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E T S R E S E A R C H R E P O R T

Estimating Reliability for Tests With One
Constructed-Response Item in a Section

Yanxuan Qu1 & Sandip Sinharay2

1 ETS Psychometric Analysis and Research, ETS, Princeton, New Jersey, United States
2 ETS Research Institute, ETS Princeton, New Jersey, United States

The goal of this paper is to find better ways to estimate the internal consistency reliability of scores on tests with a specific type of
design that are often encountered in practice: tests with constructed-response items clustered into sections that are not parallel or tau-
equivalent, and one of the sections has only one item. To estimate the reliability of scores on this kind of test, we propose a two-step
approach (denoted as CA_STR) that first estimates the reliability of scores on the section with a single item using the correction for
attenuation method and then estimates the reliability of scores on the whole test using the stratified coefficient alpha. We compared the
CA_STR method with three other reliability estimation approaches under various conditions using both real and simulated data. We
found that overall, the CA_STR method performed the best and it was easy to implement.

Keywords constructed-response items; test reliability; correction for attenuation; stratified coefficient alpha; single-item reliability

doi:10.1002/ets2.12382

The topic of reliability has interested measurement practitioners arguably since Spearman (1910) introduced the concept
of correction for attenuation (CA) and that of split half reliability. Reliability is traditionally quantified using reliability
coefficients. One class of these coefficients includes internal consistency estimates, which are computed from a single
administration. Most internal-consistency reliability estimates, such as split half, KR-20, and Cronbach’s alpha, assume
that the test items (or sections or components) are essentially tau-equivalent (e.g., Allen & Yen, 2002, p. 91; Feldt &
Qualls, 1996; Novick & Lewis, 1967), which means that the true scores on any pair of items are perfectly correlated and
differ by the same constant for all examinees. However, educational and psychological tests often have multiple sections
that vary in length, item type, task complexity, and score ranges. Some tests may have only one item in a section. An
example of the structure of such a test is shown in Table 1. The items in any section are of different types than those in
any other section, and Section 1 of the test includes only one item whose score range (0–2) is dif ferent from the score
range of all items on the test. While it is necessary to report reliability of all reported scores, it is not clear how to estimate
internal consistency reliability for these tests that (a) have nonparallel sections and (b) have single-item sections such that
the single item is of a different type than all other items on the test.

The purpose of this study is to find a practical way to better estimate the reliability of scores on a constructed-response
(CR) test that includes multiple sections that are not parallel in length or content and one of the sections has only one
item that is of a different type than the other items on the test.

Internal Consistency Reliability Estimates: A Literature Review

Researchers have developed several approaches to estimate the internal consistency reliability of total test scores under
different test designs. Kuder and Richardson (1937) suggested Kuder-Richardson Formula 20 (described in Appendix A)
for estimating internal consistency reliability for tests with only dichotomous items. Guttman (1945) proposed six Lamb-
das (Appendix A) to calculate lower bounds of reliability for tests with dichotomous or polytomous items. Among the six
estimates, 𝜆2 and 𝜆3 are the most convenient to use and are both larger than 𝜆1. Cronbach (1951; see Formula 4 later in
this paper) introduced the alpha statistic for estimating internal consistency reliability for tests with either dichotomous
or polytomous items. Cronbach’s alpha is very similar to Guttman’s 𝜆3 or 𝜆2. All of these approaches require items on a
test to be essentially tau-equivalent and homogeneous with respect to content (e.g., Allen & Yen, 2002, p. 91; Novick &
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Y. Qu et al. Estimating Reliability for Tests

Table 1 An Example of the Structure of a Constructed-Response (CR) Test With Nonparallel Sections and a Single-Item Section

Section Number of items Item score range Item sequence

Section 1 1 0–2 1
Section 2 3 0–3 2–4
Section 3 2 0–4 5–6

Lewis, 1967). These approaches will provide inaccurate and underestimated reliability coefficients when the items are not
tau-equivalent or not content-homogeneous, which may occur when, for example, items have different score categories
and belong to different content areas. Cronbach et al. (1965) introduced the stratified alpha coefficient (see Formula 3 of
this paper), whichwas proved to bemore accurate and robust thanCronbach’s alphawhen test content is not homogeneous
(Feldt & Qualls, 1996). Kristof (1974) proposed an approach to estimate score reliability for tests with three non-parallel
or non-tau-equivalent parts in length (Formulas 5 and 6 of this paper). Using real data, Kristof (1974) illustrated that
the Kristof reliability estimate was at least as accurate as Cronbach’s alpha and Guttman’s lower bound 𝜆3. Sedere and
Feldt (1977) used simulated item scores on a test with three sections of different lengths to evaluate the accuracy of the
Kristof reliability coefficient compared to those of Cronbach’s alpha and Guttman’s 𝜆2. They found that the Kristof’s coef-
ficient can be sensitive to part-test length ratios or heterogeneity of the three sections in length but can still outperform
Cronbach’s alpha and Guttman’s 𝜆2 when the three sections are moderately heterogeneous in length and sample size is at
least 200. TheKristof method also requires content homogeneity within a test. Sedere and Feldt (1977) did not consider
the effect of test dimensionality.

Molenaar and Sijtsma (1988) suggested a reliability estimate, which will be referred to as the MS estimate, for both
dichotomous and polytomous data. Their approach involved less restrictive assumptions compared to those underlying
Cronbach’s alpha or Guttman’s 𝜆2, but required unidimensionality and doublemonotonicity1 (Sijtsma&Molenaar, 2002),
which are still pretty strong assumptions. van der Ark et al. (2011) proposed the latent class reliability coefficient (LCRC)
and compared it with four reliability estimates—Cronbach’s alpha, Guttman’s 𝜆2, the MS estimate, and the split-half
reliability coefficient—using data simulated from unidimensional and multidimensional graded response models. They
varied test length, item score format (dichotomous or polytomous), discrimination parameters (equal or unequal), and
sample size. They found that the MS estimate and Guttman’s 𝜆2 had the least bias for unidimensional tests with equal
discrimination parameters. But for multidimensional data or data with unequal discrimination parameters, the LCRC
was less biased than the others. Estimation bias was smaller for all methods when the test was unidimensional or had
more items.

Cronbach et al. (1972) introduced the generalizability theory (G-theory), a different framework for estimating reliabil-
ity of test scores. The G-theory uses the analysis of variance (ANOVA) technique to break down themeasurement error in
classical test theory into multiple error sources from different testing situations (e.g., raters, times, items). TheG-theory
can estimate various types of test reliabilities, internal consistency reliability being one of them, but it does not address
the issue of having only one item in a test section. Brennan (2017) conceptually explained why it can be problematic when
using the G-theory to estimate reliability for a test with only one item in a section. According to Brennan (2017, p. 3), the
generalizability study based on a single condition of a facet leads to bias in error variances and coefficients. The funda-
mental cause of this bias is that the single fixed level of a facet in a generalizability studymakes it impossible to disentangle
some variance components.

All the aforementioned methods were initially developed to estimate reliability at the test level. Over the years,
researchers have devoted their efforts not only to enhancing the estimation of test-score reliability under various
situations, but also to exploring approaches for estimating the reliability of a single-item score/measure. Wanous and
Reichers (1996) proposed a method for estimating the reliability of a single-item measure based on the classical formula
for correction for attenuation—we refer to the method as the CA method. Zijlmans et al. (2018) adjusted the MS method,
Guttman’s 𝜆6, and the LCRC method so that they can be used to estimate the reliability of a single-item measure. Below
we have a brief summary for the MS and the LCRC methods. The formula for the extended Guttman’s 𝜆6 in estimating
reliability of item scores on a single item i (denoted as 𝜆6i) can be found in Appendix A. For details, please refer to the
article by Zijlmans et al. (2018).

2 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service
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Y. Qu et al. Estimating Reliability for Tests

Both the MS and LCRC methods estimate item reliability by the ratio of true score variance and the total observed
score variance under the framework of classical test theory, or, by

𝜌ii′ =
𝜎

2
Ti

𝜎
2
Xi

=

∑m
x=1

∑m
y=1

[
𝜋x(i),y(i′) − 𝜋x(i)𝜋y(i)

]

𝜎
2
Xi

, (1)

where i is the index for a single item, i′ is an independent repetition of item i, x and y denote realizations of item scores (x, y
= 0, 1, … ,m).Xi is the observed score on item i, andTi is the true score on item i, which is the expectation of an individual’s
test score across independent repetitions. 𝜎2

Ti
is the true score variance on item i, and 𝜎2

Xi
is the observed score variance

on item i; 𝜋x(i),y(i′) is the joint cumulative probability of getting at least score x and at least score y on two independent
repetitions, denoted by i and i′; 𝜋x(i) is the marginal cumulative probability of obtaining at least score x on item i; 𝜋y(i)
is the marginal cumulative probability of obtaining at least score y on item i. The MS and LCRC methods use different
approaches to estimate the joint cumulative probability 𝜋x(i),y(i′). The MS method assumes a double monotonicity model
and uses the mean of eight approximation methods (Molenaar & Sijtsma, 1988) as an estimate for the joint cumulative
probability𝜋x(i),y(i′). T he LCRCmethod assumes a latent classmodel and estimates the joint cumulative probability𝜋x(i),y(i′)
by the probability to be in a particular latent class, and the probability of a particular item score given class membership.
A key to obtain an accurate LCRC reliability estimate is to have a good idea of the number of latent classes. Compared to
the CA method, the calculation for either the MS method or the LCRC method is more time consuming.

Zijlmans et al. (2018) conducted a simulation study to compare the performance of the CA method (Wanous & Reich-
ers, 1996) with the modif ied MS, Guttman’s 𝜆6, and LCRC methods in calculating single-item score reliability. In their
standard condition, they simulated both dichotomous and polytomous scores for six items that are unidimensional. They
found that the MS and CA methods were the most accurate in terms of bias and variability in estimating single-item
reliability for each of the six items; the LCRC estimates had small bias, but large variation. In other conditions when they
simulated 18 items that were not unidimensional, both the MS and CA methods produced larger bias; the MS estimates
had larger bias than the CA estimates and the LCRC estimates; again, the LCRC estimates had small bias but large varia-
tion. Guttman’s 𝜆6 always had the largest negative bias. T he CA estimates seemed to be the best overall, and they are easy
to compute.

According to existing literature, it is unclear which among the existing methods can be used to accurately estimate
the reliability of the test whose design is presented in Table 1. The stratified alpha method, for instance, is not expected
to lead to an accurate estimate of the reliability of scores on such tests because its formula requires the Cronbach’s alpha
for each section, and Cronbach’s alpha cannot be computed for a section with a single item. While the Kristof and the
Cronbach’s alpha methods can be used to estimate the reliability of scores on tests with multiple sections where one of
the sections includes only one item, the accuracy of the resulting reliability estimate is unknown based on past research.
Specifically, the Cronbach’s alpha is probably too low as an estimate for the internal consistency reliability of scores on
tests with designs as presented in Table 1. Therefore, we need to explore or propose new methods to estimate reliability
for such tests.

Based on the findings from van der Ark et al. (2011) and Zijlmans et al. (2018), we came up with the idea of combining
the CA method with the stratified coefficient alpha method to estimate reliability of test scores on multisectional CR tests
with a single-item section (as described in Table 1). We are interested in knowing how this two-step method performs
compared to other feasible methods.

The Four Reliability Estimation Methods Compared in This Study

The two-step method we proposed is referred to as the CA-STR method and involves the use of the CA method (Wanous
&Reichers,1996) to compute a reliability estimate for the section with only one item and then the use of the stratified coef-
f icient alpha (Cronbach et al., 1965) to estimate reliability of test scores. One assumption of the CA method for estimating
reliability of a single item is that the deattenuated correlation between the single item and the rest of the test is equal to
1. Method CA was chosen as the first component of our method because it performed better than Guttman’s 𝜆6 and the
LCRC method when the data are unidimensional based on Zijlmans et al. (2018), and it is easier to compute compared to
the MS method.

ETS Research Report No. RR-24-07. © 2024 Educational Testing Service 3
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Y. Qu et al. Estimating Reliability for Tests

The three other reliability estimation methods that we examined include the Cronbach’s alpha (that is arguably the
most popular reliability estimate in operational practice; see, for example, Raykov & Marcoulides, 2015), the Kristof reli-
ability coefficient, and the stratified coefficient alpha after combining the single-item section with one of the other two
sections of the test (Str_Combined). We proposed this Str_Combined method and included it in this study because of its
simplicity (both in concept and calculation). The formulas and steps for computation for the four reliability estimates that
we compared are given below.

The CA-STR Method

TheCA-STRmethod: As described earlier, the first step in theCA-STRmethod is to estimate the reliability of the scores on
the single-item section. Instead of using regular coefficient alpha in the denominator of Formula 15 (Zijlmans et al., 2018,
p. 560), we used stratified coefficient alpha in the denominator. The reliability of the score on the single-item section was
estimated as

𝜌
CA =

𝜌
2
UV

𝜌
Stratified
VV′

, (2)

whereU is the score on the single-item section (e.g., Item 1 in Table 1),V is the score on all other items (e.g., Items 2–6 in
Table 1), 𝜌2UV is the squared correlation between scores on the single-item section and scores on all other items (e.g., Items
2–6 in Table 1), and 𝜌StratifiedVV′ is the stratified coefficient alpha for scores on all other items (i.e., Items 2–6 in Table 1) that
is computed as

𝜌
Stratified
VV′ =

⎛
⎜
⎜
⎜
⎝

1 −

∑
𝜎

2
Vj

(
1 − 𝛼𝜌VjV′j

)

𝜎
2
V

⎞
⎟
⎟
⎟
⎠

, (3)

where V is the total score on all sections except for the single-item section, 𝜎2
Vj

is the variance associated with total scores
on section j that has more than one item, and 𝛼𝜌VjV′j

is the Cronbach’s alpha for section j that has more than one item.

Cronbach’s Alpha

The formula for Cronbach’s alpha 𝛼𝜌VV′ is given by

𝛼𝜌VV′ =
n

n − 1

(

1 −

∑
𝜎

2
Vi

𝜎
2
V

)

, (4)

where n is the number of items in a test, 𝜎2
Vi

is the variance associated with each item i, and 𝜎2
V is the variance associated

with total score.

Kristof Reliability Coefficient

This coefficient is computed using Formulas 9 and 13 in Kristof (1974) as

𝜌 =
𝜎

2
T

𝜎
2
X

(5)

and
𝜎

2
T =

𝜎12𝜎13

𝜎23
+
𝜎12𝜎23

𝜎13
+
𝜎13𝜎23

𝜎12
+ 2

(
𝜎12 + 𝜎13 + 𝜎23

)
, (6)

whereX is the observed total score on all sections; 𝜎2
T is the true score variance; 𝜎2

X is the observed (total) score variance; 𝜌
is the Kristof reliability coefficient; and 𝜎mn,m ≠ n,m = 1, 2, 3; n = 1, 2, 3 is the covariance between the observed scores
on section m and section n.

4 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service
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Y. Qu et al. Estimating Reliability for Tests

Table 2 Test Specifications for Operational and Pseudo Test 1 (30 Forms)

Test 1 Pseudo Test 1

Section Number of items Item sequence Item score range Number of items Item sequence Item score range

Section 1 5 1–5 0–2 5 1–5 0–2
Section 2 2 6–7 0–3 2 6–7 0–3
Section 3 3 8–10 0–4 1 8 0–4

Table 3 Test Specifications for Operational and Pseudo Test 2 (83 Forms)

Test 2 Pseudo Test 2

Section Number of items Item sequence Item score range Number of items Item sequence Item score range

Section 1 6 1–6 0–2 6 1–6 0–2
Section 2 6 7–12 0–2 6 7–12 0–2
Section 3 3 13–15 0–4 1 13 0–4

Str_Combined Method

In this method, the first step is to select a section to be combined with the single-item section. The second step is to
compute stratified coefficient alpha for the test with two sections using Formula 3 above. Given the data we used in this
study (Tables 2 and 3), we combined Section 3 with Section 2 before calculating stratified coefficient alpha for Section 1
and the combined section (denoted as Section 23).

Real Data Study

Thereal/operational data we used in this study were from two tests that will be referred to as Test 1 and Test 2 and included
only CR items. We obtained data from 30 operational forms of Test 1 and created 30 pseudo forms for Test 1 by removing
the last two items from each operational form. The sample sizes of these pseudo forms ranged from 161 to 2,316; the
average sample size was 580. Similarly, we created 83 pseudo forms for Test 2 by removing the last two items from 83
operational forms of Test 2. The sample sizes of these pseudo forms ranged from 344 to 4,606, with an average of 1,195.
In the following sections, Pseudo Test 1 (or Pseudo Test 2) refers to those pseudo forms created from Test 1 (or Test 2).
All of our analyses were based on data from these pseudo forms.

Tables 2 and 3 present the specifications of the pseudo forms we created based on Tests 1 and 2, respectively. Each test
includes three sections that vary in item types, task complexities, number of items, and score ranges. The third section
of the actual tests includes three items. We removed the last two items to obtain the pseudo forms that we used in our
analysis.

To examine whether the Kristof coefficient is sensitive to part-test length ratio, we randomly manipulated the pro-
portion of each section score relative to the total test score for both tests by applying different weights to each section.
Table 4 shows the weights that we applied to the section scores and the resulting part-test length ratios for both pseudo
tests and both part-test ratio conditions. For pseudo test 1, the first part-test length ratio was 5:3:2 and the second part-test
length ratio was approximately 1:3:5. For pseudo test 2, the first part-test length ratio was 3:3:1 and the second part-test
length ratio was 1:1:1. For both pseudo tests, section 1 has a relatively larger contribution toward the total test score, while
section 3 has a relatively smaller contribution toward the total test score in part-test length ratio 1 than in ratio 2.

Simulation Study

We conducted a simulation study to compare the CA-STR method with the other methods to examine the accuracy of
the method in comparison to other reliability estimation methods. In the simulation study, we varied not only the part-
test length ratios but also test dimensionality to examine how the relative performance of these four reliability estimation

ETS Research Report No. RR-24-07. © 2024 Educational Testing Service 5
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Y. Qu et al. Estimating Reliability for Tests

Table 4 Part-Test Length Ratio (Proportion of Section Scores Relative to Total Score)

Test Part-test
Max. section scores
(see Tables 2 and 3)

Weights on
section scores Max. total score

Part-test
length ratio

Pseudo Test 1 Part-Test Length Ratio 1 10, 6, 4 1, 1, 1 10+ 6+ 4 = 20 5, 3, 2
Part-Test Length Ratio 2 10, 6, 4 1, 5, 12 10+ 30+ 48 = 88 1, 3, 5a

Pseudo Test 2 Part-Test Length Ratio 1 12, 12, 4 1, 1, 1 12+ 12+ 4 = 28 3, 3, 1
Part-Test Length Ratio 2 12, 12, 4 1, 1, 3 12+ 12+ 12 = 36 1, 1, 1

aT his is an approximation.

methods varies across different situations. The simulated data have the same test specifications as those of the aforemen-
tioned pseudo forms. Thesimulated data also have two different part-test length ratios, as in the case of the real data study.
Both unidimensional and two-dimensional data (with correlation of 0.4 and 0.7 between two dimensions) were simulated.

The steps of the simulation study for either pseudo test 1 or pseudo test 2 are given by the following:

1. Calibrate each of the pseudo forms for the test used in the real data study using a unidimensional generalized partial
credit model (GPCM; Muraki, 1992).

2. Pick one of the pseudo forms for the test with relatively good model fit and larger sample size. If several items in a
data set had a statistically significant value of the generalized S-X2 item fit statistic (Kang & Chen, 2008), then the
model is assumed to not fit the data set well.

3. Use item parameters from the selected form and theta values generated from a standard normal distribution to
generate item scores on the test for n = 100,000 test takers based on a GPCM. This data set is considered as the
population data set for the selected form at Time 1.

4. Starting with the same sample of 100,000 theta values and the same item parameters, select a new random-number
seed and simulate a new set of item scores for each of the thetas in the sample. Call this the population dataset at
Time 2.

5. Calculate correlation between total test scores at Time 1 andTime 2. This correlation coefficient, which is a test-retest
correlation, was considered as the true reliability coefficient for the selected form.

6. From the population data set at Time 1, draw 1,000 samples using the simple random sampling with replacement
method. Three sample size conditions were considered: n = 150, n = 300, and n = 1000.2

7. For each sample drawn in Step 6, calculate total test reliability using the four methods—the resulting values con-
stitute the sample reliability estimates.

8. Using the aforementioned true reliability and the sample reliability estimates, calculate the bias (difference between
sample reliability estimates and true reliability coefficient) and the root mean squared error (RMSE) of the sample
reliability estimates.

We then used a similar 8-step procedure with a revised first step to simulate two-dimensional data sets. In the revised
Step 1, instead of fitting a unidimensional GPCMmodel, we fitted a two-dimensional GPCM (Reckase, 2009, p. 103). After
evaluatingmodel fit, item parameters from one pseudo form of Test 1 with acceptablemodel fit were used to simulate item
scores based on a two-dimensional model. Most pseudo forms in Test 1 had bad model fit. None of the pseudo forms in
Test 2 had acceptable model fit under two-dimensional GPCM; so, no multidimensional data simulation was conducted
for Test 2. When generating item responses in Step 3, the theta values were simulated from a bivariate normal distribution
with correlations of 0.4 or 0.7 between the two variables. The factor structure we used for generating the two-dimensional
data is consistent with the factor structure in the selected pseudo form of Test 1. An exploratory factor analysis on the
selected pseudo form shows that items from Section 1 correspond to one dimension and items from Sections 2 and 3
correspond to another dimension. Scores on Section 3 had higher correlation with scores on Section 2 than with scores
on Section 1.

In this study, we used the GPCM (Muraki, 1992) to f it the real data and to generate item response scores because the
GPCM is more often used in the field of educational testing than the graded response model (e.g., Bürkner et al., 2019).
We used the open-source software R (e.g., R Core Team, 2022) for data simulation, calibration, model-fit assessment, and
reliability computation.

6 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service
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Y. Qu et al. Estimating Reliability for Tests

As shown in Step 5, we used the test-retest reliability estimate based on the population data as the true reliability
coefficient.We did not use any internal consistency reliabilitymeasure as the true reliability because we did not know of an
appropriate internal-consistency measures for our particular tests yet. We computed the true reliability as the ratio of true
score variance and observed score variance as in Raykov and Marcoulides (2015). The difference between the test-retest
and the variance ratio reliability coefficients based on the population data is very small. For example, for the population
data for Test 1, the differences between these two reliability coefficients were within 0.01 under the two part-test length
ratios.

The RMSE in Step 8 is a summary statistic that reflects how accurate and stable each reliability estimate is. It is the
square root of average squared difference between the estimated and the true value, across 1,000 samples. That is,

RMSE =

√
∑(

𝜌i − 𝜌
)2

n
, (7)

where, n = 1,000, 𝜌 is the true reliability coef f icient, and 𝜌i is the estimated reliability coefficient for sample i. T he RMSE
statistics takes both accuracy and variation of the estimation into account. An estimate with smaller RMSE is typically
preferred over an estimate with larger RMSE.

van der Ark et al. (2011) interpreted absolute bias as follows: |bias|< .001 is considered negligible, .001≤ |bias|< .01 is
small, .01≤ |bias|< .02 is medium, .02 ≤ |bias|< .05 is considerable, and |bias|≥ .05 is considered large. In this study, we
considered an absolute bias larger than .05 as large and an absolute bias≤ .05 as small. And we applied the same criterion
to interpret the magnitude of RMSE.

Results

Results for Real Data

Tables 5 and 6 present a summary of various reliability estimates based on real data for Pseudo Tests 1 and 2 respectively.
It should be noted that the true reliability is unknown for the real data; so we examined how the four reliability coef f icients
differed from each other. Table 5 indicates that under Part-Test Length Ratio 1 of Pseudo Test 1, the reliability estimates
from the CA_STR and the Str_Combined methods were very similar, and they were the highest. The reliability estimates
from theKristofmethodwere the lowest. However, when the proportion of scores in the three sections changed fromPart-
Test Length Ratio 1 to Part-Test Length Ratio 2 (6:3:2 to 1:3:5), the Kristof coefficients became the highest overall, and
the regular coefficient alphas became the lowest. Table 6 indicates that for Pseudo Test 2, the CA_STR reliability estimates
were the highest overall under both part-test length ratios. Reliability estimates from the Str_Combined method were

Table 5 Summary of Various Reliability Estimates Across 30 Pseudo Forms of Test 1 – Real Data

Part-Test Length Ratio 1 Part-Test Length Ratio 2

Statistic Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

Avg. 0.7699 0.6779 0.7934 0.7942 0.5822 0.7830 0.7771 0.6967
Min. 0.6153 0.5241 0.6266 0.6301 0.4187 0.6023 0.6031 0.4760
Max. 0.9021 0.8685 0.9187 0.9206 0.6877 0.9027 0.9027 0.8217

Note. Avg. = average; min. =minimum; max. =maximum.

Table 6 Summary of Various Reliability Estimates Across 83 Pseudo Forms of Test 2 – Real Data

Part-Test Length Ratio 1 Part-Test Length Ratio 2

Statistic Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

Avg. 0.7884 0.7960 0.8147 0.8007 0.7729 0.7942 0.8053 0.8010
Min. 0.7067 0.6950 0.7199 0.7184 0.6674 0.6946 0.7064 0.6915
Max. 0.8750 0.8920 0.9218 0.8955 0.8701 0.9008 0.9200 0.9159

Note. Avg. = average; min. =minimum; max. =maximum.
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Y. Qu et al. Estimating Reliability for Tests

the second highest overall, and those from the Kristof method were the third highest. Reliability estimates based on the
regular coefficient alpha method were the lowest under both part-test length ratios.

Results for Simulated Data

Table 7 shows the true reliability coef f icients that were calculated as the correlations between scores from two simulated
populational data sets.

Table 8 summarizes the different reliability estimates computed using the 1,000 simulated samples drawn from the
unidimensional population at Time 1. Under all conditions, the Cronbach’s alpha was always the lowest reliability esti-
mate. For Pseudo Test 1, the highest reliability estimate was mostly the Kristof estimate. For Pseudo Test 2, the highest
estimate was always the Kristof estimate. The CA_STR reliability estimate was very close to the Kristof estimate under
all conditions. Table 8 also shows that all the reliability estimates were larger to some degree for Part-Test Length Ratio
1 compared to Part-Test Length Ratio 2. This result was consistent with the pattern shown by the true reliability coeffi-
cients in Table 7. Compared to the other estimates, the Cronbach’s alpha coefficient had the largest decrease fromPart-Test
Length Ratio 1 to Part-Test Length Ratio 2. A visual representation of the summary of the reliability estimates can be found
in Appendix B.

Table 7 True Reliability for Simulated Data

Test Part-test ratio Unidimensional
Two-dimensional with

correlation 0.4
Two-dimensional with

correlation 0.7

Test 1 Part-Test Ratio 1 0.6883 0.8380 0.8496
Part-Test Ratio 2 0.6450 0.7808 0.7925

Test 2 Part-Test Ratio 1 0.8372 n/a n/a
Part-Test Ratio 2 0.8103 n/a n/a

Table 8 Summary of Reliability Estimates Across 1,000 Simulated Samples—Unidimensional

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

Pseudo Test 1
n = 150 0.6685 0.6914 0.6821 0.6797 0.4924 0.6409 0.6410 0.5887
n = 300 0.6670 0.6863 0.6802 0.6784 0.4909 0.6378 0.6378 0.5874
n = 1,000 0.6687 0.6858 0.6816 0.6799 0.4911 0.6354 0.6355 0.5873

Pseudo Test 2
n = 150 0.8129 0.8309 0.8206 0.8141 0.7725 0.8045 0.7988 0.7845
n = 300 0.8131 0.8290 0.8205 0.8144 0.7720 0.8031 0.7984 0.7841
n = 1,000 0.8130 0.8277 0.8205 0.8143 0.7720 0.8023 0.7983 0.7842

Table 9 Average Reliability Estimation Bias Across 1,000 Simulated Samples—Unidimensional

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

Pseudo Test 1
n = 150 -0.0198 0.0031 -0.0062 -0.0086 -0.1526 -0.0041 -0.0040 -0.0563
n = 300 -0.0213 -0.0020 -0.0081 -0.0099 -0.1541 -0.0072 -0.0072 -0.0576
n = 1,000 -0.0196 -0.0025 -0.0067 -0.0084 -0.1539 -0.0096 -0.0095 -0.0577

Pseudo Test 2
n = 150 -0.0243 -0.0063 -0.0166 -0.0231 -0.0378 -0.0058 -0.0115 -0.0258
n = 300 -0.0241 -0.0082 -0.0167 -0.0228 -0.0383 -0.0072 -0.0119 -0.0262
n = 1,000 -0.0242 -0.0095 -0.0167 -0.0229 -0.0383 -0.0080 -0.0120 -0.0261

8 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service
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Y. Qu et al. Estimating Reliability for Tests

Tables 9 and 10 respectively provide the overall bias and RMSE of different reliability estimates across samples
drawn from the unidimensional population. For Pseudo Test 1, under Part-Test Length Ratio 1, the regular
coefficient alpha method was found to have underestimated the true reliability coefficient of Pseudo Test 1 by 0.0198
on average. Under Part-Test Length Ratio 2, the Cronbach’s alpha method underestimated true reliability of Pseudo
Test 1 even more, by 0.1526 on average. Table 9 shows that all the estimation biases were negative except for the Kristof
coefficients when sample size is small (n = 150) under Part-Test Length Ratio 1 for Pseudo Test 1. This result was
not surprising given that Sedere and Feldt (1977) also found that the Kristof coefficient can sometimes overestimate
test-score reliability.

Table 10 shows the RMSE of each reliability estimation method under different simulation conditions. For Pseudo Test
1, the CA_STR method always had the smallest RMSEs. For Pseudo Test 2, the RMSEs of the CA_STR method were just
slightly larger than those of the Kristof method, but quite smaller than the RMSEs of the other two methods.

The results from Tables 8–10 indicate that the Kristof coefficient was the highest reliability estimate under most con-
ditions when data were unidimensional. Reliability estimates from the CA_STR method were very close to those Kristof
estimates. When we examined the RMSEs that combined both estimation bias and estimation variation, the CA_STR
reliability estimates seemed to be the best with smallest RMSEs under most conditions. Overall, the CA-STR method per-
formed similar to or slightly better than the Kristof method when the data were unidimensional. In general, the regular
coefficient alpha performed the worst among the four methods.

Tables 11–13 and 14–16 present results for data simulated from the two-dimensional GPCM with a correlation of 0.7
and 0.4, respectively, between the two latent ability variables. Item parameters used for this simulation were estimated
from one form of Pseudo Test 1.

Table 10 Summary of RMSE Across 1,000 Simulated Samples—Unidimensional

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

Pseudo Test 1
n = 150 0.0473 0.0518 0.0432 0.0437 0.1573 0.0589 0.0581 0.0737
n = 300 0.0361 0.0361 0.0305 0.0308 0.1564 0.0421 0.0417 0.0668
n = 1000 0.0255 0.0209 0.0180 0.0185 0.1546 0.0245 0.0242 0.0607

Pseudo Test 2
n = 150 0.0321 0.0292 0.0275 0.0314 0.0443 0.0276 0.0277 0.0355
n = 300 0.0279 0.0215 0.0222 0.0269 0.0414 0.0197 0.0207 0.0309
n = 1,000 0.0255 0.0144 0.0187 0.0243 0.0392 0.0129 0.0152 0.0276

Table 11 Summary of Reliability Estimates Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.7

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 0.8354 0.7795 0.8484 0.8478 0.5977 0.7677 0.7680 0.7020
n = 300 0.8358 0.7797 0.8487 0.8482 0.5985 0.7681 0.7686 0.7033
n = 1,000 0.8363 0.7790 0.8492 0.8488 0.5992 0.7681 0.7687 0.7043

Table 12 Summary of Reliability Estimation Bias Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.7

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 -0.0142 -0.0701 -0.0012 -0.0018 -0.1948 -0.0248 -0.0245 -0.0905
n = 300 -0.0138 -0.0699 -0.0009 -0.0014 -0.1940 -0.0244 -0.0238 -0.0892
n = 1,000 -0.0133 -0.0706 -0.0004 -0.0008 -0.1933 -0.0244 -0.0237 -0.0882
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Y. Qu et al. Estimating Reliability for Tests

Table 13 Summary of RMSE Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.7

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 0.0264 0.0814 0.0213 0.0211 0.1965 0.0454 0.0440 0.0959
n = 300 0.0203 0.0752 0.0142 0.0141 0.1948 0.0362 0.0350 0.0918
n = 1,000 0.0158 0.0723 0.0082 0.0082 0.1935 0.0284 0.0276 0.0891

Table 14 Summary of Reliability Estimates Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.4

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 0.8022 0.7039 0.8283 0.8275 0.5873 0.7707 0.7675 0.7032
n = 300 0.8033 0.7061 0.8292 0.8285 0.5886 0.7704 0.7684 0.7052
n = 1,000 0.8036 0.7045 0.8296 0.8289 0.5892 0.7695 0.7681 0.7060

Table 15 Summary of Reliability Estimation Bias Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.4

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 -0.0358 -0.1341 -0.0097 -0.0105 -0.1935 -0.0101 -0.0133 -0.0776
n = 300 -0.0347 -0.1319 -0.0088 -0.0095 -0.1922 -0.0104 -0.0124 -0.0756
n = 1,000 -0.0344 -0.1335 -0.0084 -0.0091 -0.1916 -0.0113 -0.0127 -0.0748

The results in Tables 11–16 indicate that when the data were two-dimensional with either higher or lower correla-
tions between the two dimensions, the performance of the Kristof method and the Cronbach’s alpha method changed
significantly when the part-test length ratio changed. The Kristoff reliability estimates were the smallest under Part-Test
Length Ratio 1 with associated largest RMSEs but the largest under Part-Test Length Ratio 2 with associated smallest
RMSEs (Tables 11, 13, 14, and 16). This result was in contrast with the result for unidimensional data that the RMSEs
of the Kristof reliability estimates were nearly the smallest under all conditions for both Part-Test Length Ratios 1 and 2
(Table 10). The regular coefficient alpha reliability estimates were significantly larger for Part-Test Length Ratio 1 com-
pared to Part-Test Length Ratio 2. The reliability estimates from the CA_STR method were almost always the highest
and had the smallest RMSEs for two-dimensional data. In Table 11 (also refer to Figure B3 in Appendix B), all reliability
estimates were larger for Part-Test Length Ratio 1 compared to Part-Test Length Ratio 2. In Table 14 (refer to Figure B4
in Appendix B), all reliability estimates were larger for Part-Test Length Ratio 1 than for Part-Test Length Ratio 2 except
for the Kristof method. T his pattern in Table 14 was also observed in the results based on real data from Pseudo Test 1
(Table 5).

Some of the findings in our study are consistent with those from previous studies. For example, first, in all three
tables—Table 10, Table 13, and Table 16—the RMSEs of all reliability estimates decreased as sample size increased.
There was no such pattern for average bias. These results are consistent with the findings from van der Ark et al. (2011).
Second, our results indicate that all the reliability estimates had negative bias under all conditions, except for the Kristof
coefficient. The Kristof coefficients had negative bias in most cases, but a positive bias was observed in Table 9 when
the simulated data is unidimensional with sample size of 150 under Part-Test Length Ratio 1 for Pseudo Test 1. Sedere
and Feldt (1977) also found out that the Kristof coefficients can over-estimate test reliability. They found that sometimes,
especially when sample size is small, the Kristof coefficients can be even greater than 1. Third, van der Ark et al. (2011)
and Zijlmans et al. (2018) found that estimation bias was larger when data were two-dimensional than when data were
unidimensional. The correlation between the two latent ability variables was 0 and 0.5 in the two studies. In our study,
bias was larger under all conditions for two-dimensional data than for unidimensional data when the correlation between
the two latent ability variables was 0.4. The same pattern held for Part-Test Length Ratio 2 when the correlation was 0.7.
These consistencies support the reasonableness of our results.

10 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service
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Y. Qu et al. Estimating Reliability for Tests

Table 16 Summary of RMSE Across 1,000 Simulated Samples—Two-Dimensional With Correlation 0.4

Part-Test Length Ratio 1 Part-Test Length Ratio 2

N Alpha Kristof CA_STR Str_Combined Alpha Kristof CA_STR Str_Combined

n = 150 0.0445 0.1434 0.0255 0.0256 0.1952 0.0396 0.0379 0.0834
n = 300 0.0390 0.1365 0.0180 0.0184 0.1930 0.0296 0.0283 0.0787
n = 1000 0.0359 0.1349 0.0124 0.0129 0.1919 0.0189 0.0190 0.0758

Conclusions and Recommendations

In this paper, we aimed to find better ways to estimate the internal consistency reliability of scores on tests with a specific
type of design that we encounter in practice—these are tests with CR items clustered into sections that are not parallel or
tau-equivalent, and one of the sections has only one item that is of a different type from the other items on the test. We
proposed a two-step approach (denoted as CA_STR) to estimate the reliability of scores on this kind of tests and compared
the performance of the CA_STR method with three other reliability estimation approaches using both real and simulated
data.

Our results indicate that the CA_STR method provides the most accurate and robust reliability estimates under almost
all conditions. The method can be used for reliability estimation for tests similar to those considered in our study. The
CA_STRmethod first uses theCAmethod to calculate single item reliability in the last section of our pseudo-tests and then
uses the stratified coefficient alpha method to estimate reliability of the total test score. When estimating the reliability of
the single item in the last section, we adjusted the formula for the CA method by using stratified coefficient alpha instead
of regular coefficient alpha. Using .05 as the cut point between small and large absolute bias and RMSE, the CA_STR
method was the only method that produced test reliability estimates with small absolute biases and RMSEs under almost
all conditions. The only exception was that the RMSE of the CA_STR estimates was slightly larger than .05 (.0581 in
Table 10) when sample size was 150 under Part-Test Length Ratio 2 for unidimensional data simulated based on Pseudo
Test 1. The CA_STR estimates were least affected by the dimensionality of the test, or the relative importance of each
section scores, or sample size. Based on our study, we can conclude that the CA_STR estimates can be adequately accurate
when sample size is at least 150 for both unidimensional or two-dimensional CR tests with only one item in a section.
Theother reliability estimation methods (especially the Kristof method and the Cronbach’s alpha) were more sensitive to
dimensionality of the test or the relative importance of each section score.

In addition to its enhanced estimation accuracy and stability, the CA_STR method offers another benefit in that the
method provides not only reliability estimates of scores on the whole test, but also reliability estimates for scores on a
single item. T hus, the CA_STR method can be used to estimate reliability of section scores even when some sections have
only one item. None of the other three methods can provide reliability estimates for scores in a section that includes only
one item. This advantage can set the CA_STRmethod apart from the others, as researchers or test users sometimes require
section-level reliability estimates for operational purposes.

Even though the single-item section was in the last section of the test in our study, the computation of the CA_STR
method does not require a specific placement of the single-item section and the single-item section can be anywhere in a
test.

The Str_Combined method performed better than Cronbach’s alpha, but worse than the CA_STR method. Further
research can be conducted to examine whether the Str_Combined method will perform better when the two combined
sections are more or less content homogeneous compared to the data we had in this study. In this study, we combined
Section 3 with Section 2 instead of Section 1 since Section 3 appeared to be more homogeneous with Section 2 than with
Section 1 based on the results of factor analysis. We hypothesized that the Str_Combined method would perform better
when the single-item section is combined with a more homogeneous section than with a less homogeneous section. In
future studies, we plan to combine Section 3 with Section 1 and examine whether our hypothesis is correct.

As expected, the Cronbach’s alpha coefficient is found to be not the best reliability estimate under any condition since
our items were not parallel or essentially tau-equivalent. The Cronbach’s alpha coefficient always has larger RMSE than
the CA_STR method (Table 10, Table 13, Table 16).

Our results provide proof of the instability of the Kristof coefficients in estimating the reliability of scores on CR tests
with only one item in a section. Our simulation study shows that in some conditions, the Kristof coefficients can have
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Y. Qu et al. Estimating Reliability for Tests

small estimation bias or RMSE, but in some other conditions, they can have large RMSEs. For example, when simulated
data are unidimensional, and when sample size is at least 300, the Kristof coefficients had the smallest RMSEs under
both part-test length ratios for Pseudo Test 2. But when data are two-dimensional, the Kristof coefficients had the largest
RMSEs among all four estimation methods for one of the part-test length ratios. In Table 14, the Kristof coef f icients were
the smallest under Part-Test Length Ratio 1, but they increased significantly while all other estimates decreased when the
part-test length ratio changed. The increasing pattern of the Kristof reliability estimates from Part-Test Length Ratio 1 to
Part-Test Length Ratio 2 in Table 14 is consistent with the results based on real data for Pseudo Test 1 (Table 5). However,
it is not consistent with the decreasing pattern shown by the true reliability coefficients in Table 7. This inconsistency
with true test reliability implies the inaccuracy of the Kristof estimates when data are two-dimensional. Our study shows
that the usefulness of the Kristof coefficient in estimating reliability of total scores is very limited. TheKristof coefficient
cannot be used for estimating test score reliability if sample size is up to 300 or if the test is multidimensional. Sedere and
Felt (1977) also found that the Kristof coefficient does not work well when sample size is small. In addition, this method
cannot be used for estimating single-item reliability.

Under all conditions, the part-test length ratio substantially affected our results including the magnitude of the true
reliability and the relative performance of the various reliability estimation methods. T he true reliability was larger for
both pseudo tests for the first part-test length ratio compared to the second (see Table 7). T his result is related to how
the reliability of a weighted composite score varies as the relative contribution of each section score to the total test score
(part-test length ratios or weights in Table 4) changes. Kane and Case (2004) showed that placing larger weight on the
more reliable scores tends to improve the reliability of the weighted composite score. The weights were indeed larger on
the more reliable scores in the first part-test length ratio compared to the second for both pseudo tests.

Regarding the relative performance of the various reliability estimation methods, when we change the part-test length
ratio, we also change the variance-covariancematrix among the section scores. A change in the variance-covariancematrix
affects the performance of the reliability estimationmethods in differentways. TheKristof coefficient andCronbach’s alpha
seem to be more impacted by (or less robust to) the changes to the variance covariance matrix, while the CA_STR and
Str_Combined methods are not. Both CA_STR and Str_Combined methods involve stratified coefficient alpha and Feldt
and Qualls (1996) showed that stratified coefficient alpha is more accurate than regular coefficient alpha when the test is
not content homogeneous. In addition, the first step of the CA_STR method involves a formula based on correlations,
which is not affected by changing relative part-test length ratios. In contrast, the computation of Kristof coefficient and
Cronbach’s alpha is based on covariances among the parts—so these two coefficients are affected more by changing the
part-test length ratio.

Though this paper suggests a potential solution to an important practical problem, it has several limitations and leaves
considerable scope for further research. As Wanous and Reichers (1996) pointed out, it is important to remember that
reliability estimates vary among samples and must be re-estimated with each new research study. In practice, the perfor-
mance of these reliability estimationmethodsmay vary across different test designs or factor structures (i.e., test blueprints,
indicating the score categories of each item, number of items in each section, number of sections in each test, and item
formats) and different samples (i.e., test-taking populations). More studies are needed to examine if the CA_STR relia-
bility estimates still perform the best on other types of CR tests and samples. Will the CA_STR method still perform the
best when more than one section in the test has only one item? Will the Str_Combined method perform better when the
correlation between the two combined sections is higher? Future studies may also evaluate the feasibility of G-theory and
the bias in G-theory-based estimates under situations similar to those in this study.

Notes

1 Double monotonicity means monotonically increasing item response functions and nonintersecting response functions of
different items.

2 Population datasets at time 2 were not used to draw any random samples. They were only used to compute the true reliability
coefficients.
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Appendix A

KR20 =
( n
n − 1

)
(
𝛿
2
X −

∑n
i=1 pi

(
1 − pi

)

𝛿
2
X

)

,

Where X is the observed total score on the test,
𝛿
2
X is the sample variance of the observed total score,
n is the number of items,
pi is the proportion of test takers who answered item i correctly.
Guttman (1945) defined the following six 𝜆 values:

𝜆1 = 1 −
∑n

i=1 𝜎
2
i

𝜎
2
X

,
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where 𝜎2
i is the sample variance of scores on item i.

𝜆2 = 𝜆1 +

√
n

n−1
C2

𝜎
2
X

,

where C2 is the sum of squares of the sample covariances between items for a given test.

𝜆3 =
n

n − 1
𝜆1,

𝜆4 = 2

(

1 −
𝜎

2
1 + 𝜎

2
2

𝜎
2
X

)

,

where 𝜎2
1 and 𝜎2

2 are the sample variances of scores on the f irst and second parts of a test.

𝜆5 = 𝜆1 +
2
√

C2

𝜎
2
X

,

let C2i be the sum of the squares of the covariances of item i with other items; then C2 is the largest of C2i.

𝜆6 = 1 −
∑n

i=1 e
2
i

𝜎
2
X

,

where e2i is the variance of the errors of estimate of item i from its linear multiple regression on the remaining n - 1 items.
Zijlmans et al. (2018) extended 𝜆6 to estimate the reliability of a single item. We refer to the extended estimate as 𝜆6i

that is computed as

𝜆6i =
𝛕′i
(
𝛴ii

)−1𝛕i
𝜎

2
Xi

,

where 𝜮 ii is the (n - 1) x (n - 1) inter-item variance-covariance matrix for the set of (n - 1) items that includes all items
on the test except item i, 𝝉 i is a (n - 1) x 1 vector containing the covariance of item i with the other (n - 1) items, and 𝜎2

Xi
is the variance of the observed scores on item i.

Appendix B

Figures B1 to B4 summarize, using box plots, the reliability estimates from the condition with sample size of 300 in our
simulation study.

Figure B1 Reliability estimates and true reliability (dashed line). Unidimensional Test 1, Part-Test Length Ratio 1 (left) and Part-Test
Length Ratio 2 (right). n = 300.

14 ETS Research Report No. RR-24-07. © 2024 Educational Testing Service

 23308516, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12382, W

iley O
nline L

ibrary on [30/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Y. Qu et al. Estimating Reliability for Tests

Figure B2 Reliability estimates and true reliability (dashed line). Unidimensional Test 2, Part-Test Length Ratio 1 (left) and Part-Test
Length Ratio 2 (right). n = 300.

Figure B3 Reliability estimates and true reliability (dashed line).Multi-dimensional Test 1, Part-Test Length Ratio 1 (left) and Part-Test
Length Ratio 2 (right). n = 300; correlation = 0.7.

Figure B4 Reliability estimates and true reliability (dashed line). Multidimensional Test 1, Part-Test Length Ratio 1 (left) and Part-Test
Length Ratio 2 (right). n = 300; correlation = 0.4.
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