected if
it has the highest Kappa among all coding methods and a minimum κ≥0.70.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 179

4. Study 3: Computer Science Students Programming Code
4.1. Dataset
The dataset for Study 3 consisted of practice assignments submitted through the automated assessment platform RunCode
(Pankiewicz & Furmańczyk, 2020). Students in this study were learning C# in an introductory computer science course in
Poland during the fall 2022 semester. Using RunCode was optional and did not affect the final course grade. In this semester,
169 students actively used this platform, submitting code 44,448 times. Each submission was immediately evaluated, and
students received feedback on compiler errors or failed unit tests, aiding them in refining their submissions until they achieved
completely correct answers. The submissions spanned across 146 tasks covering four fundamental programming topics: types
and variables (33 tasks), conditional statements (25 tasks), recursion (28 tasks), and arrays and loops (60 tasks).

4.2. Codebook Development
Previous research has developed qualitative codebooks to explore the debugging behaviours of programming learners,
comparing two consecutive submissions of code for the same task (Pinto et al., 2023; Zambrano et al., 2024). Inspired by this
prior research and the codebooks they proposed, we investigated GPT’s capabilities for qualitatively coding not only natural
language but also programming code. We specifically focused on submissions made on conditional statement tasks by students
who self-reported having little-to-no programming experience prior to joining the course. Conditional statements are the first
module in the semester that requires a basic understanding of both syntax and programming logic and has been previously
identified as one of the earliest topics where differences between high- and low-performing students become apparent
(Zambrano et al., 2024; Izu et al., 2022). Based on this specific subset of programming code submissions, we refined the
codebooks presented in Pinto et al. (2023) and Zambrano et al. (2024) to consider specific constructs associated with
conditional statement tasks. This inductively developed codebook, built based on earlier inductively developed codebooks, is
presented in Table 8.

Table 8. Codebook with Definitions
Construct Definitions & Examples

If Header Modifications to the if condition/header.
If Body Modifications to the lines enabled by the if condition/header.
Function Return Modifications inside the return statement.
Function Body Modifications inside the body of the function. These modifications include adding more

conditional statements, auxiliary variables, and others.
Comment A new commented line or a deletion or modification of an already existing comment.
Testing Modifications inside the Main function (section of the code used for testing), such as adding

a line to print results in the console and testing the correct functioning of their code.
Added Lines Contains at least one completely new code line.
Removed Lines Student removed code lines in the submission.
Variable Usage &
Assignment

Student submission adds a new variable or deletes or modifies the value assignment of an
already existing variable.

Variable-type
Change

A modification of the type of variable on its initial declaration.

Variable-type
Conversion Change

Modification in the conversion of the type of variable after its initial declaration or a
conversion in the type of variable obtained after using an already existing method.

Value Change Modification of any value. It can be in the if header/condition, in the coefficient in an
equation, or in the assignment of a variable.

Operator Modification of an operator, such as changing the “greater than” operator to “equal to” in a
conditional statement.

Syntax Change A modification in the syntax of a code line to correct a compiler error.
Source: Refined from work by Pinto et al. (2023) and Zambrano et al. (2024).

4.3. Automated Coding Process
For the automated coding of the submissions, we used GPT-4 (gpt-4-turbo-2024-04-09) to develop binary classifiers for each
construct, again using default hyperparameters and a temperature of 0. We used a Zero-shot prompt as in the previous two
studies. We also used a Few-shot prompt, but in this study our Few-shot prompt both included a positive example that aligns
with the target construct and a negative example that does not. This pair of examples were added because, in most cases,

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 180

providing only a single positive example caused GPT to overgeneralize the construct and confuse it with other constructs that
might seem similar (e.g., two “if” statements where one has a changed condition and the other has a changed return, both still
having a significant overlap in their code). We crafted the positive and negative examples to be similar to each other, to clarify
for GPT how to distinguish between these lines that, despite their similarity, correspond to different constructs. As with the
use of these two methods in Studies 1 and 2, we provided GPT-4 only with the lines showing differences between two
consecutive submissions rather than the full submissions, which often spanned more than 50 lines. The Few-shot with context
approach was not used, as key context could appear far from the line of interest, meaning that the entire submission would
include irrelevant context and could make it difficult for GPT to focus on the specific line where the change happened.

4.4. Results
Table 9 presents the level of agreement between human coders and GPT’s performance for each construct examined in this
study. Although experienced programmers should find most of these constructs straightforward to identify in programming
data, categorizing the intentions behind these changes can be challenging since novices are more likely to introduce syntax
errors or make changes in unexpected sections of the code. Our findings indicate that GPT’s performance was highly related
to human-to-human inter-rater reliability. When inter-rater reliability between the two human coders was low (κ<0.60; If Body,
Variable Usage & Assignment, Variable-type Change, Syntax Change), GPT also had difficulty. Although recall was around
0.8 for three of these four constructs, precision was low, suggesting that GPT may be overgeneralizing.

Table 9. Performance Metrics for Each Automated Model
Construct Freq. Hum–

Hum κ
Method Hum–

GPT κ
Hum–

GPT Prec.
Hum–GPT

Recall
If Header 36% 0.96 Zero-shot 0.78 0.93 0.78

Few-shot 0.80 0.90 0.85
If Body 6% 0.48 Zero-shot 0.12 0.14 0.39

Few-shot 0.12 0.14 0.33
Function
Return

22% 0.77 Zero-shot 0.76 0.73 0.95
Few-shot 0.66 0.81 0.67

Function
Body

20% 0.79 Zero-shot 0.10 0.25 0.66
Few-shot 0.08 0.24 0.64

Comment 2% 1.00 Zero-shot 0.80 0.67 1.00
Few-shot 0.66 0.50 1.00

Testing 28% 0.94 Zero-shot 0.54 0.90 0.48
Few-shot 0.31 0.88 0.25

Added Lines 11% 0.85 Zero-shot 0.93 0.88 1.00
Few-shot 0.93 0.88 1.00

Removed
Lines

9% 0.94 Zero-shot 0.71 0.67 0.84
Few-shot 0.76 0.72 0.84

Variable Usage
& Assignment

16% 0.49 Zero-shot 0.30 0.33 0.84
Few-shot 0.25 0.29 0.82

Variable-type
Change

3% 0.32 Zero-shot 0.45 0.40 0.80
Few-shot 0.29 0.22 0.80

Variable-type
Conversion

9% 0.64 Zero-shot 0.57 0.47 0.96
Few-shot 0.55 0.47 0.88

Value
Change

10% 0.63 Zero-shot 0.40 0.38 0.62
Few-shot 0.34 0.30 0.85

Operator 30% 0.86 Zero-shot 0.73 0.75 0.90
Few-shot 0.62 0.73 0.73

Syntax
Change

29% 0.55 Zero-shot 0.49 0.58 0.79
Few-shot 0.41 0.51 0.80

Note: The coding method (highlighted/in bold) with the highest Kappa
is selected if it meets a minimum threshold of κ≥0.70.

On the other hand, for constructs where both human coders achieved higher levels of agreement (κ≥0.70), GPT also

performed better (κ≥0.70). GPT was successful at identifying many constructs related to specific (less ambiguous) locations

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 181

within student code (i.e., If Header, Function Return, and Comment). GPT also accurately identified other constructs that
depend solely on the specific line being modified, such as Adding Lines, Removing Lines, and Operator. However, when
location-related constructs required additional context (i.e., the entire function or method where the change is embedded),
GPT performed more poorly (i.e., location-related constructs like Function Body, If Body, or Testing (Main body).

In most cases where GPT was able to successfully code the constructs (κ≥0.70), the Zero-shot approach outperformed the
Few-shot approach. The poorer performance for the Few-shot approach can possibly be attributed to the diverse range of
modifications possible in programming code, which cannot be fully captured by just a few examples. This limitation of the
Few-shot approach becomes even more pronounced with programming novices, who might introduce changes that are entirely
unexpected or that do not conform to the standard syntax or logic of the intended code or, indeed, the programming language
at all. However, for some constructs less subject to variability or interpretation, such as Added Lines and modifying the If
Header, adding examples appeared to slightly improve GPT’s performance.

5. Discussion and Conclusion
This article investigated the use of GPT-4 for automated qualitative coding across three educational datasets: Algebra I tutoring
session transcripts (from Study 1), scientific observations made by students in the WHIMC Minecraft environment (from Study
2), and debugging behaviours in introductory programming code submissions (from Study 3). In each of these approaches, we
took a codebook that was initially inductively developed and refined. Then we applied these codes deductively across the
entire dataset, using them to identify instances of each theme (binary presence/absence). This approach allowed us to apply
our inductively derived insights consistently to the rest of the data.

Across these datasets, we tested four prompt engineering approaches: 1) Zero-shot coding, which presents only the
construct definition to GPT and prompts it to code, 2) Few-shot coding (annotated examples along with the construct
definition) with only positive examples, 3) Few-shot coding with both positive and negative examples, 4) Few-shot with
context, which provides GPT with some context of the study and the preceding lines to aid in coding the current line, and —
for just one construct in one data set — 5) Embeddings, where we used OpenAI’s tool for converting text into numerical
vectors and then compared the current student observation to their previous observation.

Across all three studies, the GPT-4 API achieved good agreement with human coders (κ ≥0.70 for 25 out of the 34
constructs) for at least one of these prompt engineering approaches. This finding indicates GPT-4’s general capability to
accurately code a wide range of constructs. However, each method showed unique strengths and limitations, and not every
method was equally effective for all constructs. Specifically, across these different contexts and data sources, we observed
that Zero-shot prompting can achieve high performance for well-defined constructs — like Greetings in Study 1, Noun in
Study 2, and Comment in Study 3 — with straightforward and easily comprehensible definitions. However, Zero-shot coding
tends to miss many cases, achieving lower recall than other methods. Moreover, similar to findings in Amarasinghe et al.
(2023) and Theelen et al. (2024), the absence of contextual understanding and reliance on strict definitions limit the Zero-shot
approach’s effectiveness for nuanced or context-dependent constructs. For example, while constructs like Greetings were
coded reliably in Study 1, those requiring contextual understanding, such as Direct Instruction, were not. This finding
highlights the need for qualitative codebook development to prioritize clarity and concreteness, if Zero-shot coding will be
used.

Incorporating annotated examples (Few-shot prompting) improved performance for some of the more complex constructs,
such as Software in Study 1, Out-of-Context References in Study 2, and Removed Lines in Study 3. However, the use of
examples also led to overgeneralization in some cases. For instance, in Study 3, novice programmers made a range of choices,
many of them unexpected, leading to overgeneralization when using few-shot approaches. In these cases, more straightforward
Zero-shot prompting often performed better. Misclassification issues also arose when examples were not carefully selected,
which demonstrates the need for examples to be representative of the span of cases, and also the value of selecting examples
that precisely differentiate the category of interest from other categories. We also found that incorporating explicit non-
examples when coding with GPT improved coding precision in some cases, mitigating overgeneralization.

Perhaps not surprisingly, Few-shot with context is more accurate for constructs that require an understanding of the
surrounding context or when lines of data have temporal relationships. However, the approach also led to issues when the
context lines involved different constructs than the current line being coded (i.e., when lines of data have subject changes or
are not connected). Thus, while context can enhance understanding, it must be selected thoughtfully to avoid introducing noise.

Additionally, all methods struggled with constructs that have a lower level of concreteness, such as Clarification in Study
1 and Syntax Change in Study 3. These constructs were generally not the most difficult for humans to code (κ=0.72 and κ=0.55,
respectively), suggesting that human reasoning is able to identify fewer concrete constructs, which remains difficult for
GPT-4. This represents a deviation from the more general overall trend, where the hardest constructs for humans to code were
also the hardest for GPT-4.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 182

Our research provides evidence regarding the advantages and limitations of different approaches when using GPT-4 for
coding tasks. Each method offers distinct benefits that can be leveraged depending on the nature of the constructs being coded.
Researchers should therefore consider the nature of their constructs when choosing a prompting method for automated coding.
Careful selection of an approach could maximize the benefits of GPT in qualitative research by producing more accurate data
coding.

One limitation of using the GPT-4 model through the OpenAI API — as in our work — relative to using ChatGPT is that
the API is not as effective as ChatGPT at providing explanations for its decisions, identifying ambiguity in construct
definitions, or discussing inconsistencies in human coding as ChatGPT (e.g., Zambrano et al., 2023; Barany et al., 2024),
which is specifically designed for interaction, conversation, and iteration. However, using the API for qualitative coding has
significant advantages in terms of efficiency. It is highly automated; once the prompt is defined and the chat completion
endpoint is set up, it can automatically code all lines in the dataset. This eliminates the need to copy and paste or send prompts
repeatedly to the chat window, making it a much more efficient approach when dealing with large datasets. Additionally, it is
much easier to recode the data by API if the prompt needs to be updated and also allows researchers to modify the default
hyperparameter settings (such as temperature) to achieve more consistent results.

There is still much to do. Each method explored in this paper could be investigated in finer-grained detail. For example,
it may be relevant for some datasets to separate out task context from discourse context, and perhaps use one or the other but
not both. Another potential area for future work is the exploration of coding multiple constructs at once using a single prompt.
While this study focused on binary classification to reduce complexity, it is also possible to allow the model to select between
a range of mutually exclusive codes all at once, or to assign multiple labels where constructs intersect or overlap within the
same line. Approaches of this nature could streamline coding workflows and eliminate the need to code the same dataset
multiple times for different constructs, though it is unclear whether the greater complexity could confuse an LLM or lead to it
focus on the first or last code in the set. Future research should also investigate further strategies to improve performance for
complex, ambiguous, or subtle constructs while also refining the coding process to increase adaptability to different research
needs. More broadly, future work will need to investigate how different LLMs, such as Claude or LLaMA (as well as future
versions of OpenAI’s offerings) can be optimally used for different forms of qualitative coding. Finally, future research should
explore the applicability of these methods to more fully deductive coding processes, using LLMs to develop coding schemes
directly from theoretical models and frameworks.

By leveraging the strengths of GPT-4, and LLMs in general, educational researchers can streamline the coding process,
enabling more efficient and comprehensive analysis of qualitative data. Ultimately, informed selection and tailoring the
approach to the data context and code type has potential to improve the accuracy and reliability of LLMs, better positioning
tools such as GPT to serve as reliable “co-researchers” that can strengthen the trustworthiness of findings in qualitative data
analysis. As the capabilities of large language models continue to advance, so too will their applications in automated
qualitative coding, making it possible to conduct these methods faster and ultimately better.

Data Availability
To promote transparency, reproducibility, and further exploration, the raw, de-identified data from Study 3, along with their
corresponding coded versions, are available for sharing with the research community through this link.

Declaration of Conflicting Interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
We would like to acknowledge funding support for Study 1 (LEVI Institute), Study 2 (NSF # DRL2301173), and Study 3
(Penn Center for Learning Analytics).

References
Alvarez, J. E., & Bast, H. (2017). A review of word embedding and document similarity algorithms applied to academic text

[Unpublished bachelor’s thesis]. University of Freiburg.
Amarasinghe, I., Marques, F., Ortiz-Beltrán, A., & Hernández-Leo, D. (2023). Generative pre-trained transformers for

coding text data? An analysis with classroom orchestration data. In O. Viberg, I. Jivet, P. J, Munoz-Merino, M.
Perifanou, & T. Papathoma (Eds.), Responsive and sustainable educational futures: 18th European Conference on
Technology Enhanced Learning, EC-TEL 2023, Aveiro, Portugal, September 4–8, 2023, proceedings (pp. 32–43).
Springer Cham. http://dx.doi.org/10.1007/978-3-031-42682-7_3

https://osf.io/pjk5t/?view_only=17c6538775c94f1ba93596424af379e8
http://dx.doi.org/10.1007/978-3-031-42682-7_3

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 183

Asudani, D. S., Nagwani, N. K., & Singh, P. (2023). Impact of word embedding models on text analytics in deep learning
environment: A review. Artificial Intelligence Review, 56(9), 10345–10425. http://dx.doi.org/10.1007/s10462-023-
10419-1

Barany, A., Nasiar, N., Porter, C., Zambrano, A. F., Andres, A. L., Bright, D., Shah, M., Liu, X., Gao, S., Zhang, J., Mehta,
S., Choi, J., Giordano, C., & Baker, R. S. (2024). ChatGPT for education research: Exploring the potential of large
language models for qualitative codebook development. In A. M. Olney, I.-A. Chouta, Z. Liu, O. C. Santos, & I. I.
Bittencourt (Eds.), Artificial intelligence in education: 25th international conference, AIED 2024, Recife, Brazil, July
8–12, 2024, proceedings, part II (pp. 134–149). Springer Cham. http://dx.doi.org/10.1007/978-3-031-64299-9_10

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,
C., ... Amodei, D. (2020). Language models are few-shot learners. arXiv. https://doi.org/10.48550/arXiv.2005.14165

Cai, Z., Siebert-Evenstone, A., Eagan, B., Shaffer, D. W., Hu, X., & Graesser, A. C. (2019). nCoder+: A semantic tool for
improving recall of nCoder coding. In B. Eagan, M. Misfeldt, & A. Siebert-Evenstone (Eds.), Advances in quantitative
ethnography: First international conference, ICQE 2019, Madison, WI, USA, October 20–22, 2019, proceedings
(pp. 41–54). Springer. http://dx.doi.org/10.1007/978-3-030-33232-7_4

Chew, R., Bollenbacher, J., Wenger, M., Speer, J., & Kim, A. (2023). LLM-assisted content analysis: Using large language
models to support deductive coding. arXiv. https://doi.org/10.48550/arXiv.2306.14924

Crowston, K., Liu, X., & Allen, E. E. (2010). Machine learning and rule‐based automated coding of qualitative data. In
Proceedings of the American Society for Information Science and Technology, 47(1), 1–2.
http://dx.doi.org/10.1002/meet.14504701328

Ekin, S. (2023). Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices. TechRxiv.
https://doi.org/10.36227/techrxiv.22683919.v2

Femepid, S., Hatherleigh, L., & Kensington, W. (2024). Gradual improvement of contextual understanding in large
language models via reverse prompt engineering. Authorea. https://doi.org/10.22541/au.172376001.14254079/v1

Gao, J., Choo, K. T. W., Cao, J., Lee, R. K.-W., & Perrault, S. (2023). CoAIcoder: Examining the effectiveness of AI-
assisted human-to-human collaboration in qualitative analysis. ACM Transactions on Computer–Human Interaction,
31(1), Article 6. http://dx.doi.org/10.1145/3617362

Giray, L. (2023). Prompt engineering with ChatGPT: A guide for academic writers. Annals of Biomedical Engineering,
51(12), 2629–2633. http://dx.doi.org/10.1007/s10439-023-03272-4

Herrenkohl, L. R., & Cornelius, L. (2013). Investigating elementary students’ scientific and historical argumentation.
Journal of the Learning Sciences, 22(3), 413–461. http://dx.doi.org/10.1080/10508406.2013.799475

Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American
Journal of Political Science, 54(1), 229–247. http://dx.doi.org/10.1111/j.1540-5907.2009.00428.x

Hou, C., Zhu, G., Zheng, J., Zhang, L., Huang, X., Zhong, T., Li, S., Du, H., & Ker, C. L. (2024). Prompt-based and fine-
tuned GPT models for context-dependent and -independent deductive coding in social annotation. In B. Flanagan,
B. Wasson, & D. Gašević (Eds.), LAK ’24: Proceedings of the 14th Learning Analytics & Knowledge Conference
(pp. 518–528). ACM Press. http://dx.doi.org/10.1145/3636555.3636910

Hutt, S., DePiro, A., Wang, J., Rhodes, S., Baker, R. S., Hieb, G., Sethuraman, S., Ocumpaugh, J., & Mills, C. (2024).
Feedback on feedback: Comparing classic natural language processing and generative AI to evaluate peer feedback. In
B. Flanagan, B. Wasson, & D. Gašević (Eds.), LAK ’24: Proceedings of the 14th Learning Analytics & Knowledge
Conference (pp. 55–65). ACM Press. http://dx.doi.org/10.1145/3636555.3636850

Izu, C., Denny, P., & Roy, S. (2022). A resource to support novices refactoring conditional statements. In B. A. Becker,
K. Quille, M.-J. Laakso, E. Barendsen, & Simon (Eds.), ITiCSE ’22: Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education (Vol. 1, pp. 344–350). ACM Press.
http://dx.doi.org/10.1145/3502718.3524810

Katz, A., Fleming, G. C., & Main, J. (2024). Thematic analysis with open-source generative AI and machine learning: A
new method for inductive qualitative codebook development. arXiv. https://doi.org/10.48550/arXiv.2410.03721

Kirsten, E., Buckmann, A., Mhaidli, A., & Becker, S. (2024). Decoding complexity: Exploring human–AI concordance in
qualitative coding. arXiv. https://doi.org/10.48550/arXiv.2403.06607

Kovanović, V., Joksimović, S., Waters, Z., Gašević, D., Kitto, K., Hatala, M., & Siemens, G. (2016). Towards automated
content analysis of discussion transcripts: A cognitive presence case. In D. Gašević, G. Lynch, S. Dawson, H.
Drachsler, & C. Penstein Rosé (Eds.), LAK ’16: Proceedings of the 6th International Conference on Learning
Analytics & Knowledge (pp. 15–24). ACM Press. http://dx.doi.org/10.1145/2883851.2883950

http://dx.doi.org/10.1007/s10462-023-10419-1
http://dx.doi.org/10.1007/s10462-023-10419-1
http://dx.doi.org/10.1007/978-3-031-64299-9_10
https://doi.org/10.48550/arXiv.2005.14165
http://dx.doi.org/10.1007/978-3-030-33232-7_4
https://doi.org/10.48550/arXiv.2306.14924
http://dx.doi.org/10.1002/meet.14504701328
https://doi.org/10.36227/techrxiv.22683919.v2
https://doi.org/10.22541/au.172376001.14254079/v1
http://dx.doi.org/10.1145/3617362
http://dx.doi.org/10.1007/s10439-023-03272-4
http://dx.doi.org/10.1080/10508406.2013.799475
http://dx.doi.org/10.1111/j.1540-5907.2009.00428.x
http://dx.doi.org/10.1145/3636555.3636910
http://dx.doi.org/10.1145/3636555.3636850
http://dx.doi.org/10.1145/3502718.3524810
https://doi.org/10.48550/arXiv.2410.03721
https://doi.org/10.48550/arXiv.2403.06607
http://dx.doi.org/10.1145/2883851.2883950

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 184

Lane, H. C., Gadbury, M., Ginger, J., Yi, S., Comins, N., Henhapl, J., & Rivera-Rogers, A. (2022). Triggering STEM
interest with Minecraft in a hybrid summer camp. Technology, Mind, and Behavior, 3(4).
http://dx.doi.org/10.1037/tmb0000077

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM Computing Surveys, 55(9), Article 195.
http://dx.doi.org/10.1145/3560815

Lo, L. S. (2023a). The art and science of prompt engineering: A new literacy in the information age. Internet Reference
Services Quarterly, 27(4), 203–210. http://dx.doi.org/10.1080/10875301.2023.2227621

Lo, L. S. (2023b). The CLEAR path: A framework for enhancing information literacy through prompt engineering. The
Journal of Academic Librarianship, 49(4), Article 102720. http://dx.doi.org/10.1016/j.acalib.2023.102720

Morgan, D. L. (2023). Exploring the use of artificial intelligence for qualitative data analysis: The case of ChatGPT.
International Journal of Qualitative Methods, 22. http://dx.doi.org/10.1177/16094069231211248

Nunez‐Mir, G. C., Iannone, B. V., III., Pijanowski, B. C., Kong, N., & Fei, S. (2016). Automated content analysis:
Addressing the big literature challenge in ecology and evolution. Methods in Ecology and Evolution, 7(11), 1262–
1272. http://dx.doi.org/10.1111/2041-210X.12602

OpenAI. (2022). ChatGPT [Large language model]. https://openai.com/chatgpt
Pankiewicz, M., & Furmańczyk, K. (2020). From zero to hero: Automated formative assessment for supporting student

engagement and performance in a gamified online programming course. EdMedia + Innovate Learning, 2020(1),
1252–1261.

Pinto, J. D., Liu, Q., Paquette, L., Zhang, Y., & Fan, A. X. (2023). Investigating the relationship between programming
experience and debugging behaviors in an introductory computer science course. In G. A. Irgens & S. Knight (Eds.),
Advances in quantitative ethnography: 5th international conference, ICQE 2023, Melbourne, VIC, Australia, October
8–12, 2023, proceedings (pp. 125–139). Springer Cham. http://dx.doi.org/10.1007/978-3-031-47014-1_9

Prabhumoye, S., Kocielnik, R., Shoeybi, M., Anandkumar, A., & Catanzaro, B. (2021). Few-shot instruction prompts for
pretrained language models to detect social biases. arXiv. https://doi.org/10.48550/arXiv.2112.07868

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). SAGE Publications.
Shaffer, D. W., & Ruis, A. R. (2021). How we code. In A. R. Ruis & S. B. Lee (Eds.), Advances in quantitative

ethnography: Second international conference, ICQE 2020, Malibu, CA, USA, February 1–3, 2021, proceedings (pp.
62–77). Springer Cham. http://dx.doi.org/10.1007/978-3-030-67788-6_5

Shapiro, G. (1997). The future of coders: Human judgments in a world of sophisticated software. In C. W. Roberts (Ed.),
Text analysis for the social sciences: Methods for drawing statistical inferences from texts and transcripts (pp. 225–
238). Routledge. http://dx.doi.org/10.4324/9781003064060-16

Sherin, B. (2012). Using computational methods to discover student science conceptions in interview data. In S. Dawson,
C. Haythornthwaite, S. Buckingham Shum, D. Gašević, & R. Ferguson (Eds.), LAK ’12: Proceedings of the 2nd
International Conference on Learning Analytics & Knowledge (pp. 188–197). ACM Press.
http://dx.doi.org/10.1145/2330601.2330649

Spasić, A. J., & Janković, D. S. (2023). Using ChatGPT standard prompt engineering techniques in lesson preparation: Role,
instructions and seed-word prompts. In N. Dončov, Z. Ž. Stanković, & B. P. Stošić (Eds.), 2023 58th International
Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST): Proceedings of
Papers (pp. 47–50). IEEE. http://dx.doi.org/10.1109/ICEST58410.2023.10187269

Tai, R. H., Bentley, L. R., Xia, X., Sitt, J. M., Fankhauser, S. C., Chicas-Mosier, A. M., & Monteith, B. G. (2024). An
examination of the use of large language models to aid analysis of textual data. International Journal of Qualitative
Methods, 23. http://dx.doi.org/10.1177/16094069241231168

Theelen, H., Vreuls, J., & Rutten, J. (2024). Doing research with help from ChatGPT: Promising examples for coding and
inter-rater reliability. International Journal of Technology in Education, 7(1), 1–18. http://dx.doi.org/10.46328/ijte.537

Thornberg, R., & Charmaz, K. (2014). Grounded theory and theoretical coding. In U. Flick (Ed.), The SAGE handbook of
qualitative data analysis, 153–169. http://dx.doi.org/10.4135/9781446282243.n11

Weber, R. P. (1984). Computer-aided content analysis: A short primer. Qualitative Sociology, 7(1), 126–147.
https://doi.org/10.1007/BF00987112

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A
prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv.
https://doi.org/10.48550/arXiv.2302.11382

http://dx.doi.org/10.1037/tmb0000077
http://dx.doi.org/10.1145/3560815
http://dx.doi.org/10.1080/10875301.2023.2227621
http://dx.doi.org/10.1016/j.acalib.2023.102720
http://dx.doi.org/10.1177/16094069231211248
http://dx.doi.org/10.1111/2041-210X.12602
https://openai.com/chatgpt
http://dx.doi.org/10.1007/978-3-031-47014-1_9
https://doi.org/10.48550/arXiv.2112.07868
http://dx.doi.org/10.1007/978-3-030-67788-6_5
http://dx.doi.org/10.4324/9781003064060-16
http://dx.doi.org/10.1145/2330601.2330649
http://dx.doi.org/10.1109/ICEST58410.2023.10187269
http://dx.doi.org/10.1177/16094069241231168
http://dx.doi.org/10.46328/ijte.537
http://dx.doi.org/10.4135/9781446282243.n11
https://doi.org/10.1007/BF00987112
https://doi.org/10.48550/arXiv.2302.11382

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 185

Xiao, Z., Yuan, X., Liao, Q. V., Abdelghani, R., & Oudeyer, P.-Y. (2023). Supporting qualitative analysis with large
language models: Combining codebook with GPT-3 for deductive coding. In F. Chen, M. Billinghurst, M. Zhou, & S.
Berkovsky (Eds.), IUI ’23 companion: Companion proceedings of the 28th International Conference on Intelligent
User Interfaces (pp. 75–78). ACM Press. https://doi.org/10.1145/3581754.3584136

Yi, S., Gadbury, M., & Lane, H. C. (2020). Coding and analyzing scientific observations from middle school students in
Minecraft. In M. Gresalfi & I. S. Horn (Eds.), The interdisciplinarity of the learning sciences: 14th International
Conference of the Learning Sciences (ICLS) 2020 (Vol. 3, pp. 1787–1788). International Society of the Learning
Sciences. https://repository.isls.org//handle/1/6443

Zambrano, A. F., Liu, X., Barany, A., Baker, R. S., Kim, J., & Nasiar, N. (2023). From nCoder to ChatGPT: From
automated coding to refining human coding. In G. A. Irgens & S. Knight (Eds.), Advances in quantitative
ethnography: 5th international conference, ICQE 2023, Melbourne, VIC, Australia, October 8–12, 2023, proceedings
(pp. 470–485). Springer Cham. https://doi.org/10.1007/978-3-031-47014-1_32

Zambrano, A. F., Pankiewicz, M., Barany, A., & Baker, R. S. (2024). Ordered network analysis in CS education: Unveiling
patterns of success and struggle in automated programming assessment. In M. Monga, V. Lonati, E. Barendsen, J.
Sheard, J. Patterson, & L. Barker (Eds.), ITiCSE 2024: Proceedings of the 2024 Conference on Innovation and
Technology in Computer Science Education (Vol. 1, pp. 443–449). ACM Press.
http://dx.doi.org/10.1145/3649217.3653613

Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., Yang, L., Zhang, W., Jiang, J., & Cui, B. (2024). Retrieval-
augmented generation for AI-generated content: A survey. arXiv. https://doi.org/10.48550/arXiv.2402.19473

https://doi.org/10.1145/3581754.3584136
https://repository.isls.org/handle/1/6443
https://doi.org/10.1007/978-3-031-47014-1_32
http://dx.doi.org/10.1145/3649217.3653613
https://doi.org/10.48550/arXiv.2402.19473

