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Abstract  

Violations of normality and homogeneity are common in educational data. When this occurs, the use of 

parametric statistics may be inappropriate. A generalized form of nonparametric analyses based on the Puri 

and Sen L statistic provides an alternative approach. Using a chi-square distribution, this technique is easy to 

apply and has significant power. Another advantage of the L statistic is its utility to link nonparametric tests 

with their parametric counterparts. After rank-ordering and analyzing the data, an adjustment is made by 

calculating L instead of relying on the parametric test statistic. This permits the researcher to choose between 

parallel strategies based on the distribution characteristics of the data. In this paper, I present case 

illustrations to demonstrate the approach and offer guidance to faculty, students, and staff researchers 

interested in nonparametric options when working with educational data that possess asymmetrical and/or 

heteroscedastic qualities.  
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Introduction  

In this paper, I begin by presenting an overview of the assumptions of parametric statistics, criticisms of the use 

of nonparametric statistics, and reproval of the robustness of the general linear model. I present an alternative 

statistical approach with rank-ordered data and case examples to demonstrate the technique. The purpose is to 

illustrate how educational researchers can use nonparametric and parametric statistics in tandem to address the 

assumptions and ensure the authenticity of their results.  

The use of parametric statistics with normally distributed data possessing asymmetrical qualities is not 

uncommon in educational research, as is the use of comparison data with unequal variances possessing 

heteroscedastic characteristics. What is surprising, however, is that nonparametric techniques do not frequently 

appear in the literature (Keselman et al., 1998; Skidmore & Thompson, 2010). There are myriad reasons for this 

(Harwell, 1988), such as limited exposure to nonparametric techniques in graduate curricula (Capraro & 

https://orcid.org/0009-0004-3017-0171
mailto:jwhite2@nu.edu
https://doi.org/10.5590/JERAP.2024.14.1.21


  
White, 2024 

 

Journal of Educational Research and Practice 310 

Thompson, 2010) and faculty perceptions of the statistical training required for doctoral students (Henson & 

Williams, 2006). The consequences of this inattention have been well-debated (Glass et al., 1972, as cited in Lix 

et al., 1996; Huynh & Finch, 2000; Blanca et al., 2013) and led to a call for greater use of nonparametric statistics 

in educational research (Leech & Onwuegbuzie, 2002). 

A nonparametric technique, the Puri and Sen L test (1969, 1985) can be used with many parametric statistics, 

such as when the assumptions of normality and homogeneity have been violated. The null hypothesis for the 

general linear model is that there is no relationship when the dependent variable is regressed on the 

independent. Similarly, the L statistic tests the same relationship. In contrast to the F distribution, the L employs 

a chi-square approximation that does not require a normal distribution when the variables are transformed to 

ranked data.  

Parametric Assumptions 

Many of the classic parametric statistics used in social science research (e.g., t test, analysis of variance 

[ANOVA], linear regression) are predicated on the data meeting the normality and homoscedasticity 

assumptions (Corder & Foreman, 2014; Trochim & Donnlley, 2008). The normality assumption is based on the 

central limit theorem, which posits that in a random and independently drawn sample from a population, a 

distribution of sample means will be approximately normal regardless of the original shape of the population 

distribution (Pearson, 2010). The symmetrical shape of the distribution of the data is one of the key concepts in 

statistics that allows researchers to draw inferences about the population from the sample data. However, when 

the distribution is skewed (asymmetrical), the means cannot accurately reflect the central tendency. Attempting 

to make inferences about the population from this type of data can be paramount to interjecting bias drawn from 

the sample statistics. 

The importance of the normality assumption has been well-debated (Howell, 2012; Grice, 2011; Nussbaum, 

2014). Probability simulations have demonstrated that normal distribution-based tests are less sensitive to 

normality violations, and the consequences are not as severe as previously thought (Hill & Lewicki, 2007). Some 

researchers have chosen to ignore the assumption altogether and proceed with parametric analyses (e.g., 

Keselman et al., 1998), citing support from Monte-Carlo studies (e.g., Glass et al., 1972, as cited in Lix et al., 

1996; Blanca et al., 2013). Others have warned against this practice and called for the use of more nonparametric 

statistics in educational research (Leech & Onwuegbuzie, 2002).  

Another key assumption is homogeneity of variances. It is referenced in the literature as homoscedasticity, 

equality of variances, homogeneity of regression slopes, sphericity, or homogeneity of the variance–covariance 

matrix. This assumption calls for the variances to be relatively equal across all levels of the independent variables 

(Warner, 2013). It means that the variances of different groups should have an approximate ratio of 1:1. In 

reality, the variance ratio will frequently drift significantly from that required to satisfy the assumption. In a 

review of educational and child psychology journals, Keselman et al. (1998) discovered variance ratios as high as 

566:1. Grissom (2000) identified some as high as 281:1 and Erceg-Hurn and Mirosevich (2008) found that most 

exceeded 20:1, with some as high as 121:1. Even after accounting for sampling error, the frequency in reporting 

ratios of these magnitudes indicates that heteroscedastic data are common. Any inferences drawn from this kind 

of data can lead to inaccurate estimations of the population, making any meaningful comparison about the 

groups questionable.  

Given the nature of educational data, scholars should not be surprised that it often fails to meet the parametric 

assumptions. At times, researchers are interested in comparing the performance of preexisting groups on the 

basis of demographic variables like race/ethnicity, gender, socioeconomic status, and similar characteristics. 

Given the uniqueness of many groups, the differences found in the variances should not be unexpected.   
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Violations of these assumptions can affect the results of parametric tests by distorting the Type I, or false 

positive, error rate (Erceg-Hurn & Mirosevich, 2008). When parametric tests are used in the analysis of 

asymmetrical and heteroscedastic data, the risk of making a Type I error can be greater than what is reported by 

the p-value (Müller et al., 2015). For example, consider data with equal sample sizes but heterogeneous 

variances. Using any statistical software to perform an ANOVA and subsequently reporting an associated 

probability, or p-value of ≤ .05, thus rejecting the null hypothesis, would typically be interpreted as less than a 

5% chance of making a Type I error. In practice, the truth may be closer to 30% (Wilcox et al., 1986). Contrary to 

popular belief, equal samples provide little relief when the variances are not homogeneous (Brunner, 2021; 

Harwell et al., 1992). For instance, the probability of a Type I error in linear regression analysis can exceed 50% 

(α = .05) when data are heteroscedastic and not normally distributed (Wilcox, 2016). This highlights the 

importance of understanding the assumptions that underpin the analyses rather than relying on the software 

(White, 2013).  

Another implication of violating the parametric assumptions is the effect on power. Small deviations from 

normality can significantly lower the post-hoc power of classic parametric tests. Wilcox (1998) cited a case where 

a small departure from normality reduced the power of a t test from .96 to .28. He summarized the impact of 

violating the normality and homoscedasticity assumptions, saying:   

As hundreds of articles in statistical journals have pointed out and for reasons summarized in several 

books. …. small departures from normality can result in lower power; even when distributions are 

normal, heteroscedasticity can seriously lower the power of standard ANOVA and regression 

methods. (p. 300)  

Wilcox (1998) also pointed out that the importance of understanding the assumptions cannot be understated. 

Researchers should inspect the normality and homogeneity of the data before making the choice to use 

parametric or nonparametric statistics to recognize the substantive implications of that decision.  

Nonparametric Criticisms 

Because rank-ordered and nominal-level data are used, nonparametric statistics do not require satisfaction of 

the normality assumption (Higgins, 2004). In fact, Gibbons (1993) argued that the Likert-type scales 

commonly found in educational data possess more ordinal than interval qualities, making them better suited 

for nonparametric procedures. Yet, the dearth of nonparametric statistics from the empirical literature 

suggests there are still critics, which likely leads to their less-than-desirable popularity.  

The first criticism about nonparametric statistics is that, because they do not make strong assumptions about 

the population, little if any inference can be made from the sample data. Second, contrary to a common 

misconception, they still must satisfy the homoscedasticity assumption (Nordstokke et al., 2011). Third, a 

degree of precision will be lost when transforming Likert-scaled to ranked data (Edgington et al., 2007). With 

a few exceptions, nonparametric statistics will generally have lower power (Freidlin & Gastwirth, 2000). They 

are also denounced for being incapable of answering focused research questions (Johnson, 1995). For 

example, the Mann-Whitney and Wilcoxon procedures examine whether two distributions are different but 

cannot indicate how they differ in mean, variance, or shape. Finally, there can be a false sense of security that 

they are immune from parametric assumptions such as outliers and unequal variances (Zimmerman, 2000).  

Given these shortcomings, it might seem there would be little support for nonparametric analyses. But despite 

the reprovals, they are still recommended in many situations. For example, Skovlund and Fenstad (2000) 

compared the Type I error rates of the independent samples t test and the Mann-Whitney U with different 

variances, distributions, and sample sizes. The Mann-Whitney was more robust when the data had highly 
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skewed distributions, heterogeneous variances, and unequal groups. Educational data with similar issues 

would likely increase the Type I error rate (Wilcox, 1998; Lix & Keselman, 1998). 

Robustness Argument 

Erceg-Hurn and Mirosevich (2008) contended that parametric statistics are robust to some of the assumption 

violations. The term robustness refers to procedures that maintain the Type I error rate at its nominal level while 

preserving statistical power (Wilcox, 2005). This argument can be traced back to classic parametric methods and 

include studies that have made their way into textbooks and come to be widely accepted (Boneau, 1960, as cited 

in Delacre et al., 2019; Box, 1953, as cited in Koenker, 1981; Lindquist, 1953, as cited in Richardson, 2018; Glass 

et al., 1972, as cited in Lix et al., 1996; Blanca et al., 2013). Subsequently, investigators have found that they only 

examined the impact of small deviations in normality and homogeneity (e.g., Bradley, 1978 as cited in Migdadi, 

2015; Harwell, 1992). When Bradley (1978) and Harwell revisited the research, they came to very different 

conclusions and pointed out that some authors ignored evidence not supporting the robustness argument and 

extended their assertions beyond the capacity of the data.  

Supporters of the robustness argument typically focus their attention on the Type I error and fail to account 

for the power of parametric statistics when the data are not normally distributed or violate homogeneity 

(Erceg-Hurn & Mirosevich, 2008). Akritas and colleagues (1997) found that even when robust to Type I error, 

parametric statistics are less powerful and generalizability becomes problematic. This presents challenges for 

the researcher who must transform, resample, or apply multilevel modeling to the data to overcome these 

problems. There are modern statistical tests that provide methods for testing the homogeneity (e.g., Levene’s, 

Bartlett’s, Hartley’s Fmax) and normality (e.g., Anderson-Darling, Shapiro-Wilk, Kolmogorov-Smirnov) 

assumptions. Yet some prominent statisticians criticize them as flawed and suggested they should not be used 

(D’Agostino et al., 1990; Glass & Hopkins, 1996). Therein lies the conundrum when researchers are 

confronted with unbalanced, asymmetrical, and heteroscedastic data. There is, however, an alternative that 

links nonparametric tests with their parametric counterpart (Harwell, 1988; Lawson, 1983 as cited in Wilcox, 

2016) to overcome this problem.  

Puri and Sen L Statistic 

The Puri and Sen (1969, 1985) approach for hypothesis testing uses two parallel forms of the data. The first 

entails a parametric approach with the original data followed by a nonparametric analysis with the data rank-

ordered (Harwell & Serlin, 1989). These two forms, raw and rank-ordered, are used to link a number of 

parametric and nonparametric tests that share common hypotheses, such as those associated with the general 

linear model family of statistics (e.g., t tests, ANOVA, multivariate analysis of variance [MANOVA], linear 

regression, etc.). The major advantage of the L statistic is that it does not require normally distributed data and 

is expressed as L = (N – 1) θ, where L is the Puri and Sen test and theta (θ) is the measure of explained variance. 

Because the L is calculated using rank-ordered data, theta represents a ratio of the explained variance in the 

ranks of the total variance. The L is then compared to a chi-square distribution at the desired level of significance 

where the degrees of freedom (df) are calculated by the number of dependent variables (p) multiplied by the 

number of independent variables (q) and df = pq. The null hypothesis is rejected when the L statistic exceeds the 

chi-square critical value. Next, the results are compared to the parametric test results derived from the raw 

(unranked) data. When both tests are consistent, the researcher notes the parallelism and has greater confidence 

in the parametric results. Conversely, if the parametric results are significant and there are nonsignificant 

nonparametric findings, there is a greater likelihood of a Type I error (false positive) in the parametric statistics 

(Thomas et al., 1999). The following case scenarios illustrate the Puri and Sen test applied to a one-way ANOVA, 

two-way ANOVA, multiple linear regression analysis, and MANOVA. 
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Computational Illustrations 

In the first scenario, educational researchers explored the differences in SAT scores based on the gender of the 

high school student (National Center for Educational Statistics, 2021). Data from a sample of high school 

seniors (N = 106) indicated that the male students (M = 984.87, SD = 58.520) seemed to do better than 

females (M = 967.50, SD = 47.317). A closer inspection revealed an unbalanced design with the number of 

males (n = 88) significantly outnumbering the number of female students (n = 18). Ranking the SAT data also 

revealed a smaller difference between the males (MR = 54.41, SD = 30.243) and females (MR = 44.17, SD = 

32.322). Using this illustration, the Puri and Sen (1969, 1985) test takes the form as indicated in Equation 1:  

L = (N – 1) (Sums of Squares Between Groups/Sums of Squares Total)     (1) 

Keeping in mind that a two-sample t test is equivalent to a one-way ANOVA (see Note 1), the between groups 

sums of squares and the sum of squares total are obtained by using the ranked data in a one-way ANOVA 

(Casella, 2008). The F-ratio test indicated no statistically significant differences (p > .05). When the L statistic 

was compared to the critical value from a chi-square distribution with df = 1, similar to the one-way ANOVA, 

no gender differences were detected in the SAT ranked data (χ² = 3.841, α > .05). Consequently, the 

researcher could now be more assured when examining the results in Table 1 that a Type II error had not been 

committed due to the unbalanced design and unequal variances.  

Table 1. Comparison of F and L Statistics in One-Way ANOVA  

SAT (raw data) SS df MS F p 

Between groups. 4493.586 1 4493.586 1.391 ns 

Within groups 335996.273 104 3230.733   

Total 340489.858 105    

SAT (ranked data) SS df MS L* p 

Between groups. 1888.727 1 1888.727 1.9987 ns 

Within groups 97333.273 104 935.897   

Total 99222.000 105    

* L = (106-1) (1888.727/99222.000). 

To demonstrate the L in a two-way factorial ANOVA (see Note 2), consider the same scenario with the 

researcher now interested in the effect of teacher gender and years of teaching experience on their attitude 

about the inclusion of students with autism in general education classrooms (Spirko, 2015). Data was 

collected from a sample of teachers (N = 223) in which women appeared to have higher attitudinal scores than 

men. Inspection of the raw data revealed a highly skewed distribution with unequal groups. It was next rank-

ordered and the means, ranked means, and standard deviations were examined. A cursory analysis of the 

teaching experience categories indicated a decline in attitude based on the number of years. A comparison of 

the means, mean ranks, and standard deviations is presented in Table 2.  
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Table 2. Descriptive Statistics for the Puri & Sen Factorial ANOVA Illustration 

Variable Teachers attitude toward inclusion 

 M(SD) raw data MR(SD) ranked data 

Gender   

Male 67.17(20.302) 10141(70.718) 

Female 71.49(17.513) 117.77(62.947) 

Teaching experience   

0–5 years 72.27(16.820) 120.09(62.526) 

6–10 years 70.98(17.921) 115.98(64.920) 

10+ years 66.29(20.080) 98.66(67.567) 

Because an expansion of the L computations is needed to account for the effect of the two factors and their 

interaction, Equations 2 and 3 express the simple main effects of gender and teaching experience, and 

Equation 4 the interaction effects: 

L1 = (N – 1) (Sums of Squares Gender/Sums of Squares Total)    (2) 

L2 = (N – 1) (Sums of Squares Years Teaching/Sums of Squares Total)    (3) 

L3 = (N – 1) (Sums of Squares Gender x Years Teaching/Sums of Squares Total)    (4) 

The rank-ordered data were next analyzed, and the L statistic calculated for each simple main and interaction 

effect and compared with the F statistic results presented in Table 3.  

Table 3. Comparison of F and L statistics in Factorial ANOVA 

Attitude (raw data) SS df MS F p 

Gender 426.240 1 426.240 1.280 ns 

Years teaching 781.604 2 390.802 1.173 ns 

Gender x years teaching 102.721 2 51.360 .154 ns 

Error 72271.467 217 333.048   

Total 1170340.000 223    

Attitude (ranked data) SS df MS L* p 

Gender 7051.556 1 7051.556 .4218 ns 

Years teaching 11641.578 2 5820.789 .6882 ns 

Gender x years teaching 645.654 2 322.827 .0444 ns 

Error 918249.959 217 4231.567   

Total 3774880.500 223    

*L Gender = (N – 1) SS gender/SS total. 

L Years Teaching = (N – 1) SS years teaching/SS total. 

L Gender x Years Teaching = (N – 1) SS gender x SS years teaching/SS total.  

Based on a chi-square distribution with two degrees of freedom (df), the nonparametric data indicated that 

neither gender nor years of experience had an effect on teacher attitudes regarding the inclusion of students 

with autism in general education classes (χ²critical = 5.99, α > .05). There was also no evidence of a 

significant interaction in the L test. These findings complemented those from the parametric data. Similar to 

the previous example, the researcher can be reasonably confident the sample results are not the product of a 

Type II error. 
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In the next illustration, an educational researcher was interested in determining if the Basic Educational Skills 

(BEST) Pretest, education level, and age are predictors of a student’s English proficiency score (Grafals, 2013). 

In Table 4, a correlation matrix of the criterion and predictor variables supported the linearity assumption 

and their use in the regression model (see Note 3).  

Table 4. Descriptive Statistics for the Puri & Sen Linear Regression Illustration 

Variable Age Education BEST pretest 
English 

language 
competency 

M(SD) 
raw data 

M(SD) ranked 
data 

Age 1.00 -.142* .038 -.205** 
- 

171.98 
(98.570) 

Education  1.00 .240** .326** 
- 

171.50  

(98.826) 

BEST pretest 
scores 

   

1.00 

 

.532** 

397.96 

(109.413) 

138.50 

(79.806) 

English language 
competency scores 

    

1.00 

3.38 

(.996) 

171.50 

(98.826) 

*p < .01 **p < .001. 

After reviewing the descriptive statistics, Grafals (2013) discovered the skew and kurtosis of the distribution 

exceeded the boundaries of normal limits. When confronted with nonnormal data the researcher must choose 

between data transformation or exploring nonparametric regression models (Balanda & MacGillivray, 1988 as 

cited in DeCarlo, 1997). However, the Puri and Sen (1969, 1985) approach can also be applied. 

Before proceeding, an adjustment to the Puri and Sen (1969, 1985) test was required. Because the coefficient 

of determination (R²) represents the proportion of variance in the dependent variable that is accounted for 

(shared) with the predictor variables in the model (Kelly & Preacher, 2012), it is substituted for theta (θ) in the 

computation of the L statistic. After first running the linear regression with the raw data, the researcher can 

interpret the regression results based on the normality assumption. Next, the predictor and criterion variables 

could be ranked and compared to the L statistics results. The inferential statistics indicate that the three 

variables were three significant predictors in the model. The results are presented in Table 5. 

Table 5. Comparison of F-to-Enter and L-to-Enter Statistics in Stepwise Multiple Linear Regression  

English language 

competency (raw data) 
R R² β df F-to-enter 

BEST pretest .526 .276 .488 1, 273 104.240** 

Education level .562 .316 .182 2, 272 62.844** 

Age group .585 .343 -.165 3, 271 47.118** 

English language 

competency (ranked data) 
R R² β df L-to-enter* 

BEST pre-test .526 .277 .506 1, 273 76.175** 

Education level .573 .328 -.203 2, 272 90.20** 

Age group .588 .345 .139 3, 271 94.875** 

* L-to-enter = (276-1) R² ** p < .001. 

When using a stepwise approach, the highest F-to-enter probability (p-value) of each predictor is input at 

each successive step. In this example, only the standardized beta weights for Model 3 are reported because 
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they represent all the predictor variables. The L statistics for each step of the regression model are expressed 

in Equation 5:  

L-to-enter = (N – 1) R²     (5) 

Analogous to the results obtained from the raw data, the L tests indicated all variables are predictors of English 

language competency scores based on a chi-square distribution with 3 df (χ²critical = 16.266, α < .001). 

In the next scenario, the researcher’s interest was in the multivariate effect (see Note 4) that education level 

and native language have collectively on the BEST posttest and English language proficiency scores (Grafals, 

2013). In Table 6, the descriptive statistics for the raw and ranked data are presented with variability evident 

in the BEST posttest and English language competency data across the different levels of the two factors. 

Table 6. Descriptive Statistics for the Puri and Sen MANOVA Illustration  

Variable BEST Posttest English language competency 

 

M(SD) (raw) 

MR(SD) 

(ranked) M(SD) (raw) 

MR(SD) 

(ranked) 

Education     

Less than high school 443.46(60.778) 98.84(65.226) 3.014(1.099) 140.98(102.437) 

High school 457.50(56.011) 114.27(62.114) 3.538(.773) 182.86(85.953) 

College 477.26(60.778) 138.11(60.951) 3.790(.782) 211.89(86.790) 

Native language     

French 490.00(81.479) 148.36(66.047) 3.717(.849) 205.75(90.797) 

Arabic 463.30(82.743) 111.10(71.856) 3.283(1.057) 163.53(106.006) 

Chinese 466.47(49.406) 122.53(63.265) 2.978(1.051) 131.25(87.572) 

Spanish 458.09(46.249) 111.26(58.384) 3.323(.868) 160.50(92.765) 

Other native language 436.29(96.350) 100.50(68.232) 3.359(1.153) 176.35(107.076) 

After ensuring that the dependent variables had satisfied the linearity requirement (r = .560, p < .001), the 

researcher found the BEST posttest scores were leptokurtic and highly skewed and opted to use the Puri and 

Sen (1969, 1985) test. Before proceeding with the MANOVA, an adjustment needed to be made to compute the 

L statistic. Pillai’s Trace (V) was substituted for the sum of the total variance that is accounted for by all the 

variates in the model (Anderson, 2003). Anderson found that Pillai’s Trace is the most robust of the 

multivariate analysis of variance tests of significance. It is calculated using Roy’s Root (Ɵ) and Hotelling Trace 

(T2) test statistics and written in Equation 6 as:  

Σ (Ɵ /1 + Ɵ) + (Ɵ – T2/1+ Ɵ – T2)      (6) 

After adjustment of Pillai’s Trace, the L statistic is denoted as L = (N – 1) for each of the simple main effects of 

each factor as well as their interaction effect. As illustrated in the previous case scenarios, the multivariate 

analysis of variance is first computed with the raw data and is then rank-ordered and rerun to obtain the 

nonparametric values presented in Table 7. 
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Table 7. Comparison of F and L Statistics in MANOVA 

Raw data Pillai’s Trace df F p 

Education .052 4, 398 2.678 < .05 

Native language .173 16, 398 2.356 < .01 

Education x Native language .207 28, 398 1.637 < .05 

Ranked data Pillai’s Trace df L* p 

Education .046 4 15.686 < .01 

Native language .173 16 58.647 < .001 

Education x Native language .165 28 55.935 < .001 

*L = (N-1) Pillai’s Trace. 

After contrasting the L statistic using a chi-square distribution with six degrees of freedom (df = 6), both the 

raw and rank-ordered data indicate that there are simple main effects and interaction effects across the two 

dependent variables. Noticeably different, though, are their respective p-values. The chi-square distribution 

suggests there is a more significant native language effect and education x native language interaction than 

the F distribution. That is because the relationship between the distributions is the same after normalizing the 

data. As the degrees of freedom in the denominator increase, the p-value of the F statistic will move toward 

the value reported by chi square (Gould, 2006). The implication is that a greater likelihood of inflating the 

alpha error exists by using asymmetrical data with the F distribution. Conversely, with normality not assumed 

in the chi-square distribution, the L test results decrease the likelihood of Type I error. 

Discussion 

Though not illustrated here, the L statistic is applicable with repeated measures ANCOVA, MANCOVA, and 

the gamut of statistical techniques in the general linear model. Because of its flexibility and simple 

computations, it is well-suited for a variety of research situations and warrants consideration when working 

with data that possess the characteristics described in this paper. While others have recommended Puri and 

Sen’s (1965, 1985) techniques (Kepner & Wackerly, 1996; Marden & Muyot, 1995; Sun, 1997, as cited in 

Kössler, 2005), this paper has proffered case scenarios using applied data from contemporary research to 

demonstrate their utility in education.  

In the context of the real world, much of the data derived from elementary, secondary, and postsecondary 

schools and colleges is moderately to highly skewed. For example, instruments that employ Likert-type scales 

are often skewed due to polarization of many responses at the end of scales. This type of data typically has 

multiple modes and distributions with long tails that deviate significantly from the normality requirements of 

parametric statistics. When this happens and the assumptions are violated, nonparametric tests, such as the L 

statistic, should be considered. 

While nonparametric tests can be less efficient than their parametric counterparts and prone to inaccurate 

results (Rasmussen & Dunlap, 1991, as cited in Bishara & Hittner, 2012), they also can be less complicated for 

students and novice researchers as they often do not require complex mathematical formulas (Okoye & 

Hosseini, 2024). The major advantage of the Puri and Sen (1969, 1985) technique is that the L test can easily 

be hand-calculated to bring rank-ordered nonparametric procedures into parallel form with their parametric 

counterparts using any statistical software.  
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Recommendations 

It is important to use the appropriate statistical test that maximizes the power of a study to reject the null 

hypothesis when it should be rejected. All too often though we scholars think that researchers are limited to 

either a parametric or nonparametric approach. This is a misperception, and the rank-ordered technique 

proffered by Puri and Sen (1969, 1985) affords us an alternative that combines the benefits of both. 

Educational researchers should give serious consideration to using the L statistic when they find their data 

has violated some or all of the assumptions or parametric statistics. 

In a similar vein, student and novice researchers should be exposed to more than the basic concepts and 

principles of parametric and nonparametric statistics. Teachers of statistics need to include instruction on 

how they can be synthesized to work together. Rather than being taught and viewed as two distinctly different 

statistical families, they should be encouraged to contemplate the approach presented in this paper.  

Conclusions 

In summary, my objective is to provide educational researchers with a way to analyze data that violates the 

assumptions of normality and homogeneity using corresponding parametric and nonparametric statistical 

methods. Ancillary to that is to make clear that rather than regarding these assumptions as absolute, the 

educational research community should view them as companion ways to analyze data with skewed 

distribution and/or heterogenous variances. The Puri and Sen (1969, 1985) method presented in this paper is 

an alternative that affords researchers the flexibility of examining data in such a manner.  

Notes: 

1: For more information about one-way analysis of variance (ANOVA), see 

https://resources.nu.edu/statsresources/One-WayANOVA 

2: For more information about two-way factorial analysis of variance (ANOVA), see 

https://www.statstest.com/factorial-anova/ 

3: For more information about linear regression, see https://resources.nu.edu/statsresources/simplelinear 

4: For more information about multivariate analysis of variance (MANOVA), see 

https://www.msicertified.com/multivariate-analysis-of-variance-manova/ 

 

https://resources.nu.edu/statsresources/One-WayANOVA
https://www.statstest.com/factorial-anova/
https://resources.nu.edu/statsresources/simplelinear
https://www.msicertified.com/multivariate-analysis-of-variance-manova/
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