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Introduction

Education research is currently undergoing a transforma-
tion, with scholars taking advantage of powerful machine 
learning technologies to generate novel educational insights. 
Broadly speaking, these technologies involve the use of 
computers to identify patterns in data (Samuel, 1959). This 
includes both supervised learning, where the goal is to iden-
tify patterns in labeled data (e.g., graded essays) to predict 
the labels of new data (e.g., ungraded essays), and unsuper-
vised learning, where the goal is to identify potentially 
unknown patterns in data without any preconceived labels 
(e.g., clustering essays based on their content). Both 
approaches offer opportunities for education researchers. 
Indeed, education literature featuring machine learning has 
increased exponentially in the past decade (Mcfarland et al., 
2021), with themed special issues indicating enthusiasm 
among journal editors (Mcfarland et al., 2021; Reardon & 
Stuart, 2019) and major funding organizations, including the 
National Science Foundation and the Institute of Education 
Sciences, promoting this line of research via themed compe-
titions (NCSER, 2021).

However, alongside the rush to explore machine learn-
ing’s potential research benefits, there is an urgent need to 
evaluate the validity of inferences drawn from machine 
learning methods. There is a growing acknowledgment, for 
example, that supervised learning models, like their human 
counterparts, risk identifying particular patterns that pro-
mote stereotyping and the unfair distribution of resources 

(Kordzadeh & Ghasemaghaei, 2022; Van Giffen et al., 
2022). For example, many educational outcomes from 
standardized test scores to college enrollment not only 
result from a student’s motivation and intelligence but also 
from the quality of the educational opportunities provided 
to them—factors that are intricately related to race and 
socioeconomic status (Reardon, 2011). Thus, supervised 
models that are trained on real-world data reflecting these 
realities have the capacity to exacerbate existing biases 
(Suresh & Guttag, 2021). Further, algorithmic bias is not 
the only mechanism whereby machine learning applica-
tions might cause faulty inferences. There are myriad ways 
in which a researcher may err in drawing conclusions from 
these methods.

Yet, despite the rapid adoption of machine learning meth-
ods by education researchers and growing acknowledgment 
of the inherent risks of these methods, methodological guid-
ance in the literature is limited. In part, this is perhaps 
because foundational papers in machine learning have been 
developed beyond the social sciences, rarely address educa-
tion issues, and may not share education researchers’ valid-
ity concerns. Further, although extensive guidance is 
available for education researchers as they plan and judge 
the quality of randomized experiments and quasi-experi-
ments—from sources such as the What Works Clearinghouse 
(2019)—there is no such centralized guidance for research-
ers’ use of machine learning.

Given these challenges, it makes sense to consider the 
standards by which our field ought to evaluate studies 
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involving machine learning, studies that now cover topics 
across curriculum, pedagogy, and policy. A shared under-
standing of how to weigh these studies’ claims and evidence 
can aid our interpretation of their scholarly contribution and 
the value of their recommendations for educational practi-
tioners. Furthermore, methodological guidance that is tai-
lored to education researchers’ specific needs could improve 
the quality of machine learning-based studies in the first 
place.

This article offers a series of contributions toward these 
objectives, focusing specifically on supervised learning. The 
guiding framework underpinning this effort derives from the 
discussion by Shadish et al. (2002) of validity types and 
associated threats to validity. For decades, social scientists 
have relied on the validity-types framework to guide their 
thinking about valid impact estimates (Campbell & Stanley, 
1963; Shadish et al., 2002). In this approach, researchers 
consider the validity of inferences in terms of (a) the con-
structs represented by variables (construct validity), (b) the 
strength of association between two variables (statistical 
validity), (c) the causal relationship of those variables (inter-
nal validity), and (d) the generalizability of that relationship 
(external validity).

This article builds on the validity-types framework by 
considering how these four types of inferences pertain to 
instances of supervised learning. For each type, we address 
the following questions:

•• Construct validity: To what extent does a model 
reflect the construct it aims to predict? (Has the out-
come of interest been defined and labeled appropri-
ately? Do the model predictions align with this 
definition?)

•• Statistical validity: What is a model’s estimated per-
formance, sensitivity, and uncertainty? (Are the per-
formance metrics unbiased? How large is the sample 
on which performance was measured?)

•• External validity: How generalizable is the model 
performance? (Can the model be applied in the neces-
sary circumstances while retaining its predictive abil-
ity? Is the model’s predictive ability consistent across 
subgroups?)

•• Internal validity: To what extent are the discussed 
relationships between outcomes, predictors, and/or 
treatments causal? (Are there confounders of an 
observed correlation between the treatment and 
machine learning-based measures of the outcome? 
And, if interpreted as such, is the relationship between 
predictors and outcomes truly causal?)

Drawing on an integrative review of machine learning 
applications that have appeared in American Education 
Research Association (AERA) journals, this article discusses 
the implications of each validity type for supervised learning 

research—identifying important threats to validity and offer-
ing a list of approaches to protect against such threats. The 
article thus critically interprets emerging supervised learn-
ing challenges via a unified framework already familiar to 
education researchers. Finally, the article culminates in a 
research protocol that can be used by education researchers 
in the planning stages of a machine learning project as well 
as by reviewers and readers seeking to judge the validity of 
machine learning applications.

Theoretical Framework

Shadish et al. (2002, p. 34) defined validity as “the 
approximate truth of an inference.” A foundational proposi-
tion of this article, therefore, is that the application of 
machine learning in education results in inferences—infer-
ences about education, about education research, and about 
how these might be improved. Consider automatic grading 
systems, a common educational application of supervised 
learning. To develop such a system, researchers commonly 
ask human graders to rate a series of student essays accord-
ing to their quality. These graded essays constitute the gold-
standard labeled data, which the researchers anticipate their 
algorithm will learn to predict. The gold-standard data are 
randomly split into a training set and a testing set. Using the 
training data, the model learns a relationship between pre-
dictors (in this case, certain features of the written essays) 
and ratings. The correspondence between human and 
machine ratings is then assessed via the testing data, with 
researchers reporting the model’s performance metrics (see, 
e.g., Valenti et al., 2003). Using such performance metrics, 
authors and readers then draw inferences about whether the 
algorithm can or should be used in educational practice.

Thus, using the validity-types framework, the validity 
of such an inference relies on construct validity (e.g., has 
“writing quality” been appropriately defined and labeled? 
To what extent do the automatic grader’s predictions reflect 
the construct of “writing quality”?), external validity (e.g., 
in which populations and settings will the model’s predic-
tions be faulty?), and statistical validity (e.g., is the pre-
sented performance metric an unbiased estimate of model 
error? How much uncertainty surrounds that estimate?). If 
the automatic grader is later used to measure the impact of 
an intervention, internal validity is also required (e.g., does 
the correlation reflect a causal relationship?). In using the 
validity-types framework, a researcher considers each of 
these validity types in turn, probing and adjusting for corre-
sponding threats.

Of course, the understanding of validity by Shadish et al. 
(2002) is one formulation among many and may not even be 
the most common conceptualization in education research. 
The Standards for Educational and Psychological Testing 
(Phelps, 2011), for example, draw from a conceptualization 
of validity that is closer to the scholarship of Kane (1992) 
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and Messick (1989) and posit that validation is best under-
stood “as a process of constructing and evaluating arguments 
for and against the intended interpretation of test scores and 
their relevance to the proposed use” (Phelps, 2011, p. 11). In 
this line of thinking, researchers should (a) explicitly state 
the proposed interpretation of test scores, (b) identify the 
inferences and assumptions required to make a leap from the 
scores to the interpretation, (c) assemble all available evi-
dence relevant to the inferences and assumptions, (d) evalu-
ate the most problematic assumptions in the argument, and 
(e) continue to adjust the argument or interpretation as nec-
essary (Kane, 2001).

When fully implemented in measurement scenarios, this 
alternative approach to construct validity is more compre-
hensive than the validity-types framework. Although 
researchers using the validity-types framework would only 
consider the listed threats of Shadish et al. (2002), a 
researcher successfully implementing an argument-based 
validation approach would consider all necessary assump-
tions, focusing on the most relevant ones to the test’s pro-
posed use. However, Kane and Mesick’s conceptualization 
of validity speaks less to inferences other than those drawn 
from scores on tests (e.g., omitting inferences about causal-
ity). Further, creating a comprehensive validity argument is 
not straightforward (Kane, 1992, 2001). Thus, although an 
argument-based approach to validation may be more com-
prehensive and theoretically ideal in some scenarios, the 
checklist-like approach to validation by Shadish et al. 
(2002)—where researchers consider each threat in turn, 
checking off those that they have ruled out—is a more 
practical heuristic for our purposes. Thus, the protocol pre-
sented in the final section of this article provides such a 
checklist with specific questions to consider related to each 
validity type when planning and evaluating a study using 
supervised learning.

Approach and Organization

In this article, the validity-types framework is used to 
organize and contextualize threats to validity in educational 
applications of supervised learning. The threats-to-validity 
discussion draws on the framework and an integrative, 
restricted review of supervised learning applications of 
Shadish et al. (2002) in academic journals published by 
AERA—the largest American professional society focused 
on education research (AERA, 2024). The review includes 
studies published in the American Educational Research 
Journal, Educational Researcher, Educational Evaluation 
and Policy Analysis, Journal of Educational Behavior and 
Statistics, and AERA Open. Figure 1 provides an overview 
of the search and exclusion parameters. The final set of stud-
ies is limited to 27 articles, which either trained or used a 
supervised learning model to answer an education research 
question via the analysis of nonsimulated educational data. 

An additional 11 methodological and/or conceptual articles 
were consulted and cited where relevant. A full list of 
reviewed articles can be found in Tables 1 and 2. It is impor-
tant to note that the review is not intended as a meta-analy-
sis, nor is it meant to test a theory or formally summarize the 
state of the literature. Instead, the studies are used to illus-
trate threats to validity and current best practices for address-
ing those threats.

The following sections discuss each validity type in 
turn—construct, external, statistical, and internal—within a 
supervised learning context. Each of these sections describes 
threats to validity and outlines common methodological 
approaches to addressing those threats. A summary of the 
validity types, alongside illustrative examples, can be found 
in Table 3. Then, drawing on the identified threats and best 
practices, the article concludes with a presentation of a 
research protocol: a series of questions for researchers and 
reviewers to consider when conducting and evaluating 
supervised learning applications in education.

Construct Validity in Supervised Learning

Often, when researchers apply supervised learning in 
educational contexts, it is for a measurement purpose: 
Researchers have a specific construct they aim to measure 
and train a supervised learning algorithm to do so (e.g., 
researchers might use an automated essay grader to measure 
essay quality). The validity of the resulting conclusions thus 
relies on the construct validity of the resulting supervised 
learning measure. Shadish et al. (2002, p. 20) defined con-
struct validity as the validity of “inferences about the con-
structs that research operations represent.” For example, 
beyond supervised learning applications, researchers com-
monly operationalize “teaching quality” using teaching 
observation rubrics. In such cases, construct validity con-
cerns the extent to which the observation rubric truly reflects 
the construct of interest (teaching quality).

In studies involving supervised learning, there is often a 
secondary level of operationalization. Researchers begin with 
an initial operationalization of a construct using traditional 
means, and then they use a machine learning algorithm to rep-
licate those measures. For example, researchers may use obser-
vation rubrics to operationalize teaching quality and then train 
an algorithm to replicate those observation scores. To make 
valid inferences regarding teaching quality in these cases, we 
must infer that (a) the observation scores appropriately capture 
teaching quality and (b) the supervised learning algorithm has 
retained the prototypical features of teaching quality that were 
captured by the observation scores. Threats to construct validity 
may occur at either stage—from the construct to measure or 
from the measure to supervised learning prediction. Four origi-
nal threats from Shadish et al. (2002) therefore remain relevant: 
the inadequate explication of constructs, confounding con-
structs, mono-operation and monomethod bias, and participant 
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FIGURE 1. Search Protocol and Inclusion Criteria for Integrative Review.
aRecords were excluded if no keywords were found in the main text, excluding bibliographies and author biographies.
bCount includes unsupervised learning applications (n = 8) and conceptual or methodological articles focused on machine learning but lacking nonsimulated education 
data (n = 11).
Source: Figure adapted from PRISMA diagram (Page et al., 2021, p. 5).
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reactivity. A related threat in supervised learning is also worth 
being made explicit here: When there are errors in the gold-
standard data, there will necessarily be errors in the final 
supervised learning measure. These threats are discussed next.

Inadequate Explication of Constructs

Measurement scholars have long acknowledged that valid 
measurement is bolstered by a strong theoretical understand-
ing of the construct being studied (Cronbach & Meehl, 1955). 
Thus, a foundational step for improving construct validity in 
any measurement exercise is the careful specification of the 
theoretical construct of interest. Shadish et al. (2002, p. 74) 
considered a failure to do so as the “inadequate explication of 
constructs.” Given that the first level of operationalization in 
a supervised learning application involves turning a theoreti-
cal construct into labels within the gold-standard (training/
testing) data, carefully specifying the construct of interest 
allows researchers to improve the quality of the gold-standard 
data and allows readers to assess the quality of model output. 
Researchers take two common approaches to addressing this 
threat:

•• They can provide a comprehensive definition of the con-
struct of interest. For example, when using supervised 

learning to measure “authentic questioning,” Kelly et al. 
(2018, p. 452) defined authentic questioning—within 
the context of dialogic instruction—as “questions for 
which the answers are not presupposed by the teacher,” 
and they linked this definition to several instructional 
frameworks for effective teaching, thereby identifying 
the literature to which their study spoke.

•• They can acknowledge any debate or challenges in 
operationalizing the construct. For example, in pre-
dicting graduation, Bird et al. (2021, p. 3) explained 
the difficulty of defining “drop-out” given that stu-
dents often leave college for periods of time while 
intending to return. Thus, the researchers instead 
aimed to predict “graduation,” where graduation was 
defined as completing “any college-level credential 
within 6 years” [Bird et al., 2021, p. 3], and they also 
provided an evidence-based justification for this defi-
nition, drawing on national time-to-completion data.

Errors in Human Labels

In the social sciences, gold-standard data are often cre-
ated by researchers via hand labeling according to the con-
struct of interest. In the qualitative literature, the process of 
applying labels to data is typically referred to as coding 

TABLE 2
Conceptual/Methodological Articles Reviewed

Journal Authors Title Year

AERA Open McFarland, D. A., Khanna, S., 
Domingue, B. W., & Pardos, Z. A.

Education data science: Past, present, future. 2021

AERA Open Doroudi, S. The bias–variance tradeoff: How data science can 
inform educational debates.

2020

AERA Open Cope, B., & Kalantzis, M. Big data comes to school: Implications for learning, 
assessment, and research.

2016

JEBS Rothacher, Y., & Strobl, C. Identifying informative predictor variables with 
random forests.

2024a

JEBS Suk, Y., & Han, K. T. A psychometric framework for evaluating fairness 
in algorithmic decision making: Differential 
algorithmic functioning.

2024a

JEBS Doran, H. A collection of numerical recipes useful for building 
scalable psychometric applications.

2023

JEBS Li, X., Xu, H., Zhang, J., & Chang, H. Deep reinforcement learning for adaptive learning 
systems.

2023

JEBS Pang, B., Nijkamp, E., & Wu, Y. N. Deep learning with TensorFlow: A review. 2020
JEBS Hao, J., & Ho, T. K. Machine learning made easy: A review of Scikit-

learn package in Python programming language.
2019

JEBS Von Davier, M., Khorramdel, L., He, 
Q., Shin, H. J., & Chen, H.

Developments in psychometric population models 
for technology-based large-scale assessments: An 
overview of challenges and opportunities.

2019

JEBS Slater, S., Joksimović, S., Kovanovic, 
V., Baker, R. S., & Gasevic, D.

Tools for educational data mining: A review. 2017

aIndicates online first at time of search.
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(while labeling or annotation are more commonly used in 
machine learning (Anglin et al., 2022). Although often over-
looked in the machine learning literature, where fallible 
human labels may be treated as “ground truth” (Geiger et al., 
2020, p. 325; Zheng et al., 2024), the coding process is cen-
tral to determining the validity of supervised learning pre-
dictions. At best, a supervised learning algorithm can only 
learn to replicate human codes. However, as decades of 
qualitative research have demonstrated, human coding is 
rarely a straightforward process because codes are contex-
tual, theoretical, and contestable (Shaffer & Ruis, 2021). 
Many rigorous qualitative research practices are thus also 
applicable here. Researchers can do the following:

•• They can provide a comprehensive codebook for 
human labeling (as in Aulck et al., 2021; Kelly et al., 

2018; Nystrand et al., 1997). A codebook is a set of 
coding instructions that provides a definition of each 
label alongside examples and nonexamples (Shaffer 
& Ruis, 2021). For example, Kelly et al. (2018) cre-
ated a codebook for labeling authentic questions that 
was 74 pages long and provided specific instructions 
to coders about how to handle common ambiguous 
teacher questions such as “What else?” (see Nystrand 
[2004] and Nystrand et al. [1997] for details on the 
codebook).

•• They can disclose measures of agreement between 
multiple human labelers (as undertaken by Kelly 
et al., 2018; Liu & Cohen, 2021; Ramirez et al., 
2018). A high level of agreement indicates that mul-
tiple labelers’ understandings of the construct’s defi-
nition are closely aligned (Shaffer & Ruis, 2021). 

TABLE 3
Summary of Validity Types.

Validity type Definition Example from literature

Construct 
validity

Validity of inferences 
regarding the extent 
to which a model 
reflects the construct 
it is aimed at 
predicting

Kelly et al. (2018) developed a machine learning-based measure of authentic questioning 
(the construct of interest). The construct validity of this measure depends on the extent 
to which (a) their gold-standard human labels of authentic questions are aligned with the 
provided definition of the construct and (b) the machine learning algorithm has retained the 
prototypical features of authentic questioning.

Steps they took to address construct validity included providing the reader with a definition 
and example of authentic questioning, linking their construct definition to the wider literature, 
training human coders to use the provided codebook, reporting measures of agreement 
between coders, and limiting the machine learning model to theoretically relevant predictors.

External 
validity

Validity of inferences 
regarding the 
generalizability of 
model performance

Liu and Cohen (2021) aimed to develop generalizable automated measures of effective 
teaching, including training a supervised learning model to identify open-ended questions. 
The external validity of this model depends on the extent to which the predictive validity of 
the model generalizes beyond the training data—to the population of teachers for whom they 
hoped the model would be useful.

Steps they took to address external validity included maximizing alignment between the sample 
and target population, describing the source of their training and testing data (including the 
representation of important subgroups), and testing the performance of their model on hold-
out data.

Statistical 
validity

Validity of inferences 
regarding the 
estimated 
performance, 
sensitivity, and 
uncertainty 
surrounding a model

Bird et al. (2021) trained a classifier aimed at predicting graduation and used an independent 
testing dataset to estimate the performance of the model. The statistical validity of their 
study depends on the valid estimation of model error and an appropriate understanding of the 
degree of confidence that those estimates warrant.

Steps they took to address statistical validity included presenting multiple performance metrics 
(accuracy, precision, recall, and F1 score, among others), using a large testing dataset of 
>33,000 students, and assessing the sensitivity of inferences to model parameters.

Internal 
validity

Validity of inferences 
regarding causal 
relationships 
between predictors, 
treatments, and 
outcomes

Master et al. (2022) trained a causal forest to identify heterogeneous effects of a principal 
professional development program. If the aim of this analysis was theory generation, then 
the internal validity of findings regarding potential moderators depended on whether the 
identified predictors actually produced the observed heterogeneity.

The authors were careful not to overstate causal claims with their findings but took several 
steps to address instability in predictor importance (increasing readers’ confidence that the 
authors had identified the most important measured moderators). These steps included using 
an ensemble model and testing the predictive ability of the identified characteristics in a hold-
out sample.
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Relevant metrics include simple agreement, 
Krippendorf’s alpha, Cohen’s kappa, and correlation 
coefficients (Krippendorff, 2004).

•• They can describe human labelers’ training, knowl-
edge, perspectives, and experience, allowing readers 
to gauge whether the labelers have the necessary 
knowledge and experience to understand a construct 
(Shaffer & Ruis, 2021; Snow et al., 2008).

Confounding Constructs

Confounding is typically understood in the context of 
internal validity, occurring when the correlation between a 
presumed cause (Variable A) and presumed effect (Variable 
B) is due to a third variable that is correlated with Variables 
A and B. The presumed causal relationship, then, is con-
founded by the extraneous variable. Shadish et al. (2002) 
argued, however, that the interpretation of constructs also 
may be confounded by extraneous variables. They provided 
the example of describing a sample as “unemployed”; the 
sample may indeed be limited primarily to those without 
jobs but also may disproportionately include victims of 
racial prejudice. Interventions that aim to address only one 
aspect of unemployment (e.g., currently jobless) are likely to 
be of limited use if the other construct (e.g., discrimination) 
proves to be a greater determinant. In this case, a construct 
validity error would occur if only one of the constructs is 
acknowledged.

In supervised learning applications, when construct 
confounding occurs at the first level of operationalization 
(from construct to measure), confoundedness may be 
exacerbated at the second level of operationalization (from 
measure to machine learning prediction). Consider, for 
example, the challenge of predicting college graduation. 
In most colleges and universities, drop-out occurs more 
frequently among Black, Hispanic, and lower-income stu-
dents (Bird et al., 2021). Thus, as with the preceding 
unemployment example, drop-out is confounded by 
demographic characteristics. If demographic characteris-
tics are included in the model, the model likely would 
identify these demographic variables as key predictors, 
resulting in students of color being more likely to be 
labeled as at risk for dropping out regardless of whether 
other associated risk factors are present (Baker & Hawn, 
2021). Further, even if a researcher excludes demographic 
variables from the model, the model may focus on theo-
retically irrelevant factors that correlate with demo-
graphic variables (Hovy & Spruit, 2016). This 
phenomenon is one of the most commonly discussed 
types of algorithmic biases in the machine learning litera-
ture, variously termed social bias, historical bias, soci-
etal bias, or preexisting bias (Van Giffen et al., 2022).

It is worth briefly considering, however, why and when 
construct confounding is a problem for construct validity 

rather than, say, an instance of effective prediction. After all, 
the aim of supervised learning is to predict an outcome by 
identifying existing patterns. In the example, the model isn’t 
wrong to predict that students of color are more likely to 
drop out; in fact, because of systemic factors, they are 
(Brown & Rodríguez, 2009). The validity error would come 
in the interpretation of the label, particularly in the research-
er’s failure to acknowledge the relationship between race, 
socioeconomic status (SES), and schooling (Bradley & 
Renzulli, 2011) despite machine learning predictions for 
individuals being influenced by these factors.

Importantly, construct confounding also can result from 
idiosyncrasies in the creation of training data, even in the 
absence of any real-world co-occurrence of constructs. 
Consider one infamous example. In “Automated inference 
on criminality using face images,” researchers claimed 
successful use of supervised learning to draw inferences 
about the criminality of individuals from photographs of 
their faces (X. Wu & Zhang, 2016, p. 10). However, critics 
later pointed out that the noncriminal photographs were 
selected from personal and professional websites, where 
people are commonly smiling, whereas the criminal photo-
graphs were selected from formal identification sources 
(e.g., driver’s license photos), where smiling was less com-
mon (Bergstrom & West, 2021; Bowyer et al., 2020). In 
other words, in the training data, “criminality” was con-
founded by smiling (even though smiling may not neces-
sarily correlate with criminality outside these data); it was 
smiles, not criminality, that the classifier could identify. 
Concluding that a classifier can identify “criminality” 
rather than smiling is therefore erroneous, as is the conclu-
sion that “it is possible to infer character from features” (X. 
Wu & Zhang, 2016, p. 1).

To address the threat of confounding constructs, research-
ers can do the following:

•• They can limit predictors to those that are theoreti-
cally relevant. For example, in predicting authentic 
questioning, Kelly et al. (2018, p. 455) limited them-
selves to “theoretically grounded language features” 
such as question stems and parts of speech tags. A 
supervised learning measure is less likely to be con-
founded by an extraneous nuisance variable if the 
researcher restricts the model to factors that are theo-
retically relevant to the construct (Zheng et al., 2024).

•• They can assess predictor importance using interpre-
table algorithms. For example, Lang et al. (2022) 
used data ablation techniques, systematically varying 
the predictors incorporated in their college major 
classifier to determine which predictors were most 
important. If a predictor without theoretical relevance 
to the outcome surfaces, this may indicate a co-occur-
ring and potentially misleading construct (see also 
Bowyer et al., 2020; X. Wu & Zhang, 2016).



Threats to Validity in Supervised Machine Learning

9

•• They can assess the fairness of the model using for-
mal approaches, including statistical parity, separa-
tion, and differential algorithmic functioning (Barocas 
et al., 2023; Suk & Han, 2024).

Mono-operation and Monomethod Bias

All measures underrepresent constructs and contain irrel-
evancies (Shadish et al., 2002). For this reason, researchers 
are advised to use several measures of a given construct. 
Shadish et al. (2002) conceptualized a failure to do this as 
mono-operation bias (relying on a single measure) associ-
ated with monomethod bias (relying on a single method of 
measurement). For example, readers of a study may be sus-
picious if an intervention improves a construct when that 
construct is only measured using self-report. A stronger 
approach may be to triangulate results from both self-report 
and teacher report. The same advice holds true when super-
vised learning is used to measure an outcome. Construct 
validity will increase when there are multiple measures and 
methods of measurement, especially where these span both 
human and machine approaches (Grimmer & Stewart, 2013). 
To address mono-operation and monomethod bias, research-
ers commonly do the following:

•• They can replicate findings obtained with machine 
learning measures using non–machine learning-based 
measures (as in Mozer et al., 2023; Shores & 
Steinberg, 2022). For example, in estimating the 
number of student-weeks spent in remote instruction 
during the COVID-19 pandemic, Shores and 
Steinberg (2022) triangulated text classification–
based estimates (applied to school websites) with 
mobile phone data—with key research findings con-
sistent across both sources.

•• They can probe the sensitivity of individual predic-
tions to multiple algorithms. For example, in the work 
of Bird et al. (2021) on graduation prediction, the 
authors assessed the extent to which the relative rank-
ing of students’ drop-out risk was consistent across 
algorithms. Instability here would indicate that a 
decision of whether to intervene with a given stu-
dent—because they are in the top x percentile for pre-
dicted drop-out risk, for example—may depend on 
the specific algorithm employed by the college.

Reactivity to the Machine Learning Model

Because humans actively interpret their surroundings and 
adapt their behavior in response, Shadish et al. (2002, p. 73) 
cautioned that “participant responses reflect not just treat-
ments and measures but also participants’ perceptions of the 
experimental situation”—a phenomenon known as partici-
pant reactivity. For example, psychological evaluation may 

cause participants to act or answer questions in ways they 
hope will be viewed as psychologically healthy (Rosenberg, 
1969). A similar phenomenon can occur when participants 
learn that they are being evaluated by a machine learning 
model; participants may attempt to game the model by 
guessing the actions that will improve their score. For exam-
ple, in some automated grading systems, longer essays often 
receive higher scores (Bridgeman et al., 2012). If this 
becomes common knowledge, participants may start writing 
longer essays without changing the underlying quality of the 
work (Cope & Kalantzis, 2016). To address this challenge, 
researchers can do the following:

•• They can avoid sharing information about the method 
of measurement with participants. For example, when 
measuring the relationship between authentic ques-
tioning and teacher-reported student engagement, 
Kelly and Abruzzo (2021, p. 311) ensured that “teach-
ers had no knowledge of the measures of instruction 
at the time of reporting.” If participants are unaware 
of assessment specifics, they are less likely to suc-
cessfully manipulate their scores. In contrast, when 
institutions use algorithms for high-stakes decision 
making, publicizing information on the predictors is 
also an important aspect of transparency and account-
ability (Zheng et al., 2024).

•• They can aim for theoretical alignment between pre-
dictors and the construct of interest (as in Kelly et al., 
2018). Given the conflict between transparency and 
participant reactivity, a better approach may be to 
ensure alignment between the predictors and the con-
struct. In this way, reactivity can be directed toward 
more productive ends.

•• They can conduct interviews and surveys with par-
ticipants. It is impossible to prevent respondents from 
generating their own hypotheses regarding researcher 
intentions and from changing their behavior accord-
ingly. However, reactivity may at least be probed 
through interviews or surveys of participants (Shadish 
et al., 2002).

External Validity in Supervised Learning

Shadish et al. (2002, p. 83) conceptualized external valid-
ity within a causal evaluation framework, defining it as the 
“extent to which a causal relationship holds over variations 
in persons, settings, treatments, and outcomes.” In super-
vised learning, however, it is not a causal relationship that 
must hold over relevant variations but a predictive relation-
ship. External validity in supervised learning thus may be 
conceptualized as the extent to which a model’s predictive 
ability, as estimated using the provided performance met-
rics, generalizes to the intended use cases. In a single study, 
this means that the performance metrics—estimated using 
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the labeled testing data—must be a good estimate of the 
performance of the model in the unlabeled data. In other 
words, model performance must generalize from the test-
ing data to the full sample of data included in the study 
(Yarkoni & Westfall, 2017). These data may include varia-
tions in people, settings, and time (Kapoor & Narayanan, 
2023). Further, when models are made available for public 
use and/or applied to novel datasets, the scenarios may 
become increasingly diverse.

Threats to external validity are the reasons that such 
generalizations may fail. Shadish et al. (2002) identified 
interactions—when three or more variables influence each 
other—as the key challenge to external validity. In a ran-
domized experiment, external validity is threatened if there 
is a substantial coefficient on a three-way interaction 
between the treatment, the outcome, and a certain charac-
teristic of either the unit, treatment, outcome, or setting. In 
supervised learning, the external validity threat similarly 
occurs when there is three-way interaction between the pre-
dicted outcome, predictors, and the characteristics of sam-
ples, settings, or time points. Just as treatment effects often 
vary with study characteristics (Bloom & Michalopoulos, 
2013), so too do predictive relationships (Kapoor & 
Narayanan, 2023). Thus, three types of interaction effects—
samples, settings, and time—are discussed in more detail 
next. One additional threat, particular to supervised learning 
applications, is also discussed: the failure of a model to gen-
eralize because it was overfit to noise in the training 
sample.

Interaction Between the Predictive Relationship and 
Variations in the Sample

In supervised learning, the process of estimating perfor-
mance metrics implicitly assumes that the testing data are a 
random sample of the population to which the algorithm will 
be applied (Zadrozny, 2004). Yet, in many supervised learning 
applications, training and testing data are not a random sam-
ple of the population of interest and instead may have distinct 
characteristics—a phenomenon known as sample selection 
bias. When these characteristics moderate the relationship 
between predictors and the predicted outcome, external 
validity is threatened. Further, external validity requires that 
relationships generalize not only to new relevant populations 
but also to variations within the original population (Shadish 
et al., 2002). In other words, external validity is also threat-
ened when the model exhibits differential performance for 
one or more represented subgroups. To address this threat, 
researchers commonly can do the following:

•• They can select training/testing data so as to maxi-
mize alignment with the target population. Then, they 
can describe the source and characteristics of these 
data. For example, in developing automated approaches 

to measuring effective teaching, Liu and Cohen (2021) 
described the demographic characteristics of both the 
teachers and the students in their sample. They also 
noted the limitations of their classroom sample—
fourth and fifth grade English language arts class-
rooms—indicating that “classroom discourse may 
well look different in mathematics or in the primary 
grades” (Liu & Cohen, 2021, p. 606).

•• They can ensure sufficient representation among pop-
ulation subgroups. If there is an interaction between 
the predictive relationships within a model and model 
subgroups, the model must be provided with enough 
data to learn those interactions (Buolamwini & Gebru, 
2018). This can be addressed by oversampling impor-
tant subgroups. In the case of Liu and Cohen (2021), 
for example, ensuring the model’s generalizability 
across linguistic subpopulations might mean overs-
ampling classrooms with high proportions of English 
language learners.

•• They can evaluate the performance of the algorithm 
among subgroups (as in Chen et al., 2022; Lang et al., 
2022). In addition to presenting average performance 
metrics, best practice requires that researchers also 
present performance metrics within subgroups 
(Mitchell et al., 2019). For example, Chen et al. 
(2022) assessed the performance of an automated 
essay scoring system among struggling and nonstrug-
gling writers and demonstrated that the model was 
less reliable when scoring the essays of struggling 
writers. In other cases, additional subgroups might 
include those defined by race/ethnicity, nationality, 
gender, SES, and/or disability (Baker & Hawn, 2021).

Interaction Between the Predictive Relationship and 
Variations in Setting

Machine learning researchers often transport models 
trained in one setting for use in another (Lucy et al., 2020). 
For example, researchers commonly apply pretrained senti-
ment models to new data, such as applying a model trained 
to identify positive versus negative Yelp reviews to assess 
positive versus negative sentiment in student surveys. 
However, the sentiment of a particular word is often context 
dependent, creating an interaction between the setting and 
predictive relationships in a sentiment model. To address 
this threat, researchers can do the following:

•• They can set aside a hold-out setting for validation. 
For example, Kelly et al. (2018) trained their authentic 
question classifier on one set of schools and validated 
the model on a hold-out school not used to train the 
classifier. If the model performs well in the hold-out 
setting, this indicates that predictors of authentic ques-
tioning can generalize across setting characteristics.
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•• They can evaluate pretrained models in the current 
setting. This may require hand labeling a sample of 
the current data to examine the performance of a pre-
trained classifier. For example, Lucy et al. (2020) 
evaluated a pretrained named-entity-recognition clas-
sifier (designed to identify proper nouns) to assess its 
ability to identify the names of people within history 
textbooks, finding that the performance was mean-
ingfully lower than the performance on the original 
testing sample.

Interaction Between the Predictive Relationship and 
Variations in Timing

In many supervised learning applications, a model is 
trained on past data with the intention of applying it to future 
data. However, models that perform well initially may not 
retain their performance over time (Sculley et al., 2014), a 
phenomenon known as drift (Gama et al., 2004). A canonical 
example of model drift is the failure of Google Flu Trends. 
At one point, this model could accurately predict Centers for 
Disease Control and Prevention flu prevalence estimates 
days ahead of the release of the estimates (Ginsberg et al., 
2009). Later, however, the model massively overestimated 
flu prevalence. The reasons for the failure of Google Flu 
Trends are not known, but one hypothesis is that changes in 
Google’s search platform—for example, the incorporation 
of suggested search terms for users—dramatically changed 
the nature of the underlying search data (Lazer et al., 2014). 
As a result, the relationship between the predictors (search 
terms) and the predicted outcome (flu prevalence) proved 
unstable over time. In education contexts, policy changes 
might similarly influence the relationship between predic-
tors and outcomes. For example, high-quality teaching might 
look and sound different following the adoption of Common 
Core standards (Cohen et al., 2022). In this situation, a 
supervised learning model trained in the pre–Common Core 
era may not perform well in the post–Common Core period. 
To address this threat, researchers commonly can do the 
following:

•• They can assess the correlation between model per-
formance and time (as in Lang et al., 2022). To evalu-
ate the plausibility of model drift, researchers can 
assess whether there is a substantial correlation 
between model performance and time in past data. If 
the predictive ability holds stable over time in past 
data, this provides evidence that the predictive ability 
will be stable in future data.

•• They can monitor model performance. Just as 
researchers should evaluate model performance in 
new settings, they should periodically evaluate model 
performance in new time periods (Sculley et al., 
2014).

•• They can update model training with current data. If 
model performance deteriorates, researchers can 
either retrain the model or update past training data 
with newly collected data (Lwakatare et al., 2020).

Model Overfit

Finally, all generalizations will be invalid if the model is 
overfit to the training data. When flexible algorithms are 
trained on data with many variables, an algorithm can reduce 
error in the training sample by learning idiosyncratic and 
ungeneralizable patterns (Hastie et al., 2009). Indeed, using 
its training data, a sufficiently flexible model can reduce error 
to zero without necessarily identifying any generalizable pat-
terns. This is why a minimum standard for rigorous super-
vised learning incorporates the training/testing split. When 
model performance is estimated on data that are independent 
from the training data, these performance metrics provide a 
more accurate estimate of model generalizability (Emmert-
Streib & Dehmer, 2019; Yarkoni & Westfall, 2017).

Statistical Conclusion Validity in Supervised Learning

In quantitative social science research, conclusions are 
drawn from statistical estimation, including point estimates 
(e.g., effect sizes), measures of uncertainty (e.g., standard 
errors), and statistical tests (e.g., null-hypothesis statistical 
testing). Statistical conclusion validity concerns the appro-
priateness of conclusions drawn from such evidence. In 
supervised learning, conclusions are similarly drawn from 
statistical estimation. Most commonly, conclusions regard-
ing a model’s usefulness are based on the magnitude of per-
formance metrics (e.g., accuracy, precision, recall, etc.). 
Threats to statistical validity in supervised learning include 
situations in which we may over- or underestimate the mag-
nitude of the performance metric or the degree of confidence 
that the performance metric warrants. Importantly, an incor-
rect understanding of performance can result in faulty deci-
sions, including the deployment of a deficient model because 
its performance was overestimated or because confidence 
was overstated (Varoquaux, 2018). Four threats to statistical 
validity in supervised learning are discussed next: mislead-
ing or uninformative performance metrics, optimizing a 
model to the testing data, dependence between the training 
and testing data, and an insufficient testing data sample size.

Misleading or Uninformative Performance Metrics

Researchers can choose several performance metrics to 
gauge a model’s usefulness. With binary classifiers—for 
example, classifying a student as at risk/not at risk—perfor-
mance metrics commonly concern the relationship between 
true positives (TPs; positive cases correctly classified as 
positive according to the gold-standard data), true negatives 
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(TNs; negative cases correctly classified as negative), false 
positives (FPs; negative cases incorrectly classified as posi-
tive), and false negatives (FNs; positive cases incorrectly 
classified as negative). Metrics include

Accuracy =
+

+ + +

TN TP

TN TP FN FP

Recall sensitivity/ =
+

TP

TP FN

Precision =
+

TP

TP FP

Specificity =
+

TN

TN FP

FP rate specificity= −1

(Note, however, that use of the term true here is some-
what misleading, a high rate of TNs and TPs indicates only 
agreement with the gold-standard data, which itself may be 
flawed, as discussed previously under construct validity.)

Researchers also commonly calculate summary statistics, 
such as the F1 statistic and the area under the receiver operat-
ing characteristic curve (Manning & Schütze, 1999). When 
a supervised learning algorithm aims to predict a continuous 
outcome—for example, predicting a student’s score for a 
given essay response—common performance metrics 
include the raw error, mean squared error, root mean squared 
error, and R2.

Conclusions regarding a model’s usefulness depend on an 
accurate understanding of the prevalence, magnitude, and 
types of error involved. How often, for example, does the 
model fail to identify an at-risk student? How distant is the 
average predicted teacher observation score from the gold-
standard human observation score? Validity is threatened 
when the presented performance metrics omit this informa-
tion. For example, accuracy does not distinguish between 
FPs and FNs. Therefore, the accuracy of a drop-out predic-
tion algorithm does not indicate how often the model fails to 
identify an at-risk student. If drop-out is rare, the model 
could boast high accuracy without serving its intended pur-
pose—such as helping administrators identify suitable stu-
dents for intervention. Similarly, although summary metrics 
such as F

1
 will appropriately penalize a model for its system-

atic failure to identify either positives or negatives, they do 
not provide transparent information to research consumers 
regarding the prevalence of these errors (Green & Viljoen, 
2020). To improve the policy relevance of performance sta-
tistics, researchers can do the following:

•• They can present metrics that transparently character-
ize the degree and types of errors (as in Arthur & 

Chang, 2024; Bird et al., 2021; Kelly et al., 2018). In 
binary classifiers, this includes precision, recall, speci-
ficity, and FP rate. In predicting graduation, for exam-
ple, Bird et al. (2021) presented both precision (the 
share of true graduates that the model predicts will 
graduate) and recall (the share of predicted graduates 
who graduate). With a continuous classifier, metrics 
that clearly report the degree of error include raw error, 
mean squared error, and root mean squared error.

•• They can present multiple performance metrics along-
side each other. Bird et al. (2021), for example, pro-
vided bar charts to demonstrate that graduation recall 
was routinely higher than graduation precision.

Model Optimized to Testing Data

In calculating performance metrics, researchers com-
monly have two goals: selecting between competing algo-
rithms and hyperparameters (model selection/tuning) and 
estimating the final model’s performance (model evalua-
tion). For final performance metrics to provide an unbiased 
estimate, however, these two functions must be completed 
on independent datasets. Otherwise, if testing data are used 
to support a choice between competing models, then final 
performance metrics will underestimate the true error, some-
times substantially (Hastie et al., 2009). Peeking repeatedly 
at testing statistics is akin to p-hacking; just as a quantitative 
researcher can exploit random statistical variation to inflate 
p values, a machine learning researcher can exploit random 
variation in the testing data to inflate performance metrics 
(Yarkoni & Westfall, 2017). To protect against this threat, 
researchers commonly can do the following:

•• They can split labeled data into three datasets instead 
of two: training, development, and testing. This sec-
ond split between training and development data can 
be used for model tuning and algorithm selection, 
whereas the testing data are only used once, after the 
model has been finalized (see, e.g., Lang et al., 2022).

•• They can split labeled data into two overarching data-
sets, training and testing, but use k-fold validation 
within the training dataset to select the algorithm and 
hyperparameters (Hastie et al., 2009). In this 
approach, the training dataset is divided into k (com-
monly five or 10) equally sized subsets, or folds. The 
researcher trains the model k times, each time using k 
− 1 folds for training and the remaining fold for vali-
dation, rotating through all folds as the validation set. 
After identifying the best-performing hyperparame-
ters and model setup, the model is retrained on the 
full training set before being validated on the hold-out 
testing dataset. See, for example, deployment of 
10-fold validation by Bird et al. (2021).

•• They can preregister the specifics of the machine 
learning training process (e.g., the cross-validation 
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method, hyperparameters tested, etc.), as demon-
strated by Cimpian and Timmer (2019).

Dependence Between Training and Testing Data

For performance metrics to be unbiased, researcher deci-
sions not only must be independent of the testing data, but 
the testing data itself also must be independent of the train-
ing data. In other words, knowing the outcome of an obser-
vation in the training dataset should not be useful for 
predicting the outcome of an observation in the testing data-
set. This assumption is violated if, for example, the same 
person produced the two observations (e.g., one student pro-
duced an essay in the training dataset and another essay in 
the testing dataset) or if there are duplicates in the data (e.g., 
tweets that have been copy-pasted or retweeted by multiple 
users). If the degree of dependence is substantial, then a 
model could fit to noise in the dataset. Consider again the 
example of student essays. If one strong writer has an idio-
syncratic writing style, the model might fit to those ungener-
alizable idiosyncrasies. If that same writer has observations 
in the testing dataset, the model won’t be penalized for such 
overfitting. To address this threat, researchers commonly 
can do the following:

•• They can split the data for training and testing (or 
cross-validation) using the uppermost level of a hier-
archical dataset. This might mean splitting observa-
tions at the person level (when individuals produce 
multiple observations), at the classroom level (when 
students are nested within classrooms), or at the 
school level (when teachers are nested within 
schools). For example, in training a classifier to iden-
tify authentic questions from teachers, Kelly et al. 
(2018) employed “leave one teacher out validation” 
so that performance metrics could not be overinflated 
via overfitting to individual teacher idiosyncrasies in 
the training data.

Insufficient Validation Sample Size

When researchers calculate performance metrics, these 
are point estimates derived from a sample (the testing data) 
with the purpose of generalizing to a population to which the 
model will be applied subsequently. As with all point esti-
mates, these statistics should not be interpreted as the truth 
but rather as the best estimate of an unknown population 
parameter (Savoy, 1997). Thus, just as quantitative evalua-
tion researchers present standard errors and confidence 
intervals regarding treatment-effect estimates, machine 
learning researchers should present confidence intervals sur-
rounding performance metrics (Mitchell et al., 2019). 
Presenting confidence intervals would force researchers to 
acknowledge that high performance in the testing data, par-
ticularly in a small testing dataset, may be due to a lucky 

draw. Presenting confidence intervals also might encourage 
researchers to increase the size of their testing datasets, 
thereby increasing the statistical validity of their estimates. 
Approaches to confidence interval estimation include the 
following:

•• Estimating a binomial proportion interval. In the case 
of binary predictions, researchers may estimate a con-
fidence interval by calculating a binomial proportion 

interval: p z p p n  ± −



( ) /1 , where p  is an esti-

mated proportion-based performance metric (such as 
accuracy, recall, or precision), z  is a critical value for 
a desired level of confidence, and n is the size of the 
data on which the metric is estimated. Consider this 
approach in the context of the work of Bird et al. 
(2021), for example. With an n of ~11,220 graduates 
(33,000 students in the testing sample × a graduation 
rate of 0.34), and a recall of 0.75, the estimated confi-
dence interval surrounding recall for one of their pre-
diction models would be approximately ±0.008. If 
there were instead just 100 students in the testing 
sample (with an expected 34 graduates), the confi-
dence interval surrounding recall would have been 
approximately ±0.15.

•• Bootstrapping the testing sample. For a given  
sample of n observations in a testing dataset 
X x x x xn= …{ , , , , },1 2 3  researchers would generate a set  
of bootstrap samples X x x x x xi

k n
* * * * * *{ , , , , , , }= … …1 2 3  

for i  through B using random sampling with replace-
ment from X. Each bootstrap sample contains n mem-
bers of the sample X, with some appearing zero times, 
some once, some twice, and so on. Within each boot-
strapped sample, the researcher calculates the appro-
priate performance statistics (Savoy, 1997). The 
standard deviation of the resulting distribution is the 
bootstrapped standard error, and a 95% confidence 
interval can be obtained by assessing which two val-
ues 95% of the bootstrapped estimates fall between.

Internal Validity in Supervised Learning

Internally valid studies can help determine the extent to 
which an educational program has a positive impact on stu-
dents, making it a top priority among governmental and 
funding agencies (What Works Clearinghouse, 2019). 
Contemporary education researchers thus are often highly 
attuned to methods that increase causal rigor. However, the 
growth of machine learning in education is somewhat at 
odds with a prioritization of internal validity. Although an 
algorithm will identify the combination of variables that best 
predicts the outcome of interest, there is no consideration of 
whether those variables are confounders of or contributors to 
the outcome. Further, there is no guarantee that the individ-
ual variables that are given the greatest weight in the model 
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are the same variables that are most predictive of the out-
come—only that the combination of variables is maximally 
predictive (Mullainathan & Spiess, 2017). Quite simply, 
supervised learning algorithms are optimized for prediction 
rather than causal inference. Although experiments and 
quasi-experiments are designed to estimate the impact of A 
on B, supervised learning methods are designed to estimate 
predictions of B from A (Mullainathan & Spiess, 2017).

Nevertheless, prediction can be used in the service of 
causal inference. Three common scenarios were identified 
from the reviewed literature. First, supervised learning algo-
rithms may be used to measure outcomes or characterize 
treatments in an evaluation framework (as in Anglin, 2024; 
Harper et al., 2021; Mozer et al., 2023). Second, supervised 
learning algorithms may be used to build causal theory, par-
ticularly surrounding moderators, or to estimate heteroge-
neous treatment effects (as in Master et al., 2022; Pietsch 
et al., 2023; Suk & Han, 2024). Third, supervised learning 
algorithms are increasingly being used to identify and con-
trol for confounds (as in Gormley et al., 2023; Jabbari et al., 
2023; Keller, 2020).

In the first case, where supervised learning is used to 
measure treatments or outcomes, the same threats to internal 
validity that might occur with any evaluation apply, includ-
ing ambiguous temporal precedence, selection, history, mat-
uration, regression, attrition, testing, instrumentation, and 
the additive and interactive effects of these (Shadish et al., 
2002). Although a comprehensive overview of these threats 
is beyond the scope of this paper, readers may look to the 
Registry of Educational Effectiveness (Spybrook et al., 
2019) and the What Works Clearinghouse (2019) protocols. 
This section highlights threats relevant to the second and 
third cases.

Instability and Selection Bias in Predictor Importance

Machine learning algorithms are adept at identifying non-
linear and interactive patterns in data (Hastie et al., 2009). 
They are thus especially useful for identifying heterogeneity 
in phenomena; researchers may use supervised learning to 
predict an outcome (e.g., graduation) and then observe the 
variables that are most predictive—such as the largest coef-
ficients in a penalized regression or the first branches in a 
regression tree—to build causal theory around the variables 
that increase or decrease the outcome. If there are important 
interactive and nonlinear relations—for example, if men in 
STEM majors are at the greatest risk of dropping out or if a 
precipitous, rather than linear, drop in GPA causes students to 
leave school—supervised learning models can efficiently 
identify these patterns, helping researchers to build inductive 
theory (Choudhury et al., 2018). However, there are chal-
lenges in this approach. First, the most important predictor in 
a given model is not necessarily the most important available 
predictor of the outcome. Due to the flexibility of many 

supervised learning algorithms, slight variations in training 
data can cause notable changes in predictor importance, even 
while model performance remains unchanged (Keller, 2020; 
Mullainathan & Spiess, 2017). For this reason, the variables 
identified as highly predictive using flexible and adaptive 
algorithms such as regression trees and gradient boosting are 
less stable than those identified using ordinary least squares 
regression (Mullainathan & Spiess, 2017).

Furthermore, as with any analysis of patterns in observa-
tional data, a variable may be a stable and significant predic-
tor of an outcome without necessarily having a causal impact 
on it. The identified predictor simply may be a correlate of 
another, unobserved variable—the true determinant. For 
example, a hypothetical supervised learning model may find 
that undergraduate students in a particular major are more 
likely to graduate. This may be due to their experiences in 
the major (i.e., a causal relationship) or because of the type 
of student who decides to pursue the major (i.e., selection 
bias). The model will not distinguish between these two pos-
sibilities. To address these threats when building theory, 
researchers may do the following:

•• Acknowledge that findings regarding predictor 
importance are correlational and exploratory (as in 
Lang et al., 2022; Master et al., 2022).

•• Use supervised learning to identify potentially impor-
tant predictors and then assess the predictor-outcome 
relationship in a separate hold-out dataset, addressing 
the challenge of predictor instability. This is the 
approach taken by Master et al. (2022) when identify-
ing potential moderators of principal coaching 
effects—training a causal forest on one portion of the 
data and then using a hold-out dataset to assess mod-
erator importance.

•• Assess average predictor importance across many 
models (as in González Canché, 2023; Master et al., 
2022). In an ensemble approach to supervised learn-
ing, a researcher trains many models on random sub-
sets of the data—combining many regression trees 
into a forest, for example. Final predictions then 
result from aggregation across the models. Just as 
predictions are more stable in ensemble models, pre-
dictor importance is also more stable when aggregat-
ing across several models (Elith et al., 2008).

Unobserved Confounders in Models Predicting Treatment 
Selection

Finally, a common application of supervised learning in 
causal research is to aid the identification and control of con-
founders. For example, researchers commonly use regres-
sion trees to predict treatment take-up (McCaffrey et al., 
2004). The resulting predicted probability scores are then 
used in a propensity score framework to control 
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for selection. Empirical evidence from the within-study 
comparison literature suggests that—given the same set of 
potential covariates—machine learning approaches to pro-
pensity score estimation can reduce bias when compared 
with logistic regression approaches (Anglin et al., 2023). 
However, as with any matching or weighting approach, the 
algorithm’s success at eliminating selection bias depends on 
the quality of available data (Cook et al., 2008). Supervised 
learning cannot address the problem of unobserved con-
founders. To address the threat of unobserved confounders, 
researchers commonly can do the following:

•• They can present evidence of similarity between the 
treatment and comparison groups following propen-
sity score weighting (as in Gormley et al., 2023; Im 
et al., 2016; Sales et al., 2018). Although balance on 
observable characteristics does not guarantee balance 
on unobservable characteristics, a discernible imbal-
ance does increase selection bias concerns.

•• They can collect data on hypothesized predictors of 
treatment take-up. Selection bias is often reduced sub-
stantially when researchers control for pretreatment 
outcome measures and for variables that are theorized 
to influence selection, such as motivation or prefer-
ences (Keller, 2020; Marcus et al., 2012; Pohl et al., 
2009; Wong et al., 2017). In contrast, exclusively con-
trolling for demographic covariates rarely produces 
unbiased treatment effects (Wong et al., 2017).

Research Protocol

Drawing on the threats and best practices described ear-
lier, the research protocol presented in Table 4 provides an 
initial starting point for improving and assessing the validity 
of inferences drawn from machine learning applications. 
Like the validity-types framework, the protocol emphasizes 
proactive design decisions. By considering threats during 
the planning stages of a study, researchers may preemptively 
address them—a sentiment often captured by the adage, 
“You can’t fix with analysis what you’ve bungled by design” 
(Light et al., 1990, p. xiii). Researchers can best address con-
struct validity by identifying the construct of interest upfront 
and by selecting training data that best reflect that construct. 
They can best address external validity by ensuring that the 
training and testing sample and setting match the context(s) 
where the model likely will be applied and by ensuring the 
adequate representation of population subgroups. They can 
best address statistical validity by selecting the most infor-
mative performance metrics and by ensuring an adequate 
sample size in the testing data. And they can best address 
internal validity by selecting an appropriate design and by 
collecting data on the most relevant confounders. The proto-
col provided in Table 4 prompts researchers to consider 
these facets in the early stages of a study.

The validity of supervised learning applications also may 
be increased post hoc (i.e., after model training) through 
comprehensive reporting and transparency (Gebru et al., 
2021; Mitchell et al., 2019). In the machine learning litera-
ture, the push for increased transparency has involved the 
increased adoption of standardized documentation to accom-
pany public-use training datasets (Gebru et al., 2021) and 
pretrained models (Mitchell et al., 2019). Although studies 
applying supervised learning in educational contexts rarely 
release their training data or models, this approach is none-
theless instructive. To judge the validity of inferences drawn 
from supervised learning, critical readers require compre-
hensive information. To this end, the questions in Table 4 
may serve as a prompt for future study authors when decid-
ing which information to include in a paper.

Discussion and Limitations

This article draws a parallel between validity typology of 
Shadish et al. (2002) and the inferences drawn from super-
vised learning in educational contexts. It provides a holistic 
overview of threats to validity alongside example approaches 
for addressing those threats. The article’s aim is to improve 
the validity of supervised learning applications in education 
research. Naturally, however, its limitations reflect both the 
limitations of the original typology and of typologic 
approaches more generally.

First, catalogues of validity types and threats serve as 
heuristics for researchers (Mark, 1986). That is, these threats 
represent cognitive shortcuts (Reichardt, 1985). A catalog of 
various threats allows us to evaluate the validity of infer-
ences more easily than we otherwise might (Mark, 1986), 
particularly given the heavy cognitive lift required to evalu-
ate the validity of inferences derived using unfamiliar meth-
ods. However, such shortcuts also may serve as blinders, 
allowing unlisted threats to go unacknowledged (Reichardt, 
1985). Further, typologies suffer from an inherent arbitrari-
ness. Critics have pointed out that “definitions of validity 
and threats to validity have varied over time, are sometimes 
incongruous, and are not always easy to differentiate” 
(Reichardt, 2019, p. 27). As Mark (1986, p. 63) writes, “A 
validity typology is not a foolproof, logistically consistent, 
mutually exclusive set of categories. It is a device, an aid.” 
Even if distinctions between validity types and threats 
remain up for debate, therefore, attempts to collate and orga-
nize them still can prove valuable.

Second, any list of threats necessarily will be incom-
plete. Indeed, the number of threats identified by Shadish 
et al. (2002) tripled between 1957 and 1979 (Campbell, 
1957; Cook & Campbell, 1979). The threats identified in 
this article are thus not expected to be comprehensive. 
Although machine learning applications in education are 
increasing quickly, the literature base is still relatively 
young; new challenges likely will be identified as the field 
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TABLE 4
Summary Protocol for Machine Learning Applications in Education

Questions CV EV SV IV

What are the key research questions and hypotheses? X X X X
What role do machine learning models play in the study? X X X X
Define the construct(s) you aim to measure with a machine learning model, and link the conceptualization to 

prior literature.
X  

To what extent is there slippage between the construct of interest and the labels in the data? If the labels 
assigned to the data differ from the construct of interest, describe how.

X  

If gold-standard data involve labels assigned by human coders, what were the specific instructions and 
materials provided to the labeler(s)?

X  

Describe the labelers’ training and experience. X  
How will you measure inter-rater agreement? X  
Describe the predictors you will allow your model to consider. X  
Which of these are likely correlates of a confounding construct? X  
How, if at all, will you observe predictor importance? X  
Will there be more than one measure of the construct of interest? If so, is at least one of these measures not 

reliant on machine learning?
X  

Do your participants have the means and/or motivation to game the model? X  
If so, how do you plan to probe participants’ reactions to the model? X  
If participants were to game the model, would this behavior be positive, negative, or neutral for student 

learning?
X  

What is the target population for your model? X  
Describe the source of your training and testing datasets. To what extent is there theoretical alignment and 

misalignment with the target population and the sample population?
X  

Describe your proposed sample with respect to subgroups (e.g., what proportion of your population has an 
individualized educational plan)?

X  

For which subgroups will you report performance statistics? X  
If you will be using a pretrained model, how will you validate the model in its current setting? X  
Over what time period will your model be employed? Is the full period represented in your training and testing 

data?
X  

To what extent do you expect the predictive capability of the model’s features to change during the model’s 
employment period?

X  

Can you empirically assess model drift by assessing changes in performance over time? X  
What are the most relevant performance metrics? X  
What is the size of your labeled dataset? X  
What is the intended training/development/testing ratio? X  
What is the count of true positives and true negatives in the testing data? X  
Records may be unintentionally recorded twice. How will you assess your data for possible duplicates? X  
If the data are nested, describe the nesting structure and the level at which you will split your data for training/

testing?
X  

How will you protect against the temptation to peek at your testing data? X  
How will you report uncertainty around your performance metrics? X  
What, if any, causal inferences are embedded within the research question? X
What design features are included in the study to address threats to internal validity (e.g., selection bias, time-

varying confounders)? See the Registry for Educational Effectiveness studies for in-depth guiding questions 
relevant to your chosen research design (Anderson et al., 2019).

X

Note. An X indicates the most relevant validity type to which the question speaks. CV = construct validity; EV = external validity; SV = statistical validity; 
IV = internal validity.
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develops. Similarly, best practices are also likely to grow 
and evolve, meaning that the approaches discussed here 
and in the protocol should be considered as examples 
rather than as a comprehensive list of requirements.

Third, Shadish et al. (2002) may themselves take issue with 
the application of their validity typology to supervised learning 
applications. These authors have long argued that internal 
validity is the sine qua non of research; in their view, internal 
validity must be prioritized before assessments regarding 
other validity types are deemed appropriate (Campbell & 
Stanley, 1963). In contrast, overemphasizing internal validity 
at the cost of other validity types has been heavily critiqued 
in discussions of the original validity typology (Albright & 
Malloy, 2000; Reichardt, 2019). This article is thus not the 
first to advocate for expanding the validity typology to 
include noncausal research (Huck & Sandler, 1979; McMillan, 
2000; Onwuegbuzie, 2000).

Finally, as noted earlier, the understanding of validity 
provided by Shadish et al. (2002) is only one formulation 
among many and is not without its limitations. One key 
drawback of the framework, when applied to supervised 
learning, is the relatively limited focus it places on conse-
quences and value implications (Kane, 2001; Messick, 
1989). The threats to validity given by Shadish et al. (2002) 
focus on the causes of faulty inferences, encouraging 
researchers to rule out these threats and improve their infer-
ences. However, comparatively less attention is given to the 
consequences of these inferences. As Kane (2001) points 
out, even accurate inferences are not sufficient to argue for 
test use; a medical test that can accurately predict an untreat-
able disease may still cause harm if applied without pur-
pose, particularly if there are side effects. Similarly, even an 
accurate supervised learning model may have unintended 
consequences when applied in practice (Barocas et al., 
2023; see also Lee et al. [2021] for an example of negative 
consequences resulting from a machine learning measure in 
higher education). Further, Shadish et al. (2002) only pro-
vide limited discussions of trust and transparency issues, 
key issues in supervised learning given that training datas-
ets are rarely described and commonly underrepresent key 
demographic groups (Buolamwini & Gebru, 2018). For 
these reasons, the validity typology and associated check-
lists presented here cannot serve as the final conceptualiza-
tion of machine learning validity in education research. 
Instead, they offer a practical form of scaffolding while best 
practice in the field develops.

Conclusions

Given the exponential rise of machine learning applications 
in education research, we are at a critical disciplinary juncture. 
Machine learning is equally capable of generating valuable 
insights and faulty inferences. This article aimed to increase the 
likelihood of the former by providing education researchers 

with a straightforward reference guide to validity consider-
ations. Although machine learning technologies are quick to 
adapt and evolve, the most important questions concerning 
valid inferences are age old: Does the measured construct align 
with the construct’s theoretical definition? Does the sample 
genuinely reflect the populations of interest? Are the statistics 
unbiased? Do the correlations reflect causation? This article 
encourages researchers to pay close attention to these facets of 
supervised learning applications, increasing their rigor even as 
they employ cutting-edge algorithms.
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