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Abstract
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in
science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and
intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school curricula.
A significant challenge is designing and implementing valid in-game assessments crucial for measuring student
progress and providing reliable references for instructors’ intervention decisions. Stealth assessment, guided by the
evidence-centred design (ECD) framework, offers a promising solution but requires more specific guidelines for full
effectiveness. In this study, we present a granular, framework-supported pipeline to systematically implement stealth
assessments in a GBL environment. This pipeline involves constructing an ECD framework, generating features,
selecting appropriate models, preprocessing data, evaluating model performance, and conducting model inference
on a black-box computational model. We validate the effectiveness of this pipeline by assessing the performance of
these computational models and identifying distinct behavioural patterns between high and low performers. Our
analysis highlights potential areas for improvement in the design of stealth assessments within digital games for
learning. Furthermore, we discuss the generalizability of the proposed pipeline and outline limitations for future
research to address.

Notes for Practice

• Our study details and validates a systematic approach for developing and applying stealth assessment via a
granular embedded logging system. We demonstrate this approach’s efficacy in game-based learning (GBL),
outlining strategies for stealth assessment structuring, feature generation, computational model selection and
training, performance evaluation, and inference. Our findings underscore the importance of selecting suitable
frameworks for each procedure to enhance the feasibility, efficiency, and effectiveness of stealth assessments.
Importantly, our defined process initiates the formation of a guideline for implementing stealth assessment in
other GBL contexts.

• Concerning the feature generation process, we advise using a suitable framework and performing multi-level
classification on the data based on the information reflected. This enhances model interpretability and
enables analytics at various granularity levels to meet research requirements.

• The performance of the computational model suggests that combining in-game learning progress, as indicated
by embedded assessment scores, with behaviours yields the most accurate predictions of learning outcomes.

• Implementing a surrogate model, commonly a white-box model, is a practical approach for interpreting
black-box models. Through detailed analysis of inference results, we identify distinct behavioural patterns
between high- and low-outcome students in the game.

• Drawing on insights from model inference results and the iterative design paradigm within the evidence-
centred design framework, we discuss how to continuously refine our proposed pipeline for establishing
stealth assessments and offer recommendations for designing and developing adaptive stealth assessments
in GBL environments.
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1. Introduction
Game-based learning (GBL) is an influential tool in science education, enhancing student learning efficiency and skill mastery
(M. Wang & Zheng, 2021; L. H. Wang et al., 2022). It fosters competencies vital for science learning, such as motivation,
conceptual understanding, and science process skills (Laffey et al., 2017). In contrast with entertainment games, educational
games focus on skill development and knowledge acquisition. Their interactive nature offers an engaging medium for students,
allowing the repetitive practice of a progressive science curriculum under guidance or self-paced learning (Breuer & Bente,
2010; Maryani & Hidayat, 2019; Fadila et al., 2023). Their replay feature promotes learning from failure and strategy refinement
(Zhang & Rutherford, 2022). Teachers, in turn, can enhance pedagogical designs for improved, timely support (Shohel et al.,
2022). The effectiveness of GBL depends on the availability of relevant, timely information for optimal adaptation during
gameplay (Sevcenko et al., 2021).

While the potential benefits of GBL are widely recognized, particularly in fostering problem-solving skills and enabling
adaptive learning through timely feedback, the effectiveness of GBL is also subject to debate, with several controversial aspects
that warrant careful consideration. Recent studies have identified potential downsides, such as cognitive overload, equity
accessibility issues, difficulties in skill transfer to real-world applications, and challenges in measuring complex learning
outcomes. For example, cognitive overload can occur if the game design is too complex or not well aligned with learning
objectives, potentially reducing efficiency (Sevcenko et al., 2021; Seyderhelm & Blackmore, 2023). Additionally, concerns
about equity and accessibility persist, as some students may lack access to the necessary technology or digital literacy skills,
raising issues of inclusivity in digital learning environments (Haas & Tussey, 2022; Rohmani & Pambudi, 2023). Moreover,
there are ongoing challenges regarding the transferability of skills acquired through GBL to real-world contexts, with evidence
suggesting that skills developed in game environments do not always translate into improved academic or practical performance
(Cerra et al., 2022; Nietfeld, 2020).

Furthermore, there are concerns that game elements may overshadow educational objectives, resulting in shallow learning
where the focus shifts from educational content to game mechanics. Recent literature suggests that overly gamified environments
may prioritize entertainment over meaningful learning, potentially diminishing deeper cognitive engagement and retention
of material (Bernecker & Ninaus, 2021; Manzano-León et al., 2021). Additionally, accurately measuring complex learning
outcomes—such as critical thinking, creativity, and problem-solving—remains a significant challenge in GBL. Despite the
extensive data generated by these environments, there is a lack of standardized metrics and validated models for assessing these
higher-order skills effectively (Zhu et al., 2023; Strukova et al., 2023). These controversies underscore the need for a nuanced
approach to integrating and assessing GBL within educational curricula, ensuring that its potential benefits are realized while
addressing its limitations.

Active engagement with educational games bolsters students’ problem-solving skills (Rosydiana et al., 2023). These
interactions produce extensive data traces, which, when designed to align with game learning objectives, can enhance students’
learning approaches and offer valuable insights for teaching (Georgiadis et al., 2019). To harness these benefits, practitioners
have integrated a data collection system, or logging system, and corresponding assessments directly into game design, in
contrast to traditional instruction where assessments are often an afterthought (Loh et al., 2016; Zhu et al., 2023). Such
integration enables educational games to act as intelligent tutoring systems, offering timely feedback that supports student
learning and encourages adaptive strategies during gameplay (Gee, 2003; V. J. Shute, 2008; Hooshyar et al., 2016; Ke et al.,
2019; Yu et al., 2022).

Stealth assessment, a formative method also known as “assessment for learning,” is notably beneficial in GBL environments
(J. P. Rowe et al., 2009; V. J. Shute, 2011b; Mislevy et al., 2003; Baker et al., 2010). It operates on three primary principles:
(1) unobtrusive data collection, (2) evaluation of complex competencies like critical thinking, and (3) sequential and detailed
monitoring of learning progress to offer personalized feedback. Integrating stealth assessment in these environments is a
complex, resource-intensive task requiring multidisciplinary collaboration (computer science, education, psychology, statistics,
etc.). A comprehensive framework for integrating game logs, feature engineering, computational model building, and model
interpretation is essential to maximize the utility of stealth assessment for both students and teachers in a GBL scenario.
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Interdisciplinary collaboration within educational game design requires a robust alignment of technical tasks and learning
objectives, with learning as the ultimate objective. The evidence-centred design (ECD) approach serves as a foundational
methodology for stealth assessment, validated by numerous studies across different educational games (V. J. Shute, 2011a;
V. Shute & Ventura, 2013; V. J. Shute et al., 2016; V. Shute et al., 2017; V. J. Shute & Rahimi, 2021; Moore & Shute, 2017;
Min et al., 2020; Henderson et al., 2020, 2022). ECD incorporates three main components: competency, evidence, and task
models. The competency model probabilistically represents students’ skills and knowledge. The evidence model demonstrates
how student behaviour observations can reveal their competencies. The task model defines challenges that produce evidence for
inferring students’ competency levels (V. J. Shute, 2011a; V. Shute & Ventura, 2013; Ma et al., 2015).

1.1 Need for Comprehensive Stealth Assessment Design and Evaluation
Although prior research indicates the potential of stealth assessment, educational game creators face a range of approaches
for developing models and identifying game-specific features, with limited comprehensive evaluations of their comparative
performance (Jeon et al., 2023; Gomez et al., 2023; Georgiadis et al., 2021; Fang et al., 2023).

Our study builds upon the development of Mission HydroSci (MHS), a 3-D GBL environment. MHS employs a co-curricular
design that complements teacher interaction. It is developed alongside the curriculum to teach middle school students water
science knowledge and scientific argumentation. Each unit in MHS corresponds to a specific curriculum objective, shaping the
game mechanics. In MHS, players become junior scientists on a mission to establish a settlement on the newly discovered
planet WAT247. They can explore the game world, search for hints, and complete quests in different formats such as puzzles,
item searches, and pathfinding.

Along with the game, there is an integrated logging system. The system captures events related to in-game activities and
learning progress. Our logging system draws inspiration from the works of Carvalho and colleagues (2015) and Serrano-Laguna
and colleagues (Serrano-Laguna et al., 2017). Carvalho and colleagues introduced the Activity Theory-based Model of Serious
Games (ATMSG) to define and deconstruct explicit content for the logging system to collect. This content includes key
features reflecting students’ in-game progress, behaviour, and decisions, recorded in chronological sequences of trace data.
Serrano-Laguna and colleagues proposed an Experience API (xAPI) standardization for structuring defined content into data
statements in JSON format, saved in remote databases.

Further application and empirical evidence are needed to validate the effectiveness of combining both frameworks, ATMSG
(Fokides et al., 2019; Alonso-Fernández, Freire, et al., 2021) and xAPI (Schardosim Simão et al., 2018; Heinemann et al.,
2022), for logging system design and development, a gap our paper aims to address. Additionally, due to the diverse nature of
the in-game activities within MHS, we faced challenges in designing appropriate data coding schemes and generating relevant
features from raw logs for model construction with interpretability for education and learning purposes. In this study, we
propose a potential approach for generalizing the feature generation process based on a complex learning system like MHS.

To summarize, our main goal is to develop a stealth assessment for evaluating students’ learning outcomes related to water
science knowledge taught in Unit 3 of MHS. To validate its effectiveness, we used gameplay log data from over 300 students
and their external post-assessment scores as the learning standard for constructing and evaluating prediction models. We
integrated our model prediction procedure into the ECD approach and employed the Integrated Design of Event-stream for
Analysis (IDEFA) framework (Owen & Baker, 2020) to guide our feature generation process. We then preprocessed the feature
set for model training, evaluated model performance to verify the effectiveness of our stealth assessment, and conducted model
inference for result interpretation. Based on the inference results, we discussed the generalizability of our comprehensive
pipeline for implementing a stealth assessment within MHS.

1.2 Research Questions
More specifically, to achieve our research goal, we probe and present solutions for the following research questions:

Research question 1 (RQ1): Apply, adapt, and extend existing models and frameworks for MHS to discover how and to
what extent they are valid for stealth assessment within MHS.

Research question 2 (RQ2): How do the inference results from interpreting the black-box computational model inform
future stealth assessment design and GBL development?

2. Literature Review
2.1 High-Level Conceptual Models Guiding the Game Design and Learning Analytics
Data-driven methods, including learning analytics and educational data mining, are crucial in education, but their validity
rests on the quality of data collection aligned with research goals. The system design and implementation framework play a
significant role in ensuring the appropriateness of collected data. Various validated models and frameworks have been proposed
to guide this process, each emphasizing different areas.
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This study builds on prior research on conceptual models for learning analytics within GBL. De Freitas and colleagues
(2006) introduced a framework incorporating pedagogic considerations, mode of representation, learner specification, and
context, primarily suited for pre-existing video games. However, limitations such as restricted instructor usage, lack of
dimension transformation, and limited learning context present opportunities for future research. Further, Gunter and colleagues
(2006) proposed the RETAIN model for new game design, blending three validated paradigms: Gagne’s nine events of
instruction, Keller’s ARCS model of motivation, and Bloom’s learning domains. Despite showing potential for embedding
learning content into game design, the RETAIN model requires further illustration and case studies for validation and linking
pedagogical design with specific game elements.

Arnab and colleagues (2015), addressing Gagne’s model’s shortcomings, developed a Learning Mechanics-Game Mechanics
(LM-GM) model that effectively translates pedagogical practices into game mechanics. Validated against Alan Amory’s Game
Object Model (GOM) (Amory, 2007) through two user evaluations, LM-GM was superior in three aspects: (1) providing
detailed descriptions of relationships between learning mechanics and game elements, (2) accessibility and applicability, and
(3) enhancing user understanding of how games promote learning. However, the authors recognize the need for enhanced and
precise evaluation techniques for their model components, especially those related to learning measurements.

In recent years, the game industry’s swift advancement has given rise to increasingly sophisticated video games, enabling
educators to use them for teaching complex skills such as critical thinking and problem-solving. This progression has created
a demand for comprehensive frameworks for designing and evaluating game mechanics and pedagogical goals in GBL
environments. Addressing this need, Carvalho and colleagues (2015) presented ATMSG, building upon and extending previous
models. Applied in user evaluations of five educational games, ATMSG demonstrated its superior capacity for precise evaluation
of game mechanics and pedagogical elements compared to the LM-GM model. This model’s strengths lie in its ability to
thoroughly analyze system components as the game progresses and articulate the relationships between game components
and learning goals for various stakeholders. Although ATMSG is more beneficial for expert users like game designers or
researchers, the authors see its potential as a blueprint for creating analysis tools in GBL environments.

Inspired by ATMSG’s meticulous analytical abilities, we applied them to guide the design and development of our adaptive
logging system, a game-embedded analysis tool. Specifically, they assisted in determining what game content to log for learning
analytics and generating features for the predictive model.

2.2 Game Logs Application as Learning Measurements
Advanced technologies in education have popularized the use of logs for profiling application use across several domains,
including social computing environments (Ayzenberg et al., 2012; Goggins et al., 2010; Park & Cho, 2010), massive open
online courses (MOOCs) (Goggins et al., 2016; N. Li et al., 2015), computer-supported collaborative learning (CSCL) (Xing
et al., 2014; Goggins et al., 2011; Martı́nez-Monés et al., 2011), and 3-D virtual learning environments (Agudo-Peregrina et al.,
2014; Ma et al., 2015; Grover et al., 2017).

A robust logging system should record detailed, timestamped sequences of user-system interactions to unveil learning-
related usage patterns, supporting multi-level analytics. It should also be capable of real-time representation of user learning
progress when necessary (Ventura & Shute, 2013; Goggins et al., 2010; Hauge et al., 2014). Furthermore, the logging system
should evolve with the learning game, ensuring the capture of vital information on how game modifications affect learning
outcomes (Kim et al., 2019). Lastly, it should function unobtrusively, allowing uninterrupted user engagement with the system,
resulting in more accurate learning measurements (Loh et al., 2015).

The use of game logs for learning analytics has been widely explored within GBL. These logs are pivotal for studying
areas like subject-matter knowledge and skills (Nguyen et al., 2020; Emerson et al., 2020; Feng & Yamada, 2019), complex
competencies (Lee et al., 2019; Niemelä et al., 2020; Cloude et al., 2020; Wen et al., 2018; Sabourin et al., 2013; Seaton et al.,
2019), and performance assessment design (Gibson & Clarke-Midura, 2015; Westera et al., 2014; Loh & Sheng, 2015). When
combined with external data from sources like eye-tracking or emotion detection, game logs provide enhanced, more precise
learning analytics (Lee et al., 2019; Emerson et al., 2020; Cloude et al., 2020).

Building on the established use of game logs in learning analytics, recent studies have applied advanced methods like
machine learning and reinforcement learning to analyze game data and achieve adaptive learning experiences in GBL envi-
ronments (F. Chen et al., 2020; Cardia da Cruz et al., 2020; Rahimi et al., 2023). For example, Chen and colleagues (2020)
employed support vector machines and long short-term memory networks to predict learning outcomes from students’ game
logs. Researchers have also used reinforcement learning to adjust game difficulty in real time based on players’ performance,
demonstrating potential in maintaining engagement and enhancing learning outcomes (Cardia da Cruz et al., 2020; Rahimi et al.,
2023). These AI-driven techniques highlight the potential of game logs in understanding and predicting learning outcomes,
designing dynamic assessments, and creating adaptive learning experiences. However, limitations such as limited exploration
of behavioural features, small sample sizes, short-term evaluations, and simplified difficulty metrics hinder real-world imple-
mentation. The authors encourage future research to investigate additional game log features to enhance predictive accuracy
and the effectiveness of reinforcement learning approaches in GBL environments.
ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 296



Researchers have also explored various in-game features—representing behaviours, decision-making, and progress—to
analyze learning patterns across different expertise levels (Dı́az-Ramı́rez, 2020; F.-Y. Li et al., 2021; Liu et al., 2022). Examined
features include tool usage, navigation patterns, task progress, and earned rewards. Recent studies have focused on real-
time visualization of game logs to enhance educational outcomes. Vidakis and colleagues (2020) collected real-time data
on student interactions in “ThimelEdu,” capturing behaviours like navigation and decision-making and visualizing data for
educators to adapt teaching strategies in real time. Similarly, Calvo-Morata and colleagues (2020) used game analytics to
validate “Conectado,” a game designed to raise cyberbullying awareness. They captured students’ decisions and emotional
responses, creating dashboards that offer insights into engagement and empathy development. Real-time monitoring enables
educators to refine interventions, tailoring them to meet specific learning objectives and enhance educational impact. However,
comprehensive studies combining these features are scarce, necessitating more empirical research.

However, most studies use game logs in the context of specific environments, which limits their wider applicability. With
the growing prominence of GBL, it’s important to develop universal standards for logging system design (Shoukry et al.,
2014; Pérez-Colado et al., 2022; Lu et al., 2023). Recent research highlights that standardized data collection methods can
greatly benefit future research, such as facilitating cross-study comparisons and supporting cross-platform tool development
(Serrano-Laguna et al., 2014; Vidakis et al., 2020; Alonso-Fernández, Calvo-Morata, et al., 2021). xAPI, a model proposed
by Serrano-Laguna and colleagues, is a high-level standard for logging system design. This model aims to ensure that the
data collected is efficient and effective for measuring learning goals across various game environments (Serrano-Laguna et al.,
2017). The xAPI model has inspired our design for high-level data collection processes.

Informed by the frameworks of xAPI and ATMSG, we designed the high-level data structure and determined the fine-grained
content to capture. Yet, a disconnect remains between the data collected and the learning goals we aim to measure or predict
(Jeon et al., 2023). A framework that guides the implementation of performance assessments, seamlessly integrated with the
game progression, can bridge this gap (V. J. Shute & Rahimi, 2021; Udeozor et al., 2024). Such a framework ensures that the
collected data can accurately and unobtrusively measure the targeted learning outcomes as the game unfolds. As reviewed in
the next section, previous research has created, developed, and validated frameworks for implementing stealth assessments in
GBL environments. However, these studies have also acknowledged the need for further empirical evaluations to validate these
frameworks in diverse educational contexts (V. J. Shute et al., 2016; Min et al., 2020; Georgiadis et al., 2019; V. J. Shute &
Rahimi, 2021; Udeozor et al., 2024).

2.3 Stealth Assessment in a GBL Environment
As society evolves, today’s youth must master complex competencies, including 21st-century skills (Romero et al., 2015),
to keep pace with the modern world. However, teaching these skills and assessing students’ progress presents significant
challenges. Emerging technologies offer solutions by enabling the development of embedded assessments to augment learning
processes. Unlike traditional assessments, such as paper-based exams, embedded assessments offer many benefits: (1) They
unobtrusively gather continuous, multifaceted learner data, providing objective, comprehensive results without disrupting
learning or creating test anxiety. (2) Utilizing machine technologies, they provide real-time scores based on learner actions
and progress, offering quantitative feedback to improve learning. (3) By integrating into learning systems like game-based
environments, they measure learning in context and in real time, unlike traditional pre- and post-learning assessments. This
immediacy accurately reflects learner progress, making these “stealth assessments” a valuable tool for educators and researchers.

Göbel and colleagues (2009; 2013), building on their early research in story-based edutainment and serious games, put forth
a stealth assessment framework for story-based digital educational games (DEGs), named Narrative Game-based Learning
Objects (NGLOB). They validated this framework with two computer-based games. However, its use has declined recently,
possibly due to the constraints of the narrative genres and the specific needs of GBL environments where their methods were
applied.

Shute and colleagues (2011b), unrestricted by the narrative game genre, conducted various studies on a stealth assessment
model in GBL environments, utilizing the ECD approach (Mislevy et al., 2003). This model was validated across diverse
educational games, assessing competencies such as mathematical skills, problem-solving, conscientiousness, calculus abilities,
and creativity (V. Shute et al., 2017; V. J. Shute et al., 2016; Moore & Shute, 2017; Smith et al., 2019; V. J. Shute & Rahimi,
2021). The ECD model encompasses three key components: (1) competency model (CM), which defines the knowledge and
skills to be assessed; (2) evidence model (EM), which identifies in-game behaviours or progress revealing the competencies
and their statistical relationship with CM variables; and (3) task model (TM), which outlines in-game situations or quests
through which students demonstrate their competency progress.

These components enable practitioners to examine learning behaviour patterns and estimate competence levels in a timely
manner. Shute’s studies primarily focus on discerning relationships between different in-game behaviour-derived indicators and
assessed competencies using only Bayesian networks (BNs). BNs effectively visualize complex relationships, including time
factors, in a manner that keeps data useful and manageable (Champion & Elkan, 2017; Heine, 2021; Belland et al., 2017; Mouri
et al., 2016). However, developing BNs is labour-intensive, time-consuming, and costly, to ensure accurate representation of
ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 297



learning in the final structure. Furthermore, even a robust BN, based on an appropriate prior distribution, usually requires
substantial data for validation. The outcomes may be too specific to the experiment, limiting their applicability in other GBL
environments.

Exploring beyond BNs, Grover and colleagues (2017) applied the ECD framework to measure computational thinking
(CT) in block-based programming environments like Alice, combining hypothesis-driven methods with data-driven learning
analytics. Their approach integrates real-time data from student programming activities with pre-defined indicators of CT skills,
such as debugging, use of conditionals, and iterative design, to enhance the accuracy of assessments and provide formative
feedback to learners. This hybrid framework illustrates another application of ECD beyond traditional GBL, where it supports
stealth assessment in educational programming environments.

Furthermore, Lester and colleagues examined the use of machine learning models, such as random forest, support vector
machine, and recurrent neural networks, for stealth assessments within GBL environments (Akram et al., 2018; Min et al.,
2020; Henderson et al., 2020; Gupta et al., 2021; Henderson et al., 2022). They identified in-game behaviours linked to targeted
knowledge and skills, integrating these models into the ECD framework. This resulted in novel stealth assessment frameworks
with various benefits: streamlining data preprocessing (Min et al., 2020), enabling the operation of stealth assessments in
domains and educational content where prior data and labels are unavailable (Henderson et al., 2022), and infusing diverse
data types (Henderson et al., 2020). However, these models’ complexity hinders interpreting how individual indicators predict
learning outcomes.

Addressing the limitations of BNs (Champion & Elkan, 2017; Heine, 2021; Belland et al., 2017; Mouri et al., 2016) and the
challenges of other modelling approaches in identifying game-specific behaviours related to learning (Akram et al., 2018; Min
et al., 2020; Henderson et al., 2020; Gupta et al., 2021; Henderson et al., 2022), Georgiadis and colleagues (2019) developed a
computational prototype to conceptualize various approaches to stealth assessment. This work uses simulated data to verify
their prototype and explore numerous modelling techniques to inform future stealth assessment designs within serious games.
It offers a comprehensive range of potential computing approaches for stealth assessment researchers. However, this work’s
applicability is limited due to the absence of a specific GBL system, a human evaluation environment, and a clear connection
between these models and learning outcomes.

2.4 Gaps in the Literature
Despite significant advancements in GBL analytics and the development of various conceptual models and frameworks,
several gaps remain in the literature. Existing models, such as those proposed by De Freitas and colleagues (2006), Gunter and
colleagues (2006), and Arnab and colleagues (2015), face limitations like restricted applicability, lack of transformation between
pedagogical and game elements, limited learning contexts, and the need for enhanced evaluation techniques—particularly
concerning learning measurements. Advanced analytic methods, including machine learning and reinforcement learning, have
shown potential in utilizing game logs for adaptive learning experiences. However, their real-world implementation is hindered
by limited exploration of behavioural features, small sample sizes, short-term evaluations, and simplified difficulty metrics.

Additionally, there is a scarcity of comprehensive empirical studies that combine various in-game features to analyze learning
patterns, necessitating more research in this area. The lack of universal standards for logging system design further limits
the generalizability of findings across different GBL environments. Frameworks guiding the implementation of performance
assessments, such as stealth assessments integrated within game progression, require additional empirical validation in diverse
educational contexts. Complex modelling approaches like BNs and advanced machine learning models, while useful, pose
challenges in terms of development effort, interpretability, and applicability.

Therefore, there is a critical need to develop accessible, learning-centred frameworks that facilitate the transition from raw
game logs to meaningful feature sets and computational models. To address these gaps, we present our study involving MHS, a
comprehensive GBL environment designed for middle school students. By applying our proposed framework for constructing
learning prediction models within MHS, we aim to enhance the accuracy of measuring and predicting targeted learning
outcomes, thereby bridging the gap between data collection and educational objectives in GBL environments. This approach
not only validates our framework but also contributes to the broader goal of making advanced analytics more accessible and
effective in educational games.

3. Game Context and Data Collection
3.1 MHS
MHS is a comprehensive GBL curriculum conceptualized as a 3D transformational role-play platform for middle school
students (see online Appendix B (https://bit.ly/3QvTeBP) for detailed information on game content). Within this interactive
context, students play the role of novice scientists, exploring and managing a remote planet’s water systems and topography
with the overarching objective of utilizing these resources for human survival. MHS encompasses numerous assistive tools,
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facilitating the learning of decision-making processes, puzzle-solving techniques, and scientific argumentation. Integral to
MHS is a logging system conceived and developed with the game, following the ATMSG and xAPI frameworks.

To identify the content to be captured during gameplay, we applied the ATMSG framework to deconstruct and analyze
gameplay and learning activities, ensuring that each log event aligns with the framework. The ATMSG framework’s hierarchical
structure—encompassing gaming, learning, and instructional activities—was instrumental in defining which actions and events
should be logged in MHS. This systematic categorization of actions, tools, and goals enabled us to capture meaningful data on
player engagement and learning outcomes.

• Gaming activities: Player interactions with the game were mapped to specific events, such as movement, trigger, and
quest-/task-related events. Movement events capture details like direction (forward, left, right, back), state (start, end),
and navigation tool use (e.g., hoverboard). These events monitor player exploration and spatial engagement. Trigger
events log interactions with objects, recording object ID, action type (e.g., Lift, Drop, Press), and object state changes,
reflecting problem-solving approaches. Quest and task events track progress, logging when players initiate or complete
quests or tasks.

• Learning activities: Actions aligned with learning objectives were logged through events capturing scientific argumenta-
tion, decision-making, and knowledge application. Argumentation events log players’ use of the argumentation engine,
capturing session openings, engagement with nodes, and argument construction, providing insights into critical thinking
and reasoning. Dialogue events track the start and end of dialogues and player choices, offering data on how players
engage with educational narratives and assess understanding.

• Instructional activities: Instructional elements, including in-game and teacher-led activities, were tracked through tool
events and hotkey use, monitoring players’ access to support tools and the impact on their performance. Tool events, such
as the argumentation engine and AI companion tools, provide insight into tool utilization, while hotkey events reveal
player fluency with controls and resource navigation strategies.

The ATMSG framework effectively aligned game design with educational objectives. Each quest or challenge was
designed to support learning goals, such as understanding water flow dynamics or properties of water-soluble materials. The
logging system captured relevant data—such as argumentation, dialogue choices, and tool use—offering insights into players’
problem-solving, decision-making, and concept application.

For the collection and storage of this content in data statements within remote servers, such as a learning record store
(LRS), for real-time applications and advanced analysis, we applied the xAPI framework. This framework provides a technical
standard for tracking and recording behavioural trace data within serious games. By mapping ATMSG components to xAPI
statements and making necessary adjustments to align with MHS and our research objectives, we designed and developed the
embedded logging system. To evaluate the effectiveness of this logging system, we conducted an empirical study using data
collected during the first field test of MHS (Lu et al., 2023).

The MHS curriculum is organized into six units. Unit 1, a tutorial, introduces navigation, in-game tools, and a system for
scientific argumentation. Unit 2 focuses on topography, teaching students to find in-game teammates and compare watershed
sizes. Our research primarily examines Unit 3, which instructs students on water flow and the properties of water-soluble
materials. We have deliberately excluded data from other units in the current study. This decision is premised on the fact that
subsequent units do not influence a student’s performance in Unit 3. Focusing on Unit 3 also presents a manageable scope
for furthering stealth assessment research in line with our research questions. Our analysis of Unit 3 is intended to lay the
groundwork for future investigations into stealth assessments, both for our subsequent work and for other researchers in the
field.

3.2 Data Collection
The second field test for MHS was conducted over two weeks in the spring semester of 2019. The participating teachers, drawn
from 13 middle schools across nine school districts, were required to have at least two class periods from 6th to 8th grade.
These schools were situated in mid-sized cities and small rural communities, and the student sample comprised 1,110 students
of varied ethnicities and genders. 806 students from 35 classes went through MHS as a game-based curriculum. Among those
students, 632 of them completed pre- and post-tests for all constructs, qualifying for the analytic sample.

We implemented three distinct assessment instruments for the pre- and post-tests. These included student tests of affect
toward science and technology (MAST) (Romine et al., 2017), water science content knowledge (Reeves et al., 2020), and
scientific argumentation (Reeves et al., 2020). The tests were administered via Qualtrics, an online assessment platform. The
primary objective of this study was to construct a stealth assessment, informed by the ECD framework, to evaluate students’
learning outcomes associated with Unit 3’s curriculum related to water science content knowledge. This evaluation was based
on the features extracted from the students’ in-game logs. These logs, saved on a remote MongoDB database, were transformed
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into data frames via the R software for additional analysis and model construction. Following a thorough data cleaning process
and trimming to eliminate incomplete records, the final dataset comprised 354 students with comprehensive log records and
corresponding assessment scores.

4. Framework-Supported Pipeline for Valid Stealth Assessment Implementation
This section outlines our approach for feature set identification, which we used to train and evaluate our computational models.
We also detail integrating the ECD framework in affirming our stealth assessment application within MHS. Feature engineering,
a method for pinpointing potent learning predictors from vast volumes of student gaming data, is crucial for developing durable,
interpretable prediction models (Owen & Baker, 2020; Guyon & Elisseeff, 2003; Sao Pedro et al., 2012; Fogarty, 2006).
Essentially, MHS feature engineering transforms raw data into meaningful information through the fusion of expert judgment
and iterative mathematical operations, adapting continually with curriculum and game design based on distinct learning goals.
To optimize our final feature set, we implemented recommendations from Zheng and Casari (2018) and Butcher and Smith
(2020) and used the feature engineering framework Integrated Design of Event-stream for Analysis (IDEFA) (Owen & Baker,
2020) to guide our process.

4.1 Overview of the IDEFA Framework
The IDEFA framework is a systematic process for creating and refining data features from event-stream data, with the ultimate
goal of producing robust models for behaviour prediction. It consists of several key phases: data design and collection, base
feature aggregation, feature engineering, and iterative analysis. While the IDEFA framework includes data design and collection
as a core element, in this study, we employed a different way to design and develop the integrated logging system within MHS
using the ATMSG and xAPI frameworks, as described in the previous section.

Although we did not follow IDEFA’s guidance for data collection, the remaining three phases—base feature aggregation,
feature engineering, and iterative analysis—were fully integrated into our workflow, as follows: (1) Base feature aggregation:
Once raw data was collected through our customized logging system, we followed the IDEFA framework’s principles to
identify and aggregate key features from the event-stream data. (2) Feature engineering: We applied mathematical operators
to transform base features into new variables that better captured player behaviours, ensuring that the data was suitable for
predictive modelling. (3) Iterative analysis: Using IDEFA’s iterative process, we tested and refined the engineered features,
optimizing our models for predicting learning outcomes.

By combining the flexibility of our logging system with the structured processes from IDEFA for feature generation, we
ensured that the features generated were optimized for predicting our targeted learning objectives.

4.2 Stealth Assessment Goal Set-Up
According to the IDEFA framework, the initial step in implementing a stealth assessment is to establish a clear goal or research
question. This involves defining the specific learning outcomes that the stealth assessment aims to measure. In this study, we
chose to use the sum of three post-assessment scores to quantify students’ water science knowledge in MHS Unit 3. Below, we
first justify the use of the summed scores both conceptually and statistically.

First, the assessment designer confirmed that these three items evaluate distinct but interconnected aspects of the water
flow dynamics topic in Unit 3. To statistically validate their unidimensionality, we conducted both exploratory factor analysis
(EFA) and confirmatory factor analysis (CFA) (Widaman & Helm, 2023). The EFA results indicated that the first factor
had an eigenvalue of 2.5, explaining 83% of the total variance, while the second factor had an eigenvalue of 0.4, suggesting
that a single factor captures the construct sufficiently. The factor loadings for each item were 0.73, 0.85, and 0.71, further
supporting the unidimensional structure. CFA demonstrated a good model fit, with χ2(2) = 4.23 (p = 0.12), RMSEA = 0.06,
and CFI = 0.93. The Cronbach’s alpha (Tavakol & Dennick, 2011) of 0.79 also exceeded the acceptable threshold of 0.7,
confirming the reliability of aggregating the scores. More details on the assessment items and analysis can be found in online
Appendix E (https://bit.ly/3QvTeBP).

Given the statistical confirmation of unidimensionality, we chose to sum the three item scores for several reasons: (1)
Enhanced privacy: Using the sum of assessment scores as the dependent variable reduces data granularity. Given that
participants input their real names into our logging system, individual item scores could reveal specific strengths and weaknesses,
which might be sensitive information. (2) Comprehensive measurement: Each item assesses a different yet interconnected
aspect of water flow dynamics. By summing the scores, we create a broader measure of the student’s overall understanding of
these interrelated concepts. The factor analysis results further validate that the three items contribute to a unified measurement,
supporting our decision to combine them. (3) Increased statistical power: Summing the three items increases the variability
in the data, which enhances the statistical power of our analysis. A greater range of scores allows for more robust detection
of significant relationships or differences in student learning. In contrast, analyzing only one item would limit the variability
and reduce our ability to uncover meaningful patterns. (4) Improved reliability: Summing the scores across multiple
ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 300

https://bit.ly/3QvTeBP


items improves reliability in two ways: by reducing item-specific bias and by balancing random errors. A single item may
disproportionately reflect one aspect of the construct or vary in difficulty. Summing the items helps to mitigate this issue,
ensuring a more balanced assessment of student knowledge. Additionally, error averaging ensures that random errors, such as
misunderstanding a question or a momentary lapse in concentration, do not overly influence the final score. Summing scores
tends to cancel out these random errors, leading to a more stable and reliable estimate of overall performance.

To determine whether students demonstrated significant learning outcome improvements after playing MHS, we conducted
a paired t-test (Student, 1908) on the summation of pre- and post-assessment scores relevant to water science knowledge
in MHS Unit 3. The results indicated significant score improvement (M = 1.447, SD = 0.971 for pre-assessment and
M = 2.009,SD = 0.961 for post-assessment), with a t-value (d f = 353) of −9.094 and a p-value of 0.0. Following this
analysis, we categorized student performance into two groups: high performers, defined as students with post-test scores greater
than or equal to 2, and low performers, defined as those with scores lower than 2.

4.3 Feature Engineering and Selection
4.3.1 Base Feature Aggregation
According to the IDEFA framework, the initial step in the feature generation process is base feature aggregation. This step
involves identifying variables or features from the base event-stream data, or raw log data, that are significant for analysis and
then aggregating values for each feature within a defined game walkthrough timeframe or window.

A robust feature set should comprehensively cover the investigated data, with each feature strongly correlated to the
target variable, and should minimize overlap or high correlation between features to enhance model interpretability (Owen &
Baker, 2020). Following these principles, we established three high-level feature categories: gameplay behaviours, embedded
assessment scores, and external information. These categories were determined through a full MHS team consensus, reflecting
various aspects of students’ information. Detailed explanations of each category are as follows: (1) Gameplay behaviours:
This category describes students’ trajectories, actions, and choices in the gaming procedure. (2) Embedded assessment scores:
This category contains in-game achievement markers representing signs of learning progress about subject-matter knowledge.
(3) External information: This category includes features collected outside the game, such as pre- and post-assessment scores,
demographic information, and sensor streams (e.g., eye-tracker, emotion detector, motion sensors).

Following the initial aggregation, we conducted an intermediate categorization, further subcategorizing each feature
category. For gameplay behaviours, inspired by our previous study (Lu et al., 2023), we identified nine subcategories with high
predictive power: (1) the size of the explored game area; (2) the speed of task completion; (3) tool-using status; (4) in-game
item interactions; (5) argumentation construction; (6) event type shares; (7) dialogue reading behaviours; (8) game replay times;
and (9) other information (e.g., which instructor guided the student).

For embedded assessment scores, we created two subcategories according to whether the score measures learning outcomes
in the current unit or the previous units: (1) previous embedded assessment scores, which measure the learning outcomes of
subject-matter knowledge marked by game logs collected from previous units (Units 1 and 2 in this study), and (2) current
embedded assessment scores, which have the same function as described above but are collected in the current unit (Unit 3 in
this study).

We divided external information into three subcategories based on our prior work demonstrating predictive validity and
the aspects of students’ information collected through external sources: (1) demographic information, (2) assessment scores,
and (3) other external information. In this study, we primarily focused on assessment scores within the external information
category, using students’ pre- and post-assessment scores related to water science knowledge in Unit 3 of MHS.

4.3.2 Feature Engineering
Following the base feature aggregation process, we proceeded with feature engineering using mathematical operators. This step
involved iterative feature engineering and selection procedures. Within each subcategory, we engaged in several brainstorming
sessions with team members to create new features based on those identified in the previous step. We utilized mathematical
functions (e.g., summation, ratio, multiplication, descriptive statistics) and data transformation techniques (e.g., discretization,
one-hot encoding, and scaling methods).

This iterative process involved extensive collaboration among team members, during which we brainstormed potential new
features based on the identified base features. Each newly engineered feature was evaluated for its relevance and contribution to
understanding students’ learning behaviours. The resulting features provided deeper insights into students’ decision-making
processes, engagement levels, and learning trajectories within the game.

4.3.3 Iterative Analysis
We then conducted a systematic iterative feature selection procedure by examining each feature’s variance and its correlation
with the targeted learning outcome, as defined in Section 4.2, Stealth Assessment Goal Set-Up. Given that our dependent
variable is categorical, with “high-performance” and “low-performance” categories, and our independent variables include both
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numeric and categorical features, we employed the Mann–Whitney U test (Mann & Whitney, 1947) for numeric features and
Fisher’s exact test (Fisher, 1935) for categorical features to determine significant correlations with the targeted learning outcome.
Features included in the final feature set met several criteria: they exhibited sufficient variance (interquartile range greater than
0.1), had a correlation value exceeding a predetermined validity threshold (p-value for the statistical test less than 0.1 along
with corresponding effect size (Glass, 1966; Cramér, 1999) value larger than 0.1), and provided adequate interpretability for
generating insights after model fitting. The final feature set includes 57 features.

Online Appendix A (https://bit.ly/3QvTeBP) provides detailed descriptions of each feature within the final feature set.
Additionally, online Appendix C (https://bit.ly/3QvTeBP) provides more comprehensive descriptions of each feature subcategory
and corresponding exploratory analyses.

4.4 Model Selection
Our final feature set, developed through the aforementioned processes, exhibits the following characteristics: (1) High-
dimensional and diverse: The set comprises a total of 57 features encompassing a wide variety of types, including numeric
features (e.g., object interaction frequency, tool usage frequency, choice node hovering frequency) and categorical features
(e.g., teacher IDs, explored area size, argumentation performance). (2) Non-linear relationships: Many relationships between
our features and learning outcomes are likely non-linear. For instance, tool usage frequencies or event-type shares may have
complex, non-linear effects on post-test learning outcomes. (3) Class imbalance: The dataset exhibits class imbalance (e.g.,
a greater number of high-performing students than low-performing students), which needs to be addressed to avoid biased
predictions. (4) Noise and outliers: The feature set includes noisy data and potential outliers, such as rare in-game item
interactions or atypical explored area sizes that are not representative of most students. (5) Sparse and low-frequency features:
Some features, such as dialogue-triggering frequencies or specific object interaction behaviours (e.g., sensor usage frequency,
crate delivery success), may be sparse or occur infrequently. (6) Complex feature interactions: The feature set likely contains
complex interactions between features, such as how dialogue reading behaviours and argumentation construction speed combine
to predict learning outcomes.

Based on these characteristics, we selected the following algorithms for predicting the desired learning outcomes: Bayesian
generalized linear model (BGL) (Albert, 1988), distance weighted discrimination with polynomial kernel (DWD) (Marron et al.,
2007), random forest (RF) (Breiman, 2001), support vector machines with class weights (SVM) (Huang & Du, 2005), and
model-averaged neural network (NN) (Abrahart & See, 2000). Although these algorithms employ different approaches, they
are all capable of effectively handling feature sets with the characteristics mentioned above. Each algorithm not only shares
capabilities with the others but also offers unique advantages, which justify their inclusion in this study. Utilizing multiple
algorithms can generate more validated prediction results, and the findings from each can provide supplementary support for
the others. Key unique advantages of each selected algorithm that contribute to the construction of our prediction model are
briefly described as follows.

The DWD algorithm establishes decision boundaries that avoid overemphasizing outliers or disproportionately favouring the
majority class, enhancing its ability to predict outcomes for underrepresented low-performing students. Additionally, DWD’s
polynomial kernel effectively captures complex interactions between features derived from student actions (e.g., tool usage, task
completion speed, argumentation construction), enabling a robust distinction between high and low performers. By employing
class weights, SVM addresses class imbalance by assigning greater importance to the minority class (low performers), ensuring
that its influence is not overshadowed. This approach refines the decision boundary and improves prediction accuracy for
underrepresented groups. Furthermore, SVM’s nonparametric nature makes it resilient to violations of distribution assumptions
and suitable for smaller sample sizes, which is common in educational datasets. The model-averaging technique in NNs reduces
the risk of overfitting, particularly in a feature set combining categorical and continuous data. By integrating predictions from
multiple NNs, the model enhances generalization across diverse learning patterns. This approach is particularly effective when
certain features, such as gameplay strategies or pre-test performance, risk skewing predictions. The averaging mechanism
ensures balanced predictions and applicability to various student profiles.

The Bayesian framework of BGL is particularly effective at managing uncertainty inherent in features such as interaction
frequencies or completion times. It also allows the integration of prior knowledge through the use of informative priors. For
example, if prior research or domain expertise suggests that features representing pre-knowledge and performances from earlier
game tasks (e.g., pre-assessment scores, embedded scores from previous units) are related to the target learning outcome, this
information can be incorporated into the model. A key strength of BGL is its ability to generate interpretable probabilistic
predictions, providing an understanding not only of the influence of various features but also of the model’s confidence in its
predictions. This interpretability is critical in educational settings, where actionable insights based on model predictions are
essential. RFs are particularly well suited for handling datasets with mixed feature types, minimizing the need for extensive
pre-processing. By constructing multiple decision trees based on random subsets of features, RF reduces overfitting and
manages high-dimensional data effectively. Its ability to handle class imbalance by averaging results across many trees improves
representation of minority classes, and its robustness to missing data ensures consistent performance even with incomplete
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game logs.
To generate the necessary features from raw logs, conduct the analytical process, and construct the machine learning

classifiers described above, we utilized R and several R packages. Notably, we employed the “Caret” package, developed by
Max Kuhn (Kuhn, 2019), which provides a comprehensive suite of functions for creating predictive models.

4.5 ECD Framework Mapping
According to the descriptions regarding each component of the ECD framework in Section 2, Literature Review, we mapped
our study to the framework shown in Table 1.

Table 1. Defining specific content for each component with ECD framework mapping to our study.
ECD Component Specific Content Mapped to Our Study

Competency model
We used the summation of three post-test assessment scores measuring students’ water science
knowledge in MHS Unit 3 and categorized the summation score into high and low performers
based on whether the score is smaller than 2 or not.

Task model For this component, we included 12 quests until the end of MHS Unit 3. Each quest’s detailed
description can be found in online Appendix B (https://bit.ly/3QvTeBP).

Evidence model
In this model, we involved a final feature set containing a total of 57 features as the learning
evidence and five machine learning models to help us solve our learning outcome prediction
problem.

4.6 Model Training Preprocessing
As described in Section 4.2, Stealth Assessment Goal Set-Up, our target or dependent variable consists of two classes: high
performers and low performers. Due to the criteria used to categorize these classes, the variable exhibits an imbalanced class
distribution, with 251 high and 103 low performers. This imbalance could significantly hinder model performance (Guo
et al., 2008; Elrahman & Abraham, 2013; Buda et al., 2018). To address this issue, we employed subsampling techniques
(Kaur et al., 2019), such as down-sampling, up-sampling, synthetic minority over-sampling technique (SMOTE), and random
over-sampling examples (ROSE). Each method was applied to the training dataset and evaluated using the testing dataset,
with only the most effective methods being reported. Specifically, SMOTE was adopted for the BGL, SVM, and NN models,
while up-sampling was selected for the RF and DWD models. These techniques were chosen for their ability to enhance
the proportion of the minority class, thereby improving the model’s predictive accuracy for the low performers. Detailed
descriptions of the subsampling applications are provided in online Appendix D (https://bit.ly/3QvTeBP).

4.7 Model Inference
In an ideal scenario, stealth assessment would reliably indicate students’ learning outcomes throughout game phases, enabling
instructors to intervene promptly. However, challenges and gaps exist that prevent stealth assessments from functioning as
expected. A promising initial step toward bridging these gaps is identifying potential indicators that reflect students’ behaviour
patterns at different learning outcome levels. Model inference is a valuable tool for identifying these indicators, as it helps
elucidate the impact of each feature on learning outcomes. However, many machine learning models are “black-box” models,
prioritizing prediction accuracy over interpretability due to numerous parameters and nonlinear transformations, which tend to
obscure the relationship between the engineered features and the intended learning outcomes within the game design (Min
et al., 2020). Fortunately, several methods help interpret black-box models, such as feature importance rates (Breiman, 2001),
partial dependence plots (PDPs) (Molnar et al., 2020), Shapley additive explanations (SHAPs) (Lundberg & Lee, 2017), and
local interpretable model-agnostic explanations (LIMEs) (Ribeiro et al., 2016).

After investigation, we decided to use BGL as a surrogate model to interpret the RF model, which achieved the highest test
accuracy rate based on our dataset. The surrogate model approach involves training a simpler, interpretable model (such as a
linear model or decision tree) to approximate the predictions of a more complex, black-box model, thereby providing insights
into the black-box model’s decision-making process (Guidotti et al., 2018; Molnar et al., 2020). Specifically, we first used
the trained RF model to generate predictions on the training dataset. Then, we constructed a new dataset where the features
remained the same as the original dataset, but the target variable was replaced with the predictions from the RF model. The final
step was to train a BGL model on this new surrogate dataset to learn the mapping between the features and the RF predictions.

In addition to BGL’s demonstrated effectiveness in predicting learning outcomes with our feature set (as shown in Table 2
and corresponding descriptions), several key reasons informed our choice to interpret the black-box model using BGL: (1)
Probabilistic interpretations: BGL provides a probabilistic framework, offering insights into the uncertainty and variability of
predictions, which is valuable for understanding confidence intervals and the reliability of model outputs. Methods like feature
importance and PDPs typically offer point estimates without quantifying uncertainty. (2) Prior information incorporation:
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BGL allows the inclusion of prior information about parameters, guiding the model to plausible solutions, especially when data
is scarce or noisy. Other methods, like SHAP and LIME, do not directly incorporate prior knowledge, potentially resulting
in less robust interpretations. (3) Regularization and multicollinearity management: BGL incorporates regularization
through priors, helping manage multicollinearity and overfitting. Feature importance and PDPs do not address multicollinearity,
which can skew interpretations. (4) Simplicity and communication: The linear structure of BGL makes it easy to interpret
and communicate results to non-technical stakeholders. Coefficients have a direct and intuitive interpretation, unlike SHAP
values and LIME explanations, which can be complex. Feature importance scores are easy to understand but lack detail on
feature interactions. (5) Inference and predictive distribution: BGL provides not just point estimates but entire predictive
distributions, crucial for understanding the full range of potential outcomes and their probabilities. Other methods typically
focus on individual predictions or feature contributions without offering a comprehensive view of predictive distributions.

5. Results
Having constructed the framework-supported pipeline to predict MHS learning outcomes, we evaluated its efficacy by reviewing
the performance of the machine learning models.

5.1 Model Training and Results
To assess the predictive ability of student learning outcomes, we divided our 57-feature dataset into three groups: embedded
assessment scores, in-game behaviours, and full features. The first group contains 10 features denoting in-game learning
progress, the second contains 45 features representing individual in-game actions, and the third combines all previous features
with additional information gathered outside the game, such as the summation of pre-test scores and instructor IDs.

Each model algorithm was trained using the three feature groups. Prior to training, features underwent Yeo–Johnson
transformation (Yeo & Johnson, 2000), followed by centring and scaling. We partitioned the data, allocating 80% of the
samples for training and 20% for testing. The training process involved 30-fold cross-validation, repeated 30 times, with
hyperparameters tuned via greedy search across 30 randomly formed combinations. Model evaluation was conducted using
accuracy, sensitivity, and specificity metrics derived from the confusion matrix to assess the models’ ability to predict high and
low performers’ learning outcomes. Table 2 provides detailed information on model performance.

Table 2. Model prediction performance. The bolded numbers represent the highest values within each of the performance
measurement metrics—accuracy, sensitivity, and specificity—within each of the three different feature sets.

Embedded Assessment Scores In-Game Behaviours All Features
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

BGL 0.64 0.86 0.1 0.69 0.84 0.3 0.84 0.88 0.75
DWD 0.71 1 0 0.7 0.94 0.1 0.81 0.84 0.75
RF 0.61 0.78 0.2 0.71 0.9 0.25 0.86 0.96 0.6
SVM 0.76 0.9 0.4 0.73 0.9 0.3 0.83 1.0 0.4
NN 0.76 0.9 0.4 0.63 0.78 0.25 0.81 0.86 0.7

As indicated in Table 2, our first finding is that all five models, when utilizing the dataset with all features, achieve accuracy
metrics exceeding the 80% benchmark, which is considered a good prediction accuracy rate within educational contexts (Bird
et al., 2021).

For each feature set, the results reveal that the SVM and NN algorithms offer the best test accuracy and specificity rates,
while the DWD algorithm provides the best sensitivity rate for the feature set of embedded assessment scores. When using the
feature set of in-game behaviours, SVM produces the best test accuracy and specificity rates, DWD provides the best sensitivity
rate, and BGL matches the specificity rate of SVM. With the full feature set, RF leads in test accuracy, both BGL and DWD
achieve the highest specificity rate, and SVM offers the highest sensitivity rate.

Table 2 compares the three different feature sets and shows that the accuracy rate using all features is significantly higher
than that using the embedded assessment scores and in-game behaviours feature sets. Additionally, the specificity rate using
all features is significantly improved compared to the embedded assessment scores and in-game behaviours feature sets. To
validate these differences, we conducted the Kruskal–Wallis (KW) test (Kruskal & Wallis, 1952) along with Dunn’s (D) test
(Dunn, 1964) for post hoc pairwise comparisons.

Regarding the accuracy rate, the KW test yielded a significant difference among feature sets (χ2(2) = 9.51, p-value = 0.01),
and the D test indicated that the accuracy using all features was significantly higher than that using embedded assessment scores
(p-value = 0.018) and in-game behaviours (p-value = 0.008). For the specificity rate, the KW test also revealed significant
differences (χ2(2) = 8.77, p-value = 0.01), and the D test showed that specificity using all features was significantly higher
than that using embedded assessment scores (p-value = 0.014) and in-game behaviours (p-value = 0.017). The differences in
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sensitivity rates across the three feature sets were not statistically significant, as confirmed by the significance tests mentioned
above.

From the analysis, it is evident that the feature set with all features provides better prediction outcomes. However, specificity
rates are generally lower than accuracy and sensitivity rates, indicating a weaker model capacity for identifying low performers.
Overall, RF yields the highest accuracy rate with the full feature set. Notably, BGL, with all features, offers the most balanced
model performance, with all measures surpassing the threshold of 75%. The effectiveness of lower-complexity models like
BGL, as noted by Zheng and Casari (2018), underscores the effectiveness of our feature engineering and model selection
processes.

In summary, the results validate the stealth assessment framework for MHS and underscore the value of combining multiple
evidence sources (e.g., in-game behaviours and embedded assessment scores) to improve predictive accuracy. The approach
integrates the IDEFA framework for feature generation, machine learning models tailored to the feature set, and the ECD
framework to ensure the relevance of students’ in-game activities for predicting learning outcomes. These findings suggest
the potential for generalizing this framework to other digital learning environments. However, challenges remain, such as
lower specificity in detecting low performers and insufficient representation of subtle learning behaviours. Further iterative
refinements, guided by the iterative design paradigm within the ECD framework, are needed to enhance model accuracy and
generalizability, as discussed in Section 6.1.

5.2 Model Inference Results
Using BGL for model inference provides insight into the construction and effect of each feature on the target variable. This
analysis yields each feature’s estimated coefficient and highest-density interval (HDI), revealing the nature and significance
of each feature’s influence on learning outcomes. Detailed inference results are in Table 3. We summarized key findings as
follows:

• Map exploration: Larger map exploration sizes are associated with lower probabilities of high-level learning outcomes,
especially in areas with major quests. This finding suggests that excessive exploration may lead to distractions or
inefficient use of time, detracting from focused learning efforts.

• Task completion time: Prolonged task completion times correlate positively with high-level learning outcomes. This
implies that students who spend more time on tasks tend to engage more deeply and comprehensively, leading to better
learning outcomes.

• Tool usage: Frequent use of topographic maps, quest descriptions, background information, and game help, coupled with
slower average chat log use, is associated with high-level learning outcomes. These tools facilitate students’ understanding
and problem-solving within the game. In contrast, frequent use of chat logs and side-quest-related information correlates
with lower learning outcomes, suggesting that these tools may distract students from their major learning objectives.

• Interaction with in-game items: Correct placement of pollution sensors enhances learning outcomes, while redundant
sensor usage or excessive crate delivery negatively impacts learning outcomes. This suggests that interactions with items
that assist in completing major quests lead to better learning outcomes, whereas redundant interactions with unrelated
items result in worse outcomes.

• Argumentation performance: Higher argumentation performance in Unit 3 and frequent hovering over choice nodes
in the argumentation system suggest high-level learning outcomes. Detailed interactions within choice nodes, text
reminders, and illustrations, as well as spending time to carefully read and digest information, help improve learning
outcomes.
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Table 3. The model inference outcome, produced by BGL, provides several insights. Each feature falls into a category listed in
the “Category” column. The “Feature Name” column lists the features, and the “Coefficient” column presents the median value
of each estimated coefficient. In the fourth column, the HDI functions similarly to a confidence interval and serves as a primary
index for determining a feature’s significance. We deem a feature significant if its HDI doesn’t encompass zero. Significant
features are marked in two colours: orange indicates a positive correlation with students’ high-level learning outcomes, while
blue denotes a negative correlation.

Category Feature Name Coefficient HDI Significance
mainMapSize −0.6 [−1.7,−0.09] YesMap exploration dungeonMapSize −0.4 [−0.9,0.04] No

Task completion taskAveSpeed 0.6 [0.14,0.98] Yes
mapFreq 0.3 [−0.4,1.04] No
chatFreq −0.9 [−2.03,0.18] No
crashFreq −0.6 [−1.36,0.2] No
questFreq 0.6 [0.12,1.07] Yes
backingFreq 0.4 [−0.32,1.19] No
helpFreq 0.5 [0.11,0.97] Yes
mapSpeed −0.2 [−0.61,0.15] No
chatSpeed 1 [−0.07,2.14] No
crashSpeed −0.2 [−0.98,0.53] No
questSpeed −0.1 [−0.56,0.35] No
backingSpeed −0.1 [−0.87,0.6] No

Tool using

helpSpeed -0.5 [−0.95,−0.14] Yes
pollutedSensor 1.3 [0.33,2.22] Yes
downStreamSensor 0.5 [−1.54,2.53] No
sameAreaSensor −2.4 [−3.69,−1.08] Yes
findAreaSensor −0.7 [−1.64,0.36] No
cleanSensor 0.3 [−0.26,0.81] No
failCrate −0.7 [−1.35,0] No

Item interaction

successCrate −2 [−3.3,−0.75] Yes
U3argumentLevel 0.1 [−0.16,0.4] No
U2argumentLevel 0 [−0.24,0.22] No
nodeHoverFreq 1 [0.5,1.58] Yes
claimIISpeed 0.3 [0.02,0.66] Yes
evidenceBSpeed 0.5 [0.18,0.85] Yes
reason3Speed 0.1 [−0.24,0.44] No
reason4Speed −0.6 [−0.95,−0.19] Yes
claimISpeed −0.3 [−0.65,0.06] No
reason5Speed 0.1 [−0.21,0.44] No
evidenceASpeed −0.1 [−0.4,0.28] No
reason2Speed −0.1 [−0.52,0.21] No

Argumentation

reason1Speed −0.5 [−0.85,−0.04] Yes
itemTrigger -0.7 [−1.61,0.25] No
movement −1.3 [−3.16,0.4] No
missionProgress 0.2 [−0.51,0.87] No
dialogue −0.7 [−2.19,0.82] No
toolUsing −0.7 [−1.98,0.44] No
hotkey 1.3 [0.19,2.53] Yes
argument −1 [−1.51,−0.42] Yes
jump −0.4 [−0.77,−0.02] Yes

Event shares

toggleBoard 0 [−0.33,0.48] No
Dialogue dialogueAvgSpeed 0 [−0.38,0.35] No
Replay time trial 1.1 [0.24,2.14] Yes

tutorial 0 [−0.29,0.33] No
biggerWatershed 0 [−0.44,0.44] No

continued on next page. . .
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. . . continued from previous page

Category Feature Name Coefficient HDI Significance
upstreamArgument −0.1 [−0.53,0.26] No
CREi 1.2 [0.69,1.8] Yes
JasperCritique 0.6 [0.1,1.16] Yes
findTeam 1.3 [0.65,1.9] Yes
gardenPlant −0.4 [−0.99,0.1] No

Embedded score

crateDelivery 0.4 [−1.21,1.96] No
preTestLowLevel −2.4 [−3.18,−1.7] YesExternal information teacherID 0 [0,0.01] No

• Game events: Certain game events, such as hotkey usage and quest-/task-related actions, positively correlate with
learning outcomes. Conversely, other event shares negatively impact outcomes, except for toggle board usage. This
implies that students concentrating on completing major quests and knowing how to apply appropriate in-game tools
perform better in corresponding learning outcomes.

• Dialogue reading speed: Average dialogue reading speed appears to have little impact on learning outcomes.

• Replay frequency: Our findings indicate that students who replayed the game more frequently exhibited higher learning
outcomes, suggesting that repeated exposure or practice can reinforce mastery of the content.

• Embedded assessment scores: High embedded assessment scores in the CREi system, which tasks students with
identifying the correct argumentation component (claim, reason, evidence) by directing a soccer ball appropriately,
critical dialogue with Jasper (an in-game non-player character), team finding, and crate delivery tasks indicate high-level
learning outcomes. In contrast, scores in argumentation in Unit 3 and garden planting slightly decreased learning
outcomes. Other scores have little impact on learning outcomes.

• External sources: A student’s pre-test performance positively correlates with their post-test performance, implying that
pre-existing knowledge plays a vital role in learning progression. However, instructor guidance seems to have little effect
on students’ learning outcomes in this study, suggesting that the game’s design and individual student engagement are
more critical factors.

Each category, except for the dialogue feature category, has features significantly correlating with learning outcomes. Poten-
tial reasons why the feature representing students’ dialogue reading behaviours shows a significant contribution individually but
decreases in significance when combined with other features include the following: (1) Feature interaction: The feature’s
effect might depend on the presence of other features, with interaction effects either enhancing or diminishing its importance
when combined. (2) Overfitting issue: The feature might overfit the target variable when considered alone but fail to generalize
well when other features are included. (3) Redundant information: The feature might provide information already captured
by a combination of other features, rendering its individual contribution insignificant in the combined model.

6. Discussion
Stealth assessment in serious games enables the unobtrusive collection of data to monitor learning progress and evaluate
complex competencies. This study introduces a granular, framework-based pipeline for implementing stealth assessments in a
GBL environment, structured around the ECD framework, feature generation, computational model selection, and performance
evaluation. A key novelty is the development and validation of this approach to effectively predict learning outcomes by
capturing in-game behaviour patterns. Additionally, we integrate two established frameworks—ATMSG and xAPI—for logging
system design, addressing gaps in the empirical application of these frameworks for data logging in educational games. Our
approach also incorporates the IDEFA framework for feature generation, advancing current methodologies that require further
empirical validation.

This study makes a significant contribution by incorporating a wide range of in-game behaviours into the dataset for model
construction, addressing the gap in empirical research on combining in-game features to analyze learning patterns. While
there is room for further expansion, our approach includes a broader feature set than many previous studies, advancing the
application of learning analytics in GBL. Furthermore, we introduce a surrogate white-box model to interpret the black-box
computational models used in stealth assessments. This blend of interpretability and predictive power offers a novel solution
for identifying distinct behavioural patterns between high- and low-performing students, a method not extensively validated in
educational games. Finally, this research addresses key gaps by providing generalizable guidelines for implementing stealth
assessments across diverse educational contexts, contributing to the broader body of research.
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6.1 Further Thoughts Regarding RQ1 Results: Potential Refinements Following ECD’s Iterative Design
Paradigm

As discussed in Section 4, the ECD framework was instrumental in structuring our stealth assessment pipeline for MHS,
providing a systematic approach for translating in-game behaviours into insights about student learning. One of ECD’s core
strengths is its iterative design paradigm (L. Wang et al., 2015; Ke & Shute, 2015; V. J. Shute et al., 2016; Grover et al., 2017),
which we will adopt in future iterations to continually refine the pipeline. This iterative process will enable us to revisit and
enhance each stage—feature aggregation, feature engineering, model selection, and task design—based on empirical findings.
By doing so, we expect to improve the pipeline’s predictive accuracy, model interpretability, and generalizability across different
educational contexts.

6.1.1 Iterative Adjustments in Feature Generation
Initial analysis and expert input revealed several areas for improvement in our feature set, particularly in managing intercorrelated
features, addressing prediction specificity for low-performing students, and enhancing generalizability across game contexts.

First, during feature aggregation, we opted to delete student records with over 30% missing data. However, this approach
may have discarded critical information, especially for low-performing students, whose gameplay logs often had more missing
data due to early disengagement. Future refinements should explore more sophisticated imputation techniques to retain these
samples and better capture learning challenges faced by lower performers (Keerin, 2021).

Second, while our feature selection process relied on manual curation based on expert judgment, we may have overlooked
potentially valuable data. For instance, we only included interactions with key pedagogical objects, but non-pedagogical
interactions could also provide insight into learning behaviours. Future iterations could involve automatic feature selection
methods, applying advanced techniques to evaluate all potential features systematically. This approach would save time, retain
relevant information, and improve the pipeline’s generalizability (Jalota & Agrawal, 2021).

Additionally, certain features, such as the size of the explored game area and dialogue events, require further refinement.
For exploration behaviours, future adjustments could capture both breadth and depth, such as repeated visits to the same
areas, to better predict performance across different student groups. Dialogue event features could be further differentiated
by categorizing dialogues related to gameplay progression versus those related to instructional content, ensuring that subtle
learning behaviours are better represented in the model.

In terms of feature engineering, future refinements could address correlated features within subcategories, which may
introduce noise and hinder model performance. Techniques like independent component analysis, principal component
analysis, or autoencoders could be employed to reduce redundancy and improve the model’s predictive power (Ray et al.,
2021). Moreover, combining features from different subcategories through feature extraction methods could help capture
inter-categorical relationships, providing richer insights and enhancing model performance.

6.1.2 Computational Model Refinement
Although the current study demonstrated promising results, several areas could benefit from further iteration to enhance model
performance and improve generalizability across different game contexts.

One key area for refinement is the generalizability of the model selection process to other GBL environments. While
models were carefully selected based on the final feature set’s characteristics, their performance may be limited to the specific
context of this study. Additionally, the model selection process did not involve a comprehensive search for optimal algorithms
aligned with the feature set. Moreover, the current study relied heavily on RF without leveraging the combined strengths of
multiple models. To address these issues, future iterations could explore ensemble learning (EL) techniques. EL allows for the
flexible combination of different base models, with the ability to add or remove models depending on performance. Various
voting schemes, such as hard voting (using the best-performing model’s result) and soft voting (weighted combination of model
outputs), provide flexibility in determining the final result. Implementing EL could enhance model robustness and improve
generalizability across various game contexts within MHS and other GBL environments (Siddique et al., 2021).

Another area for refinement is model performance, particularly in improving specificity for identifying low-performing
students. While RF achieved high overall accuracy, it struggled to capture the nuanced behaviours of lower performers. Future
work could involve testing simpler models, such as BGL, through extensive hyperparameter tuning. BGL’s probabilistic
framework offers greater interpretability and may provide insights into low-performing students’ learning behaviours, which
complex models might overlook. This refinement would prioritize not only accuracy but also the ability to generate actionable
insights for instructors to support struggling students.

Finally, addressing dataset imbalance remains a critical area for future iterations. Although the current study employed
several resampling techniques, future studies could incorporate more advanced methods such as the adaptive synthetic
sampling approach (ADASYN), borderline-SMOTE, and cluster-SMOTE (Wongvorachan et al., 2023). Paired with refined
feature selection methods like recursive feature elimination with cross-validation (RFECV), the Boruta algorithm, and mutual
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information-based feature selection, these approaches would help ensure that models capture learning patterns across the full
spectrum of student performance, particularly in underrepresented groups (Dhal & Azad, 2022).

6.1.3 Task Model Adjustment
In addition to feature and model refinements, the task model, which involves defining in-game tasks to generate evidence for
learning prediction models, can also benefit from the iterative design paradigm of ECD.

One key area for refinement is the involvement of in-game activities that elicit clearer evidence of student learning
behaviours, particularly in distinguishing different learning levels. For example, tasks such as “arguing which watershed is
bigger” and “convincing Bill the pollutant is nearby” (see Table 16 in Appendix B (https://bit.ly/3QvTeBP)) already integrate
argumentation construction, a critical learning objective. However, future iterations could introduce more detailed in-game
activities that encourage varied levels of reasoning and decision-making. For instance, argumentation tasks could be broken
down into multiple attempts (e.g., an attempt is from starting to construct an argument to submitting a final response). By
recording which specific components were selected during argument construction—especially in cases where students submit
incorrect arguments—we could identify which aspects of the argumentation process pose challenges for students. This more
granular breakdown would help us understand where students struggle, providing stronger evidence of their learning progress
and identifying the specific skills they need to improve.

Additionally, task refinement could involve segmenting broader tasks (e.g., transporting supplies or tracing a pollutant
source) into smaller, more specific actions to enable more detailed tracking of student progress. For example, breaking the
task of tracing a pollutant into distinct phases—such as identifying clean versus polluted river sections or applying sensors at
different water points—could offer deeper insights into how students apply their knowledge of water flow dynamics. These
adjustments would generate clearer, more actionable evidence that can be used to enhance predictive models.

6.1.4 More Granular Competency Model
In future iterations of our stealth assessment framework, we plan to adopt a more granular competency model that evaluates
learning outcomes at the item level, while ensuring appropriate protection of student privacy. Although this study used the
summation of three assessment items to measure overall knowledge of water flow dynamics, we recognize the limitations in
capturing item-specific insights. Future studies will focus on item-level analyses to gain a deeper understanding of student
competencies across different aspects of the topic. This approach will help identify specific strengths and weaknesses, allowing
for more targeted instructional interventions. By refining the competency model to reflect distinct knowledge areas, we aim to
improve the interpretability of assessment results, providing educators with more precise and actionable insights.

Ultimately, future iterations will aim to refine the task design (task model in ECD), the evidence generation process
(evidence model in ECD, including features and computational models), and the competency measurement (competency model
in ECD). By aligning in-game activities more closely with learning objectives and collecting more precise evidence, we can
improve the accuracy of predictions related to student performance. Specifically, adopting a more granular competency model
will allow us to conduct item-level analyses, providing deeper insights into individual student competencies and enhancing the
precision of our learning assessments. This iterative refinement will ensure that tasks in MHS not only engage students but
also yield meaningful insights into their learning trajectories. The continuous optimization of these models, under the ECD’s
iterative design paradigm, will further enhance the robustness and generalizability of our stealth assessment framework across
various educational contexts.

6.2 Implications for RQ2’s Results: Insights from Interpreting Black-Box Models
In addressing RQ2, we discuss potential methods for interpreting black-box models and explain why we chose the surrogate
model method to infer black-box models, specifically using BLG to interpret the RF model. Our inference method offers a
viable solution for understanding how individual features impact the targeted learning outcome while achieving highly accurate
predictions from black-box models. By consolidating inference results, we identified key features that signal students’ learning
outcomes for MHS, completing the stealth assessment tool. A thorough examination of the inference results led us to conclude
that nearly every feature category has features significantly impacting students’ learning outcomes, except the dialogue category.
Specifically, the findings suggest several deductions, as described in the following paragraphs.

Previous research has demonstrated that patterns of student engagement with in-game tools correlate with their level of
expertise (Kang et al., 2017). Our analysis reveals that high-performing students exhibit greater efficiency and purpose when
using in-game tools. Specifically, they engage with these tools primarily to verify preconceived ideas rather than to generate new
ones. Furthermore, high performers display a superior ability to maintain sustained attention compared to their low-performing
peers when searching for appropriate tools to complete quests. Additionally, high performers frequently and quickly use tools
that do not contain lengthy texts, indicating a stronger motivation or enhanced capability to gather information from multiple
sources for quest completion.

Insights into students’ problem-solving strategies and knowledge absorption can be gleaned from their interactions with
in-game items (V. J. Shute et al., 2016). We observed that high-performing students interacted with relevant items less frequently
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but with a clear purpose. In contrast, low-performing students interacted with items more frequently and without a clear purpose.
This suggests that high performers are more likely to engage with items purposefully or after careful consideration than their
low-performing peers. This pattern is evident in how these groups interacted with crates that needed to be delivered to one of
two rivers. High performers adjusted their actions based on feedback from previous delivery outcomes, whereas low performers
tended to ignore feedback and did not alter their actions.

Event share features illuminate how students distribute their game time, indicating that students concentrating on completing
major quests and knowing how to apply appropriate in-game tools perform better in corresponding learning outcomes. It may
also suggest that high performers exhibit a keen understanding of game mechanics and maintain focus on their objectives. In
contrast, low performers are more easily distracted and struggle to filter relevant information from their surroundings.

Regarding the argumentation system, we observed that high performers tended to read information at different choice nodes
more carefully and compared them more frequently, indicating a deeper understanding of the curriculum. In contrast, low
performers were more efficient at filtering incorrect nodes and identifying correct ones. Notably, argumentation performances
in both Unit 2 and Unit 3 showed no significant correlation with our targeted learning outcomes, contrary to our expectations.
This discrepancy may be attributed to inadequate feature generation, as we only included logs showing the frequency of correct
and incorrect answer submissions. We did not include logs representing student interactions with assistant tools or behaviour
sequences within the argumentation system. Additionally, inappropriate game mechanics design within the argumentation
system might have contributed to this issue. First, the system allows unlimited attempts to find the correct answer, which can
diminish the incentive for deeper understanding and engagement. Second, it lacks explicit mechanisms to help students connect
the evidence displayed in the system with the evidence they gathered during gameplay, thereby weakening the overall coherence
of the argumentation process. Furthermore, the content embedded within the constructed argumentation has limited association
with the content knowledge that MHS Unit 3 aims to teach.

Embedded assessment scores showed mixed correlations with targeted learning outcomes. While some scores demonstrated
a positive association, one score exhibited a negative correlation, contrary to our expectations. This discrepancy may be due to
unclear quest instructions or immature game graphics and mechanics. Additionally, some embedded scores showed minimal
correlation with learning outcomes, indicating the need for further feature engineering to find better measurements for these
scores. Notably, students who replayed the game multiple times outperformed their peers, implying that a mechanism allowing
students to replay similar tasks as practice is crucial for educational game design and development. This finding also suggests
that incorporating a stealth assessment to track the frequency of repeated game content or mechanics is important for accurately
measuring in-game performance and targeted learning outcomes. As for the dialogue category, we discuss potential reasons for
the diminishing significance of this feature category that warrant further analysis and may emphasize the complex interplay
between various gameplay elements and their collective impact on learning outcomes.

Our study underscores the multifaceted nature of learning in educational games and highlights the critical role of specific
gameplay features in enhancing or impeding high-level learning outcomes. These insights have potential implications for the
design of stealth assessments, pedagogical activities, and educational games, which will be elaborated on in the following
section.

6.3 Implications for Stealth Assessment Design
Carvalho and colleagues (2015) suggested that their framework is particularly suitable for “expert usage,” implying that
stakeholders refining their games with ATMSG analytics benefit more from this framework. Conversely, those using the games
without being willing to modify them may be better served by simpler frameworks handling less granular log data due to
cognitive load limitations. Our study, however, indicates that research groups should integrate a granular logging system
capable of collecting comprehensive, feature-rich data, especially during the early stages of research, regardless of their specific
usage contexts. Similar opinions are echoed by Rowe and colleagues (2017) and Ke and colleagues (2019).

Even experienced experts often struggle to identify necessary game logs for constructing effective stealth assessments,
requiring numerous rounds of adjustment and testing with granular logging systems to ensure that no key information is omitted
(F. Chen et al., 2020). Despite extensive brainstorming and discussion in our study, we found our feature selections insufficient
to fully exploit stealth assessment potential, which includes real-time formative feedback during gameplay (Min et al., 2020),
adaptive learning experiences (V. J. Shute & Rahimi, 2021), and user-friendly dashboards for instructors to monitor students’
gameplay in real time (F. Chen et al., 2020). Therefore, we recommend that future studies construct stealth assessments within
complex GBL environments to ensure that embedded logging systems can collect extensive, detailed data reflecting students’
actions and contextual information. Ideally, this system should evolve alongside the game (Ke et al., 2019).

Based on our study, we recommend that future research consider the following game logs to assess students’ learning
outcomes unobtrusively:

• Tool utilization tracking: Logs on how students use in-game tools can distinguish low and high performers. Detailed
sequences of tool-usage actions provide insights into decision-making processes and problem-solving strategies (Kang

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 310



et al., 2017). Efficiency metrics, such as time taken to locate and utilize tools, indicate understanding of game mechanics,
suggesting a correlation between high efficiency and greater expertise. Differentiating between tools used for verifying
ideas versus generating new insights helps assess cognitive strategies and learning styles.

• Instruction interaction tracking: Logs recording how students interact with instructions, including time spent reading
and the sequence of steps followed, can measure students’ learning outcomes. These actions reflect how students absorb
new information and their learning processes during gameplay.

• Game world exploration tracking: Detailed logs of exploration activities, including areas visited, time spent, and
interactions, help identify patterns of distraction or focus loss. This data is crucial for understanding navigation and
attention allocation within the game environment (Loh et al., 2016).

• In-game item interaction tracking: Capturing detailed information on interactions with in-game items, including time
spent, frequency, and sequence, helps identify students who engage meaningfully with content versus those who struggle
(Yang et al., 2021).

• Decision-making points tracking: Identifying key decision points and the sequences of choices made at these points,
including time spent reading, provides insights into how decision-making skills correlate with learning outcomes, which
is also supported by the study of Snow and colleagues (2015).

• Feedback responsiveness measurement: Logs tracking how students respond to in-game feedback, including changes in
behaviour after receiving feedback, such as adjusting strategies or correcting mistakes, can differentiate high performers
who use feedback effectively from low performers who may ignore it.

• Comprehensive event share logging: Detailed logs capturing how students distribute their time across various game
events and activities, including the duration and frequency of interactions with different game elements, help identify
students’ learning processes and moments when they deviate from their objectives. This provides insights into their
attention management.

• Replay mechanics and practice: Logs of replay activities capturing data on tasks replayed, frequency of replays, and
outcomes of each attempt help measure students’ learning progress during gameplay. This can identify valuable tasks for
practice and how repeated practice affects learning outcomes.

• Performance metrics through different game stages: Learning objective–specific performance metrics, such as
embedded scores, track students’ learning outcomes in different game stages. Our findings indicate that combining
in-game activities with embedded assessment scores or performance metrics leads to the highest accuracy. Therefore,
we suggest that stealth assessments involve a comprehensive standard rubric to guide the creation of these performance
metrics according to educational game design.

6.3.1 Key Suggestions to Designers and Practitioners Regarding Stealth Assessment Design and Development Process
Our process for constructing the stealth assessment emphasizes the importance of iterative design and testing in refining both
the stealth assessment and the educational game. By integrating continuous improvement cycles, data-driven adjustments,
and key user involvement, we aim to create a robust and effective learning environment. This environment should align game
content with learning objectives, maintaining engagement and motivation without causing excessive distractions. We offer the
following suggestions for future researchers conducting iterative design and testing for refining stealth assessments:

• Continuous improvement: Practitioners should frequently conduct pilot tests of new logging and assessment features
with a small group of students. These pilot tests facilitate gathering preliminary data and necessary adjustments before
wider implementation. User feedback and observed data patterns from these tests guide the iterative design and testing
processes, continually refining logging systems and stealth assessments. Regular updates and improvements ensure that
assessment tools remain effective and relevant (L. Wang et al., 2015; V. J. Shute et al., 2016). The iterative process also
helps align game mechanics with curriculum goals, confirming that students learn from the game. Designing in-game
tasks and elements that directly support learning objectives, such as real-world scenarios, helps students apply their
knowledge to solve problems (Ke & Shute, 2015).

• Data-driven adjustments: Regular reviews of logged data allow for data-driven adjustments to stealth assessments,
ensuring the collection of sufficient and relevant events with corresponding context information. Analyzing the correlation
between learning-objective performance metrics or embedded assessment scores and targeted learning outcomes enables
the refinement of stealth assessments (Ke & Shute, 2015). Focusing on assessments with strong positive correlations
and reworking or replacing those with weak or negative correlations can improve the reliability and effectiveness of the
stealth assessment.
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• Key user involvement: Involving both students and educators in the design and testing process ensures that the system
meets instructional needs and provides valuable insights into the student learning process (Hicks, 2021). Educator
feedback is essential for constructing stealth assessments that align with the game’s educational content. This feedback
helps identify necessary indicators or features for educators’ use, enhancing the overall effectiveness of the stealth
assessment tool. Matching educators’ perceptions with the goals of stealth assessments provides instructors with useful
references for determining intervention moments, thereby enhancing the educational value of the GBL environment.

6.4 Future Research: Considering Implications for Affective Metrics
Sections 6.1, 6.2, and 6.3 outlined potential future studies centred on iterative refinements to features, models, and the design of
both the stealth assessment and the game itself. In this section, we propose new avenues for research, focusing specifically on
the development of affective metrics to further enhance the predictive accuracy of our learning outcome model. Based on our
study, although our prediction model surpasses an acceptable accuracy threshold, there is noticeable room for improvement.
While examining our results, we identified some interesting patterns not directly confirmed by the current features. We propose
that constructing affective metrics based on features representing in-game activities could enhance our learning outcome
prediction model, providing enhanced interpretability and appropriately measuring those patterns. These affective metrics can
measure attention, engagement, motivation, and cognitive load levels. Additionally, these metrics can shape critical elements
within instructor dashboards, aiding teachers in making appropriate intervention decisions. When combined, these affective
metrics generate richer information for measuring complex patterns.

Based on our findings, we summarize the following implications for generating affective metrics from features representing
in-game activities:

• Attention and focus measurement: By analyzing the duration of uninterrupted interactions with specific tools or tasks,
we can track students’ ability to sustain attention over extended periods. This measurement helps identify individuals
who excel at maintaining concentration and those who might benefit from additional support. Logging instances when
students divert from primary tasks to engage with irrelevant game elements provides critical data on distraction events.
These instances are valuable for identifying game aspects that may cause students to lose focus. Analyzing patterns of
focus and distraction, such as deviations from set tasks or prolonged periods of inactivity, can indicate levels of attention
that significantly affect students’ learning outcomes (Lin et al., 2019).

• Engagement and motivation metrics: Tracking indicators such as the frequency and duration of interactions with
specific gameplay elements, optional tasks, and replay activities allows us to assess overall engagement and motivation
levels, which often correlate with targeted learning outcomes. Studies by Chen and colleagues (2019) and Dabbous
and colleagues (2022) identified that participants willing to engage in optional or extra activities are likelier to have
higher engagement and learning outcomes. Additionally, analyzing how often students voluntarily use optional tools or
participate in extra–game world exploration and conversations with non-playable characters offers insights into their
motivation levels (David Des Armier Jr. & Skrabut, 2016). Investigating the correlation between these metrics and
targeted learning outcomes helps determine whether highly engaging elements support learning objectives or merely
entertain. Monitoring instances where high engagement does not lead to high learning outcomes allows for refining game
features to align more closely with educational goals.

• Cognitive load measurement: Cognitive load could be measured by (1) calculating the time duration students use
to complete tasks and comparing this duration with the total gameplay duration; (2) measuring the time spent reading
instructions relative to the total gameplay time to estimate the cognitive load of absorbing new information; (3) monitoring
the frequency and duration of interactions with in-game items to derive a metric of cognitive effort related to puzzle-
solving, where high frequency and duration of interactions with certain items may indicate a high cognitive load when
solving corresponding problems (Sevcenko et al., 2021); and (4) tracking students’ speed, frequency, and accuracy with
tool usage in various contexts to reflect how well they handle the cognitive demands of tool selection and application.

Suppose all students exhibit high levels of cognitive load in certain activities. In that case, these game sessions may
require further investigation to determine if they are too difficult, which may negatively affect learning outcomes (Chang
et al., 2017). Conversely, if only a few students show high cognitive load levels, instructors could consider providing
additional support to those students.

Last but not least, our prediction model results indicate a significant discrepancy in the model’s ability to detect low-
performing students compared to high-performing ones. We hypothesize that this discrepancy may be due to the lack of specific
features representing students’ off-task behaviours. The absence of such features could pose a key obstacle to implementing
serious games with embedded stealth assessment in classrooms (Sabourin et al., 2013; Carpenter et al., 2020). Off-task
behaviours, known contributors to ineffective learning (J. P. Rowe et al., 2009; Baker et al., 2004; Beserra et al., 2019;
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Baker et al., 2010), are complex to measure accurately due to their contextual nature (Carpenter et al., 2020). Although we
identified potential indicators of such behaviours in MHS through model inference—including extraneous map exploration,
non-goal-oriented interactions with items, and hasty task completion—further analysis is required to confirm their correlation
with off-task behaviours. Once confirmed, these indicators could be incorporated into a visualization dashboard for instructors,
enabling more effective monitoring of student gameplay performance.

Since the game logs in MHS contain rich behavioural information designed to measure learning, we demonstrated a pipeline
for creating a stealth assessment system grounded in student outcomes. It remains challenging for researchers to identify the
underlying reasons for these behaviours based solely on logging data, and this remains a limitation of stealth assessment. This
gap can be closed using a comprehensive framework that extends beyond the game and analysis of its logs, as introduced
by Grover and colleagues (2017). Grover’s approach encourages incorporating multi-source data, such as video recordings,
interviews, surveys, biometric measurements, and focus groups. This approach assists in interpreting the behaviours reflected
in the logs. Understanding the reasons behind these behaviours will help generate additional feature metrics, such as those
mentioned above, and improve the accuracy and effectiveness of our stealth assessment.
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of learning analytics for serious game design. In Proceedings of the 2014 IEEE 14th International Conference
on Advanced Learning Technologies (ICALT 2014), 7–10 July 2014, Athens, Greece (pp. 230–232). IEEE. https:
//doi.org/10.1109/ICALT.2014.73

Heine, C. (2021). Towards modeling visualization processes as dynamic Bayesian networks. IEEE Transactions on Visualization
and Computer Graphics, 27(2), 1000–1010. https://doi.org/10.1109/TVCG.2020.3030395

Heinemann, B., Ehlenz, M., Görzen, S., & Schroeder, U. (2022). xAPI made easy: A learning analytics infrastructure for
interdisciplinary projects. International Journal of Online & Biomedical Engineering, 18(14). https://doi.org/10.3991/
ijoe.v18i14.35079

Henderson, N., Acosta, H., Min, W., Mott, B., Lord, T., Reichsman, F., Dorsey, C., Wiebe, E., & Lester, J. (2022). Enhancing
stealth assessment in game-based learning environments with generative zero-shot learning. In A. Mitrovic & N. Bosch

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License (CC BY 4.0) 316

https://doi.org/10.1007/978-3-319-05825-2_17
https://doi.org/10.1177/001316446602600307
https://doi.org/10.1177/001316446602600307
https://www.kom.tu-darmstadt.de/papers/GdMS09_533.pdf
https://doi.org/10.4018/978-1-4666-3673-6.ch005
https://doi.org/10.1109/SocialCom.2010.79
https://doi.org/10.1111/jcal.12129
https://doi.org/10.22318/cscl2011.591
https://doi.org/10.1002/spe.3254
https://doi.org/10.1145/3105910
https://doi.org/10.1145/3236009
https://www.academia.edu/29030853/A_Case_for_a_Formal_Design_Paradigm_for_Serious_Games_iDMAa_and_IMS_conference
https://www.academia.edu/29030853/A_Case_for_a_Formal_Design_Paradigm_for_Serious_Games_iDMAa_and_IMS_conference
https://doi.org/10.1109/ICNC.2008.871
https://ceur-ws.org/Vol-2902/paper9.pdf
https://dl.acm.org/doi/10.5555/944919.944968
https://doi.org/10.4018/978-1-7998-5770-9.ch013
https://doi.org/10.4018/978-1-7998-5770-9.ch013
https://doi.org/10.1109/ICALT.2014.73
https://doi.org/10.1109/ICALT.2014.73
https://doi.org/10.1109/TVCG.2020.3030395
https://doi.org/10.3991/ijoe.v18i14.35079
https://doi.org/10.3991/ijoe.v18i14.35079


(Eds.), Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), 24–27 July
2022, Durham, UK (pp. 171–182). International Educational Data Mining Society. https://educationaldatamining.org/
edm2022/proceedings/2022.EDM-long-papers.15/index.html

Henderson, N., Kumaran, V., Min, W., Mott, B., Wu, Z., Boulden, D., Lord, T., Reichsman, F., Dorsey, C., Wiebe, E., & Lester, J.
(2020). Enhancing student competency models for game-based learning with a hybrid stealth assessment framework. In
A. N. Rafferty, J. Whitehill, C. Romero, & V. Cavalli-Sforza (Eds.), Proceedings of the 13th International Conference
on Educational Data Mining (EDM 2020), 10–13 July 2020, online (pp. 92–103). International Educational Data
Mining Society. https://educationaldatamining.org/files/conferences/EDM2020/papers/paper 158.pdf

Hicks, D. (2021). Stealth assessment: Teacher’s perceptions of how digital-based educational games influence teaching and
learning in the middle school mathematics classroom [Doctoral dissertation, Piedmont College]. https://www.proquest.
com/openview/a10b0dc17805485238724aa3376201b3/1

Hooshyar, D., Ahmad, R. B., Yousefi, M., Fathi, M., Horng, S.-J., & Lim, H. (2016). Applying an online game-based formative
assessment in a flowchart-based intelligent tutoring system for improving problem-solving skills. Computers &
Education, 94, 18–36. https://doi.org/10.1016/j.compedu.2015.10.013

Huang, Y.-M., & Du, S.-X. (2005). Weighted support vector machine for classification with uneven training class sizes. In
Proceedings of the 2005 International Conference on Machine Learning and Cybernetics (ICMLC 2005), 18–21
August 2005, Guangzhou, China (pp. 4365–4369, Vol. 7). IEEE. https://doi.org/10.1109/ICMLC.2005.1527706

Jalota, C., & Agrawal, R. (2021). Feature selection algorithms and student academic performance: A study. In D. Gupta,
A. Khanna, S. Bhattacharyya, A. E. Hassanien, S. Anand, & A. Jaiswal (Eds.), International conference on innovative
computing and communications. Advances in intelligent systems and computing (pp. 317–328, Vol. 1165). Springer.
https://doi.org/10.1007/978-981-15-5113-0 23

Jeon, H., He, H., Wang, A., & Spooner, S. (2023). Modeling student performance in game-based learning environments. arXiv
preprint arXiv:2309.13429. https://arxiv.org/abs/2309.13429

Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers
in Human Behavior, 72, 757–770. https://doi.org/10.1016/j.chb.2016.09.062

Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A systematic review on imbalanced data challenges in machine learning:
Applications and solutions. ACM Computing Surveys (CSUR), 52(4). https://doi.org/10.1145/3343440

Ke, F., Parajuli, B., & Smith, D. (2019). Assessing game-based mathematics learning in action. In D. Ifenthaler & Y. J. Kim
(Eds.), Game-based assessment revisited (pp. 213–227). Springer International Publishing. https://doi.org/10.1007/978-
3-030-15569-8 11

Ke, F., & Shute, V. (2015). Design of game-based stealth assessment and learning support. In C. S. Loh, Y. Sheng, & D. Ifenthaler
(Eds.), Serious games analytics: Methodologies for performance measurement, assessment, and improvement (pp. 301–
318). Springer International Publishing. https://doi.org/10.1007/978-3-319-05834-4 13

Keerin, P. (2021). A comparative study of missing value imputation methods for education data. In Proceedings of the 29th
International Conference on Computers in Education (ICCE 2021), 22–26 November 2021, online. Asia-Pacific
Society for Computers in Education. https://library.apsce.net/index.php/ICCE/article/view/4233
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1. Appendix A

A.1 Gameplay Metrics Construction
A.1.1 Size of explored game area

Feature Name In Dataset Brief Description
Explored Area A categorical variable, including 4 levels, describes the size of the

explored area of unit 3’s main game map. The higher the level,
the larger the map size the student explored during gameplay.

DungeonExplored Area A categorical variable, including 4 levels, describes the size of
the explored area of unit 3’s dungeon map. The higher the level
the larger the map size the student explored during the game
procedure.

Table 4. Brief descriptions regarding the features under the category of the size of the explored game area.

A.1.2 Speed of task completion

Feature Name In Dataset Brief Description
AverageSpeed A categorical variable, including 4 levels, describes the size of the

explored area of unit 3’s main game map. The higher the level,
the larger the map size the student explored during gameplay.

Table 5. Brief descriptions regarding the features under the category of the speed of the task completion.

A.1.3 Tool using status

Feature Name in Dataset Brief Description
Map.menu.node.freq An integer variable that measures how many times a student

opens the in-game tool, map, to seek for a path to fulfill tasks or
solve puzzles.

Chat.log.menu.node.freq An integer variable measures how often a student opens the chat
log tool to review conversations that happened with in-game
characters for important information extraction.

Crash.diagnostics.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, crash diagnostics, to figure out what issues
happened on the spaceship mainly for fixing it and performing
the side quests.

Quest.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, quest menu, to review requests for fulfilling the
current quest.

Backing.info.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, backing information, to check the storyline and
background information.

Help.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, help menu, to find out solutions for problems
related to game operation.

Map.menu.node A numeric variable that measures the student’s average speed of
checking the tool, map, to seek for a path to fulfill tasks or solve
puzzles.

Chat.log.menu.node A numeric variable that measures the student’s average speed of
checking the tool, chat log, to review conversations that happened
with in-game characters for important information extraction.
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Crash.diagnostics.menu.node A numeric variable that measures the student’s average speed of
checking the tool, crash diagnostics, to figure out what issues
happened on the spaceship mainly for fixing it and performing
the side quests.

Quest.menu.node A numeric variable that measures the student’s average speed of
checking the tool, quest menu, to review requests for fulfilling
the current quest.

Backing.info.menu.node A numeric variable that measures the student’s average speed of
checking the tool, backing information, to check the storyline and
background information.

Help.menu.node A numeric variable which measures the student’s average speed
of checking the tool, help menu, to find out solutions for problems
related to game operation.

Table 6. Brief descriptions regarding the features under the category of the tool using status.

A.1.4 In-game items interactions

Feature Name in Dataset Brief Description
U3...TOSS.SENSOR..POLLUTED This data was collected during the quest which asks students for

throwing out sensors and find out the pollutant river source based
on the sensors’ signals. The variable records the frequency of
throwing out the sensor with the signal showing that this river
area has a pollutant. This is an integer variable.

U3...TOSS.SENSOR.DOWNSTREAM This data was collected during the quest which asks students for
throwing out sensors and find out the pollutant river source based
on the sensors’ signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river’s down area which is not in the
search scope. This is an integer variable.

U3...TOSS.SENSOR.POLLUTED.SAME.AREA This data was collected during the quest which asks students for
throwing out sensors and find out the pollutant river source based
on the sensors’ signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
threw sensors into the river’s area which has already been checked
by previously thrown sensors. This is an integer variable.

U3...TOSS.SENSOR..SUCCESS This data was collected during the quest which asks students for
throwing out sensors and find out the pollutant river source based
on the sensors’ signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river’s area which is not polluted. This is
an integer variable.

U3...TOSS.SENSOR.DOWNSTREAM.CLEAN This data was collected during the quest which asks students for
throwing out sensors and find out the pollutant river source based
on the sensors’ signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river’s down area which is clean and not
in the searching scope. This is an integer variable.

U3...CRATE.THROW..FAIL This data was collected during the quest which asks students for
delivering crates into the correct river based on the river flow.
The variable records the frequency of how many crates the player
delivers to the wrong river. This is an integer variable.
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U3...CRATE.THROW..SUCCESS This data was collected during the quest which asks students for
delivering crates into the correct river based on the river flow.
The variable records the frequency of how many crates the player
delivers to the correct river. This is an integer variable.

Table 7. Brief descriptions regarding the features under the category of in-game items interactions.

A.1.5 Argumentation-related gaming behaviors

Feature Name in Dataset Brief Description
HOVERNODEFREQ The variable records how many times the student hovered on a

node, which will trigger out a popup text box showing the detail
information associated with the node. This is an integer variable.

U3.CLAIM.II The variable records the speed the student used to read a specific
node, which is called “U3.Claim.ll” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.EVIDENCE.B The variable records the speed the student used to read a specific
node, which is called “U3.Evidence.B” at this case. This is a
numeric variable with the interval scaled from 1 to 4.

REASONING.3 The variable records the speed the student used to read a specific
node, which is called “Reasoning.3” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.4 The variable records the speed the student used to read a specific
node, which is called “Reasoning.4” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.CLAIM.I The variable records the speed the student used to read a specific
node, which is called “U3.Claim.l” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.5 The variable records the speed the student used to read a specific
node, which is called “Reasoning.5” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.EVIDENCE.A The variable records the speed the student used to read a specific
node, which is called “U3.Evidence.A” at this case. This is a
numeric variable with the interval scaled from 1 to 4.

REASONING.2 The variable records the speed the student used to read a specific
node, which is called “Reasoning.2” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.1 The variable records the speed the student used to read a specific
node, which is called “Reasoning.1” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

Table 8. Brief descriptions regarding the features under the category of argumentation-related gaming behaviors.

A.1.6 Gaming logging event shares

Feature Name In Dataset Brief Description
TriggerNumber The logging system will record a triggering event when the student

interacts with in-game items, such as boxes, river boarders, buttons, and
so on. The variable is calculated by summing up all triggering events
divided by the summation of the total number of events recorded during
the whole game procedure.

MovementNumber The logging system will record a movement event when the student
presses the keyboard button of A, W, S, and D and move around in
the game environment. The variable is calculated by summing up all
movement events divided by the summation of the total number of events
recorded during the whole game procedure.
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MissionCompleteNumber The logging system will record a mission-complete event when the
student receives, makes progress to, or perform a quest or a task. The
variable is calculated by summing up all mission-complete events divided
by the summation by the total number of events recorded during the
whole game procedure.

StateUpdateNumber The logging system will record a triggering event when the student
switch between different game scenes or does something that makes the
game system update some data. The variable is calculated by summing
up all state-update events divided by the summation by the total number
of events recorded during the whole game procedure.

DialogueNumber The logging system will record a dialogue event when the student triggers
a dialogue box out and makes operations, such as making choices to
different dialogue branches, pressing the button moving to the next
dialogue or pressing the button moving to the previous dialogue for
reviewing. The variable is calculated by summing up all dialogue events
divided by the summation of the total number of events recorded during
the whole game procedure.

ArfRelatedNumber The logging system will record an ARF-related event when the student
interacts with ARF(AI) panel to use in-game tools for seeking hints
related to solutions. The variable is calculated by summing up all ARF-
related events divided by the summation of the total number of events
recorded during the whole game procedure.

HotkeyNumber The logging system will record a Hotkey event when the student press
hotkeys for checking in-game tools, such as mini map, quest reminder,
dialogue records, and so on. The variable is calculated by summing up
all hotkey events divided by the summation of the total number of events
recorded during the whole game procedure.

ToggleNumber The logging system will record a toggle event when the student uses a
toggle board, a flyable skateboard to navigate in the game environment.
The variable is calculated by summing up all toggle events divided by
the summation of the total number of events recorded during the whole
game procedure.

JumpNumber The logging system will record a jump event when the student jumps
in the game environment. The variable is calculated by summing up
all jump events divided by the summation of the total number of events
recorded during the whole game procedure.

ArgNumber The logging system will record an argument event when the student
makes progress or interactions in a 2D game scene for argumentation
construction. The variable is calculated by summing up all argumentation
events divided by the summation of the total number of events recorded
during the whole game procedure.

Table 9. Brief descriptions regarding the features under the category of log event type shares.

A.1.7 Gaming performance assessment

Feature Name in Dataset Brief Description
SeedPerformance This data is collected when the student is asked to plant seeds in the

correct locations based on water flow. The student will receive high
performance when he or she plants less than two seeds into the wrong
location, otherwise, he or she will be ranked as low performance. This is
a categorical variable.
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ArgumentLevel This data is collected after students construct a complete argumentation
during playing Unit 3 and submitting the results for feedback. There are
5 levels under this categorical variable. The higher the level, the better
performance students receive in argumentation construction sessions.
E.g. students who submit correct answers without any failed trial will
reach the 5th level, and students who submit just one failed answer
without any correct submission will receive the 1st level.

U2ArgumentLevel This data is collected after students construct a complete argumentation
during playing Unit 2 and submitting the results for feedback. There are
5 levels under this categorical variable. The higher the level, the better
performance students receive in argumentation construction sessions.
E.g. students who submit the correct answer without any failed trial
will reach the 5th level, and students who submit just one failed answer
without any correct submission will receive the 1st level.

Table 10. Brief descriptions regarding the features under the category of gaming performance assessment.

A.1.8 Dialogue Reading Statement

Feature Name in Dataset Brief Description
DialogueSpeed This variable is numeric. It saves the average speed students used to read

dialogues. It is scaled into the interval from 1 to 4. The higher the value
the slower students read dialogues.

Table 11. Brief descriptions regarding the features under the category of dialogue reading statement.

A.1.9 Other Information

Feature Name in Dataset Brief Description
TeacherId This variable reflects which teacher leads or guides the student to play

the game.
Trial It represents how many times the student replays the game or repeats the

same quests or tasks.
Table 12. Brief descriptions regarding the features under the category of other information.

A.2 Embedded Assessment Score Description
A.2.1 Embedded assessment score related to previous units

Feature Name in Dataset Brief Description Formula to Calculate the Score
TutorialArgScore This EA score is calculated after the stu-

dent finding out a proper claim during the
argument construction tutorial quest that
happened in Unit 1

1 point for correct submission on 1st at-
tempt; 0 points for anything else.

BiggerArgScore This EA score is calculated after the student
forms a proper argumentation that clarifies
which watershed is bigger than the other
during the argumentation quest that hap-
pened during Unit 2.

2 points for finding correct answers within
3 attempts; 1 point for finding out correct
answers within 4 attempts; 0 points for no
answer finding for more than 4 attempts.

UpStreamArgScore This EA score is calculated after the student
forms a proper argumentation that clarifies
where the pollutant source is during the ar-
gument construction happening in Unit 3.

2 points for finding correct answers within
3 attempts; 1 point for finding out correct
answers within 6 attempts; 0 points for no
answer finding for more than 6 attempts.
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CREIScore This EA score is calculated when the stu-
dent enters into an environment where an
avatar asks them to figure out a complete ar-
gumentation structure. This quest happens
in Unit 2.

1 point for each correct choice, -0.33 points
for each incorrect choice.

JasperCritiqueScore This EA score is calculated when the stu-
dent triggers out a dialogue box, chatting
with an avatar named Jasper, and needs to
make a choice to decide if Jasper’s critique
is correct or not. This quest happens in Unit
2.

1 point for selecting “you forgot evidence;
0 points for either “Jasper you are right; or
“Jasper you forgot the claim.”

FindTeamAveScore This EA score is calculated when the stu-
dent needs to use an in-game mini-map to
figure out the location based on topologic
characteristics. This quest happens in Unit
2.

0.5 points for opening the map; 1 point for
finding the team in 3 minutes or less; 0
points for anything else.

Table 13. Brief descriptions and calculating formula regarding the features under the category of embedded assessment score
related to previous units.

A.2.2 Embedded assessment score related to current unit

Feature Name in Dataset Brief Description Formula to Calculate the Score
PlantScore This EA score is calculated when the stu-

dent needs to figure out where to plant seeds
based on pumps’ locations along the pollu-
tant river. This quest happens in Unit 3.

1 point for Selecting a correct pump loca-
tion; -1/2 points for selecting an incorrect
pump location.

CrateDeliveryScore This EA score is calculated when the stu-
dent needs to choose the correct river for
delivering crates to an avatar Sam based on
the river flow. This quest happens in Unit
3.

1 point for correct crate placement.

Table 14. Brief descriptions and calculating formula regarding the features under the category of embedded assessment score
related to current units.

A.3 External information
A.3.1 Pretest and post-test outcomes

Feature Name in Dataset Brief Description
U3PrePerformance Pretest score related to Unit 3’s curriculum knowledge
U3PostPerformance Post-test score related to Unit 3’s curriculum knowledge

Table 15. Brief descriptions regarding the features under the category of external information.
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2. Appendix B
As described in the game context and data collection section, Mission HydroSci (MHS) is a 3D game-based learning environment
designed and developed associated with comprehensive and sophisticated curriculum integration. Each key quest of MHS can
be seen as an efficient marker of learning achievement.

Table 16 displays the game unit, what quests are included in a specific unit, and a detailed description corresponding to one
quest. As you can see, there is one quest in Unit 1, five in Unit 2, and five in Unit 3, eleven in total. Notably, we mentioned
previously that there are 12 quests involved in this study and defined in the task model of the Evidence-Centered Design (ECD)
approach, which is because the quest of collecting samples from eastern and western waterfalls is actually two successive
quests.

Figure 1 shows several example screenshots displaying how the game world or surroundings look like when students were
engaging in completing some key quests mentioned above.

Game Unit Quest Name Detailed Description
Unit 1 Tutorial unit In this unit, students will talk to each key non-playable character, learn

open and get familiar of each in-game tool through menus or hotkeys,
know ways to navigate in the game world, and know about the interface
of the argumentation system to understand how to construct a complete
scientific argument

Unit 2

Find the team After crash-landing on a new planet, the main character (controlled by
the player) must locate the rest of the crew. To accomplish this, they must
interpret the topographic map and carefully observe their surroundings.
However, there is no wayfinding assistance provided during this quest.

Collect samples from eastern
and western waterfalls

Based on the conversations with NPCs, players need to find the positions
of the eastern and western waterfalls. By investigating the samples of
two waterfalls, players need to collect appropriate evidence describing
the characteristics of each waterfall. In this way, they could deduce
the conditions of each waterfall’s watershed and prepare later scientific
argumentation or debate with NPCs.

Argue which watershed is
bigger

Dr. Toppo (one of the NPCs) will invite players to the argumentation
system to construct a complete argument that makes sense with collected
evidence from the waterfalls. The argumentation system mimics the solar
system, where the claim works as the sun, and reason and evidence work
as planets around the sun. The planets represent evidence position in the
further interstellar orbit than the planets representing reasons. Players
need to choose the correct claim, reason and evidence from available
choices displayed in the left corner of the system.

Jasper’s proposal Through a conversation with Jasper (Another NPC), you will debate
with him to determine if his proposal about the new place is logical with
the information the player collected from today’s environment.

CREI system To fix the system of the AI ARF, players will enter into a system called
CREI to practice the definitions of three components of scientific argu-
mentation. Players will see a screen showing different sentences, and
they need to judge which component the sentence represents by throwing
balls in the direction showing the correct component.

Unit 3

Sam’s supplies Players will meet Samantha (NPC) at her garden base as she is just
starting. To help her build up the garden, players need to transport
supplies to Sam’s Garden base through the river. Players must deliver 4
crates to the river stream to finish the quest. There are two river streams
where players must investigate their water flows to decide which is the
correct stream to transport. After players deliver each crate to a certain
river stream, a dialogue will show the feedback on whether the stream is
correct.
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Game Unit Quest Name Detailed Description
Collect pumps from the alien
ruins

After finding the pollutant source, Sam told us she found a huge tree
near an intersection of the river branches and doubted that some river
branches were also polluted by the battery core. To ensure her thought,
we need to enter into an alien ruin to collect pumps that allow us to plant
Sam’s plant seeds into the mini gardens along the river to test which
branch was polluted. Players must apply what they learned regarding
water flows to unlock those pumps and solve puzzles within the alien
ruin. The general format of the puzzle is to find and carry a cube from the
surroundings, put it into the water channel, and guide it to the destination
by managing the water flow direction through a controlling panel.

Trace the source of pollutant After receiving the supplies, Sam found the river is polluted. She pro-
vides players with sensors which will light red when the river spot is
polluted and green when it’s clean. Players need to take advantage of
the sensors and investigate the characteristics of the river, such as water
flow direction, whether in a river branch or its surrounding environment,
to find the source of the pollutant, which is a crashed battery core.

Plant seeds After getting the pumps, players can plant Sam’s seeds into the garden
along the river to trace how the dissolved pollutant materials spread
along the river flow. Players need to observe the river conditions to judge
which mini garden to plant to accurately trace the dissolved pollutant
materials’ flow direction. Each time players plant the seed will trigger a
dialogue showing Sam’s feedback regarding whether the mini-garden is
polluted.

Convince Bill the pollutant is
nearby

After finding the position of the battery core, Bill (NPC) will invite
us to enter the argumentation system to construct a complete scientific
argument to convince him where the battery core is. The players must
choose the correct reasoning to connect the pre-decided evidence and
claim logically within the system.

Table 16. Detailed description for each game quest involved in the task model of the Evidence-Centered Design (ECD)
approach.
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(a) Students just arrived at a new planet, trying to find other team members. (b) Students are picking up the crate for later delivery.

(c) Students just delivered a crate and Sam gave feedback regarding the
delivery.

(d) Students just found the source of the pollution based on the sensors
reflection

(e) Students are constructing an argument within the argumentation system

(f) A giant tree representing the source of dissolvable materials, after this
scene, students need to find how the dissolvable materials spread along the
river by installing pumps.

(g) Students installed the pumps in one spot along the river. Sam gave
feedback according to the result.

Figure 1. example screenshots about part of quests involved in the task model of Evidence-Centered Design (ECD).
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3. APPENDIX C: Identifying Optimal Features: Methods and Materials
This appendix offers detailed descriptions of each of the subcategories within each feature category. We also present extensive
visualizations and descriptions that delineate the outcomes of our exploratory analyses and descriptive statistics pertaining to
the engineered features. This supplementary information further expands upon the procedures outlined in Section 4.2.

C.1 Detailed descriptions of feature subcategories
Based on the high-level feature categories described within the main text of this article, we continue to subcategorize each of
them. For gameplay behaviors, we have the following feature subcategories:

1. Size of explored game area: it describes how large a student went around or explored in different game maps.

2. Speed of task completion: It represents how fast a student completes a game task.

3. Tool using status: It depicts in-game tools using status.

4. In-game item interactions: It depicts how students interact with in-game items.

5. Argumentation construction: It includes how students perform when constructing a complete and reasonable scientific
argumentation.

6. Event type shares: There are ten logging events describing different in-game behaviors students spent their time on. It
describes how students distribute or allocate their game time to some extent.

7. Dialogue reading behaviors: it depicts how frequently and fast a student reads dialogues to receive helpful information
or promote game progress.

8. Game replay times: It represents how often students repeatedly replayed the same content.

For embedded assessment scores, we have the following subcategories:

1. Previous embedded assessment scores: It contains scores measuring the learning outcomes of subject-matter knowledge
marked by game logs collected from previous units.

2. Current embedded assessment scores: It includes scores having the same function as described above but collected in
the current unit.

For external information, the feature subcategories are shown in the following:

1. Demographic information: It includes students’ general information, such as gender, age, and social-economic status.
Considering content limitations, we did not include students’ demographic information in this study.

2. Assessment scores: It contains assessment scores reflecting students’ expert levels of subject-matter knowledge, which
we want them to learn from the game. External instruments collect all scores under this subcategory.

3. Other external information: This subcategory contains all other information related to participating students except the
aforementioned information. It could be information about students’ personalities, learning styles, or gamer types. It also
could be some streams of information collected from high-frequency sensors, such as eye trackers, motion sensors, or
motion detectors. Given that the primary goal of this article is to investigate the potential of game logs to predict students’
learning outcomes, we do not include any feature under this category.

C.2 Exploratory Analysis and Descriptive Statistics Regarding Generated Features
The relationship of each feature to the target learning outcome directly or indirectly affects the prediction model’s performance,
influencing our feature engineering and the predictive power of each feature. We conducted an exploratory analysis to
comprehend how each feature might predict the target learning outcome. Given that the data types of the selected features can
be categorized into numeric and categorical, we selected two statistical methods appropriate to these types: the Mann-Whitney
U test (Mann & Whitney, 1947) for numeric features and Fisher’s Exact test (Fisher, 1935) for categorical features. These
nonparametric tests are designed to handle features that do not conform to statistical assumptions about their probability
distributions, and they produce robust and accurate results even when the classification groups are small and unbalanced.
Additionally, to further validate the results of the above nonparametric tests and help audiences understand the practical
significance of the results, we also calculated the Effect Size for both nonparametric tests. Specifically, Rank-Biserial
Correlation (Glass, 1966) for the Mann-Whitney U test, while Cramer’s V (Cramér, 1999) for Fisher’s Exact test.
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(a) Task average completing speeds (b) Arg-nodes hovering frequency (c) Arg-nodes hovering speeds
Figure 2. The distributions of completion speeds, argumentation hovering frequency, and argumentation hovering speeds.

(a) Tool using frequency (b) Tool using speeds (c) Event type percentages
Figure 3. The distributions of tool use frequency, tool use speed, and event type percentages.

In this section, we examine the validity of both numeric and categorical variables against our categorical dependent
variable, Unit 3 Post-Test Performance. The following subsections are labeled ”Categorical vs. Numeric” and ”Categorical vs.
Categorical,” respectively. This exploratory data analysis aids us in identifying and iterating on the features with the greatest
predictive potential for subsequent model construction.

Categorical V.S. Numerical Figures 2, 3, 4, and 5 display the distributions of relevant numeric features, color-coded by Unit
3’s post-content assessment scores. The high-score group is represented in orange, and the low-score group in blue. Table 17
enumerates numeric features that demonstrate statistically significant differences between the two performance groups.
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Dependent Variable Independent Variable Mann-Whitney U Value Effect Size (Rank-biserial correlation)

U3 Post Performance

Node-evidence-b-hover-speed 12247* 0.16
Node-claim-I-speed 9266. -0.13
Node-reasoning-1-speed 9352.5. -0.12
Tool-chat-log-freq 9341. -0.12
Tool-map-freq 9419.5. -0.11
Tool-crash-diagnostics-speed 9317. -0.12
Tool-backing-info-speed 9417. -0.11
Event-dialogue 9229.5* -0.13
Event-Arf-tool 11758.5. 0.11
Event-hotkey 12256** 0.16
Item-freq-down-stream-sensor 9002.5* -0.15
Item-freq-polluted-sensor 8915.5* -0.16
Item-freq-crate-fail 9075.5* -0.14
Embedded-score-upstream-arg 12025* 0.14
Embedded-score-CREI 12162.5** 0.16
Embedded-score-find-team 11879.5* 0.12
Embedded-score-Jasper 11799* 0.11
Area-size-non-dungeon-area 8969.5* -0.15

Table 17. Mann-Whitney U Testing results related to independent numeric variables. The mark “.”, “*”, “**”, and “***”
following the testing result value represents the significance degree reflected by p-value. “.” indicates the p-value is less than
0.1 but larger or equal to 0.05; “*” indicates the p-value is less than 0.05 but larger or equal to 0.01; “**” indicates the p-value
is less than 0.01 but larger or equal to 0.001; “***” indicates the p-value is less than 0.001. The Effect Size (Rank-biserial
correlation ranges from -1 to 1 where: 1 indicates a perfect positive association; -1 indicates a perfect negative association; 0
indicates no association. An absolute effect size value of 0.1 or greater suggests a potentially meaningful association between
the dependent and independent variables warranting further analysis.

(a) Item interaction frequencies (b) Area exploration sizes (c) Dialogue reading speeds
Figure 4. The distributions of item interaction speed, area exploration, and dialogue reading speed.

Integrating our analysis from Table 17 and Figures 2, 3, 4, and 5, we can deduce the following:

1. High-performing students, those with high post-content assessment scores, tend to read nodes (such as Reasoning.1 and
Claim. I) significantly faster than their peers, but they spend considerably more time on the Evidence B node.

2. These high-performing students use the map tool significantly more frequently than their lower-performing peers.
However, they infrequently open the chat log, which is more commonly used by the low-performing group. They also
spend less time using tools that display background game information and the spaceship’s crash diagnostics information.
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3. High-performing students significantly outpace the low-performing group in utilizing the game’s ”hot keys”, such as
in-game tools and references to Arf, the in-game AI. These tools provide helpful information for solving puzzles and
completing tasks. Conversely, low-performing students generate more dialogue events during their gameplay.

4. High-performing students are more accurate in the game tasks, delivering fewer boxes to the wrong river and throwing
fewer sensors into polluted areas than low-performing students.

5. High-performing students achieve significantly higher scores on embedded assessments, particularly in tasks related to
completing Unit 3’s argument construction, understanding the complete argument structure during the CREI system,
selecting the correct answer when defending their opinion to Jasper, and efficiently finding the team location using the
MHS map tool.

6. Interestingly, high-performing students cover less area in the main game scene of Unit 3 than their low-performing
counterparts.

(a) Embedded assessment scores
Figure 5. The distributions of embedded assessment scores.

Although these observations lack statistical significance, the patterns revealed in Figures 2, 3, 4, and 5 provide additional
potential insights for distinguishing high- and low-performing students:

1. High-performing students generally spend more time completing tasks, regardless of whether these tasks involve acquiring
new knowledge or applying and practicing previously learned information.

2. High-performing students hover less frequently over argument text nodes than their low-performing counterparts.

3. They spend more time reading argument nodes associated with Reasoning 4 and 5, which represent the two most
potentially correct answers within the argumentation system.

4. High-performing students tend to scan the ”Help” tool more swiftly, dedicating more time to the tool that provides
detailed quest information.

5. They generate a larger share of log events related to mission completion and movement within game areas, but a smaller
share related to interactions with in-game items.

6. High-performing students typically achieve higher, or in some cases equal, embedded assessment scores compared to
low-performing students.

7. Lastly, high-performing students demonstrate quicker reading speeds, as indicated by the reduced time spent on reading
dialogues.
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(a) U3 Pre Performance (b) U3 Seed Performance (c) U3 Argument Performance (d) U2 Argument Performance

(e) Game replay times (f) Teacher Ids
Figure 6. The distributions of categorical features

Categorical V.S. Categorical Figure 6 illustrates the distributions of the relevant categorical features. From this figure, we
observe that high-performing students typically achieve higher pre-test scores for the content of Unit 3 and exhibit superior
seed-planting performance, implying that they planted three or more seeds in locations where growth is likely. While these
high-performing students may commit occasional errors when planting the first seed, they also demonstrate better performance
in argument construction and exhibit a higher frequency of game replay. Notably, Subfigure (f) of Figure 6 suggests that the
teacher employing MHS impacts student performance.

Table 18 further shows that the features of Unit 3’s pre-content assessment scores, seed performance, argumentation
performance, and the classroom teacher exhibit significant differences between the two performance groups.

Dependent Variable Independent Variable Fisher’s-Exact Value Effect Size (Cramér’s V)

U3 Post Performance

U3 pre-performance 21.75*** 0.26
seed performance 17.267*** 0.18
U3 argument performance 7.6. 0.15
Teacher Id 33.241*** 0.32

Table 18. Fisher’s Exact Testing results related to independent categorical variables. The mark ”.”, ”*”, ”**”, and ”***”
following the testing result value represents the significance degree reflected by p-value. ”.” Indicates the p-value is less than
0.1 but larger or equal to 0.05; ”*” indicates the p-value is less than 0.05 but larger or equal to 0.01; ”**” indicates the p-value
is less than 0.01 but larger or equal to 0.001; ”***” indicates the p-value is less than 0.001. The Effect Size ranges from 0 to 1
where: 1 indicates a perfect association; 0 indicates no association. An effect size value of 0.1 or greater suggests a potentially
meaningful association between the dependent and independent variables warranting further analysis.
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4. Appendix D: Computational Model Selection and Training Preprocessing

D.1 Model Training Preprocessing
As delineated in Section 4.1, our target variable, the post-test score, is transformed into a binary variable. A score of 1 represents
high performance, and 0 represents low performance, which posits the modeling task as a classification problem. Notably, the
target variable exhibits class imbalance: 251 students are categorized as high performers, while 103 students are deemed low
performers. In classification problems, such imbalance can adversely affect model performance, particularly when the problem
is complex (Guo et al., 2008; Elrahman & Abraham, 2013; Buda et al., 2018). A powerful technique for addressing this issue
during data preprocessing is subsampling (Kaur et al., 2019). We selected widely used and extensively validated subsampling
algorithms, such as down-sampling, up-sampling, SMOTE, and ROSE. Besides their proven track record, these techniques
preserve data integrity while filtering out noise. Moreover, up-sampling, SMOTE, and ROSE effectively ensure that individuals,
who belong to smaller demographic groups and are thus not easily discernible, are still identifiable in our results reporting.

1. Down-sampling: randomly subset all the classes in the training set so that their class frequencies match the least prevalent
class, which is the low-level class in our case.

2. Up-sampling: randomly sample (with replacement) the minority class, the low-level class, to be the same size as the
majority class, the high-level class.

3. SMOTE: an algorithm to over-sample minority class, low-level class, by creating synthetic examples, follows the formula
of (xnew,ynew) = (xselect ,yselect)+ rand(0,1)∗ (di f f xneighbor,di f f yneighbor), in which the rand(0,1) is a random number
between 0 and 1.

4. ROSE: an algorithm generates new artificial data from the classes using a smoothed bootstrap approach. The artificial data
is generated based on neighbors of the centered observation with a set of unimodal, symmetric probability distributions.
It combines techniques of oversampling the minority class, the low-level class, and the undersampling majority class, the
high-level class.

Each of the four subsampling techniques is applied individually to the training dataset. Subsequently, model performance is
evaluated using the testing dataset. However, for conciseness and clarity, we only report results pertaining to the subsampling
technique that yielded the highest model performance.
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5. Appendix E: Detailed Description of the Assessment Instrument and Corresponding
Factor Analysis Process

E.1 Assessment Instrument: Water Flow Dynamics of Water Science Content Knowledge

Figure 7. First item of the assessment instrument.

Figure 8. Second item of the assessment instrument.
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Figure 9. Third item of the assessment instrument.

E.2 Factor Analysis Process and Results
Exploratory Factor Analysis (EFA) is a data-driven statistical technique used when we do not have a preconceived notion of
how many factors (latent variables) underlie the observed data. The goal of EFA is to discover the underlying structure of
relationships between the variables (items) and to group these items into factors that represent underlying latent constructs.
Confirmatory Factor Analysis (CFA) is a theory-driven statistical technique used when we have a predefined hypothesis about
the factor structure of the data. The purpose of CFA is to confirm whether the data fits the hypothesized factor model. CFA
requires us to specify the number of factors and which items are expected to load on each factor before running the analysis.

EFA and CFA are complementary techniques that can work together to validate the factor structure of a set of variables.
EFA helps explore the underlying structure of the data and identify potential factors, which will be applied first. CFA will be
applied after EFA to verify the identified factor structure with model fit indices and loadings.

E.2.1 Exploratory Factor Analysis
The first thing we did for EFA was to determine how many components should be generated based on the data for the factor
analysis, which involved drawing a Scree plot. Figure 10 is the scree plot we drew based on the assessment data.

Figure 10. Scree plot for component number determination

The figure shows that one component is the most appropriate for the factor analysis based on the data since the first factor’s
eigenvalue is 2.1, much larger than the threshold value of 1.0. The other two factors have eigenvalues much less than the
threshold value, which further supports the decision that one component is most appropriate for the EFA for our study.
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With the determination of the component number, then we conducted EFA with our assessment data. The result is shown
within Table 19.

MR1 H2 U2 Com
Item 1 0.73 0.53 0.47 1
Item 2 0.85 0.72 0.28 1
Item 3 0.71 0.50 0.50 1
Table 19. Exploratory Factor Analysis

MR1 represents the factor loadings, which indicates how strongly each item correlates with the underlying factor. In our
case, there is one extracted factor (MR1), which represents the latent construct, representing water flow dynamics. Item 1 has a
strong correlation with the factor with a factor loading of 0.73. Factor loading of 0.85, which is very high, indicating that Item
2 strongly reflects the latent construct. Item 3 has a factor loading of 0.71, also indicating a strong correlation with the factor. In
summary, all three items have factor loadings greater than 0.7, showing that they all have strong relationships with the latent
factor. Factor loadings above 0.7 typically indicate that the items are highly representative of the underlying construct.

H2 indicates commonalities, representing the proportion of variance in each item explained by the factor. It is calculated by
squaring the factor loadings. For Item 1, the commonality is 0.53, meaning that the factor explains 53% of the variance in
Item 1. Similarly, the factor explains 72% and 50% of the variance in Items 2 and 3, respectively. Generally speaking, the
communities indicate that the factor explains a substantial portion of the variance in all three items. Item 2 has the highest
commonality, suggesting that it is the most strongly related to the factor, while Item 3 is slightly less strongly related.

U2 reflects uniqueness, representing the proportion of variance in each item that is not explained by the factor. It reflects
that error variance or the item-specific variance. For Item 1, uniqueness of 0.47 means that the factor does not explain 47%
of the variance in Item 1 and is unique to the item. For Item 2, 28% of the variance in Item 2 is not explained by the factor.
Item 3 has 50% of variance is not explained by the factor. Summarily, Items 1 and 3 have relatively higher uniqueness values,
suggesting that a moderate portion of their variance is unique and not explained by the factor. In contrast, Item 2 has a relatively
low uniqueness, meaning it is strongly explained by the factor.

Com represents complexity, which indicates how many factors each item loads on. A complexity value of 1 means that the
item loads on a single factor. All three items have a complexity value of 1, meaning that they load exclusively on a single factor.
This supports the conclusion that the items are unidimensional and measure a single latent construct.

E.2.2 Confirmatory Factor Analysis
Since the primary purpose of this study is to explore the latent structure of the assessment items, EFA was initially employed
to identify the underlying factors. To validate the structure identified through EFA, CFA was conducted as a complementary,
post-hoc analysis. Given that the factor loadings and structure were already explored during the EFA stage, the focus of CFA is
on verifying the model fit. Therefore, in this section, we present the model fit indices from CFA to confirm that the hypothesized
factor structure aligns with the observed data. These indices provide a succinct and clear indication of the model’s validity,
without redundant reporting of factor loadings already examined in EFA. Table 20 presents the results of the model fit indices.

Fit Index Value
Chi-square 4.23 (p = 0.12)
RMSEA 0.06
CFI 0.93
TLI 0.92

Table 20. Model fit indices for confirmatory factor analysis

• Chi-square: The chi-square value of 4.23 with a p-value of 0.12 indicates a non-significant result (p > 0.05), which is
considered desirable in CFA. A non-significant chi-square suggests that there is no significant difference between the
model’s predicted values and the observed data, meaning the model fits well.

• RMSEA (Root Mean Square Error of Approximation): An RMSEA value of 0.06 indicates reasonable model fit,
as values below 0.05 are generally considered to reflect a close fit to the data. Values between 0.05 and 0.08 indicate
reasonable fit, while values above 0.10 suggest poor fit.

• CFI (Comparative Fit Index): A CFI value of 0.93 reflects a good model fit. CFI values range between 0 and 1, with
values above 0.95 indicating excellent fit, 0.90 to 0.95 indicating a good or acceptable fit, 0.85 to 0.90 representing
marginal fit, and values below 0.85 indicating poor fit.
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• TLI (Tucker-Lewis Index): The TLI value of 0.92 further supports the model’s reasonable fit. Similar to the CFI, a TLI
above 0.95 is indicative of an excellent fit, while values between 0.90 and 0.95 suggest a good fit. Values below 0.90 may
signal a need for model improvement, particularly in terms of parsimony.

The CFA fit indices presented in Table 20 suggest that the hypothesized model fits the data very well. These results provide
strong evidence that the factor structure identified through EFA is well-supported by the data when validated through CFA,
making this model a robust representation of the underlying construct.
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