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Abstract 
This study explores the potential of the large language model GPT-4 as an automated tool for qualitative data 
analysis by educational researchers, exploring which techniques are most successful for different types of 
constructs. Specifically, we assess three different prompt engineering strategies — Zero-shot, Few-shot, and Few-
shot with contextual information — as well as the use of embeddings. We do so in the context of qualitatively coding 
three distinct educational datasets: Algebra I semi-personalized tutoring session transcripts, student observations 
in a game-based learning environment, and debugging behaviours in an introductory programming course. We 
evaluated the performance of each approach based on its inter-rater agreement with human coders and explored 
how different methods vary in effectiveness depending on a construct’s degree of clarity, concreteness, objectivity, 
granularity, and specificity. Our findings suggest that while GPT-4 can code a broad range of constructs, no single 
method consistently outperforms the others, and the selection of a particular method should be tailored to the specific 
properties of the construct and context being analyzed. We also found that GPT-4 has the most difficulty with the 
same constructs than human coders find more difficult to reach inter-rater reliability on. 
 

Notes for Practice 

• GPT-4 can be used to code qualitative data for educationally relevant constructs. 

• Using embeddings and examples can improve agreement with humans. Examples are more useful for 
constructs that are more difficult to define. 

• Constructs that human beings find difficult to agree on are also difficult for GPT-4. 
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1. Introduction and Literature Review 
Qualitative coding is a vital component of educational research. This process involves systematically labelling, categorizing, 
and organizing data into themes, constructs, concepts, or patterns to identify recurring ideas or concepts within the data 
(Saldaña, 2016). The qualitative coding pipeline (e.g., developing coding categories, coding data according to them, and 
validating codes) is often time-consuming and labour-intensive (Shaffer & Ruis, 2021), especially in research involving large 
datasets and complex or numerous constructs. This issue is exacerbated when understanding the patterns in a dataset requires 
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contextual knowledge of a culture or domain, or when specific types of semiotic and semantic literacy are needed for reliable 
interpretation (e.g., programming data, interaction log data). 

Automated coding has been proposed for decades as a response to this issue (Weber, 1984; Shapiro, 1997), within a 
variety of data contexts and approaches, including content analysis for literature review in ecology research (Nunez-Mir et al., 
2016), classification of opinions in government transcripts (Hopkins & King, 2010), latent semantic analyses of student 
interviews around science concept developments (Sherin, 2012), and student cognition (Kovanović et al., 2016). Approaches 
for doing so have ranged from the use of count data (Kovanović et al., 2016) to regular expression authoring (Cai et al., 2019; 
Crowston et al., 2010). 

With the advent of large language models (LLM), a rapidly increasing number of studies both within and outside of the 
learning analytics community are exploring the use of these models for qualitative coding (e.g., Tai et al., 2024; Zambrano et 
al., 2023; Kirsten et al., 2024; Chew et al., 2023; Xiao et al., 2023; Hutt et al., 2024). Qualitative data coding using LLMs 
potentially offers a more cost-effective and time-efficient way of analyzing text than fully human coding, particularly for large 
datasets. There is also demonstrated potential for LLMs to serve as “co-researchers” that can support human refinement of 
qualitative codebooks or improve coding accuracy (Chew et al., 2023; Zambrano et al., 2023). OpenAI’s Generative Pre-
trained Transformers (GPT) LLM has been increasingly used for this purpose and has obtained promising results for coding a 
range of constructs (e.g., Morgan, 2023; Zambrano et al., 2023; Kirsten et al., 2024; Chew et al., 2023). 

In these studies, prompts are given to ChatGPT (OpenAI, 2022) to tell it how to code, along with definitions and, in some 
cases examples. For instance, in Zambrano et al. (2023), ChatGPT (GPT-4) was instructed to code the topic and valence of 
press releases. Similarly, Chew et al. (2023) used GPT-3.5 to qualitatively code a range of categories in reports, news articles, 
blog posts, and social media. In educational domains, Xiao et al. (2023) used ChatGPT (GPT-3) to code different types of 
student help-seeking behaviours, and Hutt et al. (2024) used ChatGPT (GPT-4) to rate the quality of peer feedback. Results 
were promising, with GPT generally achieving good agreement with human-coded labels, but coding performance varied 
across constructs/coding categories and GPT in some cases performed worse than more traditional NLP approaches such as 
regular expression authoring (Zambrano et al., 2023). 

Although GPT can accurately code some types of qualitative data (Chew et al., 2023), it is unclear which constructs GPT 
handles best. Many constructs are hard for humans to code (Gao et al., 2023; Kirsten et al., 2024) — will the same constructs 
be hard to code for GPT, or different ones? Furthermore, although there are now many examples of qualitative coding with 
GPT, it is unclear which approach is best, and whether the answer may differ across constructs and datasets. 

Several methods for using GPT for qualitative coding have been investigated. For example, Zero-shot prompting involves 
giving instructions for a task without any labelled examples, whereas one-shot or Few-shot prompting involves using labelled 
data that provide examples for the model to learn from in addition to the instructions. When studying student help-seeking 
behaviours, Xiao et al. (2023) found that GPT achieved higher rates of inter-rater reliability with human experts when given 
prompts that included examples (One-shot and Few-shot) than when given Zero-shot prompts. Comparable results have been 
found in other domains (Brown et al., 2020; Prabhumoye et al., 2021). Liu et al. (2023) found that choices in example selection 
and ordering can also impact model performance. Within this paper, we will more systematically investigate the trade-offs 
associated with these choices of how to use an LLM for qualitative coding. 

In addition to the use of examples, this study also investigates the details of prompt engineering, the process of designing 
inputs to guide a language model’s behaviour and responses (Giray, 2023) in qualitative coding. Previous research (in domains 
other than qualitative coding) has shown how the structure of prompts (White et al., 2023), the phrasing and specificity of 
instruction (Ekin, 2023), the inclusion of guiding keywords or phrases (Spasić & Janković, 2023), and the formulation of tasks 
(e.g., requiring direct results or applying chain-of-thought reasoning for step-by-step problem-solving; Lo, 2023b) may all 
influence the results of prompting. A growing body of literature has also highlighted the role of contextual information in 
determining what output an LLM produces in response to differences in prompts. For instance, Hou et al. (2024) demonstrate 
that explicitly defining the model’s role or persona within a task helps align its responses with role-specific expectations and 
requirements. Lo (2023a) highlights that including contextual elements, such as the objectives of the tasks, increases precision 
and reduces ambiguity in the output. Femepid et al. (2024) show that adding domain-specific information improves both the 
relevance and accuracy of the model’s responses by grounding them in established norms and knowledge within the field. 
Building on these insights, we also integrated contextual elements related to the research purpose and data into the prompts 
used in this study to assess their impact on qualitative coding. 

We also investigate the potential use of embeddings in qualitative coding. Embeddings are numerical representations of 
data points in a multi-dimensional space that transform qualitative data into a format suitable for computational analysis 
(Alvarez & Bast, 2017). While they have been extensively used in areas such as clustering, classification, and information 
retrieval (see review by Asudani et al., 2023) and play an essential role in retrieval-augmented generation within various 
applications of large language models (Zhao et al., 2024), their application in qualitative coding remains largely unexplored. 
Their primary use thus far has been to support clustering of text for the discovery of qualitative categories (Katz et al., 2024), 
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but they also have the potential to support the coding process by providing a way to quantify semantic similarities (Alvarez & 
Bast, 2017) between different pieces of text. 

With these areas of potential enhancement in mind (e.g., prompt types, the use of examples, embeddings), this paper 
investigates five approaches for automated coding with GPT-4: 1) Zero-shot prompts, 2) Few-shot prompts with only positive 
examples, 3) Few-shot prompts with positive and negative examples, 4) Few-shot prompts with contextual information (e.g., 
related background information, the purpose of the conversation, or the surrounding text), and 5) the use of Embeddings. We 
test subsets of these variations on three different studies/datasets drawn from different educational tasks and domains. In Study 
1, we examine transcripts from semi-personalized virtual tutoring sessions, specifically assessing how different prompt 
engineering strategies affect coding accuracy for constructs varying in clarity, concreteness, objectivity, granularity, and 
specificity. In Study 2, we evaluate the same approaches, plus embeddings, in learners studying astronomy within Minecraft. 
Finally, Study 3 extends this analysis to programming code from novice computer science students, testing GPT’s ability for 
qualitative coding outside the context of natural language. For each study, we use slightly different methodologies (see 
discussion below) to account for the unique characteristics of each dataset. By combining insights from the three 
complementary studies, we aim to advance the field’s understanding of how to utilize GPT-4 and similar LLMs most 
effectively for qualitative coding, identifying which coding methods work best for which types of constructs. 

2. Study 1: Virtual Tutoring Session Transcripts 
2.1. Dataset 
The Study 1 dataset was obtained from the Saga Education platform, where trained tutors provided personalized mathematics 
support to students attending high-poverty schools in the United States. The dataset consists of de-identified transcripts, 
including timestamps of lines spoken and speaker type (instructor and student), from four 60-minute virtual tutoring Algebra 
I sessions with six 9th-grade students (two sessions involving two students, two sessions involving one student). 

2.2. Codebook Development 
This dataset has previously been used to explore the potential of LLMs (specifically GPT-4) to support codebook development 
for investigating teaching methodologies from transcripts (Barany et al., 2024). The prior study compared four codebooks 
inductively developed with different approaches: 1) a fully manual method using only human analysis, 2) a fully automated 
method using only ChatGPT, 3) a hybrid approach where GPT refined a codebook initially proposed by a human, and 4) 
another hybrid method where GPT proposed an initial codebook that was subsequently refined by a human. For our analysis, 
we selected the third codebook (initially crafted by humans and then refined by GPT) because its constructs encompass the 
broadest range of thematic meanings among the developed approaches, enabling a more comprehensive evaluation of GPT’s 
effectiveness in coding constructs with various levels of complexity. This codebook, originally proposed in Barany et al. 
(2024), is presented in Table 1. 

Table 1. Codebook for Study 1 
Construct Definitions & Examples 

Greetings Lines unrelated to learning, useful for rapport. Lines during the start or mid-session as an 
engagement check. Example: “What’s good, [Redacted]?” 

Direct 
Instruction 

Providing information or demonstrating methods without immediate student participation. 
• Definitions/Explanations: Stating mathematical rules or properties. 
• Demonstrating Steps: Giving instructions of how to solve a problem. 
Example: “We got twelve equals one over x minus five.” 

Guided 
Practice 

Engaging students in problem-solving with support. Instructions include explanations, illustrations, 
reminders, and invites understanding.  
Example: “Do that and then I want to see if you can solve from there.” 

Questioning Prompting students to think, respond, or elaborate. 
• Recall & Comprehension: Asking students to remember or use something previously learned. 
• Higher Order Thinking: Questions that push students to analyze, evaluate, or plan next steps. 
Example: “Twelve times x gives you what?” 

Connecting  
to Prior 
Knowledge 

Linking current topics to previously learned concepts for cohesive understanding.  
Example: “What kind of math is a fraction?” 

Clarification Reiterating or paraphrasing for clearer understanding, helping move from abstract to concrete 
thinking. Example: “Anytime we multiply, we always multiply what’s in the denominator.” 
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Feedback Offering constructive comments on student performance or understanding. 
• Positive Reinforcement: Confirming correct understanding or steps, or offering words of 

encouragement or praise to motivate or acknowledge effort. 
• Corrective: Pointing out an error, with or without explicitly giving the correction. 
• Yes, and: Acknowledging student understanding and extending it. 
Example: “The first one is right.” 

Engagement 
Checks 

Actively seeking signs of student attention and participation. 
• Direct Check: Directly asking or observing student involvement. 
• Engagement Probes: Using strategies to pull students back into the lesson. 
Example: “You working or you phased out?” 

Software/ 
Tool Use 

Reference to or assistance with using the tutoring software itself.  
Example: “Touch the screen; you can pinch and move it around.” 

Session 
Logistics 

Addressing or organizing the structural aspects of the session. Indicating goals and tasks. Could be 
instances at the start, during, and end of the session. Example: “Try out number nine.” 

Source: Barany et al. (2024). 

2.3. Automated Coding Process 
In our study, two new researchers independently coded the transcript using the codebook’s construct definitions (see Table 1). 
Their initial Cohen’s Kappa (κ) values varied significantly, ranging from 0.24 to 0.87 (see Table 2), in line with the kappa 
values reported in Barany et al.’s (2024) study using the same codebook. Given the insufficient agreement obtained, researchers 
in our study resolved discrepancies through social moderation (Herrenkohl & Cornelius, 2013), aiming to achieve consensus 
and establish a single, accurate categorization for each transcript line. This coded data serves as the ground truth for training 
and evaluating the coding performance of GPT. 

We then utilized GPT-4 (gpt-4-turbo-2024-04-09, the most recent version at the time of the research) for coding the data, 
accessed via Open AI’s application programming interface (API). We employed the default hyperparameter settings, except 
for setting the temperature to 0 to ensure consistent output. 

We used a binary (prompt-engineered) classifier for coding each construct to reduce the complexity of the coding task, as 
proposed by Zambrano et al. (2023), an approach that aligns with common practice in qualitative coding, particularly within 
the learning analytics community. When coding the data, GPT was specifically asked to assign binary labels, either 0 or 1. 
However, in rare instances where transcriptions were poor (e.g., lines that were transcribed as “Huh?” or [?: equals.]”, which 
indicate that audio quality was so low that transcription was impossible,) GPT produced non-binary responses (e.g., “Sure, 
please provide the line you’d like to code”). We treated any response from GPT that did not provide binary labels as being 
incorrect, regardless of the ground truth value, since these responses would not be usable by a coder going forward. This was 
the only study where we observed such a case; this issue did not occur in the other two studies below. 

Across all three studies, the strategy for developing effective prompts involved an iterative process of refinement to align 
GPT’s responses with the coding task requirements. The goal was to craft clear, precise, structured prompts that reduced 
ambiguity, minimized variability, and maximized reliability across repeated outputs. Each prompt was evaluated using 
validation data (randomly drawn from the dataset but separate from the testing data) across multiple sessions, accounts, and 
computers. Insights from these iterations guided adjustments to improve prompt clarity and accuracy in representing the 
constructs being coded. Key adjustments included rephrasing instructions and specifying the expected format of responses. A 
prompt was finalized only when it consistently produced reliable binary outputs with minimal inconsistency across different 
attempts. 

In this particular study, we compared three different prompt engineering approaches for coding the data: Zero-shot, Few-
shot, and Few-shot with context (defined below). Due to the stochastic nature of GPT models, which can result in variable 
outputs, we ran the coding process three times to enhance the accuracy and thoroughness of our evaluation for each coding 
approach. We then computed the average values for Kappa (κ), precision, and recall, across all three iterations to assess GPT’s 
performance. Given the emphasis on analyzing tutors’ teaching methodologies, we excluded student-spoken lines from the 
model evaluation process. This approach yielded a dataset of 990 lines. However, for the third method, where context is crucial 
for coding, we included student lines as reference material. Although presented, these lines were not coded by GPT; instead, 
they were used solely for reference to enhance the contextual understanding of the instructor’s lines. 

2.3.1. Method 1: Coding with Zero-Shot Prompting 
For Zero-shot prompting, we first provided the GPT-4 model with the definition of each construct. Then, we prompted the 
model to code each line in the entire dataset using the following specific prompt: 
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Please review the provided text and code it based on the construct: {construct}. The definition of this construct is 
{definition}. After reviewing the text, assign a code of ʻ1’ if you believe the text exemplifies {construct}, or a ʻ0’ if it does 
not. Your response should only be ʻ1’ or ʻ0’. 

 
This prompt was sent as a system message to the Chat Completions endpoint, followed by the specific line of data that GPT 
should code, sent as a user message. 

2.3.2. Method 2: Coding with Few-shot Prompting 
This method extends the Zero-shot technique by including annotated examples as well as the line to be coded, including 
explanations of how the constructs should be interpreted and applied. Providing annotated examples — rather than only 
example texts without explanations — aims to enhance accuracy in identifying and classifying relevant content and addressing 
edge cases. Below are the annotated examples for the construct Direct Instruction: 
 

1) “Yeah, so track five on both sides first” because it specifies an action to be taken to solve a problem. 
2) “We got twelve equals one over x minus five” because it guides the student through a step in the process of solving an 

equation. 
3) “Remember, remember we’re trying to get x by itself.” because it provides guidance on what the focus should be during 

the task. 

2.3.3. Method 3: Few-Shot with Context 
In this dataset, some utterances might span multiple lines due to the transcription process, and some constructs in the codebook 
specify when they are likely to occur during the 60-minute tutoring session (e.g., Greetings typically occur at the start, whereas 
Engagement Checks occur later). Given this structure, we incorporated context into the coding prompt in addition to the 
construct definition and annotated examples used in the second method. Contextual information consisted of three parts: 1) a 
summary background of the study covering how the data was collected, the subjects taught, and the recording of transcripts; 
2) the three lines preceding the current line (if not coding the first three lines), and 3) each line’s timestamp and speaker 
(instructor or student). The decision to include three lines was based on a preliminary analysis of 20 randomly selected lines. 
For example, when coding the fourth line in the second tutoring session, the model will receive the following contextual 
information along with the study background: 
 

CONTEXT (3 lines before the text you should code. Use this for context understanding, but do not code this part): 
00:07 - [Instructor]: “Okay, so you should remember this from last time.” 
00:12 - [Instructor]: “We’re gonna go ahead and use our grouping method.” 
00:17 - [Instructor]: “So factor these equations using our grouping method.” 

2.4. Results  
2.4.1. Coding with Zero-Shot Prompting 
The performance of Zero-shot prompting varied considerably (Table 2) from excellent (Questioning κ=-0.91, Greetings 
κ=0.79) to poor (κ<0.2 for Direct Instruction, Session Logistics, Guided Practice, Connect Prior Knowledge). GPT often 
struggled in cases where contextual understanding is required. For example, GPT (Zero-shot) coded the line “How you doing 
over there, [Redacted]?” as 1 for Greetings, but this line occurred in the middle of a class session, where it represents an 
Engagement Check. Similarly, GPT coded every instance of the word “Perfect” as Feedback, even in cases where the instructor 
appeared to be using “Perfect” as a filler word without offering actual feedback or encouragement. GPT also did not perform 
as well for constructs that span multiple related lines of the same dialogue. For example, for the construct Feedback, human 
coders identified the consecutive lines “No.” and “We’re not going to multiply here.” as Feedback (1). However, GPT only 
coded the second line as 1. This indicates that for coding highly conversational data or constructs that require understanding 
context across multiple lines, the context-free Zero-shot approach may not be ideal. 

We also observed that this approach tends to expect direct matches to the definitions in the codebook. For example, for 
the construct Direct Instruction, GPT correctly identified “So we got X minus three equals six,” but did not identify “You want 
to get another six.” The latter case may have been harder for GPT to correctly identify because the instruction is implied and 
conversational. Inter-rater agreement metrics for each approach (in Table 2) suggest that the Zero-shot approach was most 
successful in only two cases, but that Zero-shot often overlooks relevant instances that are less explicitly stated. This tendency 
is reflected in the higher precision than recall for 8 out of the 10 constructs, suggesting that clear and comprehensive definitions 
in a qualitative codebook were essential for the Zero-shot approach. 
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Table 2. Performance Metrics for Automated Coding 
Construct Freq. in 

Data 
Hum–
Hum κ 

Method Hum–
GPT κ 

Hum–GPT 
Prec. 

Hum–GPT 
Recall 

Greetings 2% 0.70 Zero-shot 0.79 0.69 0.96 
Few-shot 0.50 0.37 0.85 
Few-shot with context 0.74 0.82 0.69 

Direct 
Instruction 

14% 0.24 Zero-shot 0.11 1.00 0.06 
Few-shot 0.79 0.75 0.71 
Few-shot with context 0.62 0.56 0.89 

Guided  
Practice 

26% 0.35 Zero-shot 0.16 1.00 0.11 
Few-shot 0.55 0.56 0.83 
Few-shot with context 0.86 0.91 0.87 

Questioning 18% 0.87 Zero-shot 0.91 0.91 0.93 
Few-shot 0.89 0.85 0.97 
Few-shot with context 0.60 0.53 0.98 

Connect  
Prior 
Knowledge 

12% 0.45 Zero-shot 0.18 1.00 0.10 
Few-shot 0.38 0.27 0.94 
Few-shot with context 0.78 0.78 0.83 

Clarification 7% 0.72 Zero-shot 0.30 0.70 0.20 
Few-shot 0.56 0.46 0.90 
Few-shot with context 0.30 0.23 0.87 

Feedback 5% 0.66 Zero-shot 0.27 0.40 0.24 
Few-shot 0.26 0.25 0.35 
Few-shot with context 0.15 0.13 0.67 

Engagement 
Checks 

6% 0.48 Zero-shot 0.45 0.66 0.37 
Few-shot 0.82 0.80 0.86 
Few-shot with context 0.53 0.48 0.68 

Software 1% 0.45 Zero-shot 0.25 0.67 0.15 
Few-shot 0.71 0.67 0.77 
Few-shot with context 0.60 0.43 1.00 

Session 
Logistics 

4% 0.33 Zero-shot 0.15 1.00 0.09 
Few-shot 0.85 0.80 0.91 
Few-shot with context 0.41 0.28 0.97 

Note: For each construct, the best coding method is highlighted/in bold if it also obtains a minimum of κ≥0.70.  
Constructs with κ≤0.70 are still included in the subsequent correlation analysis. 

2.4.2. Coding with Few-Shot Prompting 
The Few-shot prompting approach generally obtained better results than the Zero-shot prompting (Table 2). Several of the 
constructs had substantial improvements in inter-rater reliability, including Direct Instruction (κ=0.79 with Few-shot vs. 
κ=0.11 with Zero-shot), Guided Practice (κ=0.55 with Few-shot vs. κ=0.16 with Zero-shot), and Session Logistics (κ=0.85 
with Few-shot vs. κ=0.15 with Zero-shot). In contrast, the performance for coding Greetings decreased by κ=0.29 compared 
to the Zero-shot approach. The Few-shot approach improved recall across all constructs but tended to overgeneralize based on 
the provided examples, resulting in a lower precision for all but one construct. For example, when the interjection “All right, 
fellas” was included as an example for Greetings, GPT overgeneralized part of that phrase. As a result, 23 instances of “All 
right” were misclassified as Greetings, even when it was used in an adverbial/adjectival form (i.e., “All right, let’s look at 
number one.”). When “All right, fellas” was removed as an example, misclassification dropped significantly. A similar 
overgeneralization issue arose with the Feedback construct, where GPT incorrectly coded 10 out of 11 instances that contained 
only the word “No” as containing Feedback after being given the following example: “No, not quite one x because you divided 
the negative three by three but did you divide the x by x?” Both examples highlight the importance of carefully selecting 
examples that minimize the risk of overgeneralization, and reviewing results in detail to identify unanticipated cases where it 
occurs. 

2.4.3. Few-Shot with Context 
Finally, as Table 2 shows, the Few-shot with context approach was most effective for constructs that typically involve 
repetition or continuation of a construct across consecutive lines, such as Guided Practice (κ=0.86) and Connect Prior  
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Knowledge (κ=0.78). However, for other constructs that typically occur in a single line (e.g., Clarification and Session 
Logistics), GPT sometimes coded the construct in the context lines rather than in the target line. 

2.5. Evaluating Construct Complexity 
Next, we explored the relationship between the characteristics of a construct and GPT-4’s coding performance. We evaluated 
each construct in terms of five dimensions: 1) clarity, 2) concreteness, 3) objectivity, 4) granularity, and 5) specificity. We also 
evaluated the usefulness of the three examples in improving understanding of the construct. These evaluation criteria were 
developed based on our prior experience with qualitative coding, where we observed that the difficulty of coding and agreement 
between coders can be affected by the way such characteristics of a construct are presented. We distributed the rubric in Table 3 
and descriptions of the ten constructs to a group of eleven researchers experienced in qualitative coding and analysis. For each 
construct, we provided its definition and asked the researchers to rate each dimension of the rubric on a scale from 1 to 5, with 
1 being the lowest and 5 being the highest. 

Table 3. The Dimensions Used to Evaluate Constructs 
Dimension Definition 
Clarity Well-defined and easily comprehensible; without ambiguity or confusion (antonym ambiguity).  
Concreteness Specific, tangible, and perceptible by the senses (antonym abstractness).  
Objectivity Verifiable based on facts and evidence; not based on feelings, opinions, or emotions (antonym subjectivity). 
Granularity Involving finer, detailed elements (antonym coarseness).  
Specificity Distinct and clearly distinguishable from other related concepts; not conflated or overlapping with other 

constructs (antonym generality). 
Example Were the examples useful in improving understanding of the construct. 

 
For each construct, we calculated the average ratings for the dimensions (Table 4). To assess the reliability of the survey 

responses, we used Cronbach’s Alpha, a statistical measure of internal consistency that evaluates how well a group of questions 
collectively measure the same concept. Alpha values range from 0 to 1, with higher scores reflecting greater consistency. 
Standard interpretation guidelines suggest that α ≥ 0.9 indicates excellent reliability, 0.8 ≤ α < 0.9 signifies good reliability, 
0.7 ≤ α < 0.8 represents acceptable reliability, and α < 0.7 points to low reliability. For each construct, we grouped six related 
questions (five addressing specific dimensions and one evaluating the usefulness of examples) and calculated Cronbach’s 
Alpha to assess whether those questions collectively measure the corresponding construct. The Alpha values ranged from 0.75 
to 0.93, with an average of 0.87, which indicates that the constructs demonstrate acceptable to excellent internal consistency 
overall. 

Table 4. Average Scores of Evaluated Dimensions for Each Construct  
Construct Best  

Method 
Hum–
Hum κ 

Hum–
GPT κ 

Clarity Concrete. Obj. Gran. Spec. Ex. 

Questioning Zero-shot 0.87 0.91 4.82 4.45 4.45 4.27 4.27 3.64 

Guided Practice Few-shot w/context 0.35 0.86 3.64 3.55 2.82 2.91 3.27 3.64 

Session Logistics Few-shot 0.33 0.85 3.36 3.45 4.00 3.55 3.73 3.91 

Engagement Checks Few-shot 0.48 0.82 3.64 3.18 2.73 3.36 3.18 4.55 

Greetings Zero-shot 0.70 0.79 4.64 4.18 3.45 3.82 3.45 3.64 

Direct Instruction Few-shot 0.24 0.79 3.73 3.64 2.82 3.73 3.09 4.45 

Connect Prior Knowledge Few-shot w/context 0.45 0.78 3.91 3.27 3.36 2.82 3.27 3.64 

Software Few-shot 0.45 0.71 3.45 3.91 4.45 3.55 3.73 4.64 

Clarification NA* 0.72  0.56 3.55 2.73 3.00 3.00 3.18 3.73 

Feedback NA* 0.66 0.27 3.82 2.82 3.00 3.55 3.18 3.64 

Notes: * All approaches failed to reach κ >0.70. None of the methods obtained κ over 0.70 for Clarification and Feedback. 
 

Interestingly, the human–GPT κ values were more closely aligned with the clarity ratings than the human–human κ values, 
which indicates that GPT’s performance may be more sensitive to well-defined constructs than that of human raters. In other 
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words, GPT may rely more on explicit definitions and structure when making coding decisions, whereas human raters might 
bring in additional context or subjective interpretation, even when constructs are less clear. 

Due to non-normality in the data, we used Spearman correlations to investigate the relationship between each pair of 
dimensions. Correlations were moderate (see Figure 1), with an average Spearman correlation coefficient of 0.36 (SD = 0.49). 
Notably, there was a remarkably high correlation (0.87) between objectivity and specificity. 

 
 Figure 1. Spearman correlation coefficients across dimensions. 

Standard deviations are provided in parentheses below each correlation coefficient. 

We next calculate Spearman correlations between the average values for the dimensions and the κ values achieved by 
GPT-4 in coding tasks for each of the three methods (Table 5). The positive relationship between performance in Zero-shot 
coding and construct clarity (Spearman coefficient of 0.50) demonstrates the value of clear and unambiguous definitions when 
employing this approach. Interestingly, this correlation decreases for Few-shot with context (0.40) and becomes negative for 
the Few-shot approach (-0.24), which speaks to the ability of GPT to identify patterns that humans find harder to define but 
can find examples of. There were positive correlations between concreteness and performance for Few-shot (0.39) and Few-
shot with context (0.55), possibly indicating that Concreteness is best leveraged by GPT when concrete examples or context 
are available. The Zero-shot and Few-shot approaches achieve better performance for more granular constructs; in these cases, 
extra context may not be useful (as the construct only needs one line due to its high granularity) and therefore only serves as 
a distraction. Examples that humans found useful were associated with better performance for the Few-shot approach (0.48), 
but the reverse seemed to be true for Few-shot with context (-0.33). It is possible that the additional context could be 
overwhelming GPT, causing it to rely less on the examples and more on the surrounding information. 

Table 5. Summary of Spearman Correlation Coefficients Across Different Methods 
Construct Clarity Concreteness Objectivity Granularity Specificity Example 

Zero-shot 0.50 0.15 0.24 0.34 0.28 - 
Few-shot -0.24 0.39 0.20 0.41 0.36 0.48 
Few-shot with context 0.40 0.55 -0.05 -0.12 0.17 -0.33 

3. Study 2: Middle-School Students In-Game Astronomy Observations 
3.1. Dataset 
The Study 2 dataset consists of scientific observations made by students while exploring educational worlds in Minecraft. 
These observations were obtained from What-if Hypothetical Implementations in Minecraft (WHIMC; Lane et al., 2022), 
where learners explore scenarios (e.g., “What if Earth had no moon?” or “What if the sun was cooler?”) during informal 
settings like summer camps. The WHIMC server includes a NASA-inspired launch site, a lunar base, a space station, a Mars 
map with real Martian terrain data, various known exoplanets, and phenomena such as black holes and quasars. Learners are 
assisted by automated pedagogical agents and human facilitators to use scientific tools to measure critical habitability 
factors — temperature, air pressure, radiation, gravity, and atmospheric composition — and write descriptive, comparative, 
and inferential observations that assess the habitability of each world. Students post their observations in the game space and 
the observations are visible in real time to other players in their cohort. 
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The dataset comprises data from 76 learners (49 male, 20 female, and 7 who reported another category or preferred not 
to answer) collected in 2022. Learners used the system in five locations across three states, with participants drawn from 
populations living in rural, suburban, and urban areas. They also represented a wide range of racial backgrounds (12 
Black/African American, 3 American Indian, 2 Asian/Pacific Islander, 10 Hispanic/Latino, 22 White/Caucasian, 1 who 
selected multiple categories, 6 other, and 19 who preferred not to answer). Socioeconomic backgrounds also varied 
considerably between locations, with nearly half of students coming from high-income counties and the rest from areas with 
mixed or lower-income groups. 

3.2. Codebook Development 
Prior qualitative research on this learning environment categorized student observations into four categories: Noun, 
Measure/Descriptive, Comparison, and Hypothesis (Yi et al., 2020). These categories were specifically developed to identify 
and study observations that align with the learning objectives of WHIMC. In our study, we extended this classification 
framework by applying an inductive thematic analysis to identify additional themes within the data (Thornberg & Charmaz, 
2014). Specifically, we introduce six new codes to capture additional aspects of game-related interactions and social 
communication that were not fully captured within the original coding scheme. The final version of the codebook is shown in 
Table 6. Since these constructs are not mutually exclusive, some observations may be categorized under multiple labels. 

Table 6. Inductively Developed Themes/Constructs 
Code Name Definition/Example 
Noun Definition: Stating nouns without any elaboration. (Previously labelled as “factual” in [Yi et al., 2020].) 

Example: “I see trees.” 
Measure/ 
Descriptive 

Definition: Related to measures of physical attributes that learners are encouraged to take in each of the 
different planets and moons they visit, including colour, temperature, quantity, weight or size, radiation, 
temperature, airflow, pressure, altitude, etc. Example: “The temp is -20.6 C, -5.1 F, 252,5 K.” 

Comparison Definition: Observations that compare or contrast conditions either (a) among in-game worlds (e.g., two 
different planets they’ve been asked to explore) or (b) their real-life experiences on Earth to the in-game 
worlds. Also includes examples that suggest that their expectations were violated. Example: “The grass 
is greener in the habitable strip.” 

Hypothesis Definition: Making hypotheses or guesses, showing speculative thinking, forming conjectures, or 
making predictions or explanations. Example: “This world is probably closer to the sun.” 

Questioning Definition: Asking questions about game mechanics or world elements; Seeking to understand the game 
better, showing curiosity. Example: “Why is there no grass?” 

Exclamations Definition: Pure exclamations without any accompanying explanation of observations, including 
exclamatory grammatical markers or words. Example: “Wow!” 

Continuing 
Discussion 

Definition: The same user’s observations represent the continuation of discussion around a specific 
topic. Example: “Can’t find [NAME].” “[NAME] where are you?” 

Non-game: 
True Nonsense 

Definition: A sequence of characters, emojis, or symbols repeated excessively, including Random 
numbers or letters without associated explanations or observations.  
Example: “AAAAAAAAAAAAAAAAAAAAAAAA.” 

Non-game: 
Unrelated Phrases 

Definition: Sentences or phrases unrelated to the purpose of making observations during Minecraft 
gameplay. Example: “This will expire in a week.” 

Non-game:  
Out-of-Context Ref. 

Definition: References to movies, books, celebrities, etc., without relevance to the game.  
Example: “Subscribe to MrBeast Gaming.” 

Source: The table includes four Constructs from Yi et al. (2020). 

3.3. Automated Coding Process 
Two researchers independently coded 200 observations to determine the presence or absence of each construct using 
predefined definitions. After coding about 100 observations each, they checked inter-rater reliability (IRR). Constructs for 
which human coders had low agreement were discussed before coding the remaining data. Upon completing the 200 
observations, IRR was checked again. The two human coders resolved any discrepancies through social moderation 
(Herrenkohl & Cornelius, 2013) before evaluating the performance of GPT for coding each construct, mirroring the approach 
used in Study 1. 

For coding this dataset, we used gpt-4-turbo-2024-04-09 (default hyperparameters and temperature=0). We coded the 
entire dataset three times and calculated the average performance metrics. We used the same Zero-shot and Few-shot prompt 
approaches as in Study 1. In this case, we generally did not leverage the Few-shot with context approach because consecutive 
observations posted in WHIMC are not necessarily linked, and human coders noted that the construct can be coded 
independently of the surrounding context. 
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However, an exception was made for the construct Continuing Discussion, which identifies the occurrence of two 
consecutive thematically related observations that occur near each other. For coding this construct, we adopted the coding 
with context approach by 1) providing context (basic information about the game and the preceding observation made by the 
same student) when coding the current observation, and 2) adding three paired (previous and current) examples along with the 
context. 

Given the potential of embeddings for calculating semantic similarities (Alvarez & Bast, 2017), we also explored the use 
of OpenAI’s text embedding model (text-embedding-3-small) in coding instances for Continuing Discussion. Embedding is a 
process that converts words, phrases, or larger texts into numerical vectors that can be compared. Each observation was first  
converted into embeddings using OpenAI’s text embedding model. Then, we computed the cosine similarity in the spatial 
domain between the current observation’s embedding and the embedding of the previous line, treating similarity scores greater 
than 0.6 as positive examples. This cutoff was selected as it yielded the best performance based on initial experiments 
conducted on a subset of the data (50%; 100 lines). The use of embeddings was limited to this construct because Continuing 
Discussion specifically required identifying the relationship between two consecutive student posts. Embeddings are well 
suited for capturing semantic relationships beyond surface-level matching of words. In other words, even if students use 
slightly different phrasing across observations, embeddings can detect the underlying thematic connection based on meaning 
rather than exact wording. 

3.4. Results 
Table 7 presents the Kappa scores between two human coders prior to resolving disagreements through social moderation, as 
well as the performance metrics — Kappa, Precision, and Recall — for each coding category, comparing GPT’s coding to 
human coding. Kappa scores between GPT and human coders ranged from 0.72 to 0.95 — consistently higher than in Study 
1. The Zero-shot approach yielded high inter-rater reliability (IRR) for constructs where the human coders also had high initial 
agreement before discrepancies were addressed, such as Questioning, Exclamation, and True Nonsense. Conversely, for 
nuanced constructs that elicited more coder disagreements (e.g., Comparison, Measure/Descriptive, and Unrelated Phrases) 
the Few-shot approach was more effective. For the construct Continuing Discussion, where it was necessary to assess multiple 
lines at once, using a text embedding model led to better performance than the Context Only or Few-shot with context 
approaches. These findings align with those in Study 1: examples were likely to improve coding outcomes for complex 
constructs without a sufficiently clear definition, and additional context was required only for the construct that needed more 
information beyond the target line to be accurately coded. 

Table 7. Performance Metrics for Each Automated Model  
Construct Freq. Hum–

Hum κ 

Method Hum–
GPT κ 

Hum– 
GPT Prec. 

Hum–GPT 
Recall 

Noun 17% 0.85 Zero-shot 0.84 0.88 0.83 
Few-shot 0.77 0.71 0.92 

Measure/ 
Descriptive 

36% 0.80 Zero-shot 0.74 0.88 0.77 
Few-shot 0.78 0.88 0.83 

Comparison 14% 0.73 Zero-shot 0.69 0.84 0.64 
Few-shot 0.74 0.74 0.79 

Questioning 9% 0.96 Zero-shot 0.95 0.90 1.00 
Few-shot 0.93 0.88 1.00 

Hypotheses 6% 0.73 Zero-shot 0.77 0.81 0.76 
Few-shot 0.69 0.69 0.77 

Exclamation 6% 
 

0.95 Zero-shot 0.86 0.81 0.96 
Few-shot 0.76 0.70 0.88 

Continuing  
Discussion 

13% 
 

0.88 Context only 0.85 0.91 0.83 
Few-shot with context 0.88 0.88 0.91 
Embedding 0.93 0.97 0.95 

Non-game:  
True Nonsense 

4% 
 

0.97 Zero-shot 0.95 0.94 0.97 
Few-shot 0.85 0.82 0.90 

Non-game: 
Unrelated Phrases 

7% 
 

0.75 Zero-shot 0.77 0.82 0.75 
Few-shot 0.77 0.82 0.91 

Non-game: Out-of-
Context Reference 

3% 
 

0.88 Zero-shot 0.82 0.88 0.78 
Few-shot 0.86 0.93 0.81 

Note: The best coding method (highlighted/in bold) for each construct is selected if  
it has the highest Kappa among all coding methods and a minimum κ≥0.70. 
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4. Study 3: Computer Science Students Programming Code 
4.1. Dataset 
The dataset for Study 3 consisted of practice assignments submitted through the automated assessment platform RunCode 
(Pankiewicz & Furmańczyk, 2020). Students in this study were learning C# in an introductory computer science course in 
Poland during the fall 2022 semester. Using RunCode was optional and did not affect the final course grade. In this semester, 
169 students actively used this platform, submitting code 44,448 times. Each submission was immediately evaluated, and 
students received feedback on compiler errors or failed unit tests, aiding them in refining their submissions until they achieved 
completely correct answers. The submissions spanned across 146 tasks covering four fundamental programming topics: types 
and variables (33 tasks), conditional statements (25 tasks), recursion (28 tasks), and arrays and loops (60 tasks). 

4.2. Codebook Development 
Previous research has developed qualitative codebooks to explore the debugging behaviours of programming learners, 
comparing two consecutive submissions of code for the same task (Pinto et al., 2023; Zambrano et al., 2024). Inspired by this 
prior research and the codebooks they proposed, we investigated GPT’s capabilities for qualitatively coding not only natural 
language but also programming code. We specifically focused on submissions made on conditional statement tasks by students 
who self-reported having little-to-no programming experience prior to joining the course. Conditional statements are the first 
module in the semester that requires a basic understanding of both syntax and programming logic and has been previously 
identified as one of the earliest topics where differences between high- and low-performing students become apparent 
(Zambrano et al., 2024; Izu et al., 2022). Based on this specific subset of programming code submissions, we refined the 
codebooks presented in Pinto et al. (2023) and Zambrano et al. (2024) to consider specific constructs associated with 
conditional statement tasks. This inductively developed codebook, built based on earlier inductively developed codebooks, is 
presented in Table 8. 

Table 8. Codebook with Definitions  
Construct Definitions & Examples 

If Header Modifications to the if condition/header. 
If Body Modifications to the lines enabled by the if condition/header. 
Function Return Modifications inside the return statement. 
Function Body Modifications inside the body of the function. These modifications include adding more 

conditional statements, auxiliary variables, and others. 
Comment A new commented line or a deletion or modification of an already existing comment. 
Testing Modifications inside the Main function (section of the code used for testing), such as adding 

a line to print results in the console and testing the correct functioning of their code. 
Added Lines Contains at least one completely new code line. 
Removed Lines Student removed code lines in the submission. 
Variable Usage & 
Assignment 

Student submission adds a new variable or deletes or modifies the value assignment of an 
already existing variable. 

Variable-type 
Change 

A modification of the type of variable on its initial declaration. 

Variable-type 
Conversion Change 

Modification in the conversion of the type of variable after its initial declaration or a 
conversion in the type of variable obtained after using an already existing method. 

Value Change Modification of any value. It can be in the if header/condition, in the coefficient in an 
equation, or in the assignment of a variable. 

Operator Modification of an operator, such as changing the “greater than” operator to “equal to” in a 
conditional statement. 

Syntax Change A modification in the syntax of a code line to correct a compiler error. 
Source: Refined from work by Pinto et al. (2023) and Zambrano et al. (2024). 

4.3. Automated Coding Process 
For the automated coding of the submissions, we used GPT-4 (gpt-4-turbo-2024-04-09) to develop binary classifiers for each 
construct, again using default hyperparameters and a temperature of 0. We used a Zero-shot prompt as in the previous two 
studies. We also used a Few-shot prompt, but in this study our Few-shot prompt both included a positive example that aligns 
with the target construct and a negative example that does not. This pair of examples were added because, in most cases, 
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providing only a single positive example caused GPT to overgeneralize the construct and confuse it with other constructs that 
might seem similar (e.g., two “if” statements where one has a changed condition and the other has a changed return, both still 
having a significant overlap in their code). We crafted the positive and negative examples to be similar to each other, to clarify 
for GPT how to distinguish between these lines that, despite their similarity, correspond to different constructs. As with the 
use of these two methods in Studies 1 and 2, we provided GPT-4 only with the lines showing differences between two 
consecutive submissions rather than the full submissions, which often spanned more than 50 lines. The Few-shot with context 
approach was not used, as key context could appear far from the line of interest, meaning that the entire submission would 
include irrelevant context and could make it difficult for GPT to focus on the specific line where the change happened. 

4.4. Results 
Table 9 presents the level of agreement between human coders and GPT’s performance for each construct examined in this 
study. Although experienced programmers should find most of these constructs straightforward to identify in programming 
data, categorizing the intentions behind these changes can be challenging since novices are more likely to introduce syntax 
errors or make changes in unexpected sections of the code. Our findings indicate that GPT’s performance was highly related 
to human-to-human inter-rater reliability. When inter-rater reliability between the two human coders was low (κ<0.60; If Body, 
Variable Usage & Assignment, Variable-type Change, Syntax Change), GPT also had difficulty. Although recall was around 
0.8 for three of these four constructs, precision was low, suggesting that GPT may be overgeneralizing. 

Table 9. Performance Metrics for Each Automated Model  
Construct Freq. Hum– 

Hum κ 
Method Hum– 

GPT κ 
Hum– 

GPT Prec. 
Hum–GPT 

Recall 
If Header 36% 0.96 Zero-shot 0.78 0.93 0.78 

Few-shot 0.80 0.90 0.85 
If Body 6% 0.48 Zero-shot 0.12 0.14 0.39 

Few-shot 0.12 0.14 0.33 
Function  
Return 

22% 0.77 Zero-shot 0.76 0.73 0.95 
Few-shot 0.66 0.81 0.67 

Function  
Body 

20% 0.79 Zero-shot 0.10 0.25 0.66 
Few-shot 0.08 0.24 0.64 

Comment 2% 1.00 Zero-shot 0.80 0.67 1.00 
Few-shot 0.66 0.50 1.00 

Testing 28% 0.94 Zero-shot 0.54 0.90 0.48 
Few-shot 0.31 0.88 0.25 

Added Lines 11% 0.85 Zero-shot 0.93 0.88 1.00 
Few-shot 0.93 0.88 1.00 

Removed  
Lines 

9% 0.94 Zero-shot 0.71 0.67 0.84 
Few-shot 0.76 0.72 0.84 

Variable Usage 
& Assignment 

16% 0.49 Zero-shot 0.30 0.33 0.84 
Few-shot 0.25 0.29 0.82 

Variable-type 
Change 

3% 0.32 Zero-shot 0.45 0.40 0.80 
Few-shot 0.29 0.22 0.80 

Variable-type 
Conversion 

9% 0.64 Zero-shot 0.57 0.47 0.96 
Few-shot 0.55 0.47 0.88 

Value  
Change 

10% 0.63 Zero-shot 0.40 0.38 0.62 
Few-shot 0.34 0.30 0.85 

Operator 30% 0.86 Zero-shot 0.73 0.75 0.90 
Few-shot 0.62 0.73 0.73 

Syntax  
Change 

29% 0.55 Zero-shot 0.49 0.58 0.79 
Few-shot 0.41 0.51 0.80 

Note: The coding method (highlighted/in bold) with the highest Kappa  
is selected if it meets a minimum threshold of κ≥0.70. 

 
On the other hand, for constructs where both human coders achieved higher levels of agreement (κ≥0.70), GPT also 

performed better (κ≥0.70). GPT was successful at identifying many constructs related to specific (less ambiguous) locations 
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within student code (i.e., If Header, Function Return, and Comment). GPT also accurately identified other constructs that 
depend solely on the specific line being modified, such as Adding Lines, Removing Lines, and Operator. However, when 
location-related constructs required additional context (i.e., the entire function or method where the change is embedded), 
GPT performed more poorly (i.e., location-related constructs like Function Body, If Body, or Testing (Main body). 

In most cases where GPT was able to successfully code the constructs (κ≥0.70), the Zero-shot approach outperformed the 
Few-shot approach. The poorer performance for the Few-shot approach can possibly be attributed to the diverse range of 
modifications possible in programming code, which cannot be fully captured by just a few examples. This limitation of the 
Few-shot approach becomes even more pronounced with programming novices, who might introduce changes that are entirely 
unexpected or that do not conform to the standard syntax or logic of the intended code or, indeed, the programming language 
at all. However, for some constructs less subject to variability or interpretation, such as Added Lines and modifying the If 
Header, adding examples appeared to slightly improve GPT’s performance. 

5. Discussion and Conclusion 
This article investigated the use of GPT-4 for automated qualitative coding across three educational datasets: Algebra I tutoring 
session transcripts (from Study 1), scientific observations made by students in the WHIMC Minecraft environment (from Study 
2), and debugging behaviours in introductory programming code submissions (from Study 3). In each of these approaches, we 
took a codebook that was initially inductively developed and refined. Then we applied these codes deductively across the 
entire dataset, using them to identify instances of each theme (binary presence/absence). This approach allowed us to apply 
our inductively derived insights consistently to the rest of the data. 

Across these datasets, we tested four prompt engineering approaches: 1) Zero-shot coding, which presents only the 
construct definition to GPT and prompts it to code, 2) Few-shot coding (annotated examples along with the construct 
definition) with only positive examples, 3) Few-shot coding with both positive and negative examples, 4) Few-shot with 
context, which provides GPT with some context of the study and the preceding lines to aid in coding the current line, and — 
for just one construct in one data set — 5) Embeddings, where we used OpenAI’s tool for converting text into numerical 
vectors and then compared the current student observation to their previous observation. 

Across all three studies, the GPT-4 API achieved good agreement with human coders (κ ≥0.70 for 25 out of the 34 
constructs) for at least one of these prompt engineering approaches. This finding indicates GPT-4’s general capability to 
accurately code a wide range of constructs. However, each method showed unique strengths and limitations, and not every 
method was equally effective for all constructs. Specifically, across these different contexts and data sources, we observed 
that Zero-shot prompting can achieve high performance for well-defined constructs — like Greetings in Study 1, Noun in 
Study 2, and Comment in Study 3 — with straightforward and easily comprehensible definitions. However, Zero-shot coding 
tends to miss many cases, achieving lower recall than other methods. Moreover, similar to findings in Amarasinghe et al. 
(2023) and Theelen et al. (2024), the absence of contextual understanding and reliance on strict definitions limit the Zero-shot 
approach’s effectiveness for nuanced or context-dependent constructs. For example, while constructs like Greetings were 
coded reliably in Study 1, those requiring contextual understanding, such as Direct Instruction, were not. This finding 
highlights the need for qualitative codebook development to prioritize clarity and concreteness, if Zero-shot coding will be 
used. 

Incorporating annotated examples (Few-shot prompting) improved performance for some of the more complex constructs, 
such as Software in Study 1, Out-of-Context References in Study 2, and Removed Lines in Study 3. However, the use of 
examples also led to overgeneralization in some cases. For instance, in Study 3, novice programmers made a range of choices, 
many of them unexpected, leading to overgeneralization when using few-shot approaches. In these cases, more straightforward 
Zero-shot prompting often performed better. Misclassification issues also arose when examples were not carefully selected, 
which demonstrates the need for examples to be representative of the span of cases, and also the value of selecting examples 
that precisely differentiate the category of interest from other categories. We also found that incorporating explicit non-
examples when coding with GPT improved coding precision in some cases, mitigating overgeneralization. 

Perhaps not surprisingly, Few-shot with context is more accurate for constructs that require an understanding of the 
surrounding context or when lines of data have temporal relationships. However, the approach also led to issues when the 
context lines involved different constructs than the current line being coded (i.e., when lines of data have subject changes or 
are not connected). Thus, while context can enhance understanding, it must be selected thoughtfully to avoid introducing noise. 

Additionally, all methods struggled with constructs that have a lower level of concreteness, such as Clarification in Study 
1 and Syntax Change in Study 3. These constructs were generally not the most difficult for humans to code (κ=0.72 and κ=0.55, 
respectively), suggesting that human reasoning is able to identify fewer concrete constructs, which remains difficult for       
GPT-4. This represents a deviation from the more general overall trend, where the hardest constructs for humans to code were 
also the hardest for GPT-4. 
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Our research provides evidence regarding the advantages and limitations of different approaches when using GPT-4 for 
coding tasks. Each method offers distinct benefits that can be leveraged depending on the nature of the constructs being coded. 
Researchers should therefore consider the nature of their constructs when choosing a prompting method for automated coding. 
Careful selection of an approach could maximize the benefits of GPT in qualitative research by producing more accurate data 
coding. 

One limitation of using the GPT-4 model through the OpenAI API — as in our work — relative to using ChatGPT is that 
the API is not as effective as ChatGPT at providing explanations for its decisions, identifying ambiguity in construct 
definitions, or discussing inconsistencies in human coding as ChatGPT (e.g., Zambrano et al., 2023; Barany et al., 2024), 
which is specifically designed for interaction, conversation, and iteration. However, using the API for qualitative coding has 
significant advantages in terms of efficiency. It is highly automated; once the prompt is defined and the chat completion 
endpoint is set up, it can automatically code all lines in the dataset. This eliminates the need to copy and paste or send prompts 
repeatedly to the chat window, making it a much more efficient approach when dealing with large datasets. Additionally, it is 
much easier to recode the data by API if the prompt needs to be updated and also allows researchers to modify the default 
hyperparameter settings (such as temperature) to achieve more consistent results. 

There is still much to do. Each method explored in this paper could be investigated in finer-grained detail. For example, 
it may be relevant for some datasets to separate out task context from discourse context, and perhaps use one or the other but 
not both. Another potential area for future work is the exploration of coding multiple constructs at once using a single prompt. 
While this study focused on binary classification to reduce complexity, it is also possible to allow the model to select between 
a range of mutually exclusive codes all at once, or to assign multiple labels where constructs intersect or overlap within the 
same line. Approaches of this nature could streamline coding workflows and eliminate the need to code the same dataset 
multiple times for different constructs, though it is unclear whether the greater complexity could confuse an LLM or lead to it 
focus on the first or last code in the set. Future research should also investigate further strategies to improve performance for 
complex, ambiguous, or subtle constructs while also refining the coding process to increase adaptability to different research 
needs. More broadly, future work will need to investigate how different LLMs, such as Claude or LLaMA (as well as future 
versions of OpenAI’s offerings) can be optimally used for different forms of qualitative coding. Finally, future research should 
explore the applicability of these methods to more fully deductive coding processes, using LLMs to develop coding schemes 
directly from theoretical models and frameworks. 

By leveraging the strengths of GPT-4, and LLMs in general, educational researchers can streamline the coding process, 
enabling more efficient and comprehensive analysis of qualitative data. Ultimately, informed selection and tailoring the 
approach to the data context and code type has potential to improve the accuracy and reliability of LLMs, better positioning 
tools such as GPT to serve as reliable “co-researchers” that can strengthen the trustworthiness of findings in qualitative data 
analysis. As the capabilities of large language models continue to advance, so too will their applications in automated 
qualitative coding, making it possible to conduct these methods faster and ultimately better. 
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