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Having origins in developmental psychology and early 
learning cycle research (e.g., Atkin & Karplus, 1962), BSCS 
Science Learning (2023) developed the BSCS 5E 
Instructional Model (Bybee et al., 2006) to organize and 
sequence science instruction and curriculum materials 
toward a deep understanding and long-term retention of sci-
ence concepts and skills. The 5E stages (engagement, explo-
ration, explanation, elaboration, and evaluation) are based 
on prior learning cycles such as that proposed by Atkin and 
Karplus (1962), which included the equivalent of the explo-
ration, explanation, and elaboration phases (3Es). Under the 
5E and related models, the teacher serves as a facilitator, 
guiding students through each “E” stage of the learning pro-
cess and providing support as needed while students engage 
in inquiry, active learning, and reflection.

BSCS Science Learning introduced the 5E Instructional 
Model in 1990 (Bybee, 1990), and its use quickly expanded. 
Bybee et al. (2006) identified over 235,000 implemented 
lesson plans using the 5E model in pre-K through 12th grade, 

97,000 discrete examples of universities using the 5E model 
in their course syllabi, 73,000 examples of 5E-based curricu-
lum materials developed, and 131,000 posted and discrete 
examples of teacher education programs or resources using 
the 5E model. At least three U.S. states strongly endorsed the 
5E model (Texas, Connecticut, and Maryland), and the 
model is widely used internationally, especially in Turkey 
(Cakir, 2017). Education professionals rely on its framework 
to support millions of students each year.

Several studies have shown that the model has the potential 
to improve science outcomes for students across various ages 
when implemented in place of typical “business-as-usual” 
instruction such as direct instruction, traditional instruction or 
lecture, and traditional laboratory activities. For example, 
Saavedra et al. (2019) found the model to be effective in 
elementary school, Cherry (2011) and August et al. (2009) 
found it to be effective in middle school, and Parveen (2018) 
found the model to be effective with high school students. 
Evaluations of the 5E model have also identified considerable 
variation in effectiveness across settings, implementation, and 
measurements. Okafor’s (2019) evaluation, for example, 
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found the 5E model to be effective for specific mathematics 
outcomes such as geometry achievement. Similarly, Yilmaz 
et al. (2011) found the 5E model to be effective for specific 
science concepts, such as concepts related to genetics.

Inquiry models of instruction such as the 5E instructional 
model (and its variations) have been widely implemented 
and studied, and interest in implementing these models 
remains high. A comprehensive and rigorous systematic 
review of these studies, however, has yet to be conducted. 
The purpose of this synthesis, therefore, was to fill this gap 
and provide the field with a clearer understanding of the 5E 
model’s effectiveness, the heterogeneity of its effects, and 
what might explain the heterogeneity. We first present an 
overview of the 5E model and its variations, and some prior, 
smaller-scale reviews conducted on the model’s effects. We 
then describe our methods and present results, including our 
pre-analysis plan for conducting confirmatory and explor-
atory moderator analyses. We end by discussing implica-
tions for practice and next steps for researchers.

How the 5E Instructional Model Works in Practice

Each phase of the 5E model is characterized by a set of 
goals or practices (Table 1). The first stage of the 5E model 
is to engage students in the learning process by creating 
interest and curiosity about the topic. Teachers can use a 
variety of strategies to engage students, such as asking pro-
vocative questions, showing a video or image related to the 
topic, or conducting a short demonstration. A teacher might 
ask, “How do plants convert light energy into chemical 

energy?” or, “In plants with reduced photosynthesis, what 
are the consequences?” The second stage of the 5E model is 
to explore the topic through (usually but not prescriptively) 
hands-on investigations, allowing students to develop their 
own understanding of the concepts through experimentation 
and observation. Students might investigate, for example, 
the effects of different light intensities or wavelengths on 
photosynthesis by measuring the rate of oxygen production 
by a photosynthetic organism. The third stage of the 5E 
model is for students to explain the concepts and ideas intro-
duced during the engage and explore stages. The explain 
stage focuses students’ attention on a particular aspect of 
their engagement and exploration experiences and provides 
opportunities for students to make connections between 
what they have observed and the scientific principles that 
underlie them, and to demonstrate their conceptual under-
standing and scientific practices. An explanation from the 
teacher or the curriculum may guide them toward the deeper 
understanding that is a critical part of this phase, but the 
explain phase is intended to be largely student-led.

The last two stages are elaborate and evaluate. In the 
elaborate stage, teachers introduce new experiences and 
challenge students to develop deeper and broader under-
standing, gain more information, and further build skills. 
The evaluate stage encourages students to assess their under-
standing and abilities, and it provides opportunities for 
teachers to evaluate student progress toward achieving the 
educational objectives. The teacher might use traditional 
assessments, such as quizzes or exams, that require students 
to apply their knowledge to problem-solving scenarios or 

TABLE 1
Overview of the 3E/5E/7E Instructional Model

Stage Summary

Elicita Students are asked about their current conceptions and understanding of the content.
Engage Short activities are used to access students’ prior knowledge and engage them in the new content. These 

activities should make connections between past and present learning and get students thinking about the 
lesson’s objective.

Exploreb Exploration experiences (i.e., lab activities) provide students with a common base of activities within which 
current concepts (i.e., misconceptions), processes, and skills are identified and conceptual change is 
facilitated.

Explainb The explanation phase focuses students’ attention on a particular aspect of their engagement and exploration 
experiences and provides opportunities to demonstrate their conceptual understanding, process skills, 
or behaviors. An explanation from the teacher or the curriculum may guide them toward a deeper 
understanding, which is a critical part of this phase.

Elaborateb Teachers challenge and extend students’ conceptual understanding and skills. Through new experiences, the 
students develop deeper and broader understanding, more information, and adequate skills.

Evaluate The evaluation phase encourages students to assess their understanding and abilities and provides opportunities 
for teachers to evaluate student progress toward achieving the educational objectives.

Extenda Students engage in activities that require distal transfer ideas from the explore and explain phases to a new 
context (e.g., new concept or new application of the concept).

aThe 7E model also includes these two stages.
bThe 3E model typically only includes these three stages.
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open-ended questions. The teacher might also use perfor-
mance-based assessments such as lab reports, research 
papers, or multimedia presentations, which require students 
to synthesize and communicate their understanding of a con-
cept in diverse contexts and formats.

Two variations of the 5E model are also included in this 
synthesis. First, an instructional model that includes only the 
explore, explain, and elaborate stages—aligning with the 
seminal learning cycle proposed by Atkin and Karplus 
(1962)—is referred to as a “3E” model. Second, subsequent 
to BSCS’s development and use of the 5E model in its cur-
riculum programs, Eisenkraft (2003) proposed a 7E model 
that added two stages to the 5E model. These stages, elicit 
and extend, made evocation of students’ prior conceptions 
and students’ far transfer of concepts more explicit. He 
argued that these important stages may be neglected in 
mechanical or limited implementations of the 5E model. The 
3E, 5E, and 7E models all build on constructivist learning 
theory (e.g., Vygotsky, 1962) and empirical evidence on how 
students learn. All three model types help students develop 
rich conceptual understandings and frameworks, as sug-
gested in How People Learn (Bransford et al., 2000). Key 
differences between the 3E and the 5E/7E models are that 
the 3E model does not include an overt engage/elicit stage 
where students are encouraged to make explicit their exist-
ing understandings of scientific phenomena or an evaluation 
stage, where students continuously evaluate those under-
standings (i.e., metacognition). The importance of engaging 
prior knowledge and encouraging metacognition about that 
knowledge are key findings from How People Learn that the 
5E/7E models directly incorporate.

Other Applications and Outcomes

Although the 5E and related models were designed and 
have been primarily evaluated for science education, 
researchers have extended their use to related domains and 
aspects of STEM (science, technology, engineering, and 
mathematics) education. Given the close connection of 
mathematics to science instruction, researchers have evalu-
ated the 5E model’s effects on math achievement. Okafor 
(2019), for example, examined the effects of the 5E model 
on geometry and found significant positive effects on both 
math achievement and retention of geometric concepts two 
weeks later.

In addition, given the extensive evidence of the relation-
ship between motivation and academic achievement, research-
ers have examined the 5E model’s effects on motivation 
(Kriegbaum et al., 2018). Within the situated expectancy 
value theory (SEVT) framework, efficacy has a strong rela-
tionship to performance whereas subjective task values have a 
strong relationship to course taking, task choices and other 
behaviors. As a result, researchers have examined the 5E 
model’s effects on several motivation outcomes, including 

interest in mathematics, self-efficacy in learning chemistry, 
and the importance of physics in daily life. Omotayo and 
Adeleke (2017) found a significant positive effect of the 5E 
model on interest in mathematics. Dindar (2012) found a sig-
nificant positive effect of the 5E model on self-efficacy for 
learning chemistry, while controlling for pretest motivation 
variables including self-efficacy and the interaction of instruc-
tional model and gender. On the other hand, Güzel (2016) 
found no effect of the 5E model on students’ perceptions of 
the importance of physics in daily life. Because of these mixed 
results and researchers’ prior interest of the 5E model’s impact 
on motivational outcomes, we chose to examine motivation in 
addition to achievement outcomes. 

Prior Reviews and the Need for a Comprehensive 
Synthesis

Our literature search identified several small-scale 
attempts to synthesize effects from 5E and related models, 
focused on implementations that occurred in Turkey. Anil 
and Batdi (2015) reviewed 14 studies, synthesizing effects 
only on science outcomes, and only from studies published 
from 2008 to 2014. Similarly, Cakir (2017) conducted a 
review of 31 effects on science outcomes, drawing on stud-
ies from 2006 to 2016. Both studies also synthesized multi-
ple effect sizes from the same study without accounting for 
the within-study statistical dependence of those effect sizes, 
an outdated approach that can distort meta-analytic results 
and their accuracy.

Our study is the first comprehensive, rigorous systematic 
review and meta-analysis on the effectiveness of the 5E 
model and the most common related models, the 3E and 7E 
models. We examined the effectiveness of these models for 
pre-K–12 students’ STEM achievement outcomes, including 
tests of their subject matter knowledge, critical thinking, sci-
entific inquiry, and other STEM-related topics and skills, 
and we examined both heterogeneity in effectiveness and 
potential sources of the heterogeneity. As a secondary out-
come, we also examined the effects of the 5E model on stu-
dents’ motivation to achieve in STEM-related outcome 
domains.

Research Questions

Our systematic review and meta-analysis focused on the 
following research questions:

1. What are the average effects of the 5E and related 
models on students’ science, math, and motivation 
outcomes?

2. What is the heterogeneity in effects of the 5E and 
related models, and how are variations in effects 
explained by study characteristics such as implemen-
tation, design, and student populations?
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Methods

Prior to conducting the systematic review and meta-anal-
ysis, we created a review protocol that articulated the 
research questions, inclusion/exclusion criteria, search strat-
egy, screening procedures, data extraction codebook, and 
pre-analysis plan. We followed the Campbell Collaboration’s 
Methodological Expectations of Campbell Collaboration 
Intervention Reviews checklist (The Methods Group of the 
Campbell Collaboration, 2019). We preregistered the proto-
col and the preanalysis plan on the Open Science Framework 
(OSF), and we also published the extracted and analytical 
datasets and R code (available at https://osf.io/937kg/). The 
published R code allows users to transform the raw dataset 
into the analytical dataset; reproduce all models conducted 
for the analyses; reproduce all results, tables, and figures 
presented in the main text; and reproduce all exploratory 
analyses and supplemental findings.

We extracted study information using MetaReviewer, a 
browser-based relational database software tool (Polanin 
et al., 2023). We stored data collected at each phase of the 
process (i.e., search, screening, data extraction, and effect 
size estimation) in MetaReviewer, which resulted in a 
spreadsheet documenting if and when we screened out a 
given citation and an automatically generated raw flat file 
dataset at the effect size level for analysis. We relied primar-
ily on the R packages metafor (Viechtbauer, 2010), club-
Sandwich (Pustejovsky, 2022), and tidyverse (Wickham 
et al., 2019) to clean and preprocess data, run meta-analytic 
and meta-regression models, and create tables and plots. 
Additional packages we used to process the data can be 
found in our R scripts. We used the R package PRISMA2020 
to create a fully reproducible PRISMA flowchart (Haddaway 
et al., 2023). 

Inclusion/Exclusion Criteria

We selected primary research studies based on the fol-
lowing inclusion and exclusion criteria. First, a study must 
have evaluated the efficacy of a curricular enactment of a 5E 
or related model, including the BSCS 5E model (Bybee 
et al., 2006); a 7E instructional model (Eisenkraft, 2003); or 
a model that included at least an explore, explain, and elabo-
rate stage, often referred to as a 3E model. In all cases, we 
required that the explore stage come before the explain stage 
(Brown, 2019). We did not consider a single 5E lesson to be 
an eligible intervention based on our definition of curricular 
enactment. Instead, we included enactments that were more 
comprehensive, such as a 5E structure applied to a chapter of 
a book, or a unit or semester of instruction. Enactments must 
have lasted a minimum of five class periods or 4 hours to be 
included. 

Studies must have evaluated the effect(s) of a curricular 
enactment of a 5E or related model in an authentic, 

school-based setting. Studies of such models enacted in 
afterschool programs, museums, community centers, or 
other informal settings were excluded. Studies must have 
included students who were in grades pre-K through 12 dur-
ing the first time point in the study. Studies must also have 
included a business-as-usual group; therefore, studies that 
contrasted two different intervention types were not eligible 
for inclusion. As is, unfortunately, common reporting prac-
tice in education research, all but five included studies did 
not describe the business-as-usual instruction, but reported 
business-as-usual comparison groups in studies that met our 
criteria included (but were not limited to) direct instruction, 
traditional instruction or lecture, and traditional laboratory 
activities.

We included studies that randomly assigned participants 
to a condition using a randomized controlled trial (RCT) or 
cluster RCT, such as studies that randomly assigned schools 
or classrooms to conditions. We included RCT studies 
regardless of the level of random assignment (e.g., student-
level, classroom-level, teacher-level, or school-level assign-
ment). We excluded studies that did not randomly assign 
participants (e.g., quasi-experimental designs) and that used 
single-case designs. We also excluded studies due to “n = 1” 
confounds (What Works Clearinghouse [WWC], 2022), 
such as when a single school was assigned to implement a 
5E model or a single school served as a comparison group.

Studies must have measured an outcome in one of three 
outcome domains: science achievement, mathematics 
achievement, or motivation. Science achievement included 
outcomes in the following areas: general science content; 
individual subdomains such as life science, physical science, 
earth science, chemistry, or biology; and science-based 
skills, including cognitive skills such as critical thinking. 
Mathematics achievement included outcomes in the follow-
ing areas: math facts, number sense, number and operations, 
fractions, measurement, data analysis, statistics and proba-
bility, algebra, geometry, word problems and general math-
ematics achievement. Motivation included constructs from 
SEVT (Eccles & Wigfield, 2020): intrinsic value, utility 
value, attainment value, and perceived cost (see the 
Supplemental Appendix in the online version of the journal 
for further description).

Finally, studies were included regardless of the country 
from which a study’s sample was drawn, as long as the study 
was written in English. Studies must have been written on or 
after 1990, the year in which the 5E model was first intro-
duced (Bybee, 1990).

Systematic Search

We used multiple complementary search strategies to 
ensure a comprehensive review (Polanin et al., 2019a). First, 
we conducted a systematic search for both published and 

https://osf.io/937kg/
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unpublished relevant studies using the following online 
databases: Academic Search Premier, Education Research 
Complete, Education Source, Education Resource 
Information Center (ERIC), APA PsycInfo, and SocINDEX 
with Full Text via EBSCO; Social Sciences Citation Index, 
Book Citation Index, Conference Proceedings Citation 
Index, Emerging Sources Citation Index via Web of Science 
Core Collection; Periodicals Archive Online, Periodicals 
Index Online, ProQuest Dissertations and Theses Global, 
Social Science Premium Collection: Education Collection 
and Social Science Database via ProQuest; and PubMed. We 
tailored our search string to the requirements of each data-
base. We conducted this search twice, once in October 2020 
and again in December 2021. An example of our search 
terms and search string are included in the Supplemental 
Appendix in the online version of the journal.

Second, we conducted supplemental searches of addi-
tional databases of the Social Science Research Network 
eLibrary, Registry of Efficacy & Effectiveness Studies 
(REES), Campbell Systematic Reviews, Cochrane Systema tic 
Reviews, OECD iLibrary, International Initiative for Impact 
Evaluation database, and the Open Science Framework. We 
also searched the websites of 30 relevant organizations, 
such as Abt Associates, Mathematica, MDRC, RAND 
Corporation, RTI International, and WestEd. Finally, we 
conducted both forward and backward reference harvesting 
of all included studies.

Screening

Screening occurred in two stages. In the first stage, we 
used best practices for abstract screening of citations identi-
fied during the search phase (Polanin et al., 2019b). We 
developed an abstract screening guide and screened the 
abstracts using Abstrackr, a free, open-source, web-based 
tool (Wallace et al., 2012). All review team members 
screened abstracts, and each abstract was double-screened. 
The principal investigator and project director provided 
training prior to beginning screening. We reconciled dis-
agreements throughout the process. For the second stage, we 
attempted to retrieve the full-text PDFs for all citations that 
were deemed eligible during abstract screening. For all full-
text PDFs retrieved, we conducted full-text screening, again 
following best practices. We developed a full-text screening 
guide based on the inclusion/exclusion criteria, provided 
training to all screeners, and conducted pilot screening. All 
screening decisions were validated by senior review team 
members to ensure accuracy. 

Data Extraction

We used MetaReviewer (Polanin et al., 2023) to extract 
information from each eligible study. We created a data extrac-
tion codebook to detail all information to be extracted from 

each study and uploaded it into MetaReviewer to automati-
cally generate a coding form. Coders used the coding form to 
extract study-level information (e.g., details on assignment of 
participants to conditions, sample demographic characteris-
tics), characteristics of the intervention and comparison con-
ditions (e.g., stages of the 5E or related model that were 
implemented, alignment between intended and actual imple-
mentation of each stage), construct-level information (e.g., 
measurement type and timing), and summary data used to 
estimate effect sizes (e.g., means and standard deviations for 
the intervention and comparison conditions). We adopted a 
study quality coding system that mirrors that of the WWC 
Version 5.0 (WWC, 2022). Specifically, we examined study 
and outcome level characteristics including presence of treat-
ment effect confounds, measure reliability, attrition, and base-
line equivalence. Although all studies used a randomized 
design as a condition of eligibility, some studies did not pro-
vide attrition information; in those cases, we estimated 
bassline equivalence between the intervention and compari-
son condition. Once a coder finished extracting data for a 
study, a senior member of the research team validated each 
piece of extracted information.

Data Handling and Effect Size Estimation

MetaReviewer automatically generated a spreadsheet of 
all extracted study information. We downloaded and 
imported the spreadsheet into R, where we recoded and 
cleaned all analytical variables (see “Data & Scripts” in the 
OSF project page for details). We estimated all effect sizes 
using metafor (Viechtbauer, 2010). The majority of outcome 
data were continuous, so we estimated a standardized mean-
difference adjusting for small-sample bias, commonly 
referred to as Hedges’ g (Hedges, 1981). We prioritized 
extracting raw, unadjusted means and standard deviations, 
which were the most often available summary data for base-
line and outcome data. We then used the baseline data to 
adjust for possible selection bias by using a difference-in-
difference effect size estimation procedure as outlined in the 
WWC Version 4.1 Procedures Handbook (WWC, 2020). 
When the outcome was dichotomous, we estimated the log 
odds ratio and transformed it into Hedges’ g using the equa-
tions suggested by the WWC (2020, p. E-7). Because some 
study authors assigned schools or classrooms to conditions 
but did not account for clustering, we estimated the effective 
sample size for all effect sizes, which adjusts the analytic 
sample size in a way that is equivalent to estimating a multi-
level model (Higgins et al., 2023). Finally, based on our out-
lier analysis, we winsorized our effect size distribution, 
reducing the highest and lowest values to a maximum and 
minimum set of values three standard deviations from the 
average. As we explain below, we conducted sensitivity 
analyses on the nonwinsorized effects to ensure that the pro-
cedure did not have an undue influence on results.
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We handled missing data using the “infer, initiate, impute” 
method recommended by Pigott and Polanin (2020). We first 
sought to limit missingness by inferring data based on the 
information provided. When data necessary to compute 
effect sizes were missing, we emailed the author directly, 
asking for the missing information. A small proportion of 
study authors returned our request: Of the 15 emails sent, 2 
received responses with at least some of the information 
requested (13%). We elected to impute missing pretest-post-
test correlations using the WWC’s suggestions (WWC, 
2020). We did not conduct multiple imputation on the 
remainder of missing data because the dataset was on the 
borderline of an acceptable size. 

Quantitative Synthesis of Effect Sizes

We split our included studies by outcome domain, result-
ing in three meta-analytic models: science, mathematics, 
and motivation. We used a random-effects model with robust 
variance estimation to account for effect size dependencies 
(i.e., multiple effects extracted from one study; Hedges 
et al., 2010). Robust variance estimation models enable syn-
thesis of multiple effect sizes within a single study simulta-
neously, across the totality of studies. We implemented the 
relatively new approach of a correlated-hierarchical effects 
model, which simultaneously allows for both correlated 
effects (i.e., multiple measures of a single outcome domain) 
and hierarchical effects (i.e., effects from multiple samples 
within a single study). The model procedures require an 
implied correlation among the effect sizes, which we set at 
.80 based on common practices and discussion amongst our 
methodological advisors.

We report additional measures that help in the translation 
of the average effects. We estimated effect size heterogeneity 
via tau (τ), which measures the absolute heterogeneity across 
the effect sizes (Borenstein et al., 2017). We elected to report 
total tau, which is the sum of between-study and within-study 
heterogeneity, as it encompasses the full variability of the 
effect size data. Using tau, we estimated the 95% prediction 
intervals, reflecting the lower and upper values within two 
standard deviations. The WWC’s Improvement Index is a 
measure of how much we’d expect the average participant in 
the control group to improve if they had received the inter-
vention; an Improvement Index of 10 suggests that the aver-
age control group member would increase their percentile 
ranking by 10 points (WWC, 2020).

For the science outcome domain, we conducted confir-
matory and exploratory moderator analyses to explain effect 
heterogeneity. The confirmatory moderators of interest 
specified in our analysis plan included: duration of model 
enactment, inclusion of professional development, imple-
mentation quality (as reported), sample age, sample sex 
composition (percentage of students who were classified as 

male or female), outcome measure, and variations in the 
instructional model (i.e., 3E vs. 5E vs. 7E). We added coun-
try in which the evaluation occurred (i.e., United States 
[U.S.], Turkey, or Other) after specifying our confirmatory 
moderators, so this variable is treated as an exploratory 
moderator.

Out of concerns for confounding, and to estimate a pre-
cise effect size, we also conducted exploratory meta-regres-
sion analyses that included all the confirmatory and 
exploratory moderators within a single model. To assess 
model fit, we estimated (a) pseudo R-squared, which takes 
the difference in tau between the unconditional model and 
the conditional meta-regression model and divides it by the 
unconditional model tau; and (b) the likelihood ratio test, 
which assesses model fit across two nested models. We esti-
mated our preferred model on the motivation outcome 
domain as well; we attempted to fit the model with the math 
outcome, but due to sample size restrictions, the model 
would not converge.

Finally, we conducted publication bias and sensitivity 
analyses. To examine publication bias, we created a contour-
enhanced funnel plot, which plots the location of the effect 
size as a function of its standard error (Viechtbauer, 2020). 
Peters et al. (2008) argued that publication bias is easier to 
detect using this format. In these plots, the unshaded white 
region corresponds to p-values less than .10, the dark gray to 
p-values between .10 and .05, and the light gray to p-values 
less than .05. We also examined publication bias using a ver-
sion of Egger’s regression that accounts for the effect size 
dependency (Rodgers & Pustjevosky, 2021), and a three-
parameter selection model, which estimates the percentage 
of studies that were not published and adjusts the weighted 
average and tau accordingly (Pustejovsky & Joshi, 2023). 
For sensitivity analyses, we estimated the average effects 
without winsorization, as mentioned previously; we also 
estimated overall average effects for studies that had at least 
one confirmatory moderator missing.

Results

The PRISMA flowchart in Figure 1 presents the full 
results of our search, screen, and data extraction processes. 
Our database search resulted in 5,873 citations, and our 
additional search procedures resulted in 375 citations. We 
removed 2,895 citations identified as duplicates. Of the 
2,983 remaining citations, 2,506 were screened out after 
abstract review, and 477 remained for full-text retrieval and 
review. We were able to retrieve 436 full-text PDFs. From 
our supplemental searches, we sought to retrieve 172 addi-
tional reports, of which we screened 152 found PDFs. 
Combined, we located and included 61 independent studies, 
from 65 reports, that met our eligibility criteria and were 
retained for data extraction and analysis.
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Characteristics of Included Studies

Summaries of the study and effect size characteristics are 
presented in Table 2. A majority of the 61 studies assessed 
the effects of the 5E model (74%); whereas 8 studies each 
evaluated the effects of a 3E or 7E instructional model (13%, 
respectively). Most studies had at least one peer-reviewed 
report (74%), and the average date of publication was 2010 
(SD = 5.6). Almost half of the studies were conducted in 
Turkey (48%), 15% were conducted in the United States, and 
the remainder (38%) were conducted in a different country.1 
Most studies sampled students in Grades 9 through 12 
(57%). A wide range of assignment mechanisms were imple-
mented, with a plurality assigning teachers or classrooms 
(within schools) to conditions (36%). Fewer than half (48%) 
of the implementations included a professional learning 
component, and the average duration of implementation was 
7.7 weeks (SD = 7.1).

We also provided a description of the included studies’ 
effect size characteristics. Of the 156 estimated effect sizes, 

TABLE 2
Study and Effect Size Characteristics

Study Characteristics (N = 61)

Date of publication
 Mean (SD) 2010 (5.6)
 Median [Min, Max, IQR] 2010 [1990, 2020, 6]
Peer-review status
 No peer-reviewed reports 16 (26%)
 At least one peer-reviewed report 45 (74%)
Country
 U.S. 9 (15%)
 Turkey 29 (48%)
 Other 23 (38%)
Grade level
 K–5 11 (18%)
 6–8 15 (25%)
 9–12 35 (57%)
Assignment
 Individual 11 (18%)
 Within school 22 (36%)
 2 schools per condition 16 (26%)
 3 schools per condition 7 (11%)
 4+ schools per condition 5 (8%)
Instructional model
 3E 8 (13%)
 5E 45 (74%)
 7E 8 (13%)
Professional development
 Provided 29 (48%)
 Not provided/not reported 32 (52%)

Study Characteristics (N = 61)

Intervention duration (weeks)
 Mean (SD) 7.7 (7.1)
 Median [Min, Max] 6 [2, 36]
 Missing 13 (21%)
WWC rating
 Does not meet standards 18 (30%)
 Meets with reservations 22 (36%)
 Meets without reservation 21 (34%)

Effect Size Characteristics (N = 156)

Outcome domain
 Mathematics 9 (6%)
 Motivation 45 (29%)
 Science 102 (65%)
Outcome neasure
 Math: General 3 (2%)
 Math: Geometry 5 (3%)
 Math: Measurement 1 (1%)
 Motivation: Perceived cost 3 (2%)
 Motivation: Intrinsic value 6 (4%)
 Motivation: Expectancy 32 (21%)
 Motivation: Utility or attainment value 4 (3%)
 Science: Critical thinking, creativity, or 

process skills
11 (7%)

 Science: General science 12 (8%)
 Science: Life science 28 (18%)
 Science: Physical science 51 (33%)
Sample composition: Sex
 Completely female (100% female) 16 (10%)
 Mostly female (99–56% female) 18 (12%)
 Evenly distributed (55–45% female) 51 (33%)
 Mostly male (44–1% female) 23 (15%)
 Completely male (0% female) 8 (5%)
 Not reported 40 (26%)
Sample composition: Socioeconomic status (SES)
 Low SES 7 (4%)
 Low-middle SES 3 (2%)
 Middle SES 11 (7%)
 Middle-upper SES 5 (3%)
 Not reported 130 (83%)
Outcome reliability
 .67–.77 63 (40%)
 .78–.89 46 (29%)
 .90–.98 16 (10%)
 Not reported 31 (20%)
Outcome measure developer
 Unaffiliated with implementation 64 (41%)
 Affiliated with implementation 92 (59%)
Total effective sample size
 Mean (SD) 160 (240)
 Median [Min, Max] 86.0 [11, 1220]

Note. IQR = interquartile range. (continued)

TABLE 2 (CONTINUED)
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the majority assessed effects on science outcomes (65%), 
relative to math outcomes (6%) and motivation outcomes 
(29%). Among science achievement effects, most measured 
effects on physical science outcomes (33% of the total; 50% 
of the science domain) or life science (28% of science) out-
comes. The sex composition of the samples ranged from 
100% female students to 100% male students, with a plural-
ity of studies having an even distribution (33%). For most 
effect sizes, the sample’s socioeconomic status was not 
reported (83%). A plurality of studies (40%) reported an 
outcome measure reliability between .67 and .77. Most 
measures were created by a person associated with the 
implementation of the instructional model or by educators 
delivering the instructional model (59%). The effect sizes 
were drawn from studies with an average sample size of 160 
individuals (SD = 240).

Results of Meta-Analyses

Regarding Research Question 1, our unconditional meta-
analytic models found that 5E and related instructional mod-
els have a significant positive effect on all outcomes: science 
(g = 0.82, SE = 0.08, 95% confidence interval [CI] [0.67, 
0.97]), math (g = 0.70, SE = 0.20, 95% CI[0.31, 1.10]) and 
motivation (g = 0.24, SE = 0.05, 95% CI[0.14, 0.34]) (see 
Supplemental Table 1 in the online version of the journal). 
Translating these effect sizes to the WWC’s Improvement 
Index, a member of the control group who received the 5E 
model could expect to improve their science domain percen-
tile rank by 29 points. For math, one could expect to improve 
their percentile rank by 26 points; for motivation, by 10 
points.

The results also indicated a large amount of effect size 
heterogeneity within the science (τ = .56) and math domains 
(τ = .46); but little heterogeneity in the motivation domain 
(τ = .21). As a result of this significant heterogeneity, the 
95% prediction interval indicates a 95% probability that the 
true effect of the 5E model on science outcomes was between 
−0.38 and 1.92 standard deviations. However, a less ambig-
uous assessment of the effect size distribution is the proba-
bility of positive effect. For science, the probability of 
positive effect is 93%, indicating that practitioners can be 
confident the implementation of the 5Es or related models 
will result in an increase in science outcomes.

Confirmatory and Exploratory Moderator Findings for the 
Science Outcome Domain. To address Research Question 2, 
we now turn to the results of the confirmatory (Table 3) and 
exploratory (Table 4) moderator analyses for the science out-
come domain. Of the six confirmatory moderator analyses we 
conducted, two moderators—instructional model and outcome 
construct—yielded statistically significant F-statistics (Tipton 
& Pustejovsky, 2015). The moderator analysis results for 

instructional model indicated that statistically significant dif-
ferences between the 3E, 5E, and 7E models (F = 5.03, p = .03). 
Further exploratory posthoc analyses indicated that the 7E 
model (g = 1.23, SE = 0.18) had statistically significantly larger 
effects (p < .01) than the 3E model (g = 0.42, SE = 0.15). How-
ever, the 5E model’s results also produced a large effect size 
(g = 0.82, SE = 0.09), but the posthoc tests indicated no statisti-
cally significant differences between the 5E model and either 
the 3E or the 7E models. Furthermore, a much smaller number 
of studies evaluated either the 3E (k = 7) or the 7E (k = 6) mod-
els on a science outcome. Confirmatory moderator analyses 
also indicated statistically significant findings for differences 
among effect sizes, based on the outcome construct levels 
(F = 4.47, p = .05). Posthoc analyses suggested that the differ-
ences (p < .01) lie between measures of general science (k = 6, 
g = 0.39, SE = 0.09) and physical science (k = 30, g = 0.90, 
SE = 0.11).

Our additional exploratory moderator analysis of differ-
ences by country in which the evaluation took place also 
revealed statistically significant differences in effect sizes 
between studies conducted in the U.S., Turkey, or another 
country (F = 3.51, p = .03). Further posthoc analyses indi-
cated that the significant difference (p < .01) was between 
studies conducted in the U.S. (g = 0.46, SE = 0.13) and 
Turkey (g = 0.96, SE = 0.11).

Before turning to our exploratory meta-regression analy-
ses, we deemed it necessary to conduct a descriptive analysis 
to better understand the moderator results for instructional 
model (3E/5E/7E) and for country of evaluation (see 
Supplemental Tables 4a and 4b in the online version of the 
journal). Our descriptive analysis of country by variable 
revealed that, of the six moderator variables we tested, four 
had chi-square results of p < .01, indicating the distribution 
of characteristics was not even across countries. Relative to 
the other countries, U.S. studies more often included students 
in Grades K–5. Interestingly, we found few other stark differ-
ences across the countries of evaluation. Our analyses of 
instructional model crossed with other study characteristics 
also revealed that four of the six characteristics had uneven 
distributions across the three instructional models. Perhaps 
most strikingly, these results revealed that no eligible studies 
evaluated the 7Es (a) within a U.S. context, (b) with a life 
science achievement measure, or (c) using a scale-up 
approach with more than three schools per condition.

Our moderator and descriptive analyses indicated that we 
needed to further explore how and why effects vary. 
Recognizing that the unique relationship between a study 
characteristic and its associated effect sizes can be con-
founded by other study characteristics, and wanting to create 
a precise estimate of our average effect for the 5E model, we 
elected to conduct a series of exploratory meta-regression 
analyses. We present results from three models: (1) all con-
firmatory and exploratory variables, (2) all confirmatory and 
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exploratory variables as well as a 3E/5E/7E model by coun-
try interaction term, and (3) all variables extracted with suf-
ficient (nonmissing) information. A comparison of Model 1 
to Model 2, using a likelihood-ratio test (Viechtbauer, 2023) 
of nested models, indicated that Model 2’s fit was not statis-
tically significantly better relative to Model 1 (likelihood 
ratio test [LRT] = 4.87, df = 3, p = .18). The fit statistics for 

Model 3 indicated poor fit, likely due to overfitting. We 
therefore discuss the results of the more parsimonious and 
translatable Model 1 (Table 4), while providing the results of 
Models 2 and 3 in Supplemental Tables 2 and 3 in the online 
version of the journal.

The results of meta-regression Model 1 (Table 4) revealed 
several findings of interest. First, only one variable had a 

TABLE 3
Moderator Analyses for Science Outcome Domain

Moderator Level k (m) Average Effect Size (SE) F-Statistic, p-Value

Instructional model 5.03, .04
 3E 7 (15) 0.42 (0.15)a  
 5E 41 (74) 0.82 (0.09)  
 7E 6 (13) 1.23 (0.18)a  
Outcome construct 4.47, .05
 Critical thinking 5 (11) 0.67 (0.21)  
 General science 6 (12) 0.39 (0.09)a  
 Life science 18 (28) 0.86 (0.14)  
 Physical science 30 (51) 0.90 (0.11)a  
Intervention length 1.23, .37
 Less than 1 month 17 (23) 0.89 (0.14)  
 1–2 months 18 (41) 0.95 (0.14)  
 2–3 months 3 (5) 0.42 (0.20)  
 3–4 months 4 (11) 0.45 (0.15)  
 5+ monthsb 3 (6) 0.66 (0.33)  
 Not reported 9 (16) 0.78 (0.21)  
Professional development 2.33, .13
 Provided 27 (50) 0.71 (0.10)  
 Not reported/not provided 27 (52) 0.94 (0.11)  
Sample: Age 2.31, .12
 K–5 11 (26) 0.61 (0.14)  
 6–8 12 (21) 0.68 (0.18)  
 9–12 31 (55) 0.96 (0.10)  
Sample: Sex 3.23, .08
 100% female 5 (10) 0.65 (0.07)  
 99–56% female 5 (14) 0.33 (0.10)  
 55–45% female 21 (34) 0.96 (0.12)  
 44–1% female 7 (14) 1.06 (0.28)  
 0% female 4 (6) 0.95 (0.15)  
 Not reported 17 (24) 0.71 (0.11)  
Country 4.11, .03
 U.S. 9 (26) 0.46 (0.13)a  
 Turkey 28 (48) 0.96 (0.11)a  
 Other 17 (28) 0.83 (0.13)  
WWC rating 1.84, .17
 Does not meet standards 18 (35) 0.56 (0.16)  
 Meets standards with reservations 21 (38) 0.91 (0.13)  
 Meets standards without reservations 18 (29) 0.94 (0.14)  

Note. k = number of studies; m = number of effect sizes; F-statistic represents the Approximate Hotelling’s test statistics found in Tipton and Pustejovsky 
(2015); all variables are confirmatory except for Country and WWC rating, which we added after writing our preanalysis plan.
aIndicates statistically significant differences between the levels (p < .01).
bNo studies reported an intervention length of 4–5 months.
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statistically significant relationship with the size of the effect: 
the percentage of female students in the sample. Specifically, 
effects differed significantly for samples that were comprised 
of a majority of female students (56–99%) compared to sam-
ples that had an even distribution of male and female students 
(55–45% female students; b = −0.59, SE = 0.26, p = .05). 
Samples that were comprised of 100% female students also 
had smaller effects, but the difference was smaller, and the 
results were not statistically significant (b = −0.19, SE = 0.20, 
p = .38). There are multiple possible interpretations of this 
finding. For example, studies of 7E implementations and 
studies focusing on Grades 9–12 were overrepresented in 
Turkey and tended to have higher effect sizes, but these stud-
ies also had few effects from samples with majority-female 
students; it could be the case that fewer female students in 
Turkey took science courses in which the most effective 
implementations took place, while female students in the U.S. 
took science courses in which less effective implementations 
took place (i.e., the results are driven by the effectiveness of 
the implementation in the courses students found themselves 

taking, rather than the gender of the students in those courses). 
Alternately, it could be that science performance was already 
higher among female students, so there was less room for 
improvement in classes with more of these students. More 
studies are needed to disentangle these variables.

Two other results are of interest. Second, our meta-
regression model results indicated that studies in Turkey and 
other-non-U.S. and non-Turkish countries would have con-
sistently lower effects relative to U.S. studies; however, nei-
ther of the coefficients were statistically significant (p > .05), 
and the coefficients were considerably smaller compared to 
the bivariate, exploratory moderator analyses presented in 
Table 3. Third, as others have found (Wolf & Harbatkin, 
2023), findings from measures that researchers developed 
had larger effects compared to findings from standardized 
measures (b = 0.37, SE = 0.18); the results were not statisti-
cally significant (p = .07) but clearly aligned with the histori-
cal trend. 

Finally, coefficients for the 3E/5E/7E model types also 
failed to reach statistical significance (p > .05). However, 

TABLE 4
Exploratory Meta-Regression Model on Science Outcome Domain

Variable Reference Level Coefficient (SE) t-Statistic, df p-Value

Intercept - 0.76 (0.32) 2.35, 16.77 .03
Sample-sex: 100% female Sample-sex: 55–45% female −0.19 (0.20) −0.94, 7.86 .38
Sample-sex: 99–56% female −0.59 (0.26) −2.24, 8.58 .05
Sample-sex: 44–1% female 0.17 (0.37) 0.45, 8.71 .66
Sample-sex: 0% female −0.04 (0.24) −0.16, 7.46 .88
Sample-sex: Not reported −0.21 (0.14) −1.52, 12.70 .15
Grade level: 6–8 Grade Level: K–5 0.02 (0.30) 0.08, 11.07 .94
Grade level: 9–12 0.02 (0.32) 0.06, 11.90 .95
Received professional development Did Not Receive −0.25 (0.20) −1.24, 22.26 .23
Length: 1–2 months Length: <1 Month 0.18 (0.22) 0.85, 18.32 .41
Length: 2–3 months −0.52 (0.39) −1.34, 5.37 .23
Length: 3–4 months 0.01 (0.41) 0.03, 7.64 .97
Length: 5+ monthsa −0.39 (0.40) −0.98, 8.76 .36
Length: Not reported −0.17 (0.30) −0.57, 15.80 .58
Measure: Life science Measure: Physical Science −0.19 (0.40) −0.48, 4.31 .66
Measure: General science −0.14 (0.22) −0.62, 5.54 .56
Measure: Critical thinking −0.04 (0.23) −0.19, 18.84 .85
Instructional model: 3E Instructional Model: 5E −0.28 (0.26) −1.10, 10.68 .29
Instructional model: 7E 0.57 (0.38) 1.48, 10.92 .17
Country: Turkey Country: US −0.05 (0.34) −0.16, 13.13 .87
Country: Other −0.09 (0.30) −0.29, 14.27 .78
Researcher-developed measure Yes 0.36 (0.18) 1.98, 11.08 .07
WWC: MSWOR WWC: DNMS −0.08 (0.31) −0.27, 19.65 .79
WWC: MSWR 0.30 (0.27) 1.10, 13.26 .29

Note. Reference level is the categorical level removed from the model; coefficient is the difference in effect size between the reference level and the row 
variable; SE = standard error; df = degrees of freedom; R-squared = 16.7%; MSWOR = meets standards without reservations; MSWR = meets standards with 
reservations; DNMS = does not meet standards.
aLength: no studies had an intervention length of 4–5 months.
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the coefficients remained consistent with the bivariate find-
ings: Evaluations of 7E models found larger effects relative 
to evaluations of 5E models, and evaluations of 5E models 
found larger effects relative to evaluations of 3E models. 
Meta-regression Model 1 explained a considerable amount 
of heterogeneity (R2 = 36.6%), especially relative to other 
large-scale, rigorous meta-analyses of STEM outcomes pub-
lished recently (Williams et al., 2022).

Findings for Math Outcome Domain. Given the small num-
ber of studies identified as eligible for inclusion that exam-
ined a math outcome (k = 6), we elected not to conduct 
confirmatory moderator analyses in the math outcome 
domain. We attempted to run the same exploratory meta-
regression model used for the science outcome domain, but 
the model would not converge properly and produced non-
sensical results. As a result, we elected not to present those 
findings here. Interested readers can access the analyses via 
the statistical scripts published on our OSF project page.

Findings for Motivation Outcome Domain. We did not plan 
to conduct confirmatory moderator analyses for the motiva-
tion outcome domain because it was a supplementary out-
come, but we did conduct exploratory meta-regression 
analyses. Given the small number of studies and effect sizes 
available, we were concerned with overfitting the model to 
the data. We therefore elected to run two models: (1) a full 
model with the same covariates as the final science domain 
(Supplemental Table 5 in the online version of the journal) 
and (2) a reduced model (Supplemental Table 6 in the online 
version of the journal) in which only covariates that had a 
statistically significant relationship (p < .05) were retained. 
The results indicated that the full model likely overfit the 
data because the intercept was outside the bounds of the 
smallest effect (b = −0.57, SE = 0.31). Comparing the two 
models, the reduced model had a smaller absolute Akaiki 
Information Criterion (AIC) (Model 1: −7.62; Model 2: 
0.51) and had a larger R2 value (Model 1: 56.0%; Model 2: 
68.9%). Taken together, we elected to focus on the results 
from the reduced model.

Several findings from the reduced model are noteworthy. 
The results indicated that students in Grades 9–12 benefited 
more in motivation from the 5E model relative to students in 
Grades K–5 (b = 0.07, SE = 0.09, p = .43). Relative to the 5E 
model, implementations of the 7E model resulted in greater 
motivation (b = 0.89, SE = 0.11, p = .01). Compared to effects 
on intrinsic motivation, the effects on perceived cost were 
significantly smaller (b = −0.47, SE = 0.07, p = .01). The cost 
measures all focused on anxiety, falling within the psycho-
logical cost subcomponent of the perceived cost construct 
(Eccles & Wigfield, 2020; Flake et al., 2015). Enactments of 
the instructional models that lasted at least 1 month had 
greater effects on motivation than did shorter enactments 
(1–2 months: b = 0.28, SE = 0.09, p = .03; 5 months or greater: 

b = 0.39, SE = 0.13, p = 0.02; 3–4 months: not statistically sig-
nificant but large in magnitude [0.30]).

Publication Bias and Sensitivity Analysis Results

We conducted three publication bias analyses on the sci-
ence outcome domain. The first was to create a contour-
enhanced funnel plot (Supplemental Figure 1 in the online 
version of the journal). Our visual inspection suggested that, 
in addition to few studies showing negative results, there may 
be some evidence of publication bias due to small sample 
sizes. However, when we used Egger’s regression with a cor-
related and hierarchical effects (CHE) meta-analytic model 
accounting for effect size dependency, the results revealed a 
nonsignificant relationship between the two variables, indi-
cating publication bias was likely not observed (Supplemental 
Tables 7 and 8 in the online version of the journal). The third 
publication bias analysis, using a selection model that also 
accounts for effect size dependency, estimated the percentage 
of studies that were censored due to nonsignificance. The 
results again revealed that publication bias was likely not 
observed (δ = 0.98, 95% CI[0.52, 1.85]). The selection-
adjusted meta-analytic average did not change from the 
unconditional meta-analytic average, but the estimate of tau 
did increase. This means that, if selection were an issue, it 
would be likely to increase the effect size heterogeneity but 
not the average effect. Although it appears that the data is 
skewed to positive results, our efforts to retrieve unpublished 
studies, combined with the totality of publication bias analy-
ses, suggested that publication bias should not completely 
limit our interpretation of the results. Nevertheless, we must 
urge some caution and, as we note in the discussion, err on 
the side of the smaller magnitude of an effect.

Finally, we conducted sensitivity analyses to ensure 
robustness to analytic decisions we made (Supplemental 
Table 9 in the online version of the journal). We reanalyzed 
our unconditional meta-analytic models with nonwinsorized 
effect sizes. For each of the three outcome domains, the 
results were nearly identical, save for a small difference in 
the motivation outcome domain (g winsorized = 0.24 vs. g 
nonwinsorized = 0.29). We also examined differences in 
average effects for studies that had at least one piece of con-
firmatory information missing. For science, studies without 
missing information had slightly larger average effects (g 
with missing = 0.75 vs. g without missing = 0.86). For moti-
vation, the results were identical. For math, however, we 
found that studies with at least some missing information 
had effects nearly three times as large (g with missing = 1.09 
vs. g without missing = 0.38). We urge some caution when 
interpreting the math outcome results, as the average effect 
may be smaller in practice than what we found from the 
unconditional results. Overall, and for our science analyses 
in particular, however, our results are robust to analytic deci-
sions, and we are confident in the main results presented.
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Discussion

The overall findings revealed that the 5E and related 
models are effective for improving STEM education, in both 
science and math. Although the average instructional model 
lasted for 7.7 weeks, our results indicated that the return on 
this investment of time could be substantial: the probability 
of a positive impact is as high as 93%. Readers from the U.S. 
concerned about the mix of results from across the world 
might also take comfort in the fact that the average effect 
from U.S.-based studies was substantial (g = 0.46), translat-
ing to a percentile rank increase of 18 points on the WWC 
Improvement Index. Based on these results, we posit that 
future implementations of the 5E model are likely to have 
positive impacts on students’ science understanding.

We must urge readers to use caution, however, when con-
sidering variants of the 5E model. Although the six evalua-
tions of the 7E model are certainly sufficient to draw some 
conclusions, we are concerned by the fact that none of the 
evaluations took place in the U.S., and only one evaluation 
took place outside of Turkey. Studies conducted in Turkey 
tended to measure specific and narrow science outcomes, 
include fewer female students, and use smaller individual 
and clustered samples. Any of these aspects could have 
resulted in higher average effects, especially in light of our 
overall finding that evaluations measuring broad general sci-
ence achievement tended to report smaller effects relative to 
other, more specific outcome constructs. Of course, the 7E 
instructional model could have produced such large effects. 
We are simply less confident in suggesting their use without 
further and more varied research, and we would not neces-
sarily expect such large effects as we have found to general-
ize to a larger set of studies.

Similar caution, for different reasons, is warranted when 
considering the use of the 3E instructional model. Our results 
indicated that the 3E instructional model produced smaller 
effects, on average, compared to the 5E and 7E models. 
Although the follow-up meta-regression analyses no longer 
indicated a statistically significant difference, the coefficient 
remained notably smaller (b = −0.16, SE = 0.24). As alluded 
to above, we hypothesize that this is likely due to the 3E 
model’s lack of overt attention to eliciting students’ precon-
ceptions and encouraging metacognition, both of which are 
teaching strategies with substantial empirical support (e.g., 
National Research Council [NRC], 2000).

Implications for Practice and Programmatic Decisions

Given that the overall meta-analytic results demonstrated 
a positive significant effect on all outcomes, educators can 
consider the 5E and related models as effective instructional 
models for improving science outcomes. Further, there is 
evidence that the 5E and 7E models may consistently pro-
duce larger positive effects than that of 3E models. These 
two findings have implications for programmatic decisions 

in a time when there is rapid development of new instruc-
tional materials for science, based on the 5E model or other 
instructional models.

One such new curriculum development initiative that 
does not specifically use the 5E model is OpenSciEd (2023), 
an organization of expert science educators and curriculum 
developers who are generating science curriculum materials 
aligned with the Next Generation Science Standards (NGSS 
Lead States, 2013). These materials are being developed with 
an instructional model that features student-centered formu-
lation of questions, investigations, and problem-solving and 
is driven by anchoring phenomena that are intended to 
engage, puzzle, motivate, and raise questions based on stu-
dents’ prior knowledge (OpenSciEd, 2023). As additional 
OpenSciEd or similar materials are developed, it is impera-
tive that subsequent research around these materials include 
efficacy studies that not only examine the impact of the 
instructional model when implemented strictly as intended, 
but also the effectiveness of variations in the number or 
sequence of stages, or implementation variations. Then, an 
important longer-range goal would be to conduct meta-anal-
yses of the effects observed in these efficacy studies. 

Limitations

Several limitations of this systematic review and meta-
analysis are worth noting. First, we limited the eligibility of 
studies to those using a random assignment design. We did 
so out of practical concerns (i.e., resource burden) and valid-
ity concerns (i.e., quasi-experimental designs studies in this 
field tended to be of lower quality and suffer from selection 
bias). The exclusion of quasi-experimental design studies 
limits the corpus of studies and therefore decreases our sta-
tistical power and our ability to generalize. We believe that 
the corpus used for this synthesis, however, is of high qual-
ity, and the results are conservative but trustworthy.

Second, as is frequently lamented by meta-analysts, stan-
dard reporting practices in education research often do not 
provide a description of the comparison condition beyond 
“business-as-usual.” In almost all studies in this synthesis, 
study authors failed to report information about the compari-
son condition; only five studies, or 8% of our sample, pro-
vided any descriptive information about the comparison 
condition. To provide some context for what the counterfac-
tual to 5E instruction may look like, however, we relay the 
most comprehensive reporting of the comparison condition. 
Sadi and Çakiroğlu (2012) documented the following about 
their comparison condition classrooms: 

In the control group, expository instruction was given. Teacher-
centered instruction was applied and students were generally taught 
with a note taking strategy. Teachers gave important concepts in an 
organized structure and wrote notes on the chalkboard about the 
definition of major circulatory system concepts as stated in the 
biology textbook. Students mainly listened to their teacher and took 
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notes from the chalkboard throughout the lesson. The teacher 
generally focused only on the human circulatory system and did not 
make any associations with other related issues such as the 
respiratory, digestive, excretory etc. systems. The teacher used some 
pictures, diagrams and maps about the structure of the heart, blood 
vessels and pulmonary and systematic circulation. Students 
followed those visual aids. After completing the topic, the teacher 
gave students adequate time to ask questions about the subject. 
Students discussed the concepts under the teacher’s guidance and 
the teacher re-explained any subject which wasn’t understood. The 
teacher handed out worksheets for the rest of the lesson. (p. 2004)

We urge primary researchers in this and other fields to 
make it standard practice to report this level of detail about 
their comparison conditions. For our current study, this 
explanation likely approximates a typical “business-as-
usual” condition, although we are limited by the lack of 
information in most studies.

Third, many of the studies were missing fidelity of imple-
mentation information, so much so that we were not able to 
consider it as a substantive moderator. The 5E instructional 
model is one that relies on teachers’ willingness to imple-
ment it with fidelity; so without this information, it is diffi-
cult to understand if some of the variation seen in 
effectiveness is due to lack of fidelity.

Fourth, the confounding of study characteristics, particu-
larly the country of the evaluation, the percentage of male or 
female students in the sample, and the breadth of the mea-
sured science constructs, call into question how much we 
can truly say that one variable is causing an increase or 
decrease in the instructional models’ effectiveness. All three 
of these variables, and likely several others, influence the 
effectiveness of the model in related ways. Future research 
with additional evaluations will be required, preferably with 
built-in variation around these mechanisms, before a defini-
tive answer can be reached.

Conclusions

This systematic review and meta-analysis demonstrated 
the effectiveness of instructional models based on the 5E 
model and its variants, when compared with largely didactic 
instruction. Although this study showed evidence that 5E/7E 
models produced larger effects than 3E models, possibly due 
to the 5E/7Es’ overt attention to eliciting prior conceptions 
and encouraging student metacognition, the effectiveness of 
even 3E models confirms important features of the explore, 
explain, and elaborate stages. That is, our findings confirm 
the importance of students (a) actively exploring scientific 
phenomena, prior to being introduced to scientific explana-
tions, (b) developing their own explorations based on evi-
dence, and (c) applying their evolving explanations to new 
and novel situations. The findings of this study provide sup-
port for the adoption of new or existing 5E-based instruc-
tional materials.
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Notes

1. Turkey’s Ministry of National Education began pivoting to 
a constructivist approach in 2000 and officially incorporated con-
structivism as an approach to science education in its revision to the 
national science curriculum in 2004 (Öztürk, 2016). Constructivism 
was loosely defined, however, and room for use of other strategies 
remained. Given the increased focus on constructivist approaches 
like the 5E model but lack of prescriptive guidance, research on the 
effectiveness of such approaches would have been in demand in 
the years surrounding this change.
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