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Curriculum choice has long been touted as a low-cost, 
quick, and easy way to raise student achievement and to alle-
viate income-based achievement gaps (Boser et al., 2015). 
Some researchers have even argued that a substantial share of 
the gap in math performance between economically advan-
taged and disadvantaged students is related to curriculum 
inequalities (Schmidt et al., 2015). As such, states such as 
California, Louisiana, Tennessee, and others have made it part 
of their primary academic strategies to provide teachers with 
high-quality instructional materials. Many of these states have 
allocated immense resources to vet instructional materials 
through rigorous review processes to support administrators 
in their selections. However, these reviews and rankings are 
often based primarily on alignment with the state’s content 
standards rather than on instructional quality or efficacy in 
improving student outcomes. Moreover, research on curricu-
lum adoption processes indicates that administrators rarely 
consider external evaluation sources when making their selec-
tions (Polikoff et al., 2020). This could be due, in part, to the 
fact that rigorous efficacy studies on specific curricular mate-
rials are scarce (Koedel et al., 2017), making it challenging for 
administrators to make holistic decisions based on both align-
ment and effectiveness.

Research pertaining to technology-based curricula is 
even more limited despite a drastic shift in the curriculum 
market toward digital resources (Otten et al., 2019). Nearly 
half of the 12 elementary math curricula that have been 
reviewed by EdReports now have a comprehensive digital 
offering, including enVision Math, Eureka Math, HMH Into 
Math, i-Ready, and Zearn. Of these five, the What Works 

Clearinghouse—a repository of education research—only 
lists efficacy studies for three, and none of those studies 
were conducted recently enough to reflect the relatively 
newly developed digital formats of the curricula. Instead, the 
limited studies that do exist on these programs tend to be 
developer-commissioned studies, which may suffer from 
publication bias or lack external validity (Wolf et al., 2020).

This study aims to alleviate this gap in the literature by 
independently evaluating one such technology-based ele-
mentary math curriculum, Zearn Math. Despite its recogni-
tion on several states’ lists of high-quality instructional 
materials, Zearn Math has not yet been subjected to a rigor-
ous test of its impact on student achievement. This work also 
contributes to the larger body of literature on blended learn-
ing—a pedagogic approach that combines teacher instruc-
tion with digital learning—which suggests that blended 
learning holds potential to improve student outcomes 
through greater personalized learning and engagement 
(Means et al., 2010). 

Background

Although the COVID-19 pandemic undoubtedly has 
ignited discourse around hybrid and online learning, blended 
learning has been evolving as a subject of educational inno-
vation for decades. Advocates of integrated digital learning 
argue that it allows teachers to personalize instruction to 
meet the diverse needs of their students (Tucker, 2012), 
increases student engagement, and modernizes the tradi-
tional classroom instructional model (Christensen et al., 
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2013). In elementary schools, the rotational model is the 
most prevalently applied form of blended learning, wherein 
students cycle between different learning stations, allowing 
for varied instructional methods and activities, including 
online learning tasks (Horn & Staker, 2014). Studies have 
documented that the rotational model supports the benefits 
associated with smaller group instruction—a cornerstone of 
the small-class-size literature—while being feasible to 
implement without significant changes to existing school 
resources or processes (Christensen et al., 2013).

Reflecting the evidence on blended learning for young 
students, Zearn Math combines curricular materials for in-
person instruction with corresponding digital lessons based 
on the concrete/pictorial/abstract pedagogic strategy to sup-
port teachers in a rotational model. The recommended 
implementation begins with a teacher-led whole-class flu-
ency or word-problem activity, after which students rotate 
between two stations: working independently on Zearn Math 
digital lessons or working with the teacher in a smaller group 
setting (Zearn, n.d.). Digital lessons are comprised of flu-
ency practice, concept development, and application work 
that students complete at their own pace on a personal 
device. Software-based prompts remind students to use cor-
responding paper student notes throughout the lesson and to 
complete the paper exit ticket at the end to support paper-
and-pencil transfer. Students in the teacher-led smaller group 
work with concrete manipulatives and practice explaining 
their reasoning. Importantly, the core content for each lesson 
is delivered during the digital component of the suggested 
math block.

This is the first well-powered, causal evaluation of Zearn 
Math. The limited prior research on the program was con-
ducted internally, employed noncausal methods, or exam-
ined different outcomes. In the most comprehensive external 
study to date, Morrison et al. (2019) employed a mixed-
methods evaluation design, gathering data from 15 elemen-
tary schools that implemented Zearn Math in a large, urban 
school district. Qualitatively, the authors found that adminis-
trators, students, and teachers had very positive perceptions 
of Zearn Math. However, differences in achievement gains 
between the treated and comparison samples were found to 
be not significant after controlling for several student-level 
variables. The authors attribute this in part to barriers to 
implementation, particularly a lack of support from the 
administration, insufficient technology, and shortened math 
blocks resulting in students spending less than half the rec-
ommended time on the program.

This study focuses on the impact of Zearn Math in 
Louisiana, where various contextual factors made it a prime 
setting for the program to proliferate across the state. For 
one, portions of Zearn Math are derivative of the Eureka 
Math or EngageNY (ENY) curriculum—an open-source 
curriculum written to align with the Common Core State 

Standards—and the K–5 lessons follow the same scope and 
sequence (Zearn, 2021). According to a 2016–2017 survey 
of a sample of schools in six states conducted by Blazar et al. 
(2019), nearly 15% of schools reported using ENY, which 
constituted the second highest market share of mathematics 
textbooks after enVision. However, in Louisiana, nearly 
60% of schools reported using ENY, four times as many as 
the next most prevalent curriculum in the state, likely due to 
the incentives schools are given to use a highly rated curricu-
lum. Despite ENY’s popularity, it is also the curriculum 
most frequently described as being too hard and not user 
friendly (Blazar et al., 2019). Eighty-eight percent of teach-
ers from the schools using ENY reported that they supple-
ment or substitute parts of the curriculum with other 
resources. It is possible that Zearn Math’s rapid growth can 
be attributed in part to ENY’s preexisting reach in the ele-
mentary math curriculum market and its potential to allevi-
ate ENY’s implementation challenges. In Louisiana, this 
was likely further amplified by the Louisiana Department of 
Education (LDOE) deeming Zearn Math a Tier 1 curriculum 
in 2016 (LDOE, 2016). Administrative buy-in, perfect align-
ment with the existing curriculum, and the pandemic-related 
push toward digital resources may have cleared the way for 
the program’s expansion across the state. In the 2018–2019 
school year, nearly 80% of LDOE elementary schools had 
some degree of activity on the online platform, of which 
more than one-fourth consistently used it throughout the 
school year.

Although Louisiana has a particularly high concentration 
of schools that programmatically use Zearn Math, its 
saliency is not limited to the state. According to a nationally 
representative survey, more than one-tenth of elementary 
school educators regularly implemented Zearn Math in the 
2019–2020 school year (Doan et al., 2020). Recent trends in 
spending suggest that the use of Zearn Math has increased 
markedly since then. According to purchase-order data from 
GovSpend (2022), Louisiana public schools spent twice as 
much on Zearn-related materials in July 2021 than in July 
2019. Over the same time period, the growth in sales across 
the United States was nearly 20-fold. Given the immense 
national investment in the program, it is imperative that we 
understand its impact on student achievement.

Present Study

In this quasi-experimental study, I employ proprietary data 
to measure Zearn Math’s causal impact on third, fourth, and 
fifth grade students’ scores on the Louisiana state math assess-
ment, the Louisiana Educational Assessment Program (LEAP) 
2025. I find evidence that programmatic usage of Zearn Math 
increased students’ scores by .03 standard deviation units, on 
average. I probe these results by performing a placebo test 
with LEAP 2025 English-language arts (ELA) outcomes and 
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find marginally significant negative impacts of Zearn Math on 
ELA scores, suggesting that the effects on math achievement 
could be understated. Several checks, including a treatment 
sensitivity analysis and using a treatment heterogeneity–
robust estimator, further indicate that this is a conservative 
estimate of the true effect. These results also align with the 
singular prior external efficacy study on Zearn Math, which 
showed a similar, although not statistically significant, effect 
size of .024 (Morrison et al., 2019). 

Using conventional benchmarks, the effect of Zearn Math 
found here would be considered a small effect (Cohen, 
1988). However, modern literature on interpreting effect 
sizes notes the importance of taking into account the out-
come measure, scale of the implementation, and other con-
textual factors (Hill et al., 2008; Kraft, 2020). Specifically, 
when using widespread standardized tests such as the LEAP 
2025 ELA assessment in Louisiana, observed effect sizes 
tend to be substantially smaller than those from tests tailored 
by researchers, and studies involving more than 2,000 stu-
dents usually report effects several times smaller than those 
with fewer than 100 students (Kraft, 2020). Notably, Kraft 
(2020) notes a .03 median effect size across large-scale 
causal studies of pre-K–12 education interventions with 
standardized achievement outcomes, comparable to the find-
ings here.

Still, the estimated effect is at the lower end of the range 
of estimates documented in similar curriculum-based stud-
ies, which have been between .05 and .17 standard devia-
tions (Koedel et al., 2017). As described earlier, this could be 
a symptom of the Louisiana context. For one, there is a stark 
congruence between Zearn Math and the most prevalent cur-
ricula being implemented across Louisiana as well as a high 
possibility that Zearn Math is being used supplementarily by 
schools that may not have adopted the program for core 
instruction. Furthermore, 95% of Louisiana schools use just 
one of four top-rated math curricula, all of which are aligned 
with the same standards (Blazar et al., 2019). These unique 
factors could result in a weak treatment–control contrast, 
leading to relatively modest estimates of the effect of pro-
grammatic usage. I recommend that future research further 
explore the mechanisms driving these effects as well as 
potential heterogeneous impacts based on student and school 
characteristics that may be relevant to decision makers fac-
ing a variety of implementation contexts.

The rest of this paper is organized as follows. The next 
section describes my data sources and how I designate a 
grade level as having used Zearn Math programmatically or 
not. I then present the empirical models I use to estimate the 
impact of Zearn Math on math scores followed by the result-
ing estimates. In the four subsequent sections, I probe my 
main findings in several ways. First, I present robustness 
checks assessing the validity of my primary estimation 
method. Next, I perform a placebo test using ELA scores as 
the outcome. Following this, I describe the sensitivity of my 

findings to alternative definitions of treatment, and then I 
redefine treatment to estimate the marginal impact of each 
additional day of using Zearn Math. The final section con-
cludes with suggestions for future research.

Data

Sources

Data for this project were obtained from the LDOE and 
Zearn. The LDOE provided average third, fourth, and fifth 
grade LEAP 2025 math and ELA-scaled scores for each 
school grade for the school years 2014–2015 through 
2018–2019. LEAP 2025 refers to the state’s set of stan-
dardized assessments for students in grades 3–12. They are 
designed to measure students’ knowledge and skills in 
ELA, mathematics, science, and social studies and are 
aligned with the state’s academic standards, the Louisiana 
Student Standards. According to Zearn, the Zearn Math 
curricular materials are fully aligned with the Louisiana 
Student Standards for Mathematics (Zearn, 2019) and thus 
the corresponding assessments. One limitation may be that 
the available achievement data from the LDOE are grade-
level aggregates. However, because curricular adoption 
often occurs at the school or district level, we may not 
expect variation at a more granular level. In fact, Table 1 
shows that most schools that programmatically used Zearn 
Math, used it in multiple grades. Still, it is possible that 
there was implementation variation at the classroom or stu-
dent level that is not reflected in this analysis.

I standardize the LEAP 2025 math and ELA scaled scores 
by grade and year using student-level means and standard 
deviations for each grade from the LEAP 2025 technical 
reports to account for potential changes in the assessment 
over time and differences in the distribution of scores by 
grade level. By using the student-level means and standard 
deviations to standardize scores, the resulting estimated 
effect sizes are in student-level standard deviation units and 
comparable to commonly reported effect sizes in the litera-
ture. For the grades and years in which the state reported 
only the means and standard deviations separately for the 
computer- and paper-based administrations of the test, I use 
the statistics for the paper-based assessment, which reflect 
more than 95% of test takers. Finally, I obtained school-level 
demographic data and grade-level enrollment data from the 
state’s publicly available sources.

Zearn provided grade-level usage data, including the 
average number of students who were active on the online 
platform, the average number of digital lessons completed 
per student, and the average number of minutes, days, and 
weeks students logged on during the 2016–2017 through 
2018–2019 school years. These are the first 3 years in 
which Zearn captured digital usage as well the first years 
in which Zearn Math was an approved curriculum in 
Louisiana.



4

TA
B

L
E

 1
D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s

Y
ea

r

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

N
o.

 o
f 

sc
ho

ol
s

N
o.

 o
f 

sc
ho

ol
 

gr
ad

es
%

F
em

al
e

%
W

hi
te

%
B

la
ck

%
A

si
an

%
H

is
pa

ni
c

%
L

im
it

ed
 E

ng
li

sh
 

pr
of

ic
ie

nc
y

N
o 

of
 h

ig
h-

po
ve

rt
y 

gr
ad

es

A
ve

ra
ge

 
gr

ad
e-

le
ve

l 
en

ro
ll

m
en

t

B
as

el
in

e 
L

E
A

P
 2

02
5 

m
at

h 
sc

or
e

E
nd

-o
f-

ye
ar

 
L

E
A

P
 2

02
5 

m
at

h 
sc

or
e

A
. A

ll
 L

D
O

E
20

15
82

6
2,

23
2

48
.5

45
.1

44
.4

1.
5

6.
1

3.
3

1,
10

5
97

—
.0

07
20

16
82

5
2,

22
7

48
.5

45
.2

45
.2

1.
6

6.
7

3.
7

1,
20

0
99

.0
08

.0
12

20
17

82
7

2,
22

7
48

.5
44

.6
44

.6
1.

6
7.

3
4.

2
1,

20
7

10
3

.0
08

.0
09

20
18

83
3

2,
23

8
48

.6
44

.1
44

.1
1.

6
7.

7
4.

4
1,

09
3

10
4

.0
03

−
.0

02
20

19
81

8
2,

19
9

48
.6

43
.5

43
.5

1.
6

8.
3

4.
5

1,
08

4
10

2
−

.0
09

.0
06

B
. T

ho
se

 p
ro

gr
am

m
at

ic
al

ly
 u

si
ng

 Z
ea

rn
 M

at
h

20
15

—
—

—
—

—
—

—
—

—
—

—
—

20
16

—
—

—
—

—
—

—
—

—
—

—
—

20
17

8
9

50
.1

33
.7

57
.1

0.
5

4.
7

1.
5

5
78

−
.2

80
−

.2
04

20
18

72
11

9
48

.8
42

.0
45

.0
1.

8
7.

1
4.

0
55

10
3

.0
32

.0
52

20
19

15
0

27
7

48
.3

42
.9

45
.5

1.
4

6.
7

3.
1

13
7

95
−

.0
32

.0
19

N
ot

es
. P

an
el

 A
 in

cl
ud

es
 a

ll
 L

D
O

E
 s

ch
oo

ls
 w

it
h 

at
 le

as
t o

ne
 v

al
id

 th
ir

d 
th

ro
ug

h 
fi

ft
h 

gr
ad

e 
m

ea
n 

sc
al

ed
 s

co
re

 a
nd

 d
em

og
ra

ph
ic

 d
at

a.
 P

an
el

 B
 is

 th
e 

su
bs

et
 o

f 
sc

ho
ol

s 
th

at
 u

se
d 

Z
ea

rn
 M

at
h 

pr
og

ra
m

m
at

ic
al

ly
 

(a
t l

ea
st

 5
0%

 o
f 

st
ud

en
ts

 u
si

ng
 f

or
 5

0%
 o

f 
re

qu
ir

ed
 s

ch
oo

l d
ay

s)
 in

 th
e 

gi
ve

n 
ye

ar
 a

nd
 d

oe
s 

no
t a

cc
ou

nt
 f

or
 s

tu
de

nt
s 

in
 th

os
e 

gr
ad

es
 w

ho
 m

ay
 h

av
e 

us
ed

 Z
ea

rn
 M

at
h 

hi
st

or
ic

al
ly

. S
ch

oo
l d

em
og

ra
ph

ic
 c

ha
r-

ac
te

ri
st

ic
s 

ar
e 

en
ro

ll
m

en
t-

w
ei

gh
te

d 
av

er
ag

es
 o

f s
ch

oo
l-

ye
ar

 d
at

a.
 S

ta
nd

ar
di

ze
d 

te
st

 s
co

re
s 

ar
e 

w
ei

gh
te

d 
by

 th
e 

nu
m

be
r o

f s
tu

de
nt

s 
te

st
ed

. T
he

y 
ar

e 
no

t e
qu

al
 to

 z
er

o 
in

 p
an

el
 A

 b
ec

au
se

 th
ey

 a
re

 s
ta

nd
ar

di
ze

d 
us

in
g 

th
e 

st
ud

en
t-

le
ve

l m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

ti
on

s 
by

 y
ea

r 
an

d 
gr

ad
e,

 a
nd

 g
ra

de
 le

ve
ls

 d
o 

no
t n

ec
es

sa
ri

ly
 h

av
e 

an
 e

qu
al

 n
um

be
r 

of
 s

tu
de

nt
s 

te
st

in
g.

 B
as

el
in

e 
te

st
 s

co
re

s 
ar

e 
th

e 
av

er
ag

e 
th

ir
d 

an
d 

fo
ur

th
 

gr
ad

e 
sc

or
es

 f
ro

m
 th

e 
pr

io
r 

ye
ar

 f
or

 th
e 

fo
ur

th
 a

nd
 f

if
th

 g
ra

de
 c

oh
or

ts
 in

 e
ac

h 
ye

ar
, r

es
pe

ct
iv

el
y.

 E
nd

-o
f-

ye
ar

 s
co

re
s 

ar
e 

th
e 

av
er

ag
e 

fo
r 

th
ir

d 
th

ro
ug

h 
fi

ft
h 

gr
ad

er
s 

in
 th

e 
gi

ve
n 

ye
ar

.



5

Treatment Classification

To exclude cases of casual use (e.g., an individual teacher 
experimenting with the program for a few lessons), I define 
a treatment threshold for when a grade level is considered to 
have been using the program programmatically. Specifically, 
in the main results, I define programmatic usage as at least 
50% of enrolled students in a school-grade-year using the 
digital component of Zearn Math for at least 50% of the 
number of state-required school days (i.e., 84 days). 
Importantly, I do not use the number of lessons completed in 
my metric for programmatic usage due to endogeneity with 
the outcome in that lesson completion and math scores are 
inherently both measures of math knowledge. For instance, 
even though time on the program and lesson completion are 
positively correlated among all the grades that programmati-
cally used Zearn Math, those with higher baseline scores 
were more likely to complete more lessons but spent mar-
ginally less time using the program relative to those with 
lower baseline scores (see Figure 1).

Table 1 summarizes the complete analysis sample, which 
is comprised of the third through fifth grades in Louisiana 
public and charter schools from the school years 2014–2015 
through 2018–2019 with scores on the LEAP 2025 math 
assessment. Panel A includes all the LDOE schools in the 
dataset. Panel B includes the subset of school grades that 
used Zearn Math programmatically in each year. Despite the 
lack of random assignment to the program, the schools that 
used Zearn Math are similar to the state overall across the 
available characteristics. A more formal test for these differ-
ences is presented in Table 2. Column (3) reports the 

2015–2016 differences in mean characteristics across the 
school grades that never programmatically implemented 
Zearn Math and those that did in at least 1 year between 
2016–2017 and 2018–2019. There are small differences in 
characteristics between the two groups, but even in cases 
where those differences are statistically significant, they are 
substantively small. Overall, the descriptive statistics in 
Table 1 and the balance tests in Table 2 are not suggestive of 
an observable distinction between the grades that did and did 
not use Zearn Math programmatically, especially given the 
equivalence in average baseline achievement.

Table 3 outlines the degree of usage among treated grades. 
As reported in column (4), on average, 97% of the enrolled 
students in each grade were active on the online platform 
across all years. Further, students were active for ~80% of 
the school year (based on a 35- to 40-week year) and com-
pleted an average of 82 digital lessons (corresponding to 
about two-thirds of Zearn Math’s online curriculum in each 
grade). In contrast, grades classified as not having program-
matically used Zearn Math completed an average of five 
digital lessons. This suggests a material distinction between 
the way in which these two groups were interacting with the 
program. Table 4 highlights this contrast based on several 
usage metrics. Columns (1) and (2) show the Zearn Math 
mean usage metrics for the grades classified as being treated 
and comparison grades, respectively. Column (3) shows the 
same metrics for comparison grades excluding those that 
had no presence at all on the online platform. Importantly, 
column (3) suggests that, on average, even those school-
grade-years that were using the program but did not meet the 
treatment threshold do not appear to have been using Zearn 

FIGURE 1. Association between Zearn Math time and lesson completion by baseline math score.
Notes. Data include unique fourth and fifth grades by year that programmatically used Zearn Math. Grades are divided into low (.5 standard deviations below 
the mean or lower), middle (between −.5 and .5 standard deviations around the mean), and high (.5 standard deviations above the mean or higher) based on 
their corresponding third or fourth grade average LEAP 2025 math scores from the year prior to using Zearn Math.
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Math as their core curriculum. These descriptive statistics 
are encouraging indications that the treatment classification 
is differentiating grades that used Zearn Math programmati-
cally versus not. Later, I provide additional details on the 
treatment contrast and consider the robustness of my main 
findings to alternative definitions of programmatic usage.

While the metrics in Table 3 are suggestive of program-
matic usage among the treated grades, there was still varia-
tion in the time students spent using the online program. 
Figure 2 is the distribution of average minutes per week 
students in each grade spent on the digital component of 
Zearn Math and shows a range of around 60–190minutes 

TABLE 2
Pre-implementation Comparison Between Zearn Math and Non–Zearn Math Grades

Factor

(1) (2) (3)

Never
programmatically used Zearn Math

Programmatically used 
Zearn Math in 1+ year(s)

Difference,
(2) – (1)

% Female 48.6 % 48.9 % 0.3
% White 44.5 % 42.2 % −2.3
% Black 44.0 % 47.8 % 3.8
% Asian 1.6 % 1.2 % −0.4**
% Hispanic 6.9 % 5.3 % −1.6**
% Limited English proficiency 3.9 % 2.5 % −1.4***
School high-poverty status 55.5 % 53.9 % −1.6
Grade enrollment 92.8 95.3 2.5
Math score 0.017 −0.021 −0.037
ELA score 0.087 0.031 −0.055

Notes. Statistical significance is indicated as *p < .10; **p < .05; ***p < .01 using school clustered standard errors. All estimates are weighted by enrollment. 
Columns (1) and (2) show the 2015–2016 (pre-implementation) characteristics for grade levels that never programmatically used Zearn Math in any year 
between 2016–2017 and 2018–2019 and used in at least 1 year, respectively. 

TABLE 3
Average Zearn Math Programmatic Usage

Factor

(1) (2) (3) (4) (5) (6) (7) (8)

2017 2018 2019 2017–2019

All
Lower 
poverty

High 
poverty

Low 
baseline

High 
baseline

% Students active 1.00
(.00)

.959
(.102)

.978
(.065)

.973
(.078)

.985
(.058)

.961
(.094)

.982
(.043)

.982
(.061)

No. of minutes 3,129.8
(1,264.2)

3,262.7
(821.8)

3,462.4
(770.0)

3,394.3
(801.9)

3,225.8
(688.4)

3,572.9
(873.6)

3,685.2
(865.4)

3,282.8
(798.2)

No. of days 92.8
(9.6)

101.6
(12.3)

103.4
(12.5)

102.6
(12.5)

103.5
(12.7)

101.7
(12.2)

100.5
(11.9)

105.1
(13.5)

No. of weeks 27.1
(3.7)

30.4
(2.2)

30.1
(2.4)

30.1
(2.41)

30.4
(2.40)

29.9
(2.41)

29.6
(2.51)

31.0
(2.26)

No. of digital lessons 56.9
(33.0)

76.7
(21.7)

84.7
(21.6)

81.6
(22.4)

87.9
(22.0)

75.01
(20.0)

68.8
(19.9)

91.4
(24.5)

N (school grades) 9 119 277 405 186 219 99 78

Notes. All reported values are grade-level averages for students who were active on the online platform and are weighted by grade-level enrollment. Stan-
dard deviations are reported in parentheses. Columns (4)–(8) report averages across all 3 years. Columns (7) and (8) include the fourth and fifth grades with 
average third and fourth grade LEAP 2025 math test scores that were −.5 standard deviation units below (column 7) or at least .5 standard deviation units 
above (column 8) the grade-level means in the year prior to using Zearn Math. Data are only reported for grades that were classified as having used Zearn 
Math programmatically in a given year based on having at least 50% of enrolled students active on the online platform for at least 50% of the state-required 
number of school days (i.e., 84).
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per week. Columns (5)–(8) of Table 3 report that grades in 
high-poverty schools or with lower average baseline math 
scores spent slightly more time on Zearn Math than grades 
in lower-poverty schools or schools with higher average 
baseline math scores. It is worth noting that grades in 
lower-poverty schools or schools with higher average base-
line scores completed more lessons, on average. Figure 1 
further highlights this positive relationship between lesson 
completion and baseline scores and shows that, overall, 
grades that spent more time on Zearn Math completed 
more of the online content.

Empirical Approach

The main challenge in estimating the effect of the program 
on student achievement is that schools that adopted Zearn 
Math may differ in both observable and unobservable ways 
from those that did not. For example, the schools that were first 

to adopt Zearn Math may have had teachers who were more 
focused on curriculum quality or more motivated to try a new 
curriculum. A simple comparison of outcomes between grades 
that used Zearn Math and those that did not could yield biased 
estimates of the impact because of unobserved factors such as 
teacher motivation that may be associated with both curricular 
adoption and achievement. To address these potential sources 
of omitted variable bias, I fit the following models, which 
include controls for school by grade and grade by year:

Score Zearn Xsgt sgt st sg gt sgt� � � � � �� � � � �0 1   (1)

Score ZearnYears Xsgt sgt st sg gt sgt� � � � � �� � � � �0 1   (2)

Score Years Years

X

sgt sgt sgt

st sg gt sgt

� � �

� � � �

� � �

� � �
0 1 21 2


 (3)

TABLE 4
Average Zearn Math Usage Among Treated and Comparison Grades

Factor

(1) (2) (3)

Treated grades 
(programmatic usage)

Comparison
grades

Comparison grades with 
any Zearn Math usage

% Students active .973 .231 .648
No. of digital lessons 81.6 4.8 14.6
No. of minutes 3,394.3 223.2 627.3
No. of days 102.6 8.27 23.2
No. of weeks 30.1 3.8 10.6

Notes. All averages are weighted by enrollment. Column (3) includes all school-grade-years that did not meet the treatment threshold of having at least 50% of 
students active on Zearn Math’s online platform for at least 50% of the school year but had at least one student use the program for a nonzero amount of time.

FIGURE 2. Average minutes per week on Zearn Math per active student.
Notes. Data include unique grades by year that programmatically used Zearn Math. Average minutes per week per active student is the average number of 
minutes divided by the average number of weeks students spent on the digital component of Zearn Math for each grade in a given year.
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The outcome of interest, Score, represents the mean stan-
dardized math score for school s and grade g in year t. In 
model (1), Zearn is a dichotomous variable indicating 
whether grade g in school s in year t used Zearn Math. In 
models (2) and (3), I account for the fact that students in 
some grades may have programmatically used Zearn Math 
in previous years and grades. ZearnYears represents the 
number of years in which the cohort of students in grade g in 
school s would have used Zearn Math as of year t, corre-
sponding to column (4) in Table 5. For example, if students 
in school s first used Zearn Math as fourth graders in 2018 
and then as fifth graders in 2019, the total number of years 
the 2019 fifth grade cohort would be considered as having 
been treated for 2 years as of 2019. Similarly, if students in 
school s used Zearn Math as third graders in 2018 but not as 
fourth graders in 2019, the total number of years the 2019 
fourth grade cohort would have been treated is 1 year as of 
2019. This specification no longer assumes that any gains 
from Zearn Math would disappear if it stopped being imple-
mented or if a cohort of students fell out of the programmatic 
usage classification in a later year. It also prevents cohorts of 
students who were previously exposed to Zearn Math from 
being included in the comparison group. In model (3), I fur-
ther allow for each additional year of Zearn Math exposure 
to have a nonlinear association with math scores by creating 
indicator variables for the number of years grade g in school 
s would have used Zearn Math as of year t.

All models include school-by-grade fixed effects µ
sg

, so 
identification of the estimate of the impact of Zearn Math is 
being driven by within-school-grade differences in usage. 
In other words, relative student achievement at a given 
school and grade is measured against the relative student 
achievement in the same school and grade in years when it 
did or did not use Zearn Math (model 1) or used Zearn Math 
for a different number of years (models 2 and 3). Table 5 
highlights this variation in usage that is being leveraged for 

identification. For example, the treated units included in 
model (1) correspond to the 401 school grades in rows A 
and D, which programmatically used Zearn Math in 1 or 2 
years and did not use Zearn Math in other years. Thus, the 
estimated treatment effect is based on the comparison of 
outcomes in the year(s) that the school grade did use the 
program against the year(s) that it did not. These fixed 
effects eliminate sources of omitted variable bias originat-
ing from differences across school grades that are constant 
over time and may be associated with curricular decisions. 
For example, they would account for a given school having 
particularly effective third grade teachers or if the neighbor-
hoods assigned to a school were consistently more or less 
economically disadvantaged.

I also include grade-by-year fixed effects λgt  to account 
for potential secular trends experienced by students state-
wide, while allowing these to differ by grade level. Although 
I have standardized test scores by grade and year, the grade-
by-year effects would take into account changes in grade-
level achievement conditional on student characteristics or 
the distribution of students across schools. Lastly, to account 
for the fact that schools’ student compositions may change 
over time, I include a vector of controls Xst for school-year 
gender and racial composition, enrollment, high-poverty 
classification, and the percent of students identified as hav-
ing limited English proficiency (% LEP).

This type of estimation method, which measures the 
effect of a treatment (here, programmatic use of Zearn Math) 
on an outcome (math achievement) and includes time and 
unit fixed effects, produces what is technically known as a 
two-way fixed-effect (TWFE) estimator. Recent literature 
has shown that the TWFE estimator corresponds to a 
weighted sum of the average treatment effects in each unit 
and time. This becomes problematic if there are heteroge-
neous treatment effects across units or over time (Borusyak 
et al., 2024; de Chaisemartin & D’Haultfaœuille, 2020), 

TABLE 5
Cohort Exposure of Zearn Math

Cohort

(1) (2) (3) (4) (5)

Year t Year t – 1 Year t – 2
No. of Zearn years

(in year t)
N

(school-grade-years)

A X 1 335
B X 1 41
C X 1 7
D X X 2 66

Notes. Column (5) is the number of school-grade-years in which students would have used Zearn Math in the years indicated by columns (1)–(3) and the 
number of years indicated by column (4). School-grade-years in each row are not mutually exclusive cohorts of students. For example, a cohort of students 
who used Zearn Math in 2017 for the first time as third graders and then did not use it in 2018 and 2019 as fourth and fifth graders would be included in 
rows A, B, and C. In row A, the cohort would be included as the 2017 third grade cohort using only in year t (2017); in row B, the cohort would be included 
as the 2018 fourth grade cohort having only used in year t – 1 (i.e., 2017), and so forth. There was one school-grade-year that used Zearn Math for 3 years 
(i.e., in third, fourth, and fifth grades) that is dropped from the analysis to avoid drawing inferences from a single observation. Findings are not sensitive to 
the inclusion of this observation.
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which could result in negative weights and a biased estimate. 
In a later section I show that the diagnostic tools that 
researchers have recently developed to identify this source 
of bias suggest that it is not driving my main findings. I also 
offer a robustness check using the estimator proposed by de 
Chaisematin and D’Haultfœuille (2022a), which takes into 
account heterogeneous treatment effects and is not subject to 
the concern of negative weights. In short, the results are 
qualitatively similar and even more precisely estimated.

Main Findings

Table 6 shows the main results from fitting models (1)–
(3). The estimate on Zearn in column (1) implies that pro-
grammatic use of Zearn Math led to an average increase in 
math of .034 student-level standard deviation units relative 
to years in which that school grade did not use Zearn Math 
programmatically. This estimate, however, does not account 
for the fact that some students would have used Zearn Math 
in a previous grade level in a previous year at their school. If 
the effect of using Zearn Math is positive and compounding 
or persistent in later years, then this may be an under- or 
overestimate of using Zearn Math for 1 year. For example, 
the estimate may be too high if the students who used Zearn 
Math in year t also used Zearn Math in a previous grade 
level in a previous year such that the 1-year estimate is in 
fact a multiple-year effect of using the program. The esti-
mate also could be too low if the students who used Zearn 
Math in year t are being compared with students who did not 
use the program in year t but did use it in a previous grade 

level in a previous year such that the comparison cohort 
scores are inflated by historical use of the program.

Columns (2) and (3) aim to adjust for this potential cohort 
exposure by measuring the impact of each year that students 
in a particular school grade used Zearn Math. In column (2), 
the estimate on ZearnYears implies that each year that stu-
dents would have used Zearn Math programmatically led to 
a .027 standard deviation increase in math scores, on aver-
age. For example, a fifth grade cohort that used Zearn Math 
for the first time as fourth graders and then again as fifth 
graders is estimated to have math scores that are an average 
of about .06 standard deviations higher relative to fifth grade 
cohorts in other years at the school who had never used 
Zearn Math programmatically. It should be mentioned that 
this type of cohort-level analysis, while correcting for stu-
dents’ past exposure to Zearn Math, assumes by design that 
students are not moving schools. Previous research shows 
that Louisiana’s nonstructural student mobility rate in K–8 is 
around 15% (Maroulis et al., 2016), which may be biasing 
the estimated impact of Zearn Math toward zero.

Column (3) disaggregates the effect of having used Zearn 
Math for 1 versus 2 years. The estimate on Years1 indicates 
that having used Zearn Math for 1 of the past 3 years 
improved math scores by ~.029 standard deviation units, on 
average. Having used the program for 2 of the past 3 years 
improved math scores by an average of ~.048 standard devi-
ation units, although this estimate is not statistically signifi-
cant at conventional levels. Although it is possible that the 
impact of Zearn Math diminishes after the first year, I also 
cannot reject that the effect of years of use is linear.

TABLE 6
Impact Estimates of Zearn Math on LEAP 2025 Math Scores

Variable (1) (2) (3) (4)

Zearn .034**
(.016)

— — .051***
(.013)

ZearnYears — .027**
(.013)

— —

Years1 — — .029*
(.016)

—

Years2 — — .048
(.031)

—

Standardized ELA score — — — .666***
(.013)

High poverty −.021*
(.013)

−.022*
(.013)

−.022*
(.013)

−.005
(.010)

R2 .861 .861 .861 .914
N school-grade-years 11,008 11,008 11,008 11,005
N school grades 2,346 2,346 2,346 2,346

Notes. School clustered standard errors are in parentheses (*p < .10; **p < .05; ***p < 0.01). All estimates are calculated with school-grade and grade-year 
fixed effects weighted by the number of students tested and include controls for school-year student composition by gender, race/ethnicity, LEP, high pov-
erty, and enrollment. Column (4) also includes a control for standardized LEAP 2025 ELA scores. About 10% of the school-grade-year observations have 
fewer than 5 years of data. Limiting the sample to a balanced panel does not change the findings.
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Table 7 considers potential heterogeneity in the impact of 
using Zearn Math. Column (1) presents results from fitting 
model (1) with an additional interaction term, Zearn × 
HighPoverty, that allows me to estimate whether there was a 
differential impact in low- versus high-poverty schools. 
Following the convention laid out by the National School 
Lunch Program (National Center for Education Statistics, 
2022), a school is categorized as high poverty if it had 75% or 
more students classified as economically disadvantaged. The 
negative estimate on the interaction term would indicate that 
the program had a bigger impact in lower-poverty schools, but 
again, the data are not sufficient to conclude that there was a 
differential impact based on school-level poverty. Column (2) 
similarly considers variation in the estimated impact by grade 
level by fitting model (1) with an interaction term, Zearn × 
Grade. Although the individual parameters are estimated less 
precisely than the average pooled effect for all grades, they are 
qualitatively similar, ranging from .20 to .52 standard devia-
tions, and are not suggestive of a differential impact by grade 
level controlling for school.

Taken together, the evidence suggests that using Zearn Math 
increased mean LEAP 2025 math scores in the year in which it 
was used. Further, there may be some additional gains from 
multiple years of usage, though these are more ambiguous, in 
part due to the small sample of school grades that used Zearn 
Math for multiple years relative to the estimated effect size.

Robustness

The design in this setting is particularly susceptible to the 
form of bias identified by the recent TWFE literature because 

grade levels were adopting Zearn Math in different years (de 
Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 
2021). Moreover, models (2) and (3) account for cohort 
exposure to the program (i.e., if the students in a particular 
school-grade-year used Zearn Math in the prior grade and 
year), but by design, school grades can still switch in and out 
of treatment over time. For example, if fourth graders in 
school s programmatically used Zearn Math in 2018 but the 
new cohort of fourth graders in 2019 did not use it program-
matically or did not use at all, fourth grade at school s would 
be considered treated in 2018 and untreated in 2019. 
Especially in more complicated designs such as this, the 
internal validity of standard TWFE estimator rests on two 
assumptions: parallel trends and that the treatment effect is 
constant between groups and over time (de Chaisemartin & 
D’Haultfœuille, 2022a).

The parallel trends assumption requires that, in the 
absence of Zearn Math, grades that did and did not use Zearn 
Math would have experienced the same trends in average 
math scores. Although this assumption cannot, by definition, 
be tested directly, comparing the pretreatment trends, as pre-
sented in Figure 3, can offer support that the parallel trends 
assumption is plausible. The figure shows the unconditional 
weighted average standardized math score over time by 
treatment groups, which align to when school grades adopted 
Zearn Math, separating out grades that switched in and out 
of treatment. The numbers in parentheses indicate the num-
ber of school grades in each group, and the more transparent 
lines correspond to smaller groups. Although I am limited by 
the short time frame of available data, the figure shows that 
the trends in outcome follow a very similar trajectory in the 
pretreatment years for the larger groups.

Nevertheless, in an empirical setting such as this, where 
treatment groups differ considerably in size and were adopt-
ing the program at different points in time, there is the poten-
tial for the weights to be negative due to heterogeneous 
treatment effects, which can induce bias in the estimator (de 
Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 
2021). To assuage concerns about a biased TWFE estimator, 
I follow the simple diagnostics presented by Jakiela (2021) 
to show that this source of bias is unlikely to be driving my 
main findings. As a robustness check, I present the estimator 
proposed by de Chaisemartin and D’Haultfœuille (2022a), 
which is robust to heterogeneous treatment effects and a 
nonstaggered design (in which groups can switch in and out 
of treatment).

Figure 4 plots the weights placed on school-grade-year-
level observations in calculating the TWFE estimate. These 
weights are proportional to the residuals from a regression of 
the treatment indicator (Zearn) on the set of school-grade and 
grade-year fixed effects. Reassuringly, only two of the 401 
treated school-grade-year observations (in blue) receive neg-
ative weight in the estimation of the treatment effect. Thus, it 
is unlikely that negatively weighted observations are driving 

TABLE 7
Heterogeneity Analysis

Variable (1) (2)

Zearn .040**
(.019)

.050**
(.027)

Zearn × Grade 4 — −.034
(.333)

Zearn × Grade 5 — −.011
(.346)

Zearn × High Poverty −.014
(.031)

—

High Poverty −.021*
(.013)

−.021*
(.013)

R2 .861 .861
N school-grade-years 11,008 11,008
N school grades 2,346 2,346

Notes. School clustered standard errors are in parentheses (*p < .10; 
**p < .05; ***p < 0.01). All estimates are calculated with school-grade 
and grade-year fixed effects weighted by the number of students tested and 
include controls for school-year student composition by gender, race/eth-
nicity, LEP, high poverty, and enrollment. 
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the results. Still, even TWFE estimates that do not rely on 
negative weighting should be interpreted with caution if 
treatment effects are heterogeneous (Baker et al., 2022; Sun 
& Abraham, 2021). As outlined in Jakiela (2021), if the 
homogeneous treatment assumption holds, the residualized 
outcome should be a linear function of the residualized treat-
ment, and the slope should not differ between the treated 
grades and the comparison grades. I test this assumption 
directly in Figure 5. The local polynomial regressions sug-
gest that the relationships between the residualized outcome 

and the residualized treatment are not perfectly linear, par-
ticularly near the extremes. Further, the slopes are not the 
same for the treatment (in pink) and comparison (in blue) 
groups, which would suggest that the homogeneous treat-
ment assumption may be violated. 

Recently, researchers have developed a range of estima-
tors to address negatively weighted observations or evi-
dence of treatment effect heterogeneity. According to de 
Chaisemartin and D’Haultfœuille (2022b), when there is a 
binary, nonstaggered treatment, the heterogeneity-robust 

FIGURE 3. Average weighted standardized math score by treatment status.
Notes. The y-axis shows the average standardized math score by treatment group, weighted by the number of students tested in each school grade. Treatment 
groups are based on when grades programmatically adopted Zearn Math, separating out grades that switched in and out of the programmatic classification. 
The numbers in parentheses indicate the number of school grades in each group, and the lines with less opacity correspond to smaller groups. Treatment is 
defined as a grade level having at least 50% of students active on Zearn Math’s online platform for at least 50% of the school year.

FIGURE 4. Two-way fixed effects weights by treatment status.
Notes. Weights are those used to calculate the TWFE estimates of the impact of programmatically using Zearn Math on standardized math scores. They are 
calculated as the residuals from a regression of treatment on school-grade and grade-year fixed effects and a vector of controls, scaled by the sum of the 
squared residuals across all observations. See de Chaisemartin & d’Haultfœuille (2022a) and Jakiela (2021) for details.
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FIGURE 5. Association between residualized outcome and residualized treatment.
Notes. The x-axis shows the residuals from a regression of the treatment on school-grade and grade-year fixed effects and a vector of controls. The y-axis 
shows the residuals from a regression of the outcome variable (programmatic use of Zearn Math) on school-grade and grade-year fixed effects and a vector 
of controls. The line of best fit and a local linear regression of residuals from the comparison group appears in blue. The line of best fit and a local linear 
regression of residuals from the treated group appears in pink.

estimator proposed by de Chaisemartin and D’Haultfœuille 
(2022a) is the most applicable. In Figure 6, I present the 
results from the authors’ treatment estimator (at t = 0) along 
with placebo estimators (at t = −1 to t = −3). These placebo 
estimates test the parallel trends assumption by comparing 
the outcome trends of grades that switched from untreated 
to treated to nonswitchers before the switchers switch. The 
placebo estimates are all close to zero, providing further 
evidence that the parallel trends assumption is met. 
Moreover, the estimated treatment effect is .042—qualita-
tively similar to the corresponding TWFE estimate of .034 
based on model (1)—and is even more precisely estimated. 
It is important to note that the de Chaisemartin and 
D’Haultfœuille estimate should be interpreted as the effect 
of a school grade programmatically using Zearn Math for 
the first time (rather than the average treatment effect of 
any switches from not using to using programmatically.) In 
sum, these tests provide reassurance that the parallel trends 
assumption holds and that any potential bias due to hetero-
geneous treatment effects is not materially affecting the 
main results.

Placebo Test

To assess the possibility of selection bias in the estimate 
of the effect of Zearn Math on math scores, I check for an 
effect of Zearn Math on ELA outcomes. This type of placebo 
test is most informative if we assume that using Zearn Math 
would not impact ELA scores, whereas any unobservable 
characteristics differentiating schools that did and did not 
implement Zearn Math would be associated with overall 
achievement.

Table 8 shows the results from fitting models (1)–(3), but 
with the outcome, Score, being the mean standardized ELA 
score for school s and grade g in year t. Across all specifica-
tions, I find marginally significant negative impacts on ELA 
outcomes. For example, in column (2), the estimate on 
ZearnYears suggests that each year that students use Zearn 
Math is associated with a .022 standard deviation decline in 
ELA scores, on average. This is statistically similar, in terms 
of magnitude, to the analogous positive effect on math scores 
shown in column (2) of Table 6.

One possible explanation is that there was a reallocation 
of resources toward math instruction and away from other 
subjects among schools that implemented Zearn Math. The 
limited information available provides mixed evidence on 
whether these schools were indeed spending more time on 
math and crowding out ELA. On the one hand, students in 
grade levels that programmatically used Zearn Math spent 113.
minutes per week completing digital lessons (see Table 3). 
This is in line with the publisher’s 120.minutes per week 
recommendation. Assuming that teachers also were spend-
ing the recommended time on live instruction, this corre-
sponds to about 5 hours of total math instruction per week. 
In 2015, a nationally representative sample of fourth grade 
teachers reported that they spent an average of 5–7.hours on 
math instruction per week (NAEP, 2015). While only sug-
gestive, this provides some indication that teachers imple-
menting Zearn Math were not spending a disproportionate 
amount of time teaching math. This is further supported by 
the fact that minutes spent on Zearn Math’s digital lessons is 
not predictive of ELA outcomes (see column 4 of Table 8).

On the other hand, although not statistically significant, 
the coefficient on minutes per day spent on Zearn Math is 
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negative (−.0002). Multiplying this coefficient by the stan-
dard deviation of minutes for the sample (22.3) suggests that 
a one-standard-deviation increase in the average minutes per 
day spent on Zearn is associated with a .004 standard devia-
tion unit decrease in ELA outcomes. Although this estimate 
is small and not statistically significant, it is also not negli-
gible, especially considering the moderate magnitude of the 
main effect.

Alternatively, the ELA results may be indicative of nega-
tive selection bias. That is, there may be unobservable char-
acteristics that differentiate schools that implemented Zearn 
Math from those that did not that are negatively associated 
with student achievement. In this case, the estimated effect 
of Zearn Math on math outcomes found here could be under-
stated. Although the parallel trends analysis does not indi-
cate that schools adopted Zearn Math in response to any 

FIGURE 6. Robustness to heterogeneous treatment effects.
Notes. Treatment effects are estimated using the heterogeneity-robust estimator outlined by de Chaisemartin and D’Haultfœuille (2022a). Estimates to the 
left of zero (at t = −1 to t = −3) are placebo estimates comparing the outcome trends of grades that switched from untreated to treated to nonswitchers before 
the switchers switch. The estimate at t = 0 is the estimated treatment effect of a school grade programmatically using Zearn Math for the first time. The red 
bars indicate the 95% confidence interval for each estimate.

TABLE 8
Placebo Tests using LEAP 2025 ELA Scores

Variable (1) (2) (3) (4)

Zearn −.025*
(.015)

— — —

ZearnYears — −.022*
(.011)

— —

Years1 — — −.022
(.014)

—

Years2 — — −.042*
(.024)

—

Minutes — — — −.0002
(.000)

High Poverty −.025**
(.011)

−.025**
(.011)

−.025**
(.011)

−.025**
(.011)

R2 .870 .870 .870 .870
N school-grade-years 11,005 11,005 11,005 11,005
N school grades 2,346 2,346 2,346 2,346

Notes. School clustered standard errors are in parentheses (*p < .10; **p < .05; ***p < 0.01). All estimates are calculated with school-grade and grade-year 
fixed effects, weighted by the number of students tested, and include controls for school-year student composition by gender, race/ethnicity, LEP, high 
poverty, and enrollment. 
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ongoing decline in math scores, there may be some unob-
servable characteristic that is associated with both ELA 
scores and Zearn Math adoption that is biasing the main 
results. I first probe this by controlling for ELA scores, 
which effectively allows the dependent variable to be the 
difference between math and ELA scores, while letting the 
coefficient on ELA scores vary. Column (4) in Table 6 pres-
ents these results. The estimate on Zearn in column (4) par-
allels the estimate using model (1) (column 1) but with an 
additional control variable for standardized LEAP 2025 
ELA scores. As shown, the estimate from this model of .051 
is both bigger in magnitude and more precisely estimated 
than the main estimate. This result is in line with negative 
selection reflected in the ELA scores that could be driving an 
underestimation of the impact of Zearn Math on math 
achievement but also could be interpreted as evidence of a 
redistribution of inputs away from ELA instruction, as dis-
cussed earlier.

These findings, along with the results in Table 8, are also 
consistent with potential negative selection based on the dif-
ference in math and ELA scores. In Table 2, we can see that, 
before implementation, grades that later adopted Zearn Math 
had marginally higher math scores than their ELA scores rela-
tive to grades that did not adopt the program. This initial dif-
ference is not inherently problematic due to the fixed effects 
for schools in the analysis, which would account for any con-
stant differences in achievement levels over time. However, 
there could be a concern if the schools that adopted Zearn 
Math were already experiencing a decline in ELA scores prior 
to the program’s adoption, indicating a changing pattern of 
achievement over time rather than a fixed difference. To 
explore this further, I examine the pre-implementation trends 

in ELA outcomes, as shown in Figure 7. A few trends are 
worth noting. First, there is much more year-to-year fluctua-
tion in ELA scores across the state compared with math scores 
(see Figure 3). Second, the larger treatment groups display 
similar preintervention ELA score trends to grades that never 
adopted Zearn Math. For instance, the grades that imple-
mented Zearn Math in 2018 and 2019 followed a similar score 
pattern from 2015 through 2017 to the grades that never 
adopted the program. However, these grades show a slight 
decline in ELA achievement compared with schools that 
never used the program in 2018 and 2019. This suggests a 
potential crowding out of ELA inputs that coincides with the 
implementation of Zearn Math. This trend could be attributed 
to an adjustment period for teachers new to the program, par-
ticularly in elementary schools where teachers are responsible 
for multiple subjects, or a shift in focus toward math at the 
school level.

Treatment Sensitivity

The focus of this study is to examine the impact of Zearn 
Math when used programmatically, that is, when it is imple-
mented as the comprehensive or core elementary mathemat-
ics curriculum for a grade rather than as a supplementary 
material along with another curriculum. Without administra-
tive data on curriculum choice, I leverage the proportion of 
students in a grade who used Zearn Math and the number of 
days the program was used as indicators that Zearn Math 
was the primary source of math instruction for students. 
Specifically, I use 50% of both metrics as the threshold for a 
grade level to be considered “treated” or having used Zearn 
Math in a programmatic way.

FIGURE 7. Average weighted standardized ELA score by treatment status.
Notes. The y-axis shows the average standardized ELA score by treatment group, weighted by the number of students tested in each school grade. Treatment 
groups are based on when grades programmatically adopted Zearn Math, separating out grades that switched in and out of the programmatic classification. 
The numbers in parentheses indicate the number of school grades in each group, and the lines with less opacity correspond to smaller groups. Treatment is 
defined as a grade level having at least 50% of students active on Zearn Math’s online platform for at least 50% of the school year.
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FIGURE 8. Treatment classification of school-grade-year observations.
Notes. Each point represents a unique grade level in a school in a year. Programmatic use is defined as a grade having had at least 50% of enrolled students 
active on Zearn Math’s online platform for at least 50% of the state-required number of school days (i.e., 84).

As described previously, treated grades completed about 
two-thirds of the program’s digital curriculum, whereas the 
comparison grades completed around 5%–10% of the grade-
level content (depending on whether grades that did not use 
the program at all are included in the calculation.) Still, there 
is significant variation in the degree of usage among the 
comparison grades. Figure 8 shows the school-grade-years 
that were categorized as having used Zearn Math in a pro-
grammatic way (pink squares) and those that were not (blue 
hollow circles) based on the two treatment classification 
metrics. We can see, particularly by the dots on the far right, 
that there are a number of grades at the margin of the treat-
ment threshold. This is further exemplified in Figures 9 and 
10, which show the treatment classifications of each school-
grade-year along the distribution of each measure. Figure 9 
again shows that the distribution for the average number of 
days students were active on the platform is continuous 
through the treatment cutoff of 84.days, so there are grades 
with significant usage that fall into the comparison group. 
Although Figure 10 shows a bimodal distribution for the 
percent of students who were active online, there are many 
grades in which all, or nearly all, of the students in the grade 
were using Zearn Math but fall into the comparison group 
because they were not it using throughout the school year.

The fact that the comparison group includes grades that 
were using Zearn Math could be interpreted to mean that the 
estimated effect found here is an underestimate of the impact 
of programmatic use of the program. In other words, in a 
setting in which programmatic use of Zearn Math was being 
compared with no use, rather than some use, we may observe 
larger effects of the program. Nevertheless, because there 
are grades at the margin of the treatment threshold, this calls 
into question the sensitivity of my main findings to 

alternative definitions of programmatic usage, which I 
address in this section.

Figure 11 presents estimated effects of Zearn Math using 
my primary specification (model 1) and varying treatment 
cutoffs. In short, Figure 11 shows that my findings are not 
sensitive to alternative definitions of programmatic usage. 
For example, the estimated effects when treatment is defined 
as 30% or 70% of students active on Zearn Math for at least 
half the school year are not statistically differentiable from 
each other nor from the main estimated effect (in green). 
This is likely due to the bimodal distribution for the percent 
of students active metric (see Figure 10) such that shifting 
the treatment threshold does not materially change the aver-
age Zearn usage among treated grades.

Varying the treatment threshold along the other met-
ric—the average number of days students were active on 
Zearn—presents a noteworthy trend. The estimated effects 
on the bottom half of Figure 11 suggest that, on average, 
more days spent on Zearn Math is associated with higher 
math scores such that even grades that were using the pro-
gram supplementally with their existing math curricula 
may have seen achievement gains relative to those who did 
not use it at all. To explore this further, I extend my primary 
analysis by presenting a more nuanced treatment variable 
in the next section.

Extension

Given that Zearn Math is highly compatible with 
Louisiana’s most prevalent traditional elementary mathe-
matics curriculum, ENY, it seems reasonable that many 
grades may have been implementing Zearn Math as a sup-
plementary resource along with ENY rather than replacing it 
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FIGURE 9. Average days active on Zearn Math by treatment status.
Notes. Programmatic usage is defined as a grade level having at least 50% of enrolled students active on Zearn Math’s online platform for at least 50% of the 
state-required number of school days (i.e., 84).

FIGURE 10. Percent of students active on Zearn Math by treatment status.
Notes. Programmatic usage is defined as a grade level having at least 50% of enrolled students active on Zearn Math’s online platform for at least 50% of the 
state-required number of school days (i.e., 84).

as their core curriculum. This would explain the large num-
ber of grades that were using the program with a majority of 
their students but only sporadically in terms of the number of 
days, as indicated by the number of observations on the far 
right of Figure 8. To address program use among these 
grades, I estimate the following:

Score Program Supplement

X

sgt sgt sgt

st sg gt sgt

� � �

� � � �

� � �

� � �
0 1 2


 (4)

where Program is a dichotomous variable indicating 
whether grade g in school s in year t programmatically used 
Zearn Math (corresponding to Zearn in models 1–3), and 

Supplement is a dichotomous variable indicating whether 
grade g in school s in year t supplementally used Zearn 
Math. Consistent with my primary definition of program-
matic use, I define supplementary use as at least 50% of 
enrolled students in a school-grade-year being present on 
using the digital component of Zearn Math for fewer than 
84.days, on average.

I can also leverage the continuous nature of the average 
days on Zearn Math measure (see Figure 9) to estimate the 
impact of an even more nuanced measure of treatment. 
Specifically, I can estimate the marginal effect of each addi-
tional day of using the program employing the following 
model:
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Score Days Student

X

sgt sgt st

st sg gt sgt

� � �

� � � �

� �
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0 1 50


 (5)

where Days is the average number of days that students in 
grade g in school s in year t were present on the digital com-
ponent of Zearn Math, Student50 is an indicator variable 
equal to 1 if at least 50% of enrolled students in the school-
grade-year were active on the platform, and β1 is thus the 
estimated marginal impact of each additional day of using 
Zearn Math given that the majority of students were active 
on the platform.

Table 9 presents the results from fitting models (4) and 
(5). The coefficient on Program in column (1) shows that the 
estimated impact of programmatically using Zearn Math 
relative to not using it programmatically or supplementally 
is .035 standard deviation units, which is statistically indis-
tinguishable from the results shown in Table 6. On average, 
students in the supplemental group used the digital compo-
nent of Zearn Math for 30.days and completed 18 lessons. 
This amounts to ~15%–20% of the school year and of a 
grade level’s content, which is about a quarter of the average 
usage I observe among programmatically using grades. 
Although the coefficient on Supplement of .003 is not statis-
tically significant, I cannot reject that the effect of days of 
use is linear. Model (5) tests this directly. Column (2) of 
Table 9 shows that, among the grades that had a majority of 
students using Zearn Math, there is a linear association 
between the number of days they spent on the program and 

their math scores. Specifically, the coefficient on the interac-
tion term of .0004 suggests that completing grade-level con-
tent (~120 digital lessons, one lesson per day, as recommended 

FIGURE 11. Sensitivity to alternative treatment thresholds.
Notes. The primary threshold (shown in green) for a grade level to be considered treated is that at least 50% of enrolled students were active on Zearn Math’s 
online platform for at least 50% of the state-required number of school days (i.e., 84) in a given year. All other rows categorize a grade to be treated using 
shifted treatment thresholds as shown.

TABLE 9
Marginal Treatment Effects

Variable (1) (2)

Program .035**
(.018)

—

Supplement .003
(.008)

—

Days × Student50 — .0004***
(.0002)

R2 .861 .861
N school-grade-years 11,008 11,008
N school grades 2,346 2,346

Notes. School clustered standard errors are in parentheses (*p < .10; 
**p < .05; ***p < 0.01). All estimates are calculated with school-grade 
and grade-year fixed effects, weighted by the number of students tested, 
and include controls for school-year student composition by gender, race/
ethnicity, LEP, high poverty, and enrollment. The coefficients on Program 
and Supplement are the estimated impact of using Zearn Math program-
matically (50% of students in a school-grade-year using the program for at 
least 50% of school days) and supplementally (50% of students in a school-
grade-year using the program for fewer than 50% of school days). The coef-
ficient on Days × Student50 gives the marginal impact of each additional 
day spent on Zearn Math among school-grade-year observations that had at 
least 50% of students on the program. 
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by the publishers) is associated with .05 standard deviation 
units higher math scores. These findings are in line with the 
main findings presented earlier and also suggest that using 
Zearn Math as the core curriculum is more effective than 
using it as a supplemental resource.

Conclusion

This work comes at a critical time when pandemic-related 
school closures have hastened the reliance on technology-
based materials, dramatically expanding Zearn Math’s pres-
ence across Louisiana and the nation. As our educational 
system continues to lean on remote or hybrid learning envi-
ronments, it is imperative that we understand what resources 
effectively support student learning and growth.

To that end, there is more work to be done. I find evi-
dence that consistent usage of Zearn Math led to higher math 
achievement, but the modest estimated effect sizes and the 
potential for heterogeneous impacts across student sub-
groups, unmeasured variation at the student or classroom 
level, or resource allocation across subjects warrant addi-
tional research. Moreover, a single study cannot address the 
diversity of educational environments in which curricula are 
implemented. The curriculum context in Louisiana suggests 
that the effects found here may reflect the marginal benefit 
of using Zearn Math instead of, or possibly in addition to, 
ENY. It is possible that the program would perform differ-
ently in different contexts, especially given the mixed evi-
dence on the impact of curricular choice on student learning 
(see, e.g., Blazar et al., 2019; Kane et al., 2016). It may be 
that benefits of specific curricula emerge when they are 
implemented with more administrative support, more inten-
sive usage, or more targeted teacher training.

In this regard, several key factors are worth noting about 
the generalizability of these findings. On the one hand, the 
study’s quasi-experimental approach to assessing Zearn 
Math’s impact may be more reflective of real-world condi-
tions compared with a randomized controlled trial in which 
various stakeholders may be incentivized to ensure fidelity. 
On the other hand, the main treatment effect is based on hav-
ing used the program for a substantial amount of time, and 
there may have been setting-specific factors that facilitated 
such extensive adoption that may not apply in all contexts. 
Still, the evidence suggests that more use translates to better 
outcomes, offering a promising baseline for evaluating the 
program’s impact at differing levels of usage. Future research 
should examine whether the program has been advantageous 
over existing curricula across multiple implementation factors 
and consider additional contexts to diversify the business-as-
usual practices that Zearn Math is being measured against.
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