
Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 46

https://isedj.org/; https://iscap.us

Examining Factors Predicting

Programming Self-Efficacy for
Computer Information Systems Students

Ramadan Abdunabi
Ramadan.Abdunabi@colostate.edu

Computer Information Systems

Ilham Hbaci
ilham.hbaci@colostate.edu

CSU STEM Center

Teddy Nyambe

Teddy.Nyambe@colostate.edu
Computer Information Systems

Colorado State University,

Fort Collins, CO 80523,

Abstract

Programming is a major subject in various Information Systems (IS) programs, with students often
finding it a challenging skill to acquire. While there is extensive literature on factors helping students

learn to program, most of which focuses on non-IS students. Due to the increasing demand for
professionals with programming skills, there is a pressing need for further research on factors that could
enhance learning programming skills at the higher education level. One promising approach to address
this issue involves examining students' internal characteristics, their programming self-efficacy, and its
connection to instructional methods that can enhance it. This study adopted a quantitative research
design to evaluate students' programming self-efficacy. A survey was conducted to measure students'

beliefs in their programming competence and engagement in various instructional activities, including
the value they attributed to learning programming, the time spent practicing, and the frequency they
sought guidance from teaching assistants (TA). Through a hierarchical multiple regression analysis, this
work investigated how these mentioned variables could predict student-programming self-efficacy. The
results indicated that the value students placed on learning programming emerged as the most
significant predictor for programming self-efficacy. On the other hand, there was no substantial evidence

that the practice time or consulting TA predict programming self-efficacy and the practice time or

consulting TA. These findings suggest that educators and instructional designers need to emphasize the
practicality and importance of learning how to program to enhance students' perceived value.

Keywords: Information Systems, Predicting Programming Self-Efficacy, Pedagogy, Fragmented
Learning, Mobile Learning.

Recommended Citation: Abdunabi, R.F., Hbaci, I., Nyambe, T., (2024). Examining Factors
Predicting Programming Self-Efficacy for Computer Information Systems Students. Information

Systems Education Journal v22(n5) pp 46-58. https://doi.org/10.62273/KDPZ6290

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 47

https://isedj.org/; https://iscap.us

Examining Factors Predicting Programming Self-Efficacy for

Computer Information Systems Students

Ramadan Abdunabi, Ilham Hbaci and Teddy Nyambe

1. INTRODUCTION

Information Systems (IS) students envision

themselves as programmers in the future, and
they believe programming is a significant and
valuable skill they need to acquire (Abdunabi,
Hbaci, & Ku, 2019). Additionally, many of the IS-
related jobs, such as business analyst, data
analyst, data mining, project manager, and

others, require programming skills. As technology

advances and companies and government
agencies seek efficiency and cost savings,
demand for information system specialists should
continue to grow at a projected rate of 23% from
2021 to 2031, which would be higher than the
projected growth for all other occupations (U.S.
Bureau of Labor Statistics, 2023).

Although programming is a required outcome of
IS graduates and core competency for
employment in many IT industries (Bashir &
Hoque, 2016), difficulty with computer
programming has been shown to contribute to

well-documented dropout rates in introductory
programming courses in the United States (Kori,

Pedaste, Leijen, & Tõnisson, 2016; Zhang,
Zhang, Stafford, & Zhang, 2014). Programming
has been considered a difficult task because it
involves skills that go well beyond how to write
error-free programs (Loksa, Jernigan, Oleson,

Mendez, & Burnett, 2016; Forte, & Guzdial,
2005).

Learning to program requires effective instruction
on syntax, data structures, and abstraction but
additionally requires investigation and evaluation
of physiological traits of the individuals, such as

self-efficacy (Bandura, 1977; Gupta and Bostrom,
2019; Metcalfe, & Shimamura, 1994). Self-
efficacy is an individual's judgment of their
capabilities to organize and execute courses of

action required to attain designated types of
performance (Metcalfe, & Shimamura, 1994).

Further, it has been observed by Schunk &
Pajares (2005) that how people behave can often
be better predicted by the beliefs they hold about
their capabilities than by what they are capable of
accomplishing, for these self-efficacy perceptions
help determine what individuals do with their
knowledge and skills. Based on Bandura’s (1977)

theory, individuals who have a strong sense of

self-efficacy in a specific situation would devote
their attention and effort to the demands of this
situation and, when faced with difficulties, these

individuals would try harder and persist longer
than individuals who have had low perceived self-
efficacy. Programming self-efficacy is defined as
individuals’ evaluation of their ability to solve
computational problems by employing their
programming skills and experiences (Kong, 2017;

Marakas et al., 2022). Students with high

computer programming self-efficacy tend to
utilize their skills to solve computational problems
and persist in solving challenging ones (Latifah &
Nugraha, 2023).

Since the nineties of the last century, researchers
have started to examine the possible instructional

factors within educational contexts affecting
students’ self-efficacy within the higher
educational level (Van Dinther, Dochy, & Segers,
,2011). Based on the literature reviewed
(Sheokand, 2022; Gumelar et al., 2022; Van
Dinther, Dochy & Segers, 2011) concluded that it

is possible to influence student self-efficacy by
instructional factors, but these factors are more

effective if they are based on social learning
theory by Bandura (1977). While widespread
research has been conducted to investigate
factors that are related to students’ programming
self-efficacy and how it is influenced by various

pedagogies and demographic variables (Askar &
Davenport, 2009; Bashir & Hoque, 2016; Cigdem
& Yildirim, 2014; Konecki, 2014; Korkmaz &
Altun, 2014; Nurhikmah et al., 2021; Özmen &
Altun, 2014; Rogerson & Scott, 2010; Tsai, 2019;
Tsai, Wang, & Hsu, 2019; Wiggins, Grafsgaard,
Boyer, Weigold & Weigold, 2021; Wiebe, & Lester,

2017), most of these studies are focused on the
population of computer science and engineering
students (non-IS students), and their varying
outcomes make it difficult to draw any

conclusions regarding reliable predictors for
students’ programming self-efficacy, particularly

among IS students.

An instructor of two introductory programming
classes at the CIS department, College of
Business, Colorado State University, has explored
various instructional approaches in teaching
programming. This research elected three

instructional approaches based on Bandura's

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 48

https://isedj.org/; https://iscap.us

(1977) theory, as Van Dinther et al. (2011)

recommended. This study aimed to explore how
three instructional approaches—(a) perceived
value of programming, (b) weekly time spent on

programming practice, and (c) frequency of TA
consultations—contributed to the programming
self-efficacy scores of IS students in two
introductory programming courses. The research
question related to the body of this study is
defined as follows: Do undergraduate IS students’
perceived value of learning programming, the

number of hours they spend per week practicing
weekly assigned programs, and the number of
times they consult TA predict their levels of
programming self-efficacy? The findings should
help educators and instructional designers to
develop, update, or improve instructional

approaches for their classes that, in turn,
facilitate high levels of programming self-efficacy
among students.

2. RELATED WORK

The key point of computing self-efficacy

attributed to individuals with high self-efficacy
would competently write programs and utilize
different software systems. Nevertheless, those
with low computer self-efficacy would perceive
their capabilities as limited to software or
computer systems (Gupta & Bostrom, 2019;
Malaquias et al., 2021). The principle of self-

efficacy is further emphasized by Zimmerman
(2000) that self-efficacious students participate

more readily, work harder, persist longer, and
have fewer adverse emotional reactions when
they encounter difficulties than do those who so
doubt their capabilities.

Although Bandura’s theory has been widely used
in the literature and has demonstrated validity,
there was a growing recognition that additional
explanatory variables that rely on this theory
were needed (Gupta & Bostrom 2019; Metcalfe,
& Shimamura, 1994), particularly for a unique

population like IS students. This work combined
the variables: value of learning programming
(students’ perceptions of the interest, usefulness,
and importance of a task), practice programming,

and consulting TAs, and investigate how these
three key variables could predict student
perceptions of programming self-efficacy.

Value of Learning Programming
It has been argued by Simpkins, Davis-Kean, and
Eccles (2006) that individuals’ values of learning
a particular aspect influence educational and
career choices and course success in many fields.

Beyer (2014) also found that if students believed
that careers in computer science (CS), for

example, did not reflect their interpersonal

values, they did not desire to pursue a CS major,
even if it could lead to lucrative careers. In a
review research of 64 articles highlighting the

potential utility of self-efficacy to maximize
student learning outcomes, Bartimote-Aufflick,
Bridgeman, Walker, Sharma, and Smith (2016)
found that self-efficacy is repeatedly highly
correlated with the value of learning
programming. Further, Wigfield et al. (2000)
explain that individuals’ expectancies for success

and achievement values predict their overall
achievement outcomes, including their
performance, persistence, and choices of
activities. In this regard, students who recognize
the significance of technology and coding in
computer-based products, which are now more

accessible in society than ever before, typically
possess strong programming self-efficacy. Powell
et al. (2015) conducted two studies to explore the
impact of screencast creation and group
participation on student learning outcomes in
programming. The findings suggest that both
screencast creation and group participation have

a positive influence on learning success in
programming. However, both studies show a
limited effect of Self-Efficacy development while
creating screencasts and group participation.

Programming Practice Time
In addition to the importance of the variable value

for learning to program, it was necessary to
practice how to code on a regular basis to acquire,

improve, or even maintain it. The amount of
practice required would depend on the nature of
the activity and on each individual. For example,
a key determinant of success for novice

programmers would be the extent to which they
practiced writing code (Denny, Cukierman, &
Bhaskar, 2015). Practically, the time spent
practicing programming during the semester was
found to be a significant predictor of students’
academic performance, with students who spent
more time coding having better performance

(Niitsoo, Paales, Pedaste, Siiman, & Tõnisson,
2014). Referring to the conducted literature
review, research effort regarding how
programming self-efficacy is related to the

amount of time practicing programming out of the
class time is limited, specifically, for IS majors.

Teaching Assistant
Graduate student TAs have played a vital role in
undergraduate teaching in higher education
through their work as graders, tutorial leaders
(tutoring), and lab demonstrators. The teaching
abilities and preparedness of TAs could directly

influence undergraduate instruction in different
fields. For instance, in numerous fields,

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 49

https://isedj.org/; https://iscap.us

undergraduates reported greater gains in content

knowledge when TAs were perceived as
supportive of their learning (Wheeler, Maeng,
Chiu, & Bell, 2017). Regarding the relation

between tutoring and programming self-efficacy,
Wiggins, Grafsgaard, Boyer, Wiebe, and Lester
(2017) found that tutoring tends to be associated
with student programming self-efficacy among
CS students. Students who acknowledged the
tutor's feedback and had dialogs with tutors were
found as highly self-efficacious students.

Students who engaged in fewer interactions with
tutors, compared to those with high programming
self-efficacy, exhibited lower levels of
programming self-efficacy (Wiggins, Grafsgaard,
Boyer, Wiebe, & Lester, 2017).To the best of our
knowledge, the research conducted regarding the

role of TAs and its relation to programming self-
efficacy, specifically in IS schools, is still limited;
hence, this study shed light on the question of
“Do TAs Matter?” by exploring if students’
communications with TAs could predict their
programming self-efficacy.

3. CONCEPTUAL FRAMEWORK

This study was based on Bandura's self-efficacy
theory (1977). Concerning the factors that build,
assess, and interpret individuals’ self-efficacy,
Bandura (1977) highlighted that users’ value of
learning a skill (such as a coding skill) was a

critical factor and it formed an individual skill self-
efficacy. Therefore, when considering the

importance of learning programming, it is
essential to focus on enhancing users'
programming self-efficacy. Moreover, Gist and
Mitchell (1992) presented processes that assess

self-efficacy such as the analysis of task
requirements (an individual’s determination of
what it takes to perform a task) and attributional
analysis of experience (an individual’s judgment
about why a performance level occurred).
Practically, applying Gist and Mitchell (1992)
processes in an educational setting demonstrated

that the analysis of task requirements included

the time dedicated to the course work, which

indicated that the time a student spent learning
programming skills could be considered one of the
factors related to a student's programming self-

efficacy. Additionally, Bandura’s Social Cognitive
Theory (1986) emphasizes that effective
communication channels are critical for successful
learning outcomes. Based on this theory,
individuals who engage in effective
communication and receive understanding, and
feedback are more likely to develop higher levels

of self-efficacy. When teachers/TAs engage in
open and supportive communication with
students, students receive better support,
guidance, and personalized attention. Hence,
students’ communication for guidance and
support from their TAs could contribute to their

programming self-efficacy. Figure 1 summarizes
the conceptual framework that addresses the
research questions.

4. METHODOLOGY

This section describes the research methods,

reliability, measurements, and results that were
conducted and obtained. This study used a
reliable measurement of programming self-
efficacy for students where individuals
operationally have been asked whether they
could perform specific levels of programming
tasks through the degree of that endorsement

(such as from total uncertainty to total certainty).

Participants
The research was conducted at a large state
university in the United States after obtaining the
approval of the Institutional Review Board. A

nonprobability convenience sampling method
allowed data collection within time and place
restrictions. A total of 140 students completed the
survey and the norms for participants’ selection
were: the target population was undergraduate
CIS students, the accessible population was
undergraduate students from the Colorado State

University, College of Business, Computer

Figure 1: Instructional approaches to predict programming self-efficacy.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 50

https://isedj.org/; https://iscap.us

Information Systems. Participants were 18 years

or older, and each participant was taking either a
junior-level programming course (CIS240) or a
senior-level programming course (CIS340). Table

1 contains the participants’ demographics.

Participant and Class Info N (%)

Gender

 Male
 Female

Class
 Application Design and
Development course
 Advanced Application

Design and Development course

99 (70.7%)
41 (29.3%)

74 (52.9%)

66 (47.1%)

Note. Ages ranged from 19 to 61 years old.
N=140.

Table 1: Participants’ Characteristics

The two-course activities included in-class
exercises where the TAs helped students, viewed
interviews with influential people in the sector of
programming, lectures by guest speakers who
discussed their programming experience, and

advised students on how to find appropriate jobs.
There was one TA for each class, and these were
master’s students in Computer Information
Systems. Each one had at least two (2) years of
programming experience with Java. Their work
experience as TAs ranged from 2 to 4 semesters.

Their responsibilities included working on multi-

step programming problems during in-class
exercises, tutoring students during lab hours,
responding to students’ questions via emails, and
grading that included descriptive feedback. The
assignments are due every two weeks, and the
first week is designated for finishing practice
examples related to the covered topic. These

practice examples are not graded, but students
are advised to practice them before completing
the assignments.

Research Process and Measurements
This study used a survey research design. Data

was collected during two spring semesters in two

consecutive academic calendar years. The survey
link was created with Qualtrics and distributed to
the students of the two programming classes at
the end of the Spring semesters. Participants
completed a set of questions in three sections:
student programming self-efficacy, the perceived

value of learning programming, and demographic
characteristics.

To measure students’ programming self-efficacy,
this work used 32 items from Askar and

Davenport’s (2009) Java Programming Self-

Efficacy scale, where students rated their
perceived self-efficacy in doing various
programming-related tasks on a Likert-type

scale. Askar and Davenport’s (2009)
administered the instrument with a sample from
the similar target population as the current study
consisting of English speakers who are
undergraduate non-CS students using Java
programming language. Their scale for Java
Programming consisted of 32 items (as one

construct), and the reliability of the scores from
their sample was 0.99. In the current study, all
32 items in their original format were utilized.
However, modifications were made because of
the limited number of students who attended
both classes. Hence, the scale from a 7-point

Likert-type was reduced to scale to a 5-point
Likert-type scale, ranging from 1 (not confident
at all) to 5 (confident). A five-point scale rather
than a seven-point scale was chosen based on the
literature suggestion that five-point scale
increases response rate and response quality
along with reducing respondents’ frustration level

(Babakus & Mangold, 1992).

The questions created for the scale measuring the
perceived value of learning programming were
largely based on Baser’s attitude survey (2013).
This scale indicated to what degree students
agreed with statements related to their perceived

value of program learning. This scale consisted of
five items on a 5-point Likert scale ranging from

1 (strongly disagree) to 5 (strongly agree). The
last section of the survey contained questions
about the age and gender of the participants as
well as the name of the course they were taking.

In addition, this section included two additional
questions: (a) How many hours do you spend
practicing the weekly assigned programs by the
instructor? and (b) How many times this semester
did you consult the TA for help in your
assignments?

Validity and Reliability
The construct validity of the computer
programming self-efficacy scale was examined
via Exploratory Factor Analysis. The scale’s

allocation to the factors was specified through
principal component analysis with oblique
rotation (Promax). After an iterative process to

examine scree plots and the eigenvalue, the scree
plot clearly showed inflexions that would justify
retaining two to three factors to extract. For
meaningful interpretation, two factors were
extracted out of 32 items, 20 items with load
values over 0.3 were retained and included in the

analysis, and 12 items with loads separated into
two factors were excluded. The Kaiser-Meyer-

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 51

https://isedj.org/; https://iscap.us

Olkin (KMO) measure verified the sampling

adequacy for the analysis, KMO = 0.90, and all
KMO values for individual items were greater than
0.79, which was above the acceptable limit of 0.5

[20]. Bartlett’s test of Sphericity, χ2 (190) =

1620.100, p< 0.001, showed that there were

patterned relationships between the items so that
the factor analysis could be used (Field, 2009).
The two factors explained a cumulative variance

of 53.07% and were labeled as (a) independence
and persistence in programming tasks and (b)
ambition for programming. Table A in Appendix A
presents the 20 retained items with their factor
loadings and eigenvalues. Cronbach's alpha for
the 20 retained programming self-efficacy items

was 0.93. Individually, the reliability of
independence and persistence scores were

similarly high (α = 0.93, 16 items), and the

reliability for ambition scores was slightly lower

(α = 0.79, 4 items) but was still an acceptable

value (Field, 2009).

In addition, convergent validity and discriminant
validity were run to establish the construct
validity for the five items measuring perceived
value of learning. The output showed that two
items needed to be dropped. These two items had

Pearson correlation (r) < 0.30 with related

variables, and Pearson correlation (r) > 0.20 with
unrelated variables (Robinson, 2018). For the
remaining three items that measure the
perceived value of learning programming,

Cronbach's alpha was high (α=.81), and the

corrected item-total correlation was all above
0.30, which was encouraging (Field, 2009).

Results

This work employed IBM SPSS Statistics 21 to
administer the survey and complete the data
analyses. The data revealed that the self-efficacy

perceptions levels of CIS students ranged from 37
to 99, with an overall mean of 3.55 (SD = 0.63).
In terms of percentage distribution, 22.2% of
students had a high level of self-efficacy
perceptions (M > 4.00), 76.4% had a medium
level of self-efficacy perceptions (M > 2.00 but <
4.00), and 1.4% of students had a low level of

self-efficacy perceptions (M < 2.00). Relatively,
students’ perceived value of learning to program
ranged from 7 to 15, with an over-all mean of
4.45 (SD = 0.63) and fell into medium and high
level. In regard to percentage distribution, 72.1%
of students perceived high value of programming,

while 27.9% of students perceived medium value
of programming.

Results from a G*Power analysis (a statistical tool
used to estimate needed sample sizes based on
the selected statistical test) indicated the sample
size required to answer this study’s research

question (with medium effect size = 0.15, α err
prob = 0.05, power (1-β err prob) = 0.90) was
108. The actual sample size used for the
regression analysis was very suitable (N = 121).

Prior to conducting a hierarchical multiple
regression, the relevant assumptions of this

statistical analysis were tested. Firstly, a sample
size of 121 out of 140 was deemed adequate,

given four independent variables (course, value,
practice time, and consulting TA) to be included
in the analysis. The assumption of collinearity was

Variable β T Sig. R R2 ΔR2

Step1

Course

.04

.43

.665

.04 .002 .002

Step 2

Course
Consult TA

.018
-.206

.202
-2.227*

.840

.025

.20 .043 .042

Step 3

Course

Consult TA
Practice Time

.024

-2.26
.058

.262

-2.330*
.594

.794

.022

.554

.21 .046 .003

Step 4

Course

Consult TA
Practice Time
Value

.039

-.176
.028
.299

.448

-1.877
.300

3.416**

.655

.063

.765

.001

.36 .133 .087

Note: N=121, *p<.05, p**<.01
Table 2: Summary of hierarchical multiple regression Analysis for Variables Predicting

Independence and Persistence of Programming Self-Efficacy.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 52

https://isedj.org/; https://iscap.us

also met as VIF scores were well below 10, and

tolerance scores above 0.2. There were no
influential cases biasing the model as the values
of Cook’s Distance were all under 1. Residual and

scatter plots indicated the assumptions of
normality, linearity, and homoscedasticity were
all satisfied.

Two hierarchical multiple regression with four
stages were conducted with Independence and
Persistence and ambition (overall self-efficacy) as

the dependent variables. Course was entered at
stage one of the regressions as an extraneous
variable to control for the variable course (control
the difference between the two course levels).
The Attachment variable consulting TA was
entered at stage two; practice time was entered

at stage three; and value was entered at stage
four.

The first hierarchical multiple regression was ran
with Independence and Persistence of
Programming Self-Efficacy. Regression statistics
are presented in Table 2. The analysis revealed

that, at stage one, Course did not contribute
significantly to the regression model, F (1, 119)
= 0.188, p > 0.05, and accounted for 0.2 %
(0.002) of the variation in Independence and
Persistence of Programming Self-Efficacy (R2

change = 0.2%). Introducing the attachment
variable Consulting TA increased the value to

0.04, which meant Consulting TA accounted of
4.3% of the variation in Independence and

Persistence of Programming Self-Efficacy, and
this change in R2 was not significant, F (2, 118) =
2.68, p > 0.05), (R2 change = 4.2%).

Adding Practice Time variable to the regression

model explained 4.6% (0.046) of the variation in
Independence and Persistence of Programming
Self-Efficacy, and this change in R2 was not

significant, F (3, 117) = 1.89, p > 0.05), (R2

change = 0.3%). Finally, the addition of the
variable Value explained 13.3% (0.13) of the
variation in Independence and Persistence of
Programming Self-Efficacy, and this change in R2

was statistically significant, F (4, 116) = 4.47, p
< 0.01), (R2 change = 8.7%). When the four

independent variables were included in stage four
of the regression model, they explained 13.4% of
the variance in Independence and Persistence of
Programming Self-Efficacy, and the most
important predictor in Independence and
Persistence of Programming Self-Efficacy was the

variable Value. The prediction power of the

variable Value was moderate (.299) suggesting
that approximately 29.9% of the variation in the
variable Independence and Persistence of
Programming Self-Efficacy (Dependent variable)
can be explained by the variable Value (
Independent variable).

The second hierarchical multiple regression was
run with Ambition of Programming self-efficacy.
Regression statistics are presented in Table 3.
The analysis revealed that, at stage one, Course
did not contribute significantly to the regression
model, F (1, 119) = 2.90, p > 0.05, and

accounted for 2.4 % (0.024) of the variation in
Ambition of Programming Self-Efficacy (R2

change = 2.4%). Introducing the attachment
variable consulting TA increased slightly the value
to 0.025, which meant consulting TA accounted

Variable β T Sig. R R2 ΔR2

Step1

Course

-.154

-1.704

.091

.15 .024 .024

Step 2

Course
Consult TA

-.158
-.037

-1.713
-.407

.086

.085

.15 .025 .001

Step 3

Course

Consult TA
Practice Time

-.153

-.056
.053

-1.661

-5.567
.535

.099

.572

.594

.16 .028 .002

Step 4

Course
Consult TA
Practice Time
Value

-.136
-.002
.020
.325

-1.557
-.018
.217

3.698*

.122

.985

.829

.000

.36 .130 .130

Note: N=121, *p<.001
Table 3: Summary of hierarchical multiple regression Analysis for Variables Predicting

ambition of Programming Self-Efficacy.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 53

https://isedj.org/; https://iscap.us

for 2.5% of the variation in Ambition of

Programming Self-Efficacy, and this change in R2
was not significant, F (2, 118) = 1.53, p > 0.05),
(R2 change = 0.0.1%). Adding Practice Time

variable to the regression model explained 2.8%
(0.028) of the variation in Ambition of
Programming Self-Efficacy, and this change in R2
was not significant, F (3, 117) = 1.11, p > 0.05),
(R2 change = 0.2%). Finally, the addition of the
variable value explained 13% (0.13) of the
variation in Ambition of Programming Self-

Efficacy, and this change in R2 was statistically
significant, F (4, 116) = 4.33, p < 0.01, (R2

change = 10.3%). When the four independent
variables were included in stage four of the
regression model, they explained 13% of the
variance in Ambition of Programming Self-

Efficacy, and the most important predictor in
Ambition of Programming Self-Efficacy was the
variable value. The prediction power of the
variable Value was moderate (.325) suggesting
that approximately 32.5% of the variation in the
Ambition of Programming Self-Efficacy (
Dependent variable) can be explained by the

variable Value (Independent variable).

In summary, the variable "Value" emerged as the
most important predictor, suggesting that
approximately 29.9% of the variance in
Independence and Persistence of Programming
Self-Efficacy can be explained by this variable

alone, and approximately 32.5% of the variance
in Ambition of Programming Self-Efficacy can be

explained by this variable alone. This indicates
that the perceived value attached to
programming likely plays a significant role in
individuals' self-efficacy in this domain.

5. DISCUSSION AND CONCLUSIONS

The findings in this study confirmed that the value
of learning programming was the most
predictable value among the three examined
variables for both independence and persistence,

and ambition for programming self-efficacy. This
indicated that the more students valued learning
programming, the more they became
independent and persisted in solving challenging

programming problems. Relatively, the more
student valued programming, the more ambition
they have to escalate their programming skills.

Therefore, the value of learning programming
was an important factor that should be a part of
educational interventions that seek enhancing IS
students programming self-efficacy.

IS educators and instructional designers could

clarify the utility of programming skills through
various instructional methods. First, not only

through explicit verbalization of course goals and

usefulness but also through less direct means
(Neuville, Frenay, & Bourgeois, 2007). For
instance, educators could utilize professionals’

stories of successful people in programming from
around the world and meeting with guest
speakers with IS degrees. Since one of the class
activities provided to the participants in our study
was utilizing this method and most of these
students perceived high value of programming,
this method could be supported.

Second, educators would need to stress how
learning programming would be a “relevant and
authentic” skill that has meaning in their career.
Third, educators would activate students’
personal interest through opportunities for choice

and control over some academic activities. For
example, they could constrain the general
framework of an oral or written exercise (e.g., to
have recourse to the theories developed in the
course), while giving students the freedom to
choose their own specific subject (Neuville,
Frenay, & Bourgeois, 2007). This technique

demonstrated its effectiveness when Denny,
Cukierman, and Bhaskar (2015) in their
experiment allowed students (n > 180) in an
introductory programming course to invent
numerous programming exercises. This
technique helped students not only to be more
exposed to real world problems but also develop

confidence and skills which, in turn, assisted them
to practically developing and assessing their own

value of learning programming.

The lack of any significant predictive relationship
between programming self-efficacy of IS

students, practice time, and TAs consultations
from this study was unexpected. This finding
contradicted Özmen and Altun (2014), who
concluded that more practice time led to high
programming self-efficacy among non-CS
students. Moreover, the findings of this study
conflicted with Wiggins, Grafsgaard, Boyer,

Wiebe, and Lester’s (2017), who concluded that
tutoring tend to be associated with increased
programming self-efficacy among CS students.
These results did not lead us to ignore the

influence of these variables on programming self-
efficacy. Instead, it led us to think deeper and
provide some interpretations that might justify

our findings and improve our future research.

In this work, due to a lack of literature that
presents the number of hours should students
practice programming and consulting TAs, it was
difficult to draw a conclusion or measure in the

survey questions. Thus, this was an unavoidable
step and it was considered subjective to students;

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 54

https://isedj.org/; https://iscap.us

it could be regarded as a limitation of this

research.

As a result, there is one possible interpretation for

finding a lack of any significant predictive
relationship between programming self-efficacy
of IS students, practice time, and TAs
consultations. The subjective survey question
format might have made the students unable to
estimate the realistic number of hours practicing
programming and consulting the TAs. It was hard

for students to think and remember the number
of practice hours while taking the survey. For
example, they needed to estimate how much time
it took them to download the practice examples
from the course shell, think and manipulate the
code, and then run them to solve problems. It

was also realizable that it was difficult for
students to provide realistic number of hours in
case they think the practice examples are a waste
of time since they are optional, not graded, not
tracked, and solve a problem that is similar to the
assignment; hence, they preferred to skip the
practice examples and work immediately on the

assignments instead. Furthermore, students
might have thought that their need to contact the
TA depended on the topic difficulty level; hence,
estimating the consultation number of hours was
not easy.

Since this study was exploratory among the

population of IS students, more data is also
needed to analyze in greater depth to increase

our understanding of the relations between
programming self-efficacy with both
programming practice times and the number of
consulting hours with TAs. For instance, students

practice time should be tracked using one of the
online labs such as Pearson MyLab where
educators can monitor and track the amount of
time students spend. Future studies should also
ask students from the beginning of the semester
to record the number of hours spent consulting
TAs and the reasons for consulting them.

Students must be asked to turn in all this
information for each assignment. Also, future
data should provide more evidence regarding
whether the students find consulting the TAs

helpful and conducting an in-depth qualitative
approach which gives access to richer,
contextualized, and holistic descriptions.

This study led us to further validate a tool created
to measure programming self-efficacy for our
sample population of IS students. This allowed us
to utilize the instrument to its full potential for this
study and present evidence for future use in the

IS population. Educators can use this instrument
to identify their student's programming self-

efficacy level and for more in-depth future studies

looking at other factors that might enhance it.
These research findings could contribute to the
body of the literature, which, in turn, could

promote accomplishing longitudinal evidence to
prove or demonstrate the nature of the
relationships between programming self-efficacy
and factors that might be necessary to enhance
it, specifically for IS students.

6. REFERENCES

Abdunabi, R., Hbaci, I. & Ku, H.Y. (2019).

Towards enhancing programming self-
efficacy perceptions among undergraduate
information systems students. Journal of
Information Technology and Education:

Research, 18, 185-206.
https://doi.org/10.28945/4308

Askar, P., & Davenport, D. (2009). An
investigation of factors related to self-efficacy
for Java programming among engineering
students. The Turkish Online Journal of
Educational Technology – TOJET ISSN: 1303-
6521 volume 8 Issue 1 Article 3.

Bandura, A. (1977). Self-efficacy: toward a

unifying theory of behavioral change.
Psychological Review 84(2):191–215.
https://doi.org/10.1037/0033-
295X.84.2.191

Bandura, A. (1986). Social foundations of thought
and action. Englewood Cliffs, NJ, 1986(23-
28), 2.

Babakus, E., & Boller, G. W. (1992). An empirical
assessment of the SERVQUAL scale. Journal
of Business Research, 24(3), 253–268.
https://doi.org/10.1016/0148-
2963(92)90022-4

Baser, M. (2013). Attitude, gender and

achievement in computer programming.
Middle-East Journal of Scientific Research 14
(2): 248-255

Bashir, G. M. M., & Hoque, A. S. M. L. (2016). An
effective learning and teaching model for
programming languages. Journal of
Computers in Education, 3(4), 413–437.

https://doi.org/10.1007/s40692-016-0073-
2

Bartimote-Aufflick, K., Bridgeman, A., Walker, R.,
Sharma, M., & Smith, L. (2016). The study,
evaluation, and improvement of university

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 55

https://isedj.org/; https://iscap.us

student self-efficacy. Studies in Higher

Education, 41(11), 1918-1942.
https://doi.org/10.1080/03075079.2014.99
9319

Bureau of Labor Statistics, U.S. Department of
Labor, Occupational Outlook Handbook,
Operations Research Analysts,
Retrieved June 06, 2023 from
https://www.bls.gov/ooh/math/operations-
research-analysts.htm .

Cigdem, H., & Yildirim, O. G. (2014). Predictors

of C# programming language self-efficacy
among vocational college students.
International Journal on New Trends in
Education and Their Implications, 5(3), 145-

153. Retrieved from: www.ijonte.org

Denny, P., Cukierman, D., & Bhaskar, J. (2015,

November). Measuring the effect of inventing
practice exercises on learning in an
introductory programming course.
In Proceedings of the 15th koli calling
conference on computing education
research (pp. 13-22).

Field, A. (2009). Discovering statistics using SPSS

statistics (3rd ed.). Thousand Oaks, CA: Sage
publications.

Forte, A., & Guzdial, M. (2005). Motivation and

Nonmajors in Computer Science: Identifying
Discrete Audiences for Introductory Courses.
IEEE Transactions on Education, 48(2), 248–
253.

https://doi.org/10.1109/te.2004.842924

Gist, M. E., & Mitchell, T. R. (1992, April). Self-
Efficacy: A Theoretical Analysis of Its
Determinants and Malleability. Academy of
Management Review, 17(2), 183–211.
https://doi.org/10.5465/amr.1992.4279530

Gumelar, G., Martadi, M., Rosalinda, I.,
Yudhaningrum, L., & Warju, W. (2022, April).
Computer Self-Efficacy, Task Value, Digital
Literacy, Online Learning Perceptions on

Indonesian University Students’ Learning
Satisfaction. In 1st World Conference on
Social and Humanities Research (W-SHARE

2021) (pp. 94-99). Atlantis Press.

Gupta, S., & Bostrom, R. P. (2019). A revision of
computer self-efficacy conceptualizations in
information systems. ACM SIGMIS Database:
The DATABASE for Advances in Information
Systems, 50(2), 71-93.

Konecki, M. (2014). Problems in programming

education and means of their
 improvement. DAAAM International
Scientific Book, 459-470. Retrieved from:

http://www.daaam.info/Downloads/Pdfs/scie
nce_books_pdfs/2014/Sc_Book_2014-
 037.pdf

KORKMAZ, Z., & Altun, H. (2014, June 1).
Adapting Computer Programming Self-
Efficacy Scale and Engineering Students’ Self-
Efficacy Perceptions. Participatory

Educational Research, 20–31.
https://doi.org/10.17275/per.14.02.1.1

Kori, K., Pedaste, M., Leijen, L., & Tõnisson, E.
(2016). The Role of Programming Experience

in ICT Students’ Learning Motivation and
Academic Achievement. International Journal

of Information and Education Technology,
6(5), 331–337.
https://doi.org/10.7763/ijiet.2016.v6.709

Kong, S. C. (2017). Development and validation
of a programming self-efficacy scale for
senior primary school learners. In S. C. Kong,
J. Sheldon, & K. Y. Li (Eds.), Proceedings of

the International Conference on
Computational Thinking Education (pp. 97–
102). The Education University of Hong
Kong.

Latifah, A., & Nugraha, J. (2023). The influence
of relevance and computer self-efficacy on
students’ behavioral intention in using the

digital library. Jurnal Inovasi Dan Teknologi
Pembelajaran, 10(1), 92.
https://doi.org/10.17977/um031v10i12023p
092

Malaquias, R. F., Malaquias, F. F. D. O., Ha, Y. M.,
& Hwang, Y. (2021). A Cross-Country Study

on Intention to Use Mobile Banking. Journal
of Global Information Management, 29(2),
102–117.
https://doi.org/10.4018/jgim.2021030106

Marakas, G. M., Aguirre-Urreta, M., Shoja, A.,

Kim, E., & Wang, S. (2022). The Computer
Self-Efficacy Construct: A History of

Application in Information Systems Research.
Foundations and Trends® in Information
Systems, 6(2), 94–170.
https://doi.org/10.1561/2900000023

Metcalfe, J., & Shimamura, A. P. (Eds.) (1994).
Metacognition: Knowing about Knowing. MIT
press.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 56

https://isedj.org/; https://iscap.us

Neuville, S., Frenay, M., & Bourgeois, E. (2007,

May 1). Task Value, Self-Efficacy and Goal
Orientations: Impact on self-regulated
learning, choice and performance among

university students. Psychologica Belgica,
47(1), 95. https://doi.org/10.5334/pb-47-1-
95

Niitsoo, M., Paales, M., Pedaste, M., Siiman, L., &
Tõnisson, E. (2014). Predictors of Informatics
Students Progress and Graduation in
University Studies. In International

Technology, Education and Development
Conference (pp. 380-392).

Nurhikmah, H., Farida, F., & Ervianti, E. (2021).
The Impact of Computer-based Test and

Students’ Ability in Computer Self-Efficacy on
Mathematics Learning Outcomes. Journal of

Education Technology, 5(4).

Özmen, B., & Altun, A. (2014). Undergraduate
students' experiences in programming:
Difficulties and obstacles. Turkish Online
Journal of Qualitative Inquiry, 5(3), 1-27.

Powell, L. M. (2015). Evaluating the effectiveness
of self-created student screencasts as a tool

to increase student learning outcomes in a
hands-on computer programming
course. Information Systems Education
Journal, 13(5), 106

Robinson, M. A. (2018). Using multi‐item

psychometric scales for research and practice
in human resource management. Human

Resource Management, 57(3), 739-750.
https://doi.org/10.1002/hrm.21852

Rogerson, C., & Scott, E. (2010). The Fear Factor:
How It Affects Students Learning to Program
in a Tertiary Environment. Journal of
Information Technology Education: Research,
9, 147–171. https://doi.org/10.28945/1183

Sheokand, J. (2022). COMPUTER SELF-EFFICACY
CORELATION TO PERSONALITY OF
UNDERGRADUATES IN HARYANA. Towards

Excellence, 558–566.
https://doi.org/10.37867/te140154

Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S.

(2006). Math and science motivation: A
longitudinal examination of the links between
choices and beliefs. Developmental
Psychology, 42(1), 70–83.
https://doi.org/10.1037/0012-1649.42.1.70

Schunk, D. H., & Pajares, F. (2005). Competence

perceptions and academic
functioning. Handbook of competence and
motivation, 85, 104.

Tsai, C. Y. (2019). Improving students’
understanding of basic programming
concepts through visual programming
language: The role of self-efficacy.
Computers in Human Behavior, 95, 224–232.
https://doi.org/10.1016/j.chb.2018.11.038

Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019).

Developing the computer programming self-
efficacy scale for computer literacy education.
Journal of Educational Computing Research,
56(8), 1345-1360.

https://doi.org/10.1177/0735633117746747

van Dinther, M., Dochy, F., & Segers, M. (2011).
Factors affecting students’ self-efficacy in
higher education. Educational Research
Review, 6(2), 95–108.
https://doi.org/10.1016/j.edurev.2010.10.0
03

Weigold, A., & Weigold, I. K. (2021). Measuring

confidence engaging in computer activities at
different skill levels: Development and
validation of the Brief Inventory of
Technology Self-Efficacy (BITS). Computers

& Education, 169, 104210.
https://doi.org/10.1016/j.compedu.2021.10
4210

Wheeler, L. B., Maeng, J. L., Chiu, J. L., & Bell, R.
L. (2017). Do teaching assistants matter?
Investigating relationships between teaching
assistants and student outcomes in
undergraduate science laboratory classes.
Journal of Research in Science Teaching,

54(4), 463-492.
https://doi.org/10.1002/tea.21373

Wigfield, A., & Eccles, J. S. (2000). Expectancy–
Value Theory of Achievement Motivation.
Contemporary Educational Psychology,

25(1), 68–81.
https://doi.org/10.1006/ceps.1999.1015

Wiggins, J. B., Grafsgaard, J. F., Boyer, K. E.,
Wiebe, E. N., & Lester, J. C. (2017). Do you
think you can? the influence of student self-
efficacy on the effectiveness of tutorial
dialogue for computer science. International
Journal of Artificial Intelligence in Education,
27(1), 130-153.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 57

https://isedj.org/; https://iscap.us

https://doi.org/10.1007/s40593-015-0091-

7

Zhang, L., Li, B., Zhou, Y., & Chen, L. (2019). Can
Fragmentation Learning Promote Students’

Deep Learning in C Programming?. In
Foundations and Trends in Smart Learning
(pp. 51-60). Springer, Singapore.

Zimmerman, B. J. (2000, January). Self-Efficacy:

An Essential Motive to Learn. Contemporary
Educational Psychology, 25(1), 82–91.
https://doi.org/10.1006/ceps.1999.1016

.

Information Systems Education Journal (ISEDJ) 22 (5)
ISSN: 1545-679X November 2024

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 58

https://isedj.org/; https://iscap.us

APPENDIX A

Note: N=140
Table A: Items Loadings for the Two Factors of Self-efficacy

 Independence and persistence in
Programming Tasks

Ambition for
Programming

26. I could come up with a suitable strategy for

a given programming project in a short time.

.78

3. I could write logically correct blocks of code
using Java.

.77

17. I could debug (correct all the errors) a long

and complex program that I had written and
make it work.

.76

18. I could comprehend a long, complex multi-
file program.

.74

6. I could write a Java program that computes
the average of any given number of numbers.

.74

28. I could mentally trace through the execution
of a long, complex multi-file program given to

me.

.73

8. I could build my own Java swing GUIs. .72

13. I could understand the object-oriented
paradigm.

.71

5. I could write a Java program that computes
the average of three numbers.

.71

11. I could write a long and complex Java
program to solve any given problem as long as
the specifications are clearly defined.

.70

29. I could rewrite lengthy and confusing

portions of code to be more readable and clear.

.65

12. I could organize and design my program in
a modular manner.

.63

10. I could write a reasonably sized Java

program that can solve a problem this is only
vaguely familiar to me.

.62

14. I could identify the objects in the problem
domain and could declare, define, and use
them.

.62

27. I could manage my time efficiently if I had
a pressing deadline on a programming project

.58

9. I could write a small Java program given a
small problem that is familiar to me

.51

21. I could complete a programming project if I
could call someone for help if I got stuck.

 .91

22. I could complete a programming project
once someone else helped me get started.

 .90

19. I could complete a programming project if
someone showed me how to solve the problem

first.

 .74

24. I could complete a programming project if I
had just the built-in help facility for assistance.

 .61

Eigen value 8.75 1.86

% of variance 43.77 9.30

α .93 .79

