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Racial and gender disparities in educational achievement 
tend to accumulate as students progress through school 
(Hanushek & Rivkin, 2009; Lee, 2002). The culmination of 
these accumulated disparities in high school results in higher 
proportions of Black, Hispanic, and male students dropping 
out when compared to White and female students (McFarland 
et al., 2018), which can lead to higher rates of unemploy-
ment (McFarland et al., 2018) and increased rates of incar-
ceration (Sum et al., 2009).

While decades of previous research have demonstrated 
the importance of both punishment and academic trajecto-
ries in educational attainment (Suh et  al., 2007; Werblow 
et  al., 2013), only recently has research began to explore 
how these trajectories are related in such a way that disad-
vantages not only accumulate within these trajectories but 
also across them. Here, it is not only that early disadvan-
tages in punishment lead to increased disadvantages in later 
punishment, but also that early disadvantages in punishment 
lead to increased disadvantages in later math, and vice versa. 
For example, suspended students may miss out on core math 
instruction, which may make it difficult for them to catch up 

to their nonsuspended peers; unable to catch up, these stu-
dents may become disengaged or labeled—or both, leading 
to further suspensions and more missed math instruction. 
Some authors have referred to this relationship as a “vicious 
cycle” (Anderson et  al., 2019). Thus, from a longitudinal 
perspective, the accumulation of disadvantages can “cycle” 
students through increasing trajectories of punishment and 
academics—with each turn making it more difficult for a 
student to alter their respective paths. Indeed, with a particu-
lar focus on exclusionary discipline and math, recent 
research has demonstrated that students are cycled across 
punishment and math achievement trajectories—the former 
representing academic exclusion and the latter representing 
academic inclusion—in such a way that eventually cycles 
students out of school altogether (Jabbari & Johnson, 2022).

When considering how various facets of identity operate 
within and across these trajectories, this research has noted 
the importance of gender and race at the individual level 
(Jabbari & Johnson, 2020, 2022, 2023), as well as race at the 
school level (Johnson & Jabbari, 2021). Nevertheless, previ-
ous research suggests that it is the intersections of these 
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identities that can provide the most comprehensive insights 
into the ways in which these trajectories interact to accumu-
late disadvantages (Ferguson, 2000; Johnson & Jabbari, 
2022; Morris, 2007). The salience of intersectional identities 
can be especially true in high school (see Bradley & Renzulli, 
2011; Sutton et al., 2018).

We, therefore, extend previous work by critically explor-
ing the ways in which marginalized identities interact to 
accumulate disadvantages within and across punishment and 
math trajectories for particular race-gender groups. As both 
race and gender can operate uniquely within and across pun-
ishment and achievement trajectories over time, an intersec-
tional analysis of this type can (a) illuminate the educational 
experiences of multiplicatively disadvantaged students; (b) 
demonstrate the accumulation of disadvantages across mul-
tiple inequitable structures; and (c) provide policy-makers 
with a blueprint for targeted reform efforts that span across 
multiple groups (race, gender, and race-gender), time points 
(eighth grade, freshman year, and junior year), and domains 
(punishment and math). This endeavor is particularly impor-
tant when considering that many of the same race-gender 
groups that are overrepresented in suspensions (Skiba et al., 
2014) and the criminal justice system (Pettit & Western, 
2004) are also underrepresented in math achievement and 
the science, technology, engineering, and math (STEM) 
workforce. For example, despite making up 13% of the total 
population, Black males made up only 3% of scientists and 
engineers in 2013 (National Science Foundation, 2013) but 
over 37% of incarcerated males in 2013 (Carson, 2013). 
Thus, by generating knowledge on the reciprocal relation-
ships among punishment and math achievement trajectories, 
we will inform future efforts seeking to drain the school-to-
prison (STP) pipeline and fill the STEM pipeline.

Similar to previous research (Jabbari & Johnson, 2022), 
we use a structural equation modeling (SEM) framework to 
conceptualize the mediating relationships among punish-
ment and math over time. Specifically, we conceptualize 
that the relationship between early and later punishment is 
partially explained (i.e., mediated) through math achieve-
ment and, conversely, that the relationship between early 
and later math achievement is partially explained (i.e., 
mediated) through punishment. While basic mediation 
models tend to follow a cause (“X”), mediator (“M”), effect 
(“Y”) structure, because we focus on both punishment and 
math trajectories, we have multiple mediators in our model, 
which leads to multiple mediation effects, as seen in Figure 
1. Furthermore, in order to explore the moderating roles of 
gender, race, and race-gender, we use a multigroup strat-
egy, which tests the degree to which relationships vary 
across particular gender, race, and race-gender groups. 
Unlike previous work using SEM, we do not create latent 
constructs for math attitudes. Instead, we separate out the 
various aspects of attitudes, including efficacy, utility, and 
identity, as these may not only alter the relationships with 

punishment but also vary across gender, race, and race-gen-
der. We make the following hypotheses:

1. � Mediation: Punishment trajectories will be influ-
enced by math, and math trajectories will be influ-
enced by punishment.
a. � These relationships will differ across math per-

formance and various aspects of math attitudes, 
including math efficacy, math utility, and math 
identity.

2. � Moderation: Gender, race, and race-gender intersec-
tions will alter these relationships.

We proceed with a triangulated theoretical orientation. 
First, we follow previous research (Jabbari & Johnson, 
2022) and conceptualize the relationships among punish-
ment and math through a turning points framework. Second, 
we review the research on accumulated advantages and con-
sider how the relationships among punishment and math 
may accumulate disadvantages across the life course. 
Finally, we consider how these accumulation effects may 
differ across gender, race, and race-gender groups through a 
critical quantitative intersectional lens.

Background

Turning Points and Trajectories

Within the life-course perspective (Elder et  al., 2003), 
Laub and Sampson (1993) demonstrate that certain points in 
one’s life can “separate the past from the present” and, in 
doing so, redirect their trajectories (p. 304). In an educa-
tional context, both suspensions (Mowen & Brent, 2016) 
and math achievement (Schneider et  al., 1997) can act as 
important “turning points.” By operating as public labels of 
deviance (see Farrington, 1977) or intelligence (Thompson, 
2014), suspensions and math achievement can either lower 
or raise individuals’ self-concepts (Lemert, 1951), as well as 
the conceptions of others (Liberman et al., 2014). Ultimately, 
these turning points can “reorder the life course by opening 
or closing off conventional opportunity structures . . . [and] 
set in motion a sequence of reinforcing conditions” (Mowen 
& Brent, 2016, p. 631). Through this sequence of reinforcing 
conditions, disadvantages and advantages can start to accu-
mulate over the life course.

For example, research on punishment trajectories has 
demonstrated that students who have been suspended have a 
higher risk of dropping out in the future (Suh et al., 2007) 
and that students who have dropped out have a higher risk of 
being arrested in the future (Christle et al., 2005). Here, stu-
dents on punishment trajectories are successively excluded 
from classrooms (e.g., suspensions), formal education (e.g., 
dropout/pushout), and ultimately society (e.g., incarcera-
tion)—with each successive level of exclusion resulting in a 
further removal from opportunity for a longer period of time 
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(Jabbari & Johnson, 2020). Conversely, research on math 
achievement trajectories has demonstrated how students 
with high levels of math ability (Wai et al., 2009), math effi-
cacy (Wang, 2013), math utility (Harackiewicz et al., 2012), 
and math identity (Hazari et  al., 2010) often have higher 
rates of completing high school, attending college, majoring 
in a STEM subject, and securing a STEM job (see Finkelstein 
& Fong, 2008; Rose & Betts, 2001; Tai et al., 2006; Tyson 
et al., 2007). As a result, disadvantages and advantages in 
the punishment and math achievement trajectories are often 
considered to be cumulative.

Accumulated Disadvantage

Accumulated (i.e., more consequential) disadvantage 
refers to the extent that disadvantaged students experience 
larger setbacks in the future because “second chances” are 
not available to them in the same way they may be for more 
advantaged peers (Hannon, 2003). Alternatively, accumu-
lated advantage—often referred to as “The Matthew 
Effect”—refers to the extent to which advantaged students 
experience larger gains in the future. The gains of accumu-
lated advantages may be a product of one’s reputation (stu-
dent labels), resources (school opportunity structures), or 
both (see Kerckhoff & Glennie, 1999). Conversely, disad-
vantages and advantages can also be saturated (i.e., less 
consequential). Here, disadvantaged students could experi-
ence smaller setbacks because they have “less to lose” 
(Hannon, 2003), while advantaged students could experi-
ence smaller gains because they have already reaped much 
of the rewards.

Building on DiPrete and Eirich’s (2006) main conception 
of a path-dependent process of cumulative advantage—
where initial achievement directly and causally impacts sub-
sequent achievement—Baumert et  al. (2012) demonstrate 
the importance of time periods and status groups. Noting 
that some time periods in the life course can be more influ-
ential than others, Baumert et  al. (2012) suggest a time-
dependent process of cumulative advantage. For example, 
recent research has stressed the importance of students’ time 
in high school, which can entail opportunity structures with 
greater levels of stratification, as well as agency (Jabbari & 
Johnson, 2022). Stemming from Blau and Duncan’s (1967) 
work on status groups, Baumert and his colleagues (2012) 
also demonstrate a status-dependent process of cumulative 
advantage in which some status groups can experience dif-
ferent accumulation effects within similar path-dependent 
processes. Here, Baumert and his colleagues (2012) found 
that status-dependent cumulative effects increased social 
class disparities in elementary school math achievement 
over time.

While much of the research on accumulated disadvantage 
focuses on singular trajectories, such as punishment (Mowen 
& Brent, 2016) and, separately, math achievement (Schiller 
& Hunt, 2011; Baumert et  al., 2012), some research has 

explored how disadvantages can be accumulated across 
multiple trajectories and populations. In this regard, Hannon 
(2003) found that disadvantages in delinquency were satu-
rated on academic achievement for students living in pov-
erty, such that early delinquency did not lead to larger 
setbacks in later academic achievement for poor students. 
Alternatively, Jabbari and Johnson (2022) found that disad-
vantages in achievement were accumulated on punishment, 
such that early poor math achievement did lead to larger set-
backs in later punishment. Nevertheless, when considering 
status-driven accumulation effects for intersectional groups, 
there is a large gap in the research. For example, given that 
Jabbari and Johnson (2022) found accumulated math disad-
vantages on dropout status for low-SES and Black and 
Hispanic students, as well as accumulated discipline disad-
vantages on HS suspensions, later math achievement, and 
dropout status for males, exploring the accumulation effects 
of Black males may be particularly insightful.

Intersectionality and the Process of Pushing Out

When considering status-driven accumulation processes, 
we recognize that students experience opportunity structures 
in punishment and achievement differently, often due to 
varied institutional responses to their multiple and inter-
secting identities. Stemming from Black feminist thought, 
intersectionality theory holds that systems of oppression 
work to marginalize individuals along multiple dimensions 
of identity (Crenshaw, 1990; Collins, 1990). This can com-
pound experiences for racialized and gendered populations 
based upon their various facets of identity (Crenshaw, 
1990; Collins, 1990). For example, recent research has 
found that individuals occupying multiple socially disad-
vantaged identities incur far greater penalties than those 
occupying a single socially disadvantaged identity and that 
these disadvantages exponentially increase over the life 
course (Woodhams et al., 2015).

A full understanding of how intersectional groups accu-
mulate disadvantages leads us to utilize a critical quantita-
tive intersectionality (CQI) framework (Jang, 2018). This 
framework acknowledges that because punishment and 
math achievement can be conditioned on the social construc-
tion of students’ race and gender, these opportunity struc-
tures may represent forms of institutionalized and structural 
oppression. By increasing exposure to punishment and limit-
ing access to achievement, race and gender not only “struc-
ture the choices that individuals make, but also shape the 
structures in which individuals can exercise choice” (Pallas, 
2003, p. 168).

As intersecting power dynamics can vary both within and 
across opportunity structures (see Jang, 2018), intersection-
ality is especially important in research conditions where (a) 
exhibiting advantages within opportunity structures are not 
uniformly experienced across broader identity dimensions; 
(b) varying intersections of identity respond differently to 
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distinct facets of opportunity structures; and (c) competing 
advantages among identities vary across opportunity struc-
tures. These conditions are particularly prevalent in research 
on race and gender across punishment and math achieve-
ment trajectories.

When considering race separately, it is clear that there is 
an inverse relationship between punishment and math 
achievement. For example, Black students are more likely 
than White students to be referred to an administrator’s 
office and tend to receive harsher punishments for similar 
problem behaviors (Skiba et  al., 2011). At the same time, 
Black students are less likely to have higher math achieve-
ment scores (Vanneman et  al., 2009). Moreover, in both 
cases, these racial trends are not due to social class differ-
ences within punishment (Wallace et  al., 2008) or math 
achievement (Lubienski, 2002); in other words, there is a 
distinct relationship between race and punishment and math 
achievement that cannot be explained by social class. When 
we consider gender separately, there is not an inverse rela-
tionship between punishment and math achievement. Rather, 
males are more likely to be suspended than females (Skiba 
et  al., 2002) and also more likely to have higher math 
achievement (Ercikan et al., 2005).

However, when we intersect race with gender it becomes 
clear that certain advantages within opportunity structures 
are not uniformly experienced across broader identity 
dimensions. For example, while the male gender can operate 
as a source of advantage in STEM (Good et al., 2008), Black 
males have been shown to face unique barriers in both 
STEM education (Riegle-Crumb & King, 2010) and the 
STEM labor market (Bidwell, 2015). Conversely, while the 
female gender can operate as a source of advantage in school 
discipline and the criminal justice system, Black females are 
often disproportionately targeted for suspensions (Losen & 
Skiba, 2010) and criminal offenses (Bush-Baskette, 1998). 
In fact, the punishment gap between Black and White stu-
dents is often largest among females (Morris & Perry, 2017). 
Together, these findings suggest that Black females may not 
receive the social benefits of their gender in disciplinary 
matters while also incurring a social cost for their race in 
academic matters. Moreover, race-gender differences can 
also emerge across various aspects of punishment and math 
achievement. For example, Black females are more likely to 
be suspended for subjective reasons, while White females 
are more likely to be suspended for objective reasons 
(Annamma et al., 2016). Furthermore, observing math per-
formance in the absence of math attitudes may predict STEM 
persistence for White male students but not White female 
students; conversely, observing math attitudes in the absence 
of math performance may predict STEM persistence for 
White male students but not Black male students (Riegle-
Crumb et al., 2011).

Data, Measures, and Methods

Data

The analyses in this article utilized restricted-use data 
from the High School Longitudinal Study of 2009 (HSLS). 
In the stratified random sampling design of the HSLS, an 
average of 27 ninth graders at each of the 944 schools were 
selected for a total of 25,206 eligible students (Ingels & 
Dalton, 2013). The analyses in this article utilized student 
and parent data from the base year (fall of 9th grade) and 
first follow-up (spring of 11th grade). While instances of 
nonresponse occurred both within waves (for different ques-
tionnaire types) and across waves, the National Center of 
Education Statistics (NCES) did provide analytic weights to 
account for these instances of nonresponse, as well as 
instances of sampling inefficiencies that are inherent to a 
stratified sampling approach. In particular, we utilized the 
W2W1PAR weight, which accounts for instances of nonre-
sponse between waves one and two, as well as instances of 
nonresponse for the parent questionnaire.

Out of the 25,206 eligible students, 21,444 students 
responded to the first wave of the survey. A total of 5,015 
participants were removed because they lacked parent 
respondents; 1,508 participants were removed because they 
did not take a math course during the fall of freshman year; 
and 1,388 participants were removed because they did not 
participate in the follow-up survey. As our sample focused 
on White and Black students,1 an additional 4,381 respon-
dents were removed, resulting in 9,153 respondents. All 
study variables had less than 5% missing. Listwise deletion 
resulted in a final analytic sample of 7,822.2

Measures

Punishment variables consisted of a parent-reported 
binary measure indicating whether or not heir student had 
been suspended or expelled prior to high school—referred to 
as pre-HS suspension (0 = no; 1 = yes),3 as well as a student-
reported measure collected during the spring of junior year 
indicating the amount of times the student had received an 
in-school suspension within the last 6 months—referred to as 
HS suspension (0 = zero times; 1 = one to two times; 2 = 
three to six times; 3 = seven to nine times; 4 = ten or more 
times).4 While the latter measure does not capture all suspen-
sion types nor does it capture all suspension instances, it 
serves as an appropriate proxy for involuntary involvement 
in exclusionary discipline later in high school commonly 
used in research of this type (Jabbari & Johnson, 2022).

Math variables consisted of math performance, math effi-
cacy, math utility, and math identity. These variables repre-
sent snapshots of both early and later math achievement and 
attitudes during high school. Math performance measures 
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algebraic reasoning skills, and it was collected from a 72-item 
test administered by the NCES during the fall of freshman 
year of high school and a 118-item test administered in the 
spring of junior year of high school. It consists of a continu-
ous, norm-referenced standardized performance (theta) score 
with a mean of 50 and a standard deviation of 10. Standardized 
theta scores represent a transformation of ability estimates 
derived from item-response theory (IRT). Math efficacy was 
derived from four Likert-scale questions that consider the 
extent to which a student is confident that they can do an 
excellent job in math assignments (S1MASSEXCL5) and 
tests (S1MTESTS), that they can understand the most  
difficult material presented in their math textbook 
(S1MTEXTBOOK), and that they can master the skills being 
taught in their math courses (S1MSKILLS) (Cronbach’s 
alpha = 0.90). Math utility was derived from a series of ques-
tions that consider the extent to which a student sees their 
math courses as useful for everyday life (S1MUSELIFE), 
college (S1MUSECLG), and future careers (S1MUSEJOB) 
(Cronbach’s alpha = 0.78). Finally, math identity was derived 
from a series of questions that consider the extent to which a 
student sees him or herself as a math person (S1MPERSON1), 
as well as the extent to which others see him or her as a math 
person (S1MPERSON2) (Cronbach’s alpha = 0.84). For all 
of these times, Likert scales consisted of four levels, ranging 
from strongly agree to strongly disagree. The NCES created 
these variables through principal component factor analysis. 
These variables were standardized to a mean of 0 and had a 
standard deviation of 1.

Methods

In order to test our hypotheses, we construct a series of 
moderated-mediated path models under an SEM framework 
to test the relationship between punishment and math perfor-
mance, efficacy, utility, and identity. SEM is ideal for testing 
hypothesized relationships over time and is unique in that it 
allows both mediation and moderation to be explored in a 
single model (Kline, 2015). First, as seen in Figure 1, we con-
struct a series of four-time-point multivariate path models in 
which (a) math observed at time-point one mediates the rela-
tionship between punishment at time points one and two and 
(b) punishment at time-point two mediates the relationship 
between math at time points one and two. In particular, path 
#1 estimates the relationship between early suspension and 
early math; path #2 estimates the relationship between early 
suspension and later suspension; path #3 estimates the rela-
tionship between early math and later suspension; path #4 
estimates the relationship between early math and later math; 
and path #5 estimates the relationship between later suspen-
sion and later math. These paths are estimated through a maxi-
mum likelihood function.6 This creates a series of multiple 
mediation models between punishment and math achieve-
ment by which: (a) indirect effects from early suspension to 

later suspension (S1M1S2) are measured by multiplying 
paths 1 and 3; (b) indirect effects from early math to later math 
(M1S2M2) are measured by multiplying paths 3 and 5; 
and (c) indirect effects from early suspension to later math 
(S1M1S2M2) are measured by adding the multiplied 
paths of 1, 3, and 5; 1 and 4; and 2 and 5.

Then, through multigroup modeling, we construct a series 
of models across gender, race, and race-gender. By con-
straining paths to be similar across groups and comparing 
the constrained model to the unconstrained model (where 
paths are allowed to vary across groups), we are able to test 
a particular path for group invariance. When models with 
constrained paths are significantly different from models 
with unconstrained paths, these paths are deemed noninvari-
ant and thus estimated separately for each group; all other 
paths are deemed invariant and are constrained to be equal 
across groups. The parameters that are allowed to vary 
across groups demonstrate a moderating effect of the group 
on a particular path (Bowen & Guo, 2011). To account for 
nested data, we use STATA’s survey package for analyzing 
complex data, which takes into account sampling weights, 
primary sampling units, and stratas.

Results

Descriptive Statistics

As seen in Table 1, the proportion of males who experi-
enced pre-high school suspension was nearly three times 
that of females (14.1% vs. 5.5%), while a proportion of 
Black students who experienced pre-high school suspension 
was nearly three times that of White students (23.1% vs. 
7.9%). When considering race-gender intersections, the pro-
portion of students who experienced pre-high school sus-
pension was highest for Black males (31.3%), followed by 
Black females (15%), White males (11.6%), and White 
females (4.2%). Similarly, the average measure of high 
school suspensions experienced by males was over twice 
that of females (0.154 vs. 0.069), while the average measure 
of high school suspensions experienced by Black students 
was nearly twice that of White students (0.185 vs. 0.10).7 
When considering race-gender intersections, the average 
measure of high school suspensions was highest for Black 
males (0.246), followed by White males (0.14), Black 
Females (0.123), and White females (0.061).

Concerning math, while performance was nearly identi-
cal across gender at both time points, White students outper-
formed Black students by roughly 5 points each time 
(representing over a half standard deviation advantage). 
When considering race-gender intersections, most differ-
ences occurred between race and not gender: White males 
had roughly a half-point advantage in math performance 
over White females, while Black Females had roughly a 
half-point advantage in math performance over Black males. 
For math efficacy, males had slightly higher levels when 
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compared to females at each time-point, whereas Black stu-
dents had slightly higher levels when compared to White 
students at each time point. When considering race-gender 
intersections, Black males had the highest levels of math 
efficacy, followed by White males, Black females, and 
White females. Similar gender and race patterns were 
observed for math utility; however, White males no longer 
maintained an advantage over Black females whose math 
utility nearly rivaled that of Black males. Finally, while 
males had higher levels of math identity than females, the 
pattern reversed for race: White students had higher levels of 
math identity than Black students. When considering race-
gender intersections, White males had the highest levels of 
math identity, followed by Black males, while Black females 
and White females had nearly identical levels.

Path Analyses

Math Performance.  Starting with math performance, our 
empirical model supports our hypothesized model: being sus-
pended prior to high school was significantly associated with a 
decrease in early math performance (S1M1: B = −7.659***) 
and an increase in high school suspensions (S1S2: B = 
0.337***), whereas early math performance was significantly 
associated with a decrease in high school suspensions 
(M1S2: B = −0.006***) and an increase later math perfor-
mance (M1M2: B = 0.744***). Additionally, high school 
suspensions were significantly associated with a decrease in 
later math performance (S2M2: B = −2.05***). Unsurpris-
ingly, being suspended prior to high school was indirectly 

associated with a significant increase in high school suspen-
sions through early math performance (S1M1S2: B = 
0.043***), while early math performance was indirectly asso-
ciated with a significant increase in later math performance 
through high school suspensions (M1S2M2: B = 
0.012***). Finally, being suspended prior to high school was 
indirectly associated with a significant decrease in later math 
performance through early math performance and high school 
suspensions (S1M1S2M2: B = -6.475***).

When considering differences across gender and race, we 
find multiple instances of group moderation. As seen in Table 
2, some coefficients are estimated separately for each group, 
representing instances of group noninvariance or moderation 
effects. In doing so, the size of the coefficients can be com-
pared across the groups. Here, a larger coefficient represents 
a larger effect of a given construct on another construct along 
a particular path.8 First, we find that males exhibit larger 
paths from early math performance to high school suspen-
sions (M1S2) and later math performance (M1M2). 
Second, we find that Black students exhibit larger paths from 
pre-high school suspension to early math performance 
(S1M1), while White students exhibit larger paths from 
early math performance to later math performance 
(M1M2). Subsequently, the indirect effects from pre-high 
school suspension to high school suspensions (S1M1S2) 
and later math performance (S1M1S2M2), as well 
from early math performance to later math performance 
(M1S2M2), were larger for males, while the indirect 
effect from pre-high school suspension to later math perfor-
mance (S1M1S2M2) was larger for White students.

Figure 1.  Conceptual figure.
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Additionally, we consider the differences across race-
gender groups, again, noticing multiple instances of group 
moderation. For example, the path from pre-high school sus-
pension to early math performance (S1M1) was largest for 
Black males, followed closely by White males and more dis-
tantly by White females and Black females. Similarly, the 
path from pre-high school suspension to high school suspen-
sions (S1S2) was largest for Black males, followed closely 
by White males and more distantly by White females; how-
ever, this relationship was insignificant for Black females. In 
each case, these group differences represent cases of mar-
ginal moderation, as the unconstrained paths were only mar-
ginally (i.e., p<0.1)9 different from the constrained paths. 
Furthermore, the path from early math performance to high 
school suspensions (M1S2) was slightly larger for White 
males when compared to White females; however, this rela-
tionship was not significant for Black males or Black 
females. Moreover, the path from early math performance to 
later math performance (M1M2) was largest for White 
males, followed sequentially by White females, Black males, 
and Black females. Subsequently, the indirect effects from 
pre-high school suspension to high school suspensions 
(S1M1S2) were substantially larger for White males 
when compared to White females, while the indirect effects 
of early math performance to later math performance 
(M1S2M2) were only slightly larger for White males 
when compared to White Females. In both cases, these indi-
rect effects were insignificant for Black males and Black 
females. Finally, the indirect effect from pre-high school 
suspension to later math performance (S1M1S2M2) 
was largest for White males, followed sequentially by Black 
males, White females, and Black females.

Math Efficacy.  Moving onto math efficacy, our empirical 
model mostly supports our hypothesized model: being sus-
pended prior to high school was significantly associated 
with a decrease in early math efficacy (S1M1: B = 
−0.233**) and an increase in high school suspensions 
(S1S2: B = 0.373***), while early math efficacy was sig-
nificantly associated with a decrease in high school suspen-
sions (M1S2: B = -0.033*) and an increase in later math 
efficacy (M1M2: B = 0.365***). However, high school 
suspensions were not significantly associated with later 
math efficacy. Subsequently, being suspended prior to high 
school was indirectly associated with a marginally signifi-
cant increase in high school suspensions through early math 
efficacy (S1M1S2: B = 0.008†), whereas early math 
efficacy was not indirectly associated with later math effi-
cacy. Finally, being suspended prior to high school was indi-
rectly associated with a significant decrease in later math 
efficacy through early math efficacy and high school sus-
pensions (S1M1S2M2: B = −0.117**).

When considering differences across gender and race, 
we, again, find multiple instances of group moderation. 

First, we find that males exhibit a significant path from early 
math efficacy to high school suspensions (M1S2), a path 
that is insignificant for females, while White students exhibit 
a significant path from pre-high school suspension to early 
math efficacy (S1M1), a path that is insignificant for 
Black students. White students also exhibit a slightly larger 
path from pre-high school suspension to high school suspen-
sions (S1S2), as well as a larger marginally significant 
path from early math efficacy to later math efficacy 
(M1M2). Subsequently, the indirect effects from pre-high 
school suspension to high school suspensions (S1M1S2), 
as well from early math efficacy to later math efficacy 
(M1S2M2), were only marginally significant for males, 
while the indirect effect from pre-high school suspension to 
later math efficacy (S1M1S2M2) was slightly larger 
for males. Finally, the indirect effect from pre-high school 
suspension to high school suspensions (S1M1S2), as 
well as the indirect effect from pre-high school suspension to 
later math efficacy (S1M1S2M2), was only signifi-
cant for White students.

Additionally, we consider the differences across race-
gender groups, again, noticing multiple instances of group 
moderation. For example, the path from pre-high school sus-
pension to early math efficacy (S1M1) was identical for 
White males and White females and insignificant for Black 
males and Black females. Similar to the math performance 
model, the path from pre-high school suspension to high 
school suspensions (S1S2) was largest for Black males, 
followed closely by White males and more distantly by 
White females; this path was not significant for Black 
females. Furthermore, the path from early math efficacy to 
high school suspensions (M1S2) was larger for White 
males when compared to White females; however, this path 
was not significant for Black males or Black females. 
Moreover, the significant path from high school suspensions 
to later math efficacy (S2M2) was larger for Black males 
when compared to the marginally significant path for White 
males; this path was not significant for White females or 
Black females. Subsequently, the indirect effects from pre-
high school suspension to high school suspensions 
(S1M1S2), as well as from pre-high school suspension 
to later math efficacy (S1M1S2M2), was larger for 
White males when compared to White females. Here, it is 
important to note that indirect effects from pre-high school 
suspension to high school suspensions were only marginally 
significant for White males. In both cases, these indirect 
effects were nonsignificant for Black males and Black 
females.

Math Utility.  Moving onto math utility, our empirical model 
only partially supports our hypothesized model: being sus-
pended prior to high school was, again, significantly associ-
ated with an increase in high school suspensions (S1S2: B 
= 0.381***), while early math utility was significantly 
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associated with an increase in later math utility (M1M2: B 
= 0.313***). However, none of the other paths were signifi-
cant. Unsurprisingly, there were no significant indirect paths 
in this model.

When considering differences across gender and race, we 
find few instances of group moderation with significant rela-
tionships. Pertaining to race, we find that White students 
exhibit a significant path from pre-high school suspension to 
early math utility (S1M1)—a path that is insignificant for 
Black students. In line with previous models, we also find 
that White students exhibit a slightly larger path from pre-
high school suspension to high school suspension (S1S2). 
Subsequently, the indirect effect from pre-high school sus-
pension to later math utility (S1M1S2M2) was only 
significant for White students.

Additionally, we consider the differences across race-
gender groups, again, finding only a few instances of group 
moderation with significant relationships. For example, the 
path from pre-high school suspension to early math utility 
(S1M1) was moderately larger for White females when 
compared to White males; this path was insignificant for 
Black males and Black females. Similar to previous mod-
els, the path from pre-high school suspension to high 
school suspension (S1S2) was largest for Black males, 
followed closely by White males and more distantly by 
White females; this path was insignificant for Black 
females. Subsequently, the indirect effects from pre-high 
school suspension to later math utility (S1M1S2M2) 
was slightly larger for White females when compared to 
White males; this effect was insignificant for Black males 
and Black females.

Math Identity.  Closing with math identity, our empirical 
model mostly supports our hypothesized model: being sus-
pended prior to high school was significantly associated 
with a decrease in early math identity (S1M1: B = 
−0.446***) and an increase in high school suspensions 
(S1S2: B = 0.372***), while early math identity was 
marginally associated with a decrease in high school suspen-
sions (M1S2: B = −0.02†) and significantly associated 
with an increase in later math identity (M1M2: B = 
0.582***). Additionally, high school suspensions were sig-
nificantly associated with a decrease in later math identity 
(S2M2: B = −1.03***). Subsequently, being suspended 
prior to high school was indirectly associated with a margin-
ally significant increase in high school suspensions through 
early math identity (S1M1S2: B = 0.009†), whereas 
early math identity was indirectly associated with a margin-
ally significant increase in later math identity through high 
school suspensions (M1S2M2: B = 0.002†). Finally, 
being suspended prior to high school was indirectly associ-
ated with a significant decrease in later math identity through 
early math identity and high school suspensions 
(S1M1S2M2: B = −0.299***).

When considering differences across gender and race, we 
find some instances of group moderation. For example, we 
find that males exhibited a marginally significant path from 
early math identity to high school suspensions (M1S2)—a 
path that was insignificant for females. Alternatively, White 
students exhibited larger paths from pre-high school suspen-
sion to early math identity (S1M1) and high school sus-
pensions (S1S2). Subsequently, the indirect effects from 
pre-high school suspension to high school suspensions 
(S1M1S2), as well from early math identity to later 
math identity (M1S2M2), was only marginally signifi-
cant for males, while the indirect effect from pre-high school 
suspension to later math identity (S1M1S2M2) was 
slightly larger for males when compared to females. 
Alternatively, the indirect effect from pre-high school sus-
pension to high school suspension (S1M1S2) was only 
marginally significant for White students, while the indirect 
effect from pre-high school suspension to later math identity 
(S1M1S2M2) was larger for White students when 
compared to Black students.

Additionally, we consider the differences across race-
gender groups, again, finding some instances of group mod-
eration. For example, the path from pre-high school 
suspension to early math identity (S1M1) was moderately 
larger for White females when compared to White males, 
followed closely by Black males; this path was insignificant 
for Black females. Similar to previous models, the path from 
pre-high school suspension to high school suspension 
(S1S2) was largest for Black males, followed closely by 
White males and more distantly by White females; this path 
was not significant for Black females. Furthermore, the path 
from early math identity to later math identity (M1M2) 
was largest for White males, followed by White females, 
Black females, and Black males. Subsequently, the indirect 
effect from pre-high school suspension to high school sus-
pension (S1M1S2) was slightly larger for White females 
when compared to White males; this effect was insignificant 
for Black males and Black females. Finally, the indirect 
effect from pre-high school suspension to later math identity 
(S1M1S2M2) was largest for White females, fol-
lowed sequentially by White males and Black males; this 
effect was insignificant for Black females.

Discussion

Previous research has demonstrated the general relation-
ships among punishment and math over time, while noting 
the importance of gender and race at the individual level as 
well as race at the school level (Jabbari & Johnson, 2020, 
2022, 2023; Johnson & Jabbari, 2021). Through a variety of 
treatments (e.g., in-school suspensions, high suspension 
schools, high surveillance schools, etc.), outcomes (e.g., 
math achievement, math efficacy, math attitudes, dropout/
pushout status, and college attendance, etc.), modeling 
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strategies (e.g., structural equation modeling, propensity 
score weighting, multi-level modeling, etc.), and theoretical 
orientations (e.g., social control, life course, turning points, 
accumulated disadvantage, etc.), previous research has 
demonstrated how the relationships among punishment and 
math can push Black students and males away from STEM 
and toward prisons (Jabbari & Johnson, 2022; Johnson & 
Jabbari, 2022). Nevertheless, a critical approach to this 
quantitative work requires a deeper look into the ways in 
which marginalized identities interact to place particular 
race-gender groups on certain punishment and math trajec-
tories. Similar to previous work, we conceptualize the rela-
tionships among punishment and math as mediating 
influences where punishment may represent departures in 
math trajectories and vice versa. We therefore use a multi-
variate path model under an SEM framework. Then, in 
order to explore the moderating roles of gender, race, and 
race-gender, we use a multigroup strategy, again, under an 
SEM framework. However, unlike previous work using 
SEM, we do not create latent constructs for math attitudes; 
rather, we separate out the various aspects of attitudes, as 
these may vary across gender, race, and race-gender.

Summary of Findings

Our findings yield several important insights on the role 
of gender, race, and race-gender in punishment and math tra-
jectories. First, when considering descriptive statistics, we 
find that it is the intersection of gender and race that margin-
alize students in punishment: Black males enter high school 
with punishment histories that are over seven times that of 
White females (31.3% vs. 4.2%). Moreover, gender does not 
appear to protect Black females from punishment prior to 
high school who have punishment histories that are greater 
than that of White males (15% vs. 11.6%). However, high 
schools appear to further marginalize males in punishment, 
as White males surpass Black females in high school sus-
pensions (0.140 vs. 0.123).

Concerning math, we find that gender, race, and race-
gender patterns differ substantially across performance and 
different facets of attitudes. For example, math performance 
gaps are primarily driven by race with very little differences 
observed across gender. However, despite disadvantages in 
math performance, Black students demonstrated higher lev-
els of math efficacy, which differed by gender. Together, the 
intersection of race and gender placed Black males at a dis-
tinct advantage over White females with regards to math 
efficacy. Yet, White males still maintained an advantage 
over Black females in math efficacy. Similar patterns were 
observed for math utility; however, White males no longer 
maintained an advantage over Black females whose math 
utility rivaled that of Black males. While males had higher 
levels of math identity than females, the pattern reversed for 
race: White students had higher levels of math identity than 

Black students—ultimately placing White males at a distinct 
advantage and Black females at a distinct disadvantage. 
Here, we can infer that despite lower performance, Black 
students have higher levels of efficacy and utility than White 
students and that while gender further marginalizes Black 
females in their beliefs about their math abilities, it doesn’t 
stop them from believing that math can be beneficial in the 
future. Nevertheless, advantages in efficacy and utility don’t 
translate into advantages in identity, where Black males and 
Black females remain relatively disadvantaged when com-
pared to White males.

To uncover why and how these advantages and disadvan-
tages relate to each other, we turn to our path analyses. 
Starting with math performance, our empirical model sup-
ports our hypothesized model: being suspended prior to high 
school places students on a path of decreased math perfor-
mance (S1M1) and increased suspensions (S1S2). 
Indeed, the indirect model effects demonstrate significant 
mediation within trajectories, suggesting that part of why 
students remain on punishment trajectories is because they 
perform worse in math (S1M1S2), and conversely, that 
part of why students remain on math performance  
trajectories is because they are suspended less in high  
school (M1S2M2). We also find a substantial  
accumulation effect: being suspended prior to high school 
leads to a decrease in junior-year math performance 
(S1M1S2M2) that represents almost two-thirds of a 
standard deviation drop.

However, the effects of math performance on high school 
suspensions and future math performance tend to be larger 
for males, and while the effect of pre-high school suspension 
on early math performance is slightly larger for Black stu-
dents, the effect of early math performance on later math 
performance is moderately larger for White students. Taken 
together, it is unsurprising that White males—who have the 
highest levels of early math performance—maintain their 
advantage by demonstrating the largest path from early to 
later math performance. Furthermore, it is unsurprising that 
Black males—who have the highest proportion of pre-high 
school suspensions—maintain these disadvantages in pun-
ishment by demonstrating the largest path from pre-high 
school suspension to early math performance. As Black 
females demonstrate the only insignificant path from pre-
high school suspension to high school suspension, it is also 
unsurprising that they are the only race-gender group who 
experience a decline in their punishment standing, falling 
below White males in high school. Moreover, as the direct 
effect of early math performance on high school suspensions 
is not significant for Black males and Black females, we are 
unsurprised to find that the indirect effects from pre-high 
school to high school suspension, as well as the indirect 
effects from early to later math performance were insignifi-
cant for these groups. Nevertheless, even though these indi-
rect effects did not cross trajectories for Black males and 
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Black females, the combination of disadvantages from pun-
ishment and math performance trajectories was still strong 
enough to accumulate disadvantages from pre-high school 
suspension to later math performance for Black males and 
Black females.

Moving on to math efficacy, our empirical model mostly 
supports our hypothesized model: being suspended prior to 
high school places students on a path of decreased math effi-
cacy and increased suspensions, with one exception—high 
school suspensions were not significantly associated with 
later math efficacy. Here, the effect of suspensions on math 
efficacy may be more salient earlier in one’s high school 
career, whereas suspensions may hinder students’ math per-
formance throughout one’s high school career, potentially 
through missed learning opportunities. As a result, there is 
only a marginally significant indirect effect within the pun-
ishment trajectory and no significant indirect effect within 
the math efficacy trajectory. Nevertheless, we do find a sig-
nificant accumulation effect: being suspended prior to high 
school leads to a decrease in junior-year math efficacy. 
However, this effect—representing roughly a 10% standard 
deviation drop in efficacy—pales in comparison to the indi-
rect effect of pre-high school suspension on junior-year math 
performance.

For students with more high school suspensions than oth-
ers, the lack of significance from high-school suspensions to 
later math efficacy may be advantageous, as it doesn’t allow 
their punishments to bring down their efficacy levels. 
Nevertheless, this was not the case for Black males who 
demonstrated the largest and most significant path from high 
school suspensions to later math efficacy. This is somewhat 
peculiar when considering that the path from pre-high school 
suspension to early math efficacy was insignificant for Black 
students, suggesting that punishment takes a toll on Black 
students’ math efficacy later in high school but not earlier. 
Here, it could be the case that freshman year represents a 
fresh start for Black students who don’t let their punishment 
histories influence their efficacy levels, whereas by junior 
year labeling and other socializing practices may cause 
lower efficacy levels for Black students who experience 
punishment. Similar to math performance, the path from 
early math efficacy to high school suspensions was only sig-
nificant for White males and White females. Thus, the 
advantages that Black students had in math efficacy were not 
able to protect them from future suspensions.

Considering math utility, our empirical model only par-
tially supports our hypothesized model: while within-trajec-
tory paths were significant (i.e., the path from pre-high 
school to high school suspensions and the path from early to 
later math utility), there were no significant cross-trajectory 
paths for math utility. Unsurprisingly, there were no signifi-
cant indirect effects. Unlike math performance and math 
efficacy, suspensions did not appear to be related to math 
utility. As math utility is less connected to an individuals’ 

beliefs about oneself, like efficacy, and more connected to 
one’s perceptions of the broad benefits of math, these pat-
terns appear to make sense. However, this was not the case 
for both Black and White students, as there was a significant 
path from pre-high school suspension to early math utility 
for White students. As Black students have higher rates of 
pre-high school suspension, this finding—potentially sug-
gesting that the disadvantage that Black students experience 
in punishment may not translate into lower levels of math 
utility—may partially explain Black students’ higher rates of 
math utility when compared to White students. Although 
there were no significant gender differences in math utility, 
slightly larger direct and indirect paths from pre-high school 
suspension to early and later math utility were observed for 
White females when compared to White males, potentially 
suggesting that the disadvantage that male students experi-
ence in punishment may not translate into lower levels of 
math utility; this may partially explain male students’ higher 
rates of math utility when compared to female students.

Closing with math identity, our empirical model almost 
entirely supports our hypothesized model: with the excep-
tion of one of the paths only being marginally significant, 
being suspended prior to high school places students on a 
path of decreased math identity and increased suspensions. 
As a result, there are only marginally significant indirect 
effects within punishment and math identity trajectories. 
Similar to math efficacy, we do find a significant accumula-
tion effect: being suspended prior to high school leads to a 
decrease in junior year math identity. This effect—represent-
ing roughly a 30% standard deviation drop in identity—is 
much larger than the drop in math efficacy.

Similar to the math efficacy model, male students demon-
strated a (marginally) significant path from early math iden-
tity to high school suspensions, whereas White students 
demonstrated larger paths from pre-high school suspension 
to early math identity, and high school suspensions. While 
White females demonstrated the largest path from pre-high 
school suspension to early math identity because they had 
the lowest rates of pre-high school suspension, their math 
identity levels may not have been negatively impacted as 
much as other race-gender groups. White males, on the other 
hand, who had the highest levels of early math identity expe-
rienced the largest path from early to later math identity, 
which may explain how they were able to maintain their 
advantages in math identity.

Altogether, our results demonstrate that the relationships 
among punishment and math vary across performance and 
different facets of math attitudes and that these relationships, 
in turn, vary across gender, race, and race-gender. These 
variations depict accumulations and saturations of both 
advantages and disadvantages. Despite having the highest 
levels of math efficacy and utility, Black males had the low-
est levels of math performance and trailed behind White 
males in math identity. At the same time, Black males have 
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the highest rates of both pre-high school and high school 
suspensions. As our models demonstrate, these trends are 
deeply related. For example, Black males had the largest 
paths from pre-high school suspension to early math perfor-
mance and high school suspension, which demonstrates an 
accumulation of disadvantages both across punishment and 
math trajectories and within punishment trajectories. While 
the lack of significance from pre-high school suspension to 
early math efficacy and utility may have partially protected 
Black males’ efficacy and utility levels, the significant path 
from pre-high school suspension to early math identity may 
explain why Black males trail White males in this regard. 
Moreover, as the path from early math efficacy to high 
school suspensions was only significant for White males and 
White females, the advantages that Black male students had 
in math efficacy were not able to protect them from future 
suspensions, representing a saturation of advantage. 
Alternatively, White males—who have the highest levels of 
early math performance—accumulate their advantage by 
demonstrating the largest path from early to later math per-
formance. White males also have the highest levels of math 
identity and demonstrate the strongest path from early to 
later math identity—again, suggesting an accumulation of 
advantage. Finally, it is worth noting that almost all model 
paths that were moderated by race-gender were insignificant 
for Black females. While the lack of significance may have 
protected Black females’ math efficacy and utility levels 
from the negative effects of increased suspensions, poten-
tially representing a saturation of disadvantage, more must 
be done to explore these relationships. Indeed, the lack of 
significance could signal other factors influencing punish-
ment and math for this group.

Implications

Theories of cumulative disadvantage are based on the 
premise that initial disadvantages accumulate over time. 
Conversely, those who suffer the most initially may also ben-
efit the most from early interventions. Thus, given our find-
ings, more of a focus should be placed on alleviating these 
initial disadvantages. Here, perspectives from the “Matthew 
effect,” which extends from the biblical adage that the rich get 
richer and the poor get poorer and is often applied to theories 
of educational achievement (Stanovich, 2009), can be com-
bined with perspectives from the “Heckman equation” 
(Heckman, 2012), which demonstrates the importance of early 
investments in children and youth. Applied to our study, 
schools should both reduce early engagement with punishment 
trajectories and increase early access to math trajectories, and 
this should be done both before and during high school. 
Moreover, given the reciprocal relationships between punish-
ment and math, efforts to decrease punishment trajectories 
should simultaneously consider boosting math performance, 

efficacy, and identity, while efforts to increase math trajecto-
ries should also consider reducing exclusionary punishment.

Furthermore, these efforts should be specifically tailored 
for particularly marginalized groups. Given our descriptive 
findings around relative disadvantage, early punishment 
interventions should be developed for Black males while 
early math performance interventions should be developed 
for both Black males and Black females. Moreover, extend-
ing from a strength-based perspective, stakeholders should 
also consider ways to leverage Black males’ relatively high 
levels of math efficacy, as well as Black males’ and Black 
females’ relatively high levels of math utility, to both 
increase math achievement trajectories and decrease punish-
ment trajectories. In addition to highlighting relative disad-
vantages, our study also sheds light on cumulative 
disadvantages, which can also guide intervention design. In 
this regard, early math performance interventions should be 
tailored toward male students, while the early punishment 
interventions should be tailored toward Black students. 
While these accumulation trends suggest that White males 
should also be considered in punishment interventions, these 
trends also reveal the unique cumulative disadvantages that 
Black males face at the intersection of race and gender. 
Indeed, our research on cumulative disadvantages reiterates 
the importance for stakeholders to consider Black males in 
punishment and math interventions. Nevertheless, given the 
lack of significance for many of the cross-trajectory relation-
ships involving Black females, it is possible that other fac-
tors not included in this model are affecting their trajectories, 
too; exploration of these potential factors will be an impor-
tant next step for future research.

In line with Gregory et al.’s (2017) framework, programs 
that provide supportive relationships, bias awareness, aca-
demic rigor, culturally relevant and responsive pedagogy, and 
opportunities for learning and correcting behavior may prevent 
disciplinary incidents from occurring, while strategies that rely 
on equitable data inquiries, emphasize problem-solving 
approaches to discipline, include student and family voices in 
causes and solutions to conflicts, and reintegrate students after 
conflicts may increase equity when discipline incidents occur 
(p. 255). Here, multitiered systems of support can serve as both 
a prevention and intervention method (2017). However, as 
noted by Cruz and her colleagues (2021a), more research must 
be done to determine the extent to which these efforts actually 
decrease discipline disproportionality or if they merely repre-
sent “color-evasive” approaches to overall reductions in puni-
tive discipline (Annamma et al., 2017). Indeed, Gregory et al. 
(2018) found that participating in a restorative justice interven-
tion reduced overall rates of suspension but only slightly nar-
rowed the Black vs. White suspension gap. Concerning math, 
research has demonstrated the importance of algebra instruc-
tion. For example, work by Cortes and her colleagues (2015) 
demonstrates the importance of double-dosage algebra in ninth 
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grade. Research has also demonstrated the effectiveness of 
algebra interventions that focus on elementary grades (Blanton 
et al., 2019). Nevertheless, similar to discipline interventions, 
future research should explore how these programs pertain to 
race, gender, and other dimensions of identity.

Limitations

The use of path analysis in this study is designed to test a 
hypothesized longitudinal mediation model and determine 
how it is moderated by gender, race, and race-gender groups. 
Without an instrument that accounts for selection into pun-
ishment or a robust set of student- and school-level controls 
that one might find in a typical regression model, we cannot 
establish causal relationships within our modeling frame-
work or rule out potential confounders. For example, as seen 
in our correlation table (Table A1), many of the math con-
structs are significantly related to each other. Furthermore, 
socioeconomic status, which can often be significantly 
related to race in these contexts, is also not included in these 
models. Moreover, other tests of cognitive ability, which are 
often related to math, are also not included. Here, it is impor-
tant to note that we are primarily interested in these math and 
demographic categories as a whole. Thus, we do not employ 
an analytic strategy that seeks to pull apart the influences of 
race and social class, nor the influence of cognitive ability 
and math. Nevertheless, future research should continue to 
explore how these constructs relate to each other and operate 
together in the context of high school trajectories. Our study 
is also confined by the particular measures we use, which is 
only available up to eleventh grade. Therefore, future 
research should consider additional data sources to leverage 
data across a longer period of time. Future research should 
also explore how these relationships extend to related life 
outcomes, such as dropout/pushout status and college entry 
and completion. Indeed, these measures may allow for a 
more robust understanding of how disadvantages in punish-
ment and math accumulate to produce disadvantages in 
other life outcomes. A final limitation is the generalizability 
of our findings. While NCES weights help account for sam-
ple attrition, which is inherent in a study of this type, and our 
analytic sample appears fairly representative of the original 

sample, we recognize that our findings may not be represen-
tative of all students in U.S. high schools.

Conclusion

In this study, we explored “multiplicatively disadvan-
taged” groups. These are groups in which multiple dimen-
sions of a group’s identity are simultaneously placed at a 
disadvantage in both discipline and math. In doing so, we 
found that advantages and disadvantages weren’t additive 
but rather multiplicative. For example, based on suspension 
rates and math performance levels, White females can be 
considered to exist at the intersection of advantage, while 
Black males can be considered to exist at the intersection of 
disadvantage. Here, the advantage for White females in dis-
cipline was far greater than what we would expect if we had 
simply “added” the effects of being White and female 
together. Conversely, the disadvantages in discipline were 
far worse for Black males than what we would expect if we 
had simply “added” the effects of being Black and male 
together. Moreover, these facets of disadvantage did not 
dissipate over time. Indeed, Black males led all groups in 
suspensions both before and during high school; Black 
males also maintained the lowest levels of math perfor-
mance in both freshman and junior year of high school. As 
these disadvantages in punishment and math have led to 
later life outcomes associated with the school-to-prison 
(e.g. dropout/pushout, involvement with police, incarcera-
tion) and STEM (e.g. college entrance and persistence) 
pipelines, these persistent disadvantages can be seen as 
accumulating over time. However, this accumulation does 
not only occur within punishment and math trajectories, but 
also across them, as we consistently see significant relation-
ships among punishment and math over time. These insights 
are made possible by looking deeper into the ways in which 
marginalized identities interact to place particular race-gen-
der groups on punishment and math trajectories through a 
critical lens. However, this is only the start. As demon-
strated by Cruz and her colleagues (2021b), future critical 
quantitative work should continue to explore the ways in 
which marginalized identities interact in ways that can mul-
tiply disadvantages in education.
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Appendix

Table A1
Spearman's Rank Correlation Coefficients

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Pre-HS suspension 1.000  
(2) HS Suspension 0.226* 1.000  
(3) Math 1 performance −0.197* −0.200* 1.000  
(4) Math 2 performance −0.212* −0.229* 0.746* 1.000  
(5) Math 1 efficacy −0.045* −0.061* 0.303* 0.304* 1.000  
(6) Math 2 efficacy −0.051* −0.082* 0.276* 0.320* 0.379* 1.000  
(7) Math 1 utility 0.015 0.013 0.011 0.008 0.353* 0.178* 1.000  
(8) Math 2 utility −0.004 −0.030* 0.124* 0.166* 0.225* 0.396* 0.301* 1.000  
(9) Math 1 identity −0.079* −0.086* 0.414* 0.408* 0.569* 0.355* 0.308* 0.272* 1.000  
(10) Math 2 identity −0.062* −0.087* 0.406* 0.455* 0.415* 0.591* 0.187* 0.437* 0.580* 1.000
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Notes

1. Students’ race (not parents’ race) was used to identify Black 
and White students. To narrow our focus, we specifically identified 
non-Hispanic Black and non-Hispanic White students.

2. We chose not to impute our data based on empirical tests for 
whether or not the data was missing at random, as well as evidence 
supporting the stability of our nonimputed results. Specifically, we 
conduct Little’s test of data missing at random (Li, 2013), as miss-
ing randomness is often an assumption for imputation. In doing 
so, we found that our data are not missing at random; due to the 

complexities of imputation when data is not missing at random, 
we did not impute our data. Additionally, to better understand the 
stability of our non-imputed data, we compared the results with 
multiple imputed data, but did not observe substantial changes 
across our models. Similarly, we tested the stability of the NCES 
weights, finding that our results did not substantially change across 
models that included and did not include NCES analytic weights; 
following NCES suggestions and previous research, we did utilize 
the provided weights. Finally, it is also worth noting that—in terms 
of our main demographic characteristics of interest—our sample 
appears fairly representative of the original survey. For example, 
in the main (i.e. base year student survey) sample of Black and 
White students 51% of participants are male, 82% are white, 27% 
live in cities, 36% live in suburbs, 13% live in towns, and 24% 
live in rural areas; 12% of participants are in the lowest quintile of 
socioeconomic status (SES), and 28% are in the highest quintile 
of SES; and the average high schools size of participants is 1,126 
students. Similarly, in our analytic sample, 49% of participants are 
male, 88% are white, 28% live in cities, 35% live in suburbs, 13% 
live in towns, and 23% live in rural areas; 10% of participants are 
in the lowest quintile of socioeconomic status (SES), and 35% are 
in the highest quintile of SES; and the average size of high school 
participants is 1,120 students. Moreover, in the main sample partic-
ipants attended schools in all 50 states, while in the analytic sample 
participants attended schools in 49 states.

3. Although not differentiated in the NCES question stem, this 
item may include both in-school and out-of-school, as well as both 
short-term and long-term, suspensions.

4. The NCES chose to capture an ordinal measure of in-school 
suspensions in their student survey, potentially to simplify the sur-
vey question and avoid recall bias that could result from a count 
variable being captured in a retrospective survey of this type. In our 
analytic sample, 7.17% of participants were suspended one to two 
times, 1.35% were suspended 3–6 times; 0.25% were suspended 
7–times; and 0.35% were suspended 10 or more times. Given our 
focus on accumulation effects, we chose to retain the ordinal mea-
sure in our analyses (e.g., as opposed to collapsing into a binary 
measure). Future research should consider leveraging administra-
tive data to better understand the accumulation effects of multiple 
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suspensions; doing so can limit the types of measurement errors 
that are common in retrospective surveys that capture information 
across prolonged periods of time.

5. NCES variable names are provided, which can be looked up 
in the online codebook (https://nces.ed.gov/datalab/onlinecode-
book) for further description of items.

6. Given binary independent and ordinal dependent measures, 
an asymptotic distribution free (ADF) estimation method was also 
used; however, results were nearly identical in the full sample, 
so ML was retained, which allowed for model convergence to be 
achieved in multigroup models.

7. Here, it is important to note that these comparisons reflect the 
ordinal measure of the suspension and not the observed number of 
suspensions.

8. Similar to an average marginal effect model resulting from 
a linear regression approach with a significant interaction term, 
groups with larger coefficients can be seen as having a larger effect 
of a given predictor variable on an outcome variable.

9. While some scholars caution the use of presenting marginally 
significant (i.e., p < 0.1) findings, as authors may use this strat-
egy to achieve post-hoc flexibility (Olsson-Collentine et al., 2019), 
other scholars question the sacredness of the p < 0.05 significant 
level (Engman, 2013). As multigroup structural equation models 
can rely on samples of different sizes, which can affect significance 
levels, we chose to present both, but we note what is marginally 
significant and what is fully significant.
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