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The multistage testing (MST) design has been gaining attention and popularity in educational assessments. For testing programs that
have small test-taker samples, it is challenging to calibrate new items to replenish the item pool. In the current research, we used the
item pools from an operational MST program to illustrate how research studies can be built upon literature and program-specific data
to help to fill the gaps between research and practice and to make sound psychometric decisions to address the small-sample issues. The
studies included choice of item calibration methods, data collection designs to increase sample sizes, and item response theory models
in producing the score conversion tables. Our results showed that, with small samples, the fixed parameter calibration (FIPC) method
performed consistently the best for calibrating new items, compared to the traditional separate-calibration with scaling method and
a new approach of a calibration method based on the minimum discriminant information adjustment. In addition, the concurrent
FIPC calibration with data from multiple administrations also improved parameter estimation of new items. However, because of the
program-specific settings, a simpler model may not improve current practice when the sample size was small and when the initial item
pools were well-calibrated using a two-parameter logistic model with a large field trial data.
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The multistage testing (MST) design has been gaining attention and popularity in national and international educational
assessments such as the National Assessment of Educational Progress (NAEP), Programme for International Student
Assessment (PISA), Trends in International Mathematics and Science Study (TIMSS), and Progress in International Read-
ing Literacy Study (PIRLS) (see Jewsbury & van Rijn, 2020; Mead, 2006; Mullis & Martin, 2019; von Davier et al., 2006;
Yamamoto et al., 2018). The MST design has several advantages: An MST test can provide accurate ability estimates sim-
ilar to computer adaptive testing (CAT); that is, it can provide more accurate ability estimation with fewer items than the
number of items required by a linear test because the MST test adapts to a test taker’s ability. An MST test enables test
developers control of each test form in content and structure, and it is friendly to test takers because they can revisit the
items within each item block (Hambleton & Xing, 2006; Wainer & Mislevy, 1990; Wang et al., 2020). More importantly,
through matching overall item difficulties to a target population and shortened tests, test takers might be more engaged
with an MST test, better enabling the collection of valid and effortful responses (Ercikan et al., 2020; Guo & Ercikan, 2021;
Wise, 2021).

In a typical MST design, the routing block in the first stage contains items with a wide spread of item difficulty, acting
as a linear test for all test takers. In the next stage of MST, item blocks (also called modules or target blocks) consisting
of easy, medium, and hard items in dif fcirlty are administered. Based on their performance on the routing block, test
takers are routed to a target block that is most appropriate for their abilities. For subsequent stages, test takers are routed
to a suitable target block in the next stage based on their performance on previous stages, and the commonly used MST
designs in large-scale assessments have two or three stages. As in any CAT and MST tests, new items have to be developed
and calibrated to replenish the item pools to assemble new test forms. In practice, the new items are often assembled in
one item block (called the pretest item block), embedded in the operational forms, and administrated to test takers. The
pretest item block is assembled in a way similar to an operational item block (i.e., routing block) in terms of the number of
items and content but with unknown item parameters; this design helps to disguise the pretest items and avoid test takers
skipping the pretest blocks so that new items can be appropriately calibrated.
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When the sample sizes of test takers are relatively large, pretest items can be calibrated, separately or concurrently, with
operational items using item response theory (IRT) models (Kolen & Brennan, 2004). However, it is challenging to cali-
brate new items accurately with small samples of test takers in a linear test form (Drasgow, 1989; Seong, 1990; Stone, 1992),
let alone items that are administered under the MST design because of missing data by design. Small samples of test takers
may occur for many reasons. In highly specialized occupations, the number of people working in a field may be limited,
thus the volume of test takers for any given test administration may be small. In addition, tests are often administered mul-
tiple times per year, which further reduces the number of test takers in any given administration (Peabody, 2020). Various
practical challenges may also lead to smaller samples for existing testing programs (Guo, 2022; Jiao & Lissitz, 2020), such
as when the frequencies of administrations have to be increased to meet test takers’ needs (convenience and flexibility of
testing dates, for example) or to control item exposure (because of remote testing, for example), or when the test volumes
drop because of unexpected factors (the test optional policy, for example).

In the current research, we used the item pools from an operational MST program to illustrate how research studies
can be built upon literature and program-specific data to help fill the gaps between research and practice and to make
sound psychometric decisions to address the small-sample issues. T ke sample size in our research was the total number
of test takers on a specific test form. The three studies in our research included choice of item calibration methods, choice
of data collection designs to increase sample sizes, and choice of IRT models in producing the score conversion tables.
Our studies were conducted to answer the following three research questions and fill the gaps between program practices
and research findings with easy operational implementation and sound psychometric properties as priorities. Under the
MST design, the research questions we explored were:

Q1: Which calibration method should be recommended to calibrate new items in the small-sample situation? How
small can the samples be?

Q2: What are alternative ways in data collection design to increase the sample sizes?

Q3: Will a simpler IRT model be justified in the small-sample situation for the studied testing program in terms of
score reporting?

In the following section, we review relevant literature on IRT calibrations on a linear form or under an MST design. To
illustrate various practical considerations in psychometric decisions, we used a newly established testing program as an
example in the current research. In the Study Design section, we introduce the MST design of the studied program and
its routing decision. We also specify the factors we manipulated in simulations when some model assumptions may be
violated.

In the Method section, we describe three calibration methods in detail: One is commonly used in testing program
practices, one is commonly used in research studies, and one is proposed in the current research to address the mismatch
between the assumed ability distribution and empirical data. In the Results section, using simulated data, we first present
estimation errors in item parameters that resulted in the first two studies using the two-parameter logistic (2PL) IRT
calibration methods. We then report conversion table differences if the simpler one-parameter logistic (1PL) model was
used in item calibration in the third study. In the last section, we discuss the findings, limitations, and recommendations.
Even though the current research used specific program data, the procedures, methods, and considerations for making
program decisions are generalizable to other testing programs to solve program-specific challenges.

Literature Review

In this section, we review IRT item calibration studies from different but interconnected perspectives: calibration with
small samples on a linear form, item scaling and fixed parameter calibration on a linear form, item calibration considera-
tion under the MST design, and the 2PL versus 1PL model choice. At the end of each subsection, we highlight the issues
that need further investigations for operational MST testing programs with specific constraints and the added values the
current research may contribute to literature and program practice.

IRT Calibration With Small Samples

In a typical IRT item calibration, it is generally assumed that the latent ability/trait (denoted by 0) is normally distributed
in the population when estimating the logistic IRT model parameters (de Ayala, 2009; Reise et al., 2018). When this
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normality assumption is violated, models are misspecified, and item and person parameter estimates are inaccurate,
theoretically. If either the logistic response model or the assumed ability distribution is incorrect, the statistical properties
of marginal maximum likelihood estimates (MMLEs) —the most commonly used estimation method —may not hold
(Mislevy & Sheehan, 1989).

Using the BILOG software package, Seong (1990) showed that, when the underlying 6 and prior # distributions were
matched, the 2PL IRT item discrimination and difficulty parameters were estimated more accurately as the sample size
increased for a test of 45 items. On the other hand, when the underlying 6 and prior € distributions were mismatched,
appropriate specification of the prior distribution in the calibration algorithm increased the accuracy of theta and item
parameter estimation for large sample sizes (N = 1,000), but appropriate specification did not help much with item param-
eter estimation for the small sample size (N = 100). Using the BILOG and MULTILOG software packages, Stone (1992)
found in simulations that, under varying 6 distributional assumptions in the 2PL IRT models, MMLEs of item diffi-
culty parameters (the b parameters) were generally precise and stable in small samples. When the true 6 distribution was
normal, MMLEs of item discrimination parameters (the a parameters) were also generally precise and stable.

In his book, de Ayala (2009, p. 105) reviewed many previous studies on the accuracy of the 2PL IRT parameter estima-
tion and pointed out that, “assuming MMLE, the use of a prior distribution for a, and favorable conditions (e.g., 6/prior
distribution match, etc.), it appears that a calibration sample size of at least 500 persons and instruments of 20 or more
items tend to produce reasonably accurate item parameter estimates.”

However, in practice, the underlying 6 distribution is unknown, and the “favorable conditions” are hard to verify. In
addition, the above studies used linear test forms. Thus, in the current research, we simulated MST data with different
symmetric and asymmetric 6 distributions in Study 1, compared to different calibration approaches and their robustness
for different sample sizes.

Item Scaling and Fixed Item Parameter Calibration

When calibrating new items with different test-taker samples, the item parameter estimates from separate calibrations
are on different scales, and thus the estimates need to be transformed to the item pool scale through common/anchor
items. Because of the invariance of the 2PL IRT model under a linear transformation of 6, various approaches have been
proposed to find the coefficients in the linear transformation, among which the Stocking and Lord (SL) approach (Stocking
& Lord, 1983) is the most commonly used in research and practice (Kim & Kolen, 2019; Kolen & Brennan, 2004). The
SL approach estimates the linear coefficients by minimizing the squared difference between the test characteristic curves
(TCCs) over the anchor items.

Alternatively, the fixed item parameter calibration (FIPC) approaches were proposed to calibrate new/pretest items,
which do not require the item scaling step (Ban et al., 2006; Chen et al., 2017; Wainer & Mislevy, 1990). In FIPC, one
fixes the item parameters from the pool and calibrates only the new items. Kim (2006) compared f e FIPC methods on
simulated linear test forms under the unidimensional IRT models and using different software packages (BILOG, ICL,
and PARSCALE). Simulation results showed that new item parameter estimates were increasingly accurate with increased
sample sizes (from N = 300 to N = 3,000), and the accuracy was slightly improved with more fixed items (from 10 items
to 40 items). Among the five FIPC methods, the multiple weights updating and multiple expectation-maximization
(EM) cycles (MWU-MEM) method appeared to perform properly and robustly under different 6 distributions. Ban
et al. (2006) compared several fixed ability estimate methods and FIPCs under the unidimensional IRT models with
different sample sizes (300, 1,000, and 3,000), and they found that the MWU-MEM methods appeared to be the best
choice. For multidimensional IRT models, there were mixed findings between fixing ability estimates and fixing item
parameter approaches (Chen et al., 2017).

The feasibility of the MWU-MEM method has been supported in several subsequent studies (e.g., DeMars &
Jurich, 2012; Kim & Kolen, 2019; Konig et al., 2021). For example, Kim and Kolen (2019) applied the MWU-MEM
FIPC approach to multiple-group test data on linear test forms. Using the ICL software package, they investigated
multigroup item calibration under three different linking design for linear test forms of 40 items with 10 anchor items.
Comparison between FIPC and traditional separate calibration with scaling showed that, with sample sizes of 500 and
2,000, respectively, the multigroup FIPC method performed nearly equally to or better than the traditional approach in
recovering the underlying ability distributions and the new item parameters.
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However, most of the mentioned studies assumed symmetric (i.e., normal) ability distributions and item difficulties. In
the current research, we tried to address to what extent one method performed better than the others for skewed ability
distributions with the program-specific item pool and how small a sample size the program could consider to maintain
the item pool quality. In addition, we introduced a new approach, the MDIA-based approach, to address the mismatch
between the model assumption and empirical data on the ability distributions (refer to the Method section for details).

MST Item Calibrations

Under an MST design, after the first stage (the routing block/module), test takers are split into separate subgroups by
ability (most commonly three subgroups) and routed to different target blocks/modules. Hence, there are missing data
by design. Because whether a response is missing or not depends only on the observed responses under an MST design,
Mislevy and Wu (1988, 1996) argued that the missing at random (MAR) assumption held and missing data could be
ignored when making inference about 6. Eggen and Verhelst (2011) provided justification for using MMLE in the MST
item calibration. Wang et al. (2020) further showed that, in practice when routing is based on the estimated 6, the MAR
held, and the single group calibration (i.e., calibrate all items together in a single group) produced unbiased item parameter
estimates for unidimensional IRT models. On the other hand, concurrent multigroup calibration can be used only when
the true 6 is known. Wang et al. discussed the three item calibration methods (MMLE, EM, FIPC) in the context of MST
in their study, and the single group FIPC (calibrating routing block items first and then fixing them to calibrate target
block items) performed the best in the large sample (N = 3,000) simulations. Wang et al. also suggested, when there were
subscales, item calibration for each subscale should include items used for routing decision. Jewsbury and van Rijn (2020)
further considered MST item calibrations for multidimensional IRT models, where the routing decision was based on
performance on items from multiple subscales. Their findings suggested that multidimensional IRT should be used to
estimate the item parameters for each scale simultaneously with all items used for routing decision regardless of subscales.

Given that none of the above studies focused on new item calibrations with small samples under the MST design, the
current research may constitute a contribution to the MST literature and practice at large.

IRT Model

As shown in aforementioned studies, it is challenging to estimate the item discrimination parameter a accurately for a
small sample of test takers.

O’Neill et al. (2020) evaluated how sample sizes affected the stability of item calibrations and person ability estimates
in a Rasch model. They used a resampling design to create varying sample size conditions on a long linear test (with
J = 240 items), and their results empirically demonstrated that even imprecise calibrations could occasionally be used for
the purposes of equating without much damage to the person ability estimate when there were a reasonable number of
anchor items with precise and stable calibrations.

Using numerical approximations of estimation error, Lord (1983) showed that, for small samples under certain sit-
uations, it was better to use the Rasch model even though the Rasch model was incorrect. Under his studied test form
conditions (5-, 10-, or 15-item forms constructed from a 50-item vocabulary test), the observed raw sum score x under the
1PL model may be slightly superior to the weighed sum score Y. @,x; under the 2PL model estimator as an approximation
of the true scores on f e 0 points (-2, —1,0,1,2) in terms of estimation errors when the sample size was less than 100 or
200. de Ayala (2009, p. 152) summarized model selection studies, which indicated that the Rasch model yielded rather
good estimates of ability when the discrimination parameters could be assumed to be roughly equal or when the number
of items was very large.

However, for an MST test, the test length is usually much shorter, and the discrimination parameters may not be
similar. It is unclear whether the findings could be generalized for a specific testing program. In addition, for testing
programs that use the IRT true score equating under the MST design, estimated abilities and their transformations are
not used in score reporting. Instead, the observed score, which is linked to a reported score through a conversion table, is
used. The conversion table maps a observed score to the reported score scale through the TCC (Kolen & Brennan, 2004).
The estimation error of item parameters (and ability) is collectively and indirectly reflected in the test form’s conversion
table. Therefore, in the current research, instead of evaluating the estimation error of ability or true scores, we focused
on changes in conversion tables when different IRT models were used to produce TCCs with different sample sizes. We
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evaluated whether there was enough evidence in the variations of the conversion tables produced by true score equating
with 1PL and 2PL models, so that a recommendation could be suggested to the testing program on whether to switch to
the 1PL model, instead of the current practice of using the 2PL model.

Study Design

Because the goal of the current research is to provide guidance on operational practice, easy implementation of the rec-
ommended procedures is a priority.

The current research contains three simulation studies. Study 1 attempts to address general issues in calibration meth-
ods under small samples. We compared three 2PL calibration methods for the new items in the pretest item block. Study
1 focused on the magnitude of accuracy improvement under different conditions by using FIPC methods and comparing
them to the traditional method (the separate calibration with scaling method; the default calibration method for the stud-
ied program). In addition, we proposed and experimented with the MDIA-based approach for item calibrations (refer
to the Method section for more details). Study 2 was more program-specific and focused on data collection schemes to
increase sample sizes for new item calibration. We compared item estimation errors in the one-step 2PL FIPC and the
two-step 2PL FIPC with additional data, in case the sample sizes were small in one test administration. Study 3 was also
program-specific. Using the FIPC calibration method, we compared the conversion tables produced by both a 1PL model
and a 2PL model to evaluate whether the testing program could consider the simpler 1PL model in the small-sample
situation.

In the three studies, we assumed that the items in the initial pool were accurately estimated in a 2PL IRT calibration
because of the large sample size of test takers in a f &ld test.

MST Design

T le studied MST design had two stages, as shown in Figure 1. The first stage consisted of a routing block. Based on their
performance on the first stage, a test taker was routed to one of three target blocks in the second stage: an easy, medium
difficult, or difficult item block.

In addition, all test takers took a pretest item block similar to the routing block in terms of the number of items and
the content coverage.

Underlying Ability Distribution

Given the assumption of the € distribution being N(0, 1) in most IRT software when using MMLE algorithms and the
importance of the prior ability distribution in calibration, we used the five underlying # distributions in simulation to
investigate item parameter estimation accuracy.

T Ie f ist two were skewed distributions, which might occur when the test was too easy or too hard for the test-taker
population (with the ceiling or flooring effect). As in Seong (1990), we used a chi-square distribution having eight degrees
of freedom (df, the skewness was 1) as the positively skewed (PS) distribution. The negatively skewed (NS) distribution
was the mirror image of the previous one (refer to Figure 2). We also considered three symmetric/normal distributions,
N(,1), N (0.5,1.22), and N (1,1.42), as was used in Kim (2006). The later two normal distributions were to mimic test
population shift from a standard normal distribution.

Routing

Target1 Target2 Target3

Figure 1 The MST design
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Figure 3 Test characteristic curve and routing score cuts on the original base form of 30 items

Routing Decision

The routing decision uses the defined population intervals method (Luecht et al., 2006), which specified the relative pro-
portions of test takers in the population expected to be routed to each of the three target blocks. More specifically, in the
studies, the routing decision was based on two cut points on the base form, so that about one third of the test takers would
be routed to the easy, medium difficult, and difficult target blocks, respectively.

We used the two scale score points (cutl = 10.16 and cut2 = 21.48) produced by the original base form of 30 items
(refer to Figure 3). Using the Newton-Raphson procedure, we identified the corresponding 8, and 6, based on the TCC
from a 2PL model. In the following simulations, test takers’ preliminary abilities were estimated on the routing block, and
those with estimated ability 0 larger (smaller) than 6, (6,) would be routed to the difficult (easy) target block. Those with
0, < 0 < 0, would be routed to the medium dif fdult target block.

Three Studies
Study 1

Based on the literature review, the calibration methods in Study 1 were chosen to be the traditional separate calibrations
with SL scaling commonly used in practice (Kolen & Brennan, 2004) and FIPC by fixing the operational item parame-
ters, commonly used in research (Kim, 2006). We also introduced a new calibration approach with the MDIA-matching
method (Haberman, 2009). Please refer to the Method section for details.
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In the simulations, a few factors were manipulated: the underlying 6 distribution (refer to Figure 2), the number of items
J inablock/module, and the sample size N. T ke number of items ] in a block/module was chosen to be ] = 15 for a short test
of 30 items or J = 30 for a relative long test of 60 items, both of which were seen in practice. Thesample size N was chosen to
be around 500 for a 2PL IRT calibration (de Ayala, 2009); that is, N = 250, 500, or 1,000. In the simulations, data were gen-
erated from the 2PL IRT models. Items were drawn from a pool having mean (standard deviation) of 1.00 (0.50) for the a
parameter and -0.70 (0.70) for the b parameter to mimic the studied program and to draw relatively more general insights.

Study 2

In Study 2, we focused only on FIPCs based on findings from Study 1 to address program-specific issues. We compared
a one-administration FIPC with initial data alone to a two-administration FIPC that combined data collected from two
test administrations containing the same new items in order to evaluate the magnitude of improvement in parameter
estimation for new items with different data collection schemes.

In the simulations, items were drawn from the initial item pool of the operational testing program, with mean (standard
deviation) of 0.92(0.43) for the a parameter and —1.18(0.84) for the b parameter. The factors that were manipulated in
simulations were the @ distribution and sample size N, while the block length J was f ked as 15 as in the testing program
(i.e., the whole test length was 30). Because the testing program found that test takers were highly competent, the positively
skewed 6 distribution was not considered.

One-administration FIPC was conducted as in Study 1. For two-administration FIPC, we assumed that the new items
were initially assembled in the pretest block on Test Form 1, which was first administrated (Admin 1) to a sample of test
takers (size = N,). In the second administration, Test Form 2 was administrated with the same new items to a different
sample of test takers (size = N,). With data from the two administrations, a concurrent FIPC calibration (size = N, + Nj)
was conducted for these new items, where operational item parameters were fixed.

There were several ways to embed these new items in Form 2, as shown in Figure 4. In Case A, the intact pretest block
of the new items on Form 1 (shaded gray) were administrated again as a pretest block on Form 2. Items in the routing
block (shaded yellow) on Form 2 were assumed to be from the item pool, so that routing decision was assumed to be
accurate. This design was to maximize the sample size for the concurrent calibration of the new items.

In Case B, the newly calibrated items (still shaded gray) were assembled into the target blocks on Test Form 2 according
to their initial FIPC estimates on Form 1. The remaining items in the target blocks (shaded blue) and the routing block on
Form 2 (shaded yellow) were from the item pool. This way, the pretest block on Form 2 (shaded green) could be used to test
new items. This design was to maximize the opportunity of pretesting more new items on Form 2 and ensure an accurate
routing decision at the same time. In Case C, the pretested new items on Form 1 were used in the routing block on Form 2
to maximize the sample size for concurrent calibration of these new items and to maximize the opportunity of pretesting
more new items on Form 2. Case C involved how inaccurate item parameters might compromise the routing decision, and
it warrants further studies. So we focused on the first two cases in Study 2. However, results from Case A would always be
better than Case B because of the larger sample size, and subsequently, simulations were conducted only under Case B.

Study 3

When sample sizes became small, Study 3 evaluated whether there was evidence to recommend that the testing program
transition to a 1PL model, instead of the current operational procedure of using a 2PL model, while maintaining the
stability of reported scores. T le program used the 2PL IRT true score equating method to produce a conversion table that
maps a true score to a reported score (refer to Figure 5).

Using the Newton Raphson method and the new form TCC, we can find the corresponding 6 for a given true score
T, and then using this 6 and the base/reference form TCC, we found the reported score on the reference form (Guo &
Dorans, 2019, 2020; Kolen & Brennan, 2004). For simplicity, the base form raw score scale was used for reporting without
further scaling.

In Study 3, we made use of Case C in Figure 4 to evaluate the impact of using pretested items in the routing block on
the conversion tables when the item parameters were calibrated with different IRT models and sample sizes. The pretested
item parameters were calibrated using the FIPC method as in Study 2 (the one-administration case), using either 1PL or
2PL models.
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H. Guo et al. Item Calibration With Small Samples

Figure 4 Concurrent calibration designs

Figure 5 IRT true score conversion table

Evaluation Criterion

Simulations under each condition in the studies were replicated R times. In the first two studies, the mean absolute error
(MAE) between the estimated parameter and the true parameter used in the simulation was calculated for each item, and
it was then averaged across ] items in the item block and across the R replications. That is, let &; be the true item parameter
for item j and ?;‘}r be the estimate in the rth simulation. T le average MAE on the test form of ] items was

J
MAE__ZZJJ:,, 51

Similarly, in Study 3, the conversion table produced by the true item parameters was used as the criterion. The MAE
between the criterion conversion table and those using estimated parameters was calculated and then averaged across the
R replications for each integer in the raw score range. (MAE is a more robust measure than root mean square error.)
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Method

In this section, we briefly discuss calibration methods, item scaling methods, and the MDIA-based sample matching
method. More details can be found in the cited references.

Calibration Methods

The 2PL IRT model was used throughout the simulations. In the 2PL model, the item response function for item j is

defined as
exp(Daj (0 - bj>>

U exp(Day (0-1,))

where a; and b; are the item discrimination and difficulty parameters, D =1.702, and 6 is the latent ability variable
(Lord, 1980).
Let& = (a, b), y;; be the item response to item j from test taker i, and Y; = (yl]) the item response vector for test taker

)

P(6) =

ion atest of J items for i = {1,2,- - -, N}. The most commonly used calibrations start from the probability of Y; for test
taker of ability 6;:

P(Y,10,¢) = nj! [pj(o,.)yij<1 - P (6,.))1—%‘1] ) (1)

Let P(Y;) = [ P(Y]0,,¢) g (6;17) d;, where 7 is the hyperparameter of the prior ability distribution g(-) (Baker &
Kim, 2004; de Ayala, 2009). For the entire data matrix Y, the marginal likelihood function is

L(Y)=TI"P(Y;), )
and the logarithm of L is
N
logL =) logP (Y;). 3)
i

In the following subsections, we focus on the separate calibration method and the FIPC method, and then we introduce
a calibration method with MDIA matching. Note that the choice of FIPC is based on findings from literature (discussed in
Ban et al., 2006, and Chen et al., 2017). In addition, when the item pool is accurately calibrated, FIPC may be conceptually
advantageous over the fixed-ability estimate methods because of avoidance of measurement error, particularly for short
tests and relatively easy implementation.

Separate Calibrations

In a separate item calibration, the MMLE/expectation-maximization (EM) approach by Bock and Aitkin (1981) is of en
used, which yields a solution for item parameter estimation that is computationally feasible and consistent under the
assumption that the population distribution is known or is concurrently estimated with the correct specification (Baker
& Kim, 2004; Dempster et al., 1977; Mislevy & Bock, 1986). The EM algorithm uses an iterative procedure for finding
the maximum likelihood estimates of parameters in the presence of the unobserved & variables. In the tth step, the EM
algorithm alternates between

E-step: Compute E [log L(Y,0|8)|Y, ét] with respect to 6.
M-step: Choose &, such that the posterior expectation is maximized with respect to &.

The process is repeated until a convergence criterion is met. It is usually assumed that there is one population from
which the sample test takers are drawn. However, in the EM algorithm, subjects are randomly sampled from g(8|z), which
is assumed to be N(0, 1) in most commonly used IRT packages, even though the EM algorithm also allows an arbitrary
distribution of 0 in the population sampled (Baker & Kim, 2004; Mislevy & Bock, 1986).
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FIPC

FIPC can be viewed as a version of the MMLE/EM method, adapted by fixing a subset of item parameters from the item
pool; this way, when new items are calibrated with operational items from the item pool, the new item parameters are
automatically put on the fixed scale (Kim, 2006; Wang et al., 2020).

In FIPC, the latent 6 distribution is represented by a K-tuple vector 7 = (7[1, s ﬂ'k) at K points (ql, N qK) instead
of a continuous distribution as described for the MMLE/EM method. Because of the indeterminacy of the IRT ability
scale, there are different ways to update and scale provisional estimates of the underlying ability distribution and item
parameters during the EM cycles in FIPC (Kim, 2006; Woodruff & Hanson, 1996).

In the recommended MWU-MEM method (Ban et al., 2006; Kim, 2006), at the tth-step of the iterative EM procedure,

the E-step is expressed as
K

D (108 L (Yt 1t Enenw) P (k! Yora: Eotas Ens ') - (4)
k=1

where &, are the fixed operational item parameters, and Y,,;, are the item responses to the operational items. The param-
eter £y,,, is the one that maximizes Equation 4.

SL Item Scaling

As already mentioned, when items are calibrated freely with samples S and T, item parameters need to be put on the same
scale through a linear transformation. The SL method (Kolen & Brennan, 2004; Stocking & Lord, 1983) finds a linear
transformation (with coefficients A and B) by minimizing the sum of squared differences between two TCCs over the
common item set V. T lat is, A and B are obtained by minimizing

SLdiff = )" SLdiff (6;) ,

where

2
ar.
SLdiff (6;) = {Zpij (95,_ : asjbsj> - p; <esl_ : XT’,AbTJ +B>} ,

jEV jEV

and (a 5p bsj ) and (aTj , ij ) are item parameters estimated separately from the two samples S and T'. An iterative approach
is used to obtain A and B.

MDIA Matching

Besides these calibration approaches, we also experimented with MDIA (Haberman, 2015), to create a “favorable condi-
tion” (de Ayala, 2009), such that the adjusted samples may have a underlying € distribution matching the prior distribution
in the MMLE/EM IRT calibration. The MDIA approach assigns individual weights to individual test takers in the smaller
and newer sample, so that the weighed sample is pseudo-equivalent to a larger reference sample in terms of item responses.
As in Haberman (2015), let z; be the considered matching variable (in our case, it is related to the item response vector)
for each test taker. The target mean Z from the reference sample is

Nr

z=Y 2, 5)

i=1 'R
where z;; and Ny are the matching variable vector and the number of test takers in the reference sample, respectively.
Using the MDIA approach, the weight w; is obtained and assigned to test taker i in the new sample, so that

N —_—
Zwizi/N =Z
i=1

holds, where w; > 0and }.w; = 1. T he MDIA approach uses the Newton-Raphson method to obtain the individual weight
(Haberman, 1984).
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Results

All analyses and calibrations were conducted using the R programming language and the associated R packages. The R
codes for the key steps of implementation can be found in Appendix A. For each studied condition, the simulation was
replicated 100 times.

Note that the routing block should be included in item calibration, following the f ndings from literature. Based on
our exploration, we found that including target blocks produced large errors because of smaller samples in the second
stage. Hence, we used the routing block only (labeled as “operational items" in the subsequent tables) in all the three
calibration methods. That is, in separate calibrations with SL scaling, the routing block was used as the common item;
in calibrations with MDIA, item responses on the routing block were used for matching; and in FIPCs, the routing item
parameters were fixed.

Study 1: Three Calibration Methods for New Items

Study 1 compared three calibration methods for the new items: SL scaling, MDIA, and FIPC. In all the calibrations, the
reference samples were simulated from a N(0, 1) distribution with a sample size of N, = 5,000. In calibrations with MDIA,
we used item responses on the routing block and the first 30 PCA factors from item pairs for matching. (PCA is used to
avoid singularity when raw item pairs are employed. Generally, the first 20 to 30 PCA factors explain more than 90%
variation in the item pairs.)

The average MAE of item parameter estimates are reported in Tables 1 to 3 for different sample sizes, 250, 500, and
1,000, for the new item calibration.

When the sample size was 250, Table 1 shows that, compared to calibration with SL scaling, calibration with MDIA
matching generally improved item parameter estimation of the operational items, regardless of the underlying 0 distri-
butions (as shown in the upper left section of the table). However, for new items, calibration with MDIA matching did
not lead to more accurate estimation (but sometimes slightly worse estimation) in the pretest block (as shown in the
upper right section of the table), which might have been caused by overfitting of the operational item responses. FIPC
estimates with the reference sample (N, = 5,000) led to negligible error, at a magnitude of 0.03 to 0.04, for the opera-
tional items (as shown in the bottom left section of the table). FIPC estimates for the new items in the pretest block (as
shown in the bottom right section of Table 1) outperformed other methods (calibration with SL scaling or with MDIA
matching). Overall, estimation of new item parameters was most accurate when using FIPC with the original sample
(without matching).

Table 1 Average MAEs When J =15 and N = 250

Operational items Pretest items
a parameter b parameter a parameter b parameter

0 SL(a) M(a) SL(b) M(b) SL(a) M(a) SL(b) M(b)
PS 0.159 0.147 0.211 0.090 0.157 0.175 0.220 0.194
NS 0.221 0.130 0.182 0.126 0.221 0.225 0.198 0.207
N(0,1) 0.191 0.133 0.184 0.104 0.181 0.190 0.197 0.202
N (.5,1.22) 0.190 0.127 0.184 0.098 0.185 0.194 0.186 0.195
N (1,1.42) 0.186 0.130 0.176 0.099 0.185 0.199 0.185 0.193

F(a) FM(a) F(b) FM(b) F(a) FM(a) F(b) FM(b)
PS 0.032 0.032 0.042 0.042 0.129 0.147 0.163 0.181
NS 0.032 0.032 0.044 0.044 0.124 0.146 0.171 0.187
N(0,1) 0.032 0.032 0.044 0.044 0.125 0.139 0.172 0.189
N (.5,1.22) 0.031 0.031 0.041 0.041 0.119 0.138 0.165 0.185
N (1,1.42) 0.032 0.032 0.042 0.042 0.125 0.142 0.170 0.187

Note. MAE = mean absolute error, PS = positively skewed, NS = negatively skewed, SL = separate calibration with Stocking and
Lord scaling, M = calibration with minimum discriminant information adjustment (MDIA) matching, F = fixed parameter calibration
(FIPC), and FM = FIPC with matched data.
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Table 2 Average MAEs When J = 15 and N = 500

Operational items Pretest items
a parameter b parameter a parameter b parameter
0 SL(a) M(a) SL(b) M(b) SL(a) M(a) SL(b) M(b)
PS 0.131 0.148 0.187 0.078 0.124 0.121 0.196 0.157
NS 0.189 0.109 0.143 0.123 0.191 0.173 0.155 0.168
N(0, 1) 0.148 0.114 0.140 0.089 0.142 0.140 0.149 0.149
N (.5,1.22) 0.149 0.125 0.145 0.093 0.143 0.145 0.151 0.149
N(1,1.42) 0.162 0.129 0.145 0.097 0.151 0.151 0.158 0.156
Operational items Pretest items

F(a) FM(a) E(b) FM(b)
PS 0.098 0.106 0.129 0.132
NS 0.090 0.097 0.122 0.125
N(0,1) 0.091 0.095 0.122 0.127
N (.5,1.2%) 0.091 0.096 0.121 0.125
N (1,1.4%) 0.088 0.093 0.120 0.126

Note. MAE = mean absolute error, PS = positively skewed, NS = negatively skewed, SL = separate calibration with Stocking and
Lord scaling, M = calibration with minimum discriminant information adjustment (MDIA) matching, F = fixed parameter calibration
(FIPC), and FM = FIPC with matched data.

Table 3 Average MAEs When J = 15 and N = 1,000

Operational items Pretest items
a parameter b parameter a parameter b parameter
0 SL(a) M(a) SL(b) M(b) SL(a) M(a) SL(b) MAE.M(b)
PS 0.100 0.131 0.181 0.071 0.088 0.086 0.191 0.138
NS 0.171 0.105 0.121 0.118 0.159 0.140 0.120 0.143
N(0,1) 0.129 0.114 0.124 0.096 0.122 0.123 0.130 0.131
N(.5,1.22) 0.131 0.116 0.128 0.094 0.118 0.118 0.128 0.125
N(1,1.42) 0.134 0.116 0.121 0.090 0.118 0.117 0.121 0.120
Operational items Pretest items
F(a) FM(a) F(b) FM(b)
PS 0.077 0.084 0.095 0.096
NS 0.060 0.063 0.085 0.085
N(0,1) 0.066 0.067 0.091 0.091
N (.5,1.2%) 0.062 0.064 0.085 0.087
N (1,1.4%) 0.063 0.065 0.087 0.088

Note. MAE = mean absolute error, PS = positively skewed, NS = negatively skewed, SL = separate calibration with Stocking and
Lord scaling, M = calibration with minimum discriminant information adjustment (MDIA) matching, F = fixed parameter calibration
(FIPC), and FM = FIPC with matched data.

Tables 2 and 3 report the average MAEs for sample sizes of 500 and 1,000, respectively. Because calibration of the
operational items with the reference sample stayed the same (as in the bottom left section of Table 1), this portion is not
presented.

For the larger sample sizes, observations from Table 1 hold. That is, calibration with MDIA led to better item parameter
estimation than calibration with SL scaling for the operational items, but not for the pretest new items. Among all the
calibration methods, FIPC with the original sample performed the best across different underlying 6 distributions.

Tables 1 to 3 also show that the item parameter estimation became more accurate as the sample size increased. As
expected, as the sample size increased, the difference between calibration with SL scaling and calibration with MDIA
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Table 4 FIPC Calibrations of Pretest Items When J = 15 and N = 250, 500, or 1,000

N =250 MAE.1F(a) MAE.2F(a) MAE.1F(b) MAE.2F(b)
NS 0.255 0.169 0214 0.139
N(0,1) 0.236 0.200 0.194 0.168
N (.51.2%) 0.219 0.188 0.174 0.156
N (1,1.4%) 0.231 0.199 0.195 0.154
N =500 MAE.1F(a) MAE.2F(a) MAE.1F(b) MAE.2F(b)
NS 0.167 0.133 0.151 0.112
N(0,1) 0.142 0.130 0.125 0.106
N (.5,1.2%) 0.132 0.129 0.119 0.109
N (1,1.4%) 0.146 0.123 0.127 0.103
N =1,000 MAE.1F(a) MAE.2F(a) MAE.1F(b) MAE.2F(b)
NS 0.121 0.098 0.111 0.087
N(0.1) 0.103 0.095 0.086 0.076
N (.5,1.2%) 0.106 0.095 0.091 0.081
N (1,1.4%) 0.104 0.095 0.087 0.075

Note. MAE = mean absolute error, 1F = fixed parameter calibration (FIPC) with data from one administration, 2F = FIPC with data
from two administrations.

matching became smaller for both operational items and pretest new items, but FIPC outperformed both for new items.
Moreover, item estimation from FIPC with 250 test takers was nearly as accurate as those from calibrations with SL scaling
with 500 students. Similarly, item estimation from FIPC with 500 students was nearly as accurate as (sometimes more
accurate than) those from calibrations with SL scaling with 1,000 students. Observations from average MAEs for tests with
J = 30 in the routing block were largely similar to those for ] = 15. T lose results are presented in Table B1 in Appendix B.

Note that items in the target blocks were very unstable when sample sizes were small because of missing data by design,
so they were not considered as anchor items for scaling nor fixed with item parameters in FIPCs. This choice not only
simplified the item calibration procedure, but also met the requirement for item scaling; that is, the portion of anchor
items was at least 20% of the total items in transformation (Kolen & Brennan, 2004).

Study 2: FIPC With Multiple Administrations

To improve the initial pretest item calibration in one administration, new items were recalibrated with data from two
administrations. In the first FIPC (1F), the pretest items were administrated (Admin 1) to a sample of test takers
(size=N;) with Test Form 1, and the initial FIPC estimates were obtained by fixing the routing items on Test Form 1.
In the second FIPC (2F), the pretest items were assembled into the target blocks in Test Form 2 according to their initial
estimates and administered to a sample of test takers (size = N,; refer to Case B in Figure 4). With data from the two
administrations, a concurrent FIPC calibration (size = N| + N,) was conducted for the new items, where item parameters
in routing blocks of Test Form 1 and Test Form 2 were fixed (note that items in the routing blocks were assumed to be
from the item pool with accurate estimates).

Theaverage MAEs of item parameter estimates are shown in Table 4. From the top section of Table 4, we observed that,
with additional data, the accuracy of item parameter estimation was much improved; that is, the MAEs were smaller in
the combined data than those when the sample size was 250 for both administrations. Because of missing data by design
in the target blocks in the second administration, the magnitude of improvement was not as large as that with doubled
sample sizes. The same observation applies to sample sizes N = 500 and 1,000 in the middle and lower sections of Table 4.

Study 3: Conversion Table Comparison

To investigate whether it was appropriate to use the 1PL model to calibrate pretest items instead of the 2PL model, we
compared the conversion tables produced by 1PL and 2PL IRT true score equating. Figure 6 shows the MAEs in the
conversion tables (the y-axis) at each score point (the x-axis) when the sample size N = 100 was used in FIPCs, where the
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Figure 6 MAE in conversion tables (N = 100). Note. E-1PL, M-1PL, and H-1PL are produced by 1PL models on the easy, medium
hard, and hard item blocks, respectively. E-2PL, M-2PL, and H-2PL are produced by 2PL models on the easy, medium hard, and hard
item blocks, respectively. MAE = mean absolute error.

solid lines are produced by the 1PL model and the dashed lines by the 2PL model, for the forms with easy (black line),
medium difficult (red line), and difficult (green line) target blocks. Note for Study 3, the conversion table produced by
the true 2PL model item parameters is used as criterion for evaluation. From Figure 6, we observe that the 1PL model
calibrations produced larger MAE than the 2PL calibration in the conversion tables when N = 100 from different ability
distributions.

For larger sample sizes, the MAEs produced by the 2PL models became smaller and smaller, but the MAEs remained
large for the 1PL models, as expected (refer to Figures 7 to 9).

Discussion and Conclusion

In the current research, we used item parameters from an MST program as illustration to evaluate various psychometric
decision-making practices. We conducted three studies to investigate how to address the small-sample challenges for a
specific testing program. In Study 1, we investigated three calibration methods under the MST design to estimate new
items to replenish the item pool. Simulation results showed that the fixed item parameter calibration method (i.e., MWU-
MEM) performed the best under different sample sizes and different underlying ability distributions, which agreed with
results in several recent studies for linear tests (Kim & Kolen, 2019; Konig et al., 2021; Wang et al., 2020). More specifically,
we found that the performance of FIPC was generally as accurate as that from separate calibrations with a doubled sample
size for the studied conditions.

Therefore, when the item pool is accurately estimated with a 2PL model, as is the case for the studied program, FIPC
is recommended for new item calibration in the MST design. In addition, we recommend using items in the routing
block only as the fixed item parameters in practice because it leads to stable estimation, meets the required proportion of
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Figure 7 MAE in conversion tables (N = 250). Note. MAE = mean absolute error.

anchor items for item scaling (Kolen & Brennan, 2004), produces unbiased estimated parameters of new items under the
MST design for meeting the missing at random requirement (Mislevy & Wu, 1988, 1996; Wang et al., 2020), and, most
importantly, simplifies implementation of FIPC in practice. The results from Study 1 also showed that, if the program
switched to the FIPC method, the sample size requirement (for example, N = 1,000) could be relaxed (say, N > 500), and
the new item calibration could maintain quality similar to that when the separate calibration with SL was used. In case the
initial new item calibration is not satisfying, Study 2 showed that concurrent FIPC calibration that combines data from
multiple administrations can also improve the accuracy of new item parameter estimation.

Theinitial item pool of the studied program was well calibrated with field test data. Given small samples in operation in
Study 3, we evaluated whether there was evidence to support a transition from the 2PL model to the 1PL model, in terms
of the conversion table changes for score reporting. Based on the specific item pool, our limited simulation results showed
that, unlike what was found in some previous literature, the 2PL model still performed better in terms of the conversion
table accuracy. This finding might be attributed to the relatively large variation in the item discrimination parameters in
the item pool, combined with the relatively short tests.

Based on our simulation results, one additional finding worth mentioning is that to post-calibrate operational items
(i.e., existing items in the pool), it seems beneficial to use calibrations with MDIA matching, particularly when the sample
size is small. In other words, if the goal of calibration is to recalibrate items in the pool, then the MDIA matching approach
may be helpful. Furthermore, once items are all well calibrated from different administrations, the simultaneous linking
method (Haberman, 2009) can be implemented to put the large number of item parameters in the item pool on the same
scale to further improve the quality of the item pool.

One limitation for our findings in the current research is its generalizability to other MST testing programs. The studied
item pools mostly contain easy items, even though we varied the ability distributions in the simulations, some findings
may not apply to other program-specific data. However, the procedures for evaluating various psychometric decisions for
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Figure 8 MAE in conversion tables (N = 500). Note. MAE = mean absolute error.

the specific program are applicable, and the recommendation of FIPC with the routing block is likely to be applicable as
well for an MST program. Theresults of the model selection study (Study 3) may be different for different testing program
settings.

Another limitation is the concurrent calibration design in Study 2 when using data collected from multiple admin-
istrations. In Study 2, we assumed that the new items first appeared in a pretest item block with Test Form 1 and then
reappeared in the target blocks with Test Form 2 at the second administration, as depicted in Case B in Figure 4. T lis
design would ensure accuracy of the routing decision for Test Form 2 and save the pretest block for newer items, and the
recalibrated item parameters in the target blocks would also ensure accurate score reporting for Test Form 2. However,
as we mentioned before, the gain of the Study 2 design (Case B in Figure 4) is at a price of smaller samples at the second
stage for each target block because of missing data by design under MST. In addition, Study 2 with Case B design also
requires the testing program to adjust operational procedures and timelines for score reporting because of the recalibra-
tion step. If the testing program can afford to readministrate the intact pretest block in Test Form 2, the sample size in
the multiple-administration concurrent FIPC calibration would be doubled. If so, it is recommended to use Case A in
Figure 4 in practice because of its simplicity. On the other hand, when a testing program has a shallow item pool and is
in dire need of new items, the Case C design in Figure 4 for data collection might be considered because it can pretest
the most item with each administration. As noted in Kim (2006), unstable parameter estimates of the fixed items due to
small-sample sizes may not appear to have much effect on the performance of the FIPC methods in calibrating new items.
Therefore, practitioners could embed some newly calibrated items with preliminary item parameters in the routing block
with Test Form 2, to gather more data for a recalibration of these new items from Test Form 1, and save space in the pretest
block on Test Form 2 to test newer items. However, impact of such a design on the routing decision accuracy needs to be
further investigated under different scenarios with program-specific data.

As in most adaptive testing programs, the studied MST testing program uses the IRT true score equating in practice
to link scores among different test forms. Therefore, in Study 3, we evaluated conversion table variation when different
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IRT models were used. The 2PL IRT true score equating method has an inherent issue when the test length is short
(that is, plugging in the observed sum score, as if it were the true score, in the conversion table to obtain the scale score
for reporting; Guo & Dorans, 2019, 2020; Kolen & Brennan, 2004; Lord, 1980). However, if a testing program uses the
estimated ability or its derivatives for score reporting, further studies can use the program-specific data to investigate the
benefit of using a simpler IRT model when the sample sizes are small.

Opverall, when a testing program makes psychometric decisions or adjusts decisions when the testing situation changes,
it is prudent to conduct program-specific and literature-guided research.
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Appendix A
R Implementation

For implementation of the fixed parameter calibration (FIPC) in BILOG, PARSCALE, and ICL, please refer to
Kim (2006), Kim and Kolen (2019), and references therein.

All analyses and calibrations in the current research were conducted by using the R language and its associated R
packages. Therefore, R implementation of a few key steps is provided below.

In the current research, the mirt package (Chalmers, 2012) was used for item calibrations, and the irtoys pack-
age (Partchev & Maris, 2017) was used for the SL scaling. The MDIA method was programmed in R based on
Haberman (2015).

Separate Calibration
The separate calibration use the mirt function with the default MMLE/EM method.

library(mirt)

#dat: new item responses on routing block and pretest blocks.
mod.new<- mirt(dat, 1, verbose = FALSE)
coef(mod.new) #estimated item parameters
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FIPC

The fixedCalib function in mirt was used for FIPC.

#mod.ref: mirt output of the reference sample with the routing block items.
#dat: new item responses on routing block and pretest blocks.

MWU_MEM <- fixedCalib(dat, model = 1, old_mod = mod.ref)
coef(MWU_MEM) #estimated item parameters

SL Scaling

The sca function in irtoys was used for SL scaling.

library(irtoys)
#ITEM.ref: data matrix of the anchor item parameters
#(a, b, and c=0 are in first, second, and third column, respectively).
#1TEM.new: data matrix of item parameters
#(a, b and c=0 are in first, second, and third column, respectively).
J=length(ITEM.ref[1,]) #number of the anchor items
qg=normal .qu(n =61, lower = -6, upper = 6, mu = 0, sigma = 1,
scaling = "points') #quadrature points

SL=sca(old.ip=ITEM.ref, new.ip=ITEM.new, old.items=1:J, new.items=1:J,

old.qu=qq, method = "'SL", bec=FALSE) #scaling
A<-SL$slope #slope coefficient
B<-SL$intercept #intercept

Appendix B
Results When J = 30

Table B1 Average MAEs for ] = 30 in the Routing Block and N = 250 in Study 1

Operational items Pretest items
(% MAE.SL(a) MAE.M(a) MAE.SL(b) MAE.M(b) MAE.SL(a) MAE.M(a) MAE.SL(b) MAE.M(b)
PS 0.133 0.163 0.177 0.170 0.135 0.179 0.182 0.219
NS 0.154 0.114 0.182 0.111 0.148 0.171 0.188 0.205
N(0,1) 0.143 0.122 0.177 0.099 0.134 0.160 0.177 0.194
N(.5,1.22) 0.139 0.119 0.171 0.098 0.135 0.161 0.175 0.192
N(1,1.42) 0.143 0.119 0.171 0.097 0.136 0.163 0.179 0.196

MAE.F(a) MAEFM(a) MAEF(b) MAEFM() MAEF(a) MAEFM(a) MAEF(b) MAEFM(b)

PS 0.034 0.034 0.046 0.046 0.129 0.157 0.168 0.202
NS 0.034 0.034 0.044 0.044 0.124 0.154 0.174 0.204
N(0,1) 0.036 0.036 0.045 0.045 0.120 0.140 0.168 0.195
N (.5,1.22) 0.034 0.034 0.044 0.044 0.119 0.143 0.165 0.191
N (1,1.42) 0.037 0.037 0.045 0.045 0.121 0.145 0.172 0.197

Note. SL = separate calibration with Stocking and Lord scaling, M = calibration with minimum discriminant information adjustment
(MDIA) matching, F = fixed parameter calibration (FIPC), and FM = FIPC with matched data.
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