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Abstract

This study investigates the problem-solving strategies employed by ninth-grade students when addressing
symbolic and real-world contextual problems involving trigonometric ratios. Conducted with 46 ninth-grade
students from a Turkish public high school, this research employed a worksheet consisting of six problems aligned
with the Turkish ninth-grade mathematics curriculum. Three of these problems were based on real-world contexts,
while the other three were conventional symbolic problems. The findings indicate that students exhibited
proficiency in identifying similarity ratios using side length ratios. Additionally, the results revealed that students
were more adept at solving real-world mathematical scenarios compared to purely symbolic tasks. This study
offers significant insights into the problem-solving strategies of ninth-grade students when confronted with
trigonometric ratio problems. It underscores crucial implications for mathematics curricula and pedagogy,
highlighting the importance of preparing ninth-grade students for success in their future academic and professional
endeavors. The study emphasizes the necessity for a balanced approach in teaching, integrating both real-world
and symbolic problem-solving tasks to enhance students’ mathematical understanding and application. By
identifying the strengths and areas for improvement in students’ problem-solving strategies, this research
contributes to the development of more effective educational practices that address the diverse needs of learners.

Keywords: problem solving strategies, real-world contextual problems, symbolic problems, trigonometric ratios
1. Introduction

The employment of symbolic language is a fundamental characteristic of mathematical pedagogy. Many students
perceive mathematics as a discipline primarily consisting of numbers, equations, and symbols (Eslik, 2010).
Historically, although mathematics is frequently regarded as an abstract discipline, its origins can be traced back
to the lived experiences and curiosities of individuals across various epochs.

In this context, trigonometry, as a subject in mathematics education, effectively bridges algebraic, geometric, and
graphical reasoning. Throughout the learning process, the foundational principles of trigonometry present
numerous challenges to students, particularly in the middle grades when introduced as similarity ratios. The
subject necessitates that students relate triangle diagrams and other geometric shapes in analytic space to
numerical correlations and adeptly manipulate symbols (Blackett & Tall, 1991).

The National Council of Teachers of Mathematics (NCTM) (2000, p. 308) emphasizes in its guidelines that
students should “use trigonometric relationships to determine lengths and angle measures”. Furthermore, the
Common Core State Standards Initiative (CCSSI) advocates for students to understand, through similarity, how
side ratios in right-angled triangles correspond to the triangle’s internal angles, ultimately leading to the
establishment of trigonometric ratios for acute angles (CCSSI, 2010; Moyer, 2013). Recent research has
investigated pedagogical strategies for teaching trigonometry, highlighting the significance of integrating
real-world applications and hands-on learning experiences (Spangenberg, 2021).

In this context, trigonometry is indeed one of the earliest topics introduced in high school mathematics. Weber
(2005, p. 91) asserts that since trigonometry integrates “algebraic, geometric, and graphical reasoning, it can
serve as a pivotal bridge to understanding pre-calculus and calculus.” Consequently, students encounter
trigonometric relationships as they explore advanced mathematical concepts, including both geometry and
calculus (Demir & Heck, 2013).

The aspects of mathematics intertwined with trigonometry are distributed across multiple school years in the
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Turkish mathematics curriculum (Ministry of National Education [MoNE], 2018a; 2018b). This curriculum
introduces sine, cosine, and tangent as relational concepts associated with an angle. Such an introduction implies
that these concepts either establish the foundational understanding of trigonometry within the geometric context
of right-angled triangles and similarity for middle school students, or they are introduced within the framework
of geometric transformations using the unit circle concept and as functions of a real number for high school
students.

Specifically, high school mathematics in Turkey emphasizes the sine, cosine, and tangent ratios as relationships
between the sides of a right-angled triangle (MoNE, 2018a). Essentially, the high school curriculum in Turkey
delves deeper into trigonometric relationships compared to the more foundational lessons taught in middle
school (MoNE, 2018b). In understanding how to effectively teach these concepts, it is valuable to explore the
diverse historical and cultural methods that have contributed to the development of trigonometric knowledge.

1.1 Methods of Teaching Concepts Related Trigonometric Relationships

Concepts related to trigonometry have been manifested in various forms across diverse cultures and historical
epochs. The historical evolution of these concepts can be traced back to ancient civilizations such as Egypt and
Babylon. However, the foundation of modern trigonometry was established by Hipparchus around 140 BC,
particularly with his development of the table of chords (Duke, 2011). Over time, various societies devised
unique methods to address challenges related to the motions of celestial objects, determining the heights of
objects, or measuring time. These methods were influenced by their mathematical understanding, specific needs,
and cultural practices.

Historically, a prevalent perspective posits that trigonometry originated as an instrumental tool for astronomical
models (Van Brummelen, 2010). The development of the trigonometric ratios sine and cosine is largely
attributed to the need to resolve astronomical quandaries. In the broader context of history, a widely accepted
notion posits that the genesis of trigonometry was rooted in calculations involving the lengths of shadows cast by
objects (Swetz, 1995). Swetz (1995) elucidates that numerous ancient cultures relied on shadow observations,
not only to determine optimal agricultural times but also to identify times for religious observances. Societies
such as the Egyptians, Hindus, and Islamic communities determined the timing for their religious rituals and
prayers based on the sun’s position in the sky, ascertained by measuring shadow lengths. Essentially, the
astronomical interests of these societies catalyzed the development of the sine and cosine concepts.
Concurrently, curiosity regarding time and the shadows cast by objects spurred the conceptualization of the
tangent and cotangent relationships (Swetz, 1995).
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Figure 1. Trigonometric relationships with ratio method

Considering this historical context, two prevalent methods are employed in school mathematics to teach
trigonometric relationships (Kendal & Stacey, 1996). Firstly, the ratio method defines trigonometric relationships
based on the ratios of side pairs in a right-angled triangle, as illustrated in Figure 1. For example, the cosine of an
angle corresponds to the ratio of the length of the “adjacent side” to the “hypotenuse.” Similarly, the tangent of
an angle is conceptualized as the ratio of the length of the “opposite side” to the length of the “adjacent side”
(Van de Walle, Karp, & Bay-Williams, 2012).
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Figure 2. Trigonometric relationships on a unit circle with r = 1 (Rogers & Pope, 2016)

In the unit circle method, the sine and cosine values of an angle correspond to the x and y coordinates,
respectively, of a point. This point is obtained by rotating the point (1,0) around the origin through the given
angle on a unit circle (Kendal & Stacey, 1996; Rogers & Pope, 2016), as depicted in Figure 2.

Both methods have specific advantages over the other. For instance, the ratio method provides a direct and easily
understandable approach to comprehending trigonometric relationships, particularly the fundamental ratios of
sin, cos, and tan in right triangles (Delima, 2022). Additionally, the ratio method aids students in visually
understanding the relationships between side lengths and angles in right triangles (Maknun et al., 2019).

On the other hand, the unit circle method allows for a deeper and more comprehensive understanding of
trigonometric relationships. This method enables the generalization of trigonometric relationships to include both
positive and negative angles (Altman & Kidron, 2016). Moreover, defining trigonometric relationships on the
unit circle facilitates understanding the continuous and periodic nature of functions, which is advantageous in
advanced mathematical studies and other disciplines (Mickey & McClelland, 2017). The unit circle method also
assists students in visualizing trigonometric relationships and mentally constructing models, which is particularly
beneficial for solving complex problems (Moore, LaForest, & Kim, 2016).

Numerous studies have investigated the complexities of trigonometric relationships and their integration into
school mathematics. Dogan (2001) examined high school students’ perceptions of trigonometry and found that
when presented with verbal problems, students often exhibited confusion regarding trigonometric concepts. They
frequently made errors in problems involving trigonometric equations, identities, the unit circle, and
trigonometric relationships. However, they demonstrated greater proficiency in problems involving geometric
shapes, which they approached using symbolic representations of trigonometric relationships. This differential
performance suggests that students tend to memorize trigonometric relationships as symbolic formulas but
struggle to apply them in practice.

Similarly, Tas (2013) explored students’ comprehension levels of trigonometric concepts. The study revealed that
while students had a firm grasp of tangent functions conceptually, they struggled when expressing the tangent
and cotangent functions on a unit circle. Some students exhibited rote learning rather than conceptual
understanding, especially when working with right-angled triangles. When it came to representing trigonometric
relationships, the study indicated a preference among students for an algebraic approach over a geometric one.
Building on this knowledge, Eslik (2010) conducted research on trigonometric ratios, focusing on the impact of
integrating contextual problems with student-centered teaching. The findings indicated that this enriched
instruction method led to enhanced student comprehension. Furthermore, the study shed light on students’
perspectives, revealing which aspects of the instruction they found most engaging and meaningful. Lastly, in a
comparative study, Kendal and Stacey (1997) compared the teaching of trigonometry using ratio relations versus
unit circle relations. They found that students taught via the ratio relations method outperformed those taught
through the unit circle approach. Additionally, the ratio relations method proved more enduring in terms of
retention, suggesting it was a more effective teaching strategy.

From another perspective, the ratio method for right-angled triangles can be readily contextualized using
real-world scenarios, such as a ladder leaning against a wall or determining the height of an object based on its
shadow length (Demir & Heck, 2013). Such real-world contextual problems play a crucial role in mathematics
education. They provide students with the opportunity to connect concepts and understand the practical
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significance of what they are learning (Eslik, 2010). These tangible problems present unique and valuable
learning opportunities, fostering a deeper understanding of mathematical concepts and enhancing motivation for
more profound learning (Van de Walle et al., 2012). Thus, employing problem-solving techniques in teaching
trigonometry can provide insights into the tangible nature of mathematics, even in the early stages of conceptual
foundation-building. In this context, understanding the broader importance of problem-solving skills is essential
for developing effective mathematical instruction.

1.2 Importance of Solving Problems

Problem-solving is essential for enhancing mental abilities such as reasoning, experiential learning, and
comprehension. It also fosters mathematical thinking, not only in trigonometry but across various mathematical
concepts (Van de Walle et al., 2012). Given the importance of this skill, engaging with structured problems
enables students to deepen their understanding of trigonometric concepts. To achieve a profound understanding,
the goal is to determine the fewest steps required to reach the optimal solution (Anderson, 1993).

Contemporary research highlights the significance of diverse problem-solving strategies in mathematics
education, emphasizing student-centered methods and the integration of technology. Employing an effective
strategy that leads to the optimal solution is paramount for efficient problem-solving. Allen (2017) outlines
several strategies for problem-solving. For problem comprehension, these strategies include clarifying the issue,
pinpointing key elements, visualizing with diagrams, analyzing specific examples, and considering extreme
cases. For problem simplification, he recommends reframing the problem, tackling it in segments, and
rephrasing it. For problem resolution, he suggests strategies such as guess-check-revise, questioning
assumptions, drawing analogies from similar problems, using deductive and inductive reasoning, and working in
reverse.

In addition to Allen’s recommendations, Posamentier and Krulik (2015, p. 17) advocate for strategies such as
“logical reasoning, pattern recognition, and accounting for all possibilities.” Schoenfeld (2014) also identifies
strategies such as arguing through contrapositive or contradiction and establishing subgoals. Incorporating
appropriate materials is also a strategic approach to mathematical problem-solving (MoNE, 2018a). In addition
to the significance of problem-solving, the nature of the problems presented to students and their types also
influence student responses and the cognitive load required for solving these problems. Understanding the
classification of mathematical problems is essential to effectively apply these problem-solving strategies.

1.3 Classification of Mathematical Problems

In the literature concerning types of mathematical problems, various classifications are proposed. Some
researchers categorize mathematical problems as either ‘routine’ or ‘non-routine,” based on the type of thinking
and effort required for their solution (Asman & Markovits, 2009; Schoenfeld, 2016). Others have classified
problems as ‘structured’ and ‘ill-structured’ (Brookhart & Nitko, 2019; Leung & Silver, 1997). This distinction
between structured and ill-structured problems pertains to the clarity of the given and the sought components in a
problem, that is, whether these elements are explicitly presented or not.

Pehkonen (1997) employed the terms ‘open’ and ‘closed’ problems instead of structured and ill-structured.
Besides the aforementioned classifications, other classifications have considered multiple criteria simultaneously
(Anderson, 1993; Foong, 2000; Orton & Frobisher, 2004). For instance, Anderson (1993) considered both the
complexity of the mathematical content and whether the problem was well-structured in his classification.

Orton and Frobisher (2004) examined the complexity level of problems and their connection to real life,
categorizing them into routine problems, environmental problems (real-world or everyday life problems), and
process problems (problems situated within a mathematical context rather than real-life situations). Conversely,
Foong (2000) proposed a more comprehensive and systematic classification, considering whether the aim of the
problems was open or closed, the time required for their solutions, and the complexity of their mathematical
content (Figure 3).
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Figure 3. Classification scheme for mathematical “Problems”

In summary, researchers frequently recognize the advantages of the unit circle method in teaching trigonometry.
Unlike the ratio method, which engages students only with acute and positive angles, the unit circle method
enables the exploration of obtuse and negative angles. Additionally, while the ratio method restricts students to
positive values for sine and cosine (as the ratio of two lengths is always positive), the unit circle method permits
negative values as well (Weber, 2005; 2008; Moore, 2013).

Consequently, it is not clear which of these methods is superior for teaching and learning trigonometry.
Real-world contexts can enhance understanding and reasoning in trigonometric relationships, whether presented
through the ratio or unit circle method. By solving well-structured contextual problems, students can deepen
their comprehension of trigonometric relationships and consciously select suitable strategies for effective
problem-solving. However, in the early stages of high school, particularly in Turkey, these concepts are often not
introduced in their formal and symbolic forms as functions. Instead, they are presented as trigonometric ratios
within the framework of similar and right-angled triangles.

Thus, this study aimed to investigate ninth graders’ approaches to solving problems related to the foundational
concepts of trigonometric relationships and the strategies they employed. The research questions addressed in
this study include:

* How do ninth-grade students respond to symbolic versus real-world contextual problems involving
trigonometric ratios?

*  What strategies do ninth-grade students use when solving symbolic and real-world contextual problems
involving trigonometric ratios?

2. Method

This study utilized a case study design within the domain of qualitative research, aiming to comprehensively
understand students’ problem-solving processes (Creswell & Plano Clark, 2017). By employing the case study
approach, the research offered an in-depth exploration of students’ cognitive strategies, elucidating the intricate
methodologies and rationales behind their solutions (Johnson & Onwuegbuzie, 2004). This investigation not only
concentrated on the definitive answers provided by the students but also delved deeply into their underlying
solution strategies. Such a comprehensive perspective is invaluable, especially in educational contexts.
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Understanding both the ‘what’ (the answer) and the ‘how’ (the process) through a case study lens can provide
educators with actionable insights for pedagogical improvements.

2.1 Participants

This study involved 46 ninth-grade students from a public school as participants; 20 males and 26 females, with
ages ranging from 14 to 16 years. The students exhibited diverse academic achievement levels, with their
mathematics grades ranging from low to high.

The school featured designated classrooms for each subject, including a specialized mathematics classroom. This
setup provided students with easy access to a wide range of hands-on mathematical materials. Additionally, the
students hailed from diverse socio-cultural and economic backgrounds. While some lived in the countryside and
traveled to the city for their education, others were city residents.

The school was conveniently selected for the study, primarily because the researcher was the mathematics teacher
of the participating students, ensuring easy accessibility. At the time of the study, this teacher had five years of
experience in mathematics teaching and held a Master of Science degree in mathematics education.

All the students involved were from the same grade, ensuring consistency in their educational experiences.
Importantly, although the researcher also acted as the teacher, steps were taken to mitigate any potential biases. To
ensure impartiality in gathering information, independent individuals monitored the sessions.

2.2 Procedure

For this study, students were provided with learning kits containing problems related to the similarity of triangles
and right-angled triangles. The problems were adapted from various sources, including students’ textbooks,
activity books, previous national exams, relevant academic papers, and the researcher’s experiences. This process
involved redefining problem situations to align with contexts familiar to the students. A problems pool, consisting
of twenty problems, was established. These problems were categorized into two types: real-world contextual
problems and symbolic problems.

To ensure the relevance and appropriateness of the problems, three doctoral-level mathematics education experts
and five experienced mathematics teachers reviewed the problem pool. Their evaluations aimed to assess the
problems’ credibility, quality, and suitability for the students’ comprehension level and the research focus. Based
on their feedback and suggestions, six problems were deemed well-structured, aligned with students’
comprehension levels, and relevant to the study’s objectives. The primary criterion was to identify problems most
pertinent to laying the groundwork for trigonometric ratio concepts. Half of these selected problems were
real-world contextual, while the other half was symbolic problems.

The initial three problems presented to the students were set in real-world contexts and focused on trigonometric
ratios in right-angled triangles. Accompanied by visual representations, these problems aimed to illustrate the
problem statements more vividly. The first problem required students to determine the length of a stone ladder
used to ascend a hillside castle. The subsequent problem tasked students with calculating the height of a flagstick
based on the length of its shadow. In the third problem, students were required to ascertain the distance a plane
would cover, given its ascent angle of 37° relative to the ground and its velocity.

The remaining three problems, categorized as symbolic problems, mirrored classical trigonometry questions
commonly found in mathematics textbooks or activity books. Most of the time, this kind of problems focus on
understanding abstract mathematical concepts independent of real-world contexts. These problems were
essentially rephrased versions of the initial three, transformed into symbolic forms with varying lengths or angles
(see Table 1).

It is significant to note that the researcher did not modify the students’ regular lessons; the study was conducted
after the teacher had covered the relevant topic. Students were instructed to solve the problems within a lesson hour
(45 minute), providing explanations for each step of their solutions as clearly and comprehensively as possible.
This duration was recommended by experts and experienced teachers, who deemed it sufficient for an average
student to tackle all six problems.

75



ies.ccsenet.org International Education Studies Vol. 17, No. 4; 2024

Table 1. Some sample problems

Problem Type Problem Situation

Problem 1.
Ayse wishes to visit an ancient castle with an entrance located 300 m above the ground. There’s a ladder leading to the
entrance that forms a 30° angle with the ground. How many meters must Ayse Walk along the ladder to reach the castle’s

entrance?

Real-world
Contextual Form

=] AN

Problem 4.
In an ABC triangle m(B) = 90°, if |AB| =5 cm and |AC| = 10 cm than what is measure of angle m(C)?

A

Symbolic Form

a0*

-

2.3 Data Collection and Analysis

The primary data for this research were obtained from the students’ work on the given problems. Additionally, the
researcher observed the students during their problem-solving sessions, and notes from these observations were
utilized to gain a deeper understanding of the classroom environment. To highlight differences in students’
approaches to contextual versus symbolic problems and to extract the strategies employed in the solving process,
their problem sheets were analyzed according to themes and categories developed during preliminary analysis
(refer to Table 2).

Table 2. Themes and categories

Themes Categories

Identifying Given Information
Engagement with the problem  Using Geometric Visualizations

Using Mathematical Expressions

Using Proportional Relations

Applying Pythagorean Theorem
Strategies to solve the problem pp y € y € . .

Utilizing Trigonometric Ratios

Formulating Equations

Utilizing qualitative data analysis methods, which facilitate systematic data interpretation as outlined by Strauss
and Corbin (1990), the data were examined. The process adhered to the methodology suggested by Miles and
Huberman (1994), leading to the aggregation and primary coding of all collected data by the researcher and an
expert in mathematics education. Once the entire data set was coded, the resultant codes were organized and
reviewed. The consistency among these codes, termed interrater reliability (IRR) (Hallgren, 2012), was assessed,
yielding a score of 0.83. This score corresponds to the “high agreement” characterization by Landis and Koch
(1977).

Utilizing the constant comparative analysis approach (Strauss & Corbin, 1990), similar data codes were
categorized and then presented under appropriate categories. The collaborative efforts of the researcher and the
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expert resulted in data interpretations consistent with the phases of the chosen research approach, anchored in the
derived codes.

The findings were utilized to provide insights into students’ work during problem solving. The strategies employed
by students in their responses were identified. These strategies offer deeper insights into the students’ approaches
to learning and problem-solving, painting a comprehensive picture of their academic strengths and areas in need of
improvement.

3. Results

In this study, 46 students were assigned the task of solving six problems related to trigonometric ratios. The
initial three problems were presented in real-world contexts, while the remaining three were symbolic form. A
comprehensive analysis of the students’ responses and methodologies is provided in the subsequent sections.

3.1 Problem Solving Processes of Real-World Contextual Problems

In general, students employed four distinct strategies to comprehend the contextual problems. These strategies
included: ‘annotating given information on the figures,” ‘highlighting pertinent details within the problem,’
‘identifying and articulating necessary information,” and ‘sketching figures using basic geometric shapes such as
triangles and rectangles.’

Analyses revealed that some students combined all these techniques to achieve a clearer understanding of the
problem statements. For example, one student highlighted the provided details, transcribed the required
information symbolically, and then created their own diagram. In this diagram, they annotated the given
information instead of referencing the provided figures (as illustrated in Figure 4).

Students employed various solving strategies for these contextual problems, which can be categorized into three
main groups: ‘utilizing proportional relations,” ‘applying the Pythagorean theorem,’ and ‘correlating side lengths
with angles in a right-angled triangle.’

First, several students endeavored to identify proportional relationships inherent in the problems. For instance,
when addressing the second problem concerning the height of a flagstick inferred from its shadow, many
students based their calculations on the direct proportionality between the height and shadow length (as
illustrated in Figure 5).

feki bayrak direginin
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Figure 4. A student redraws own figure to elaborate problem statement

The other strategies, specifically ‘applying the Pythagorean theorem’ and ‘using special triangles or recognizing
relationships between side lengths and angles of a right-angled triangle,” were often used interchangeably by
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students. Essentially, when a student employed one of these methods for a problem, they tended to use that same
method for other similar problems. For example, if a student utilized the Pythagorean theorem for a particular
problem, they would favor this theorem in other analogous situations over special triangles or other angle-side
relationships within right-angled triangles. Additionally, when students opted to sketch their own diagrams to
elucidate problem statements, they were more inclined to apply angle-side relationships.
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Figure 5. Using direct proportional relations

3.2 Problem Solving Processes of Symbolic Problems

The subsequent three problems were designed to be symbolic terms. Essentially, these problems presented
information such as side lengths or angles either within triangle diagrams or through symbolic descriptions. For
example, a problem might state, “Given a triangle ABC where angles A and B fall within the range 0° < m(A) <
m(B) < 90° and cos(A) = 0.5, what is the value of cos(B)?” Broadly speaking, while these problems bore
similarities to the initial three, they were framed differently, utilizing symbolic or graphical representations rather
than real-world contexts.

According to students’ solutions for the symbolic problems, six distinct approaches to understanding these
problems emerged. Four of these approaches paralleled the strategies previously described for contextual
problems. However, two specific approaches emerged exclusively in the context of these symbolic problems.
These can be categorized as ‘itemizing the provided information’ and ‘rephrasing the problem statement for
clearer comprehension.’

It was observed that certain students incorporated these approaches alongside other strategies to achieve a clearer
understanding of the problem. For instance, in the absence of a provided diagram, students would create their
own and annotate it with the given information, while simultaneously rephrasing this information in a descriptive
manner (as depicted in Figure 6). Another notable observation was that students generally refrained from
redrawing figures if they were presented with basic geometric shapes in the problem.
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Figure 6. Student draw figure and wrote given information own words

For problems of the symbolic type, students often employed two strategies similar to those used for contextual
problems: the ‘application of the Pythagorean theorem’ and the use of ‘special triangles or other angle-side
relationships within right-angled triangles’. Additionally, two unique strategies emerged for this type of problem:
‘formulating an equation’ and ‘indicating proportional relationships on diagrams’. Interestingly, while students
utilized ‘trigonometric ratios such as sine and cosine’ in addressing problems presented in symbolic format, this
approach was not observed in their solutions for contextual problems, even though the mathematical content of
the problems was comparable.

The other strategy, which involved ‘indicating proportional relationships on diagrams,” was a nuanced version of
the proportional relationship strategy observed in contextual problems. The distinction between these strategies
lies in their application: in contextual problems, students typically documented given proportional information
and matched it with ratios through calculated processes. Conversely, for problems in the symbolic form, students
added lines to diagrams to visually represent and identify proportional relationships between different sections of
the provided diagrams (as illustrated in Figure 7).

Figure 7. Student described proportional relations on figures

In summary, based on the students’ responses, distinct understanding approaches and problem-solving strategies
emerged, varying depending on whether the problems were presented in a contextual form or in a symbolic form.
The students’ solutions provided insights into the different approaches they adopted to comprehend the problem
statements, as well as the strategies they employed to solve the problems. The various approaches and strategies
can be categorized as detailed in Table 3.
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Table 3. Students’ approaches and strategies for problems

Problem Type Understanding Approaches Solving Strategies

writing given information on figures using proportional relations

underlining given information .
Real-world Contextual . . . applying Pythagorean theorem
describing needed information

Form redrawing figures by using basic geometric relationship for side lengths and angles of right-angled
figures triangle
writing given information on figures applying Pythagorean theorem
underlining given information relationship for side lengths and angles of right-angled
describing needed information triangle

Symbolic Form redrawing figures by using basic geometric

writing an equation
figures

listing given information . . .
- marking proportional relations on figures
rewriting problem statement

Results indicate that students employed similar or related approaches for understanding and solving both types of
problems. For problems presented in a symbolic form, students typically listed the given information and
rephrased the problem statement in their own words. In cases where problems were articulated using
trigonometric equations or mathematical symbols, students tended to list and explain the given information using
their own phrasing. Additionally, some students opted to redraw figures to make them more closely resemble
familiar geometric shapes. Notably, students typically applied trigonometric ratios when addressing problems
presented in symbolic formats. Finally, the strategy of using proportional relations manifested in two distinct
ways, depending on the type of problem: in a conventional ratio form for contextual problems, and as a
representation of length or angle ratios on figures for symbolic problems.

In the present study, a detailed analysis of the approaches of 46 students to problems concerning trigonometric
ratios was conducted. These problems were presented in two distinct formats: real-world contextual and
symbolic form. Various strategies were observed in students’ problem-solving processes. For real-world
contextual problems, students typically annotated the provided figures, highlighted critical details, identified
necessary information, and sketched their own representations. For symbolic problems, students often listed and
rephrased given information, and certain strategies, such as the application of trigonometric ratios,
predominantly emerged in this context. Additionally, the strategy of utilizing proportional relationships displayed
variations based on the nature of the problem. Overall, this research provides profound insights into students’
cognitive strategies and emphasizes the importance of understanding both the definitive answers and the
methodologies employed by students in their problem-solving endeavors.

4. Discussion

Analyses of the students’ performance and work revealed that many students have difficulty interpreting their
solutions in trigonometry as functions of angles. They often become confused when expressing trigonometric
ratios. Interestingly, if they interpret their results using ratios within the geometric context of right-angled
triangles, they tend to correct their mistakes. Students successfully interpret their solutions when they determine
the trigonometric values using the ratio of side lengths. Additionally, students interpret their results more
successfully in real-world contextual problems than in symbolic ones. Therefore, if trigonometry is introduced
with definitions of trigonometric relationships, explaining their meaning and applications before delving into
angles, many problems related to trigonometric relationships could be resolved. Consequently, real-world
contexts can be employed to make trigonometry more appealing to students, especially at lower levels. Once
they gain a basic conceptual understanding of trigonometric relationships and ratios, they will be better prepared
to benefit from the advantages of the unit circle method.

The NCTM Standards (NCTM, 2000, p. 98) argue that trigonometry instruction should shift away from
emphasizing the “memorization of isolated facts and procedures and proficiency with paper-and-pencil tests”
and move towards “programs that emphasize conceptual understanding, multiple representations and
connections, mathematical modeling, and problem-solving.” However, if students cannot interpret their work
correctly when first introduced to trigonometry, they tend to memorize ratios and procedures without gaining a
meaningful understanding of the subject (Kendal & Stacey, 1996; 1997). Previous research on students’
understanding of trigonometry has revealed that they generally memorize symbolic forms of trigonometric
relations and struggle with verbal and non-routine problems, including those involving real-life situations. Due
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to this reliance on memorization, they often adopt algebraic approaches using symbolic formulas of trigonometry
rather than geometric ones. Furthermore, using visual models and ratio relationships can provide students with a
deeper understanding of trigonometric relationships (Orhun, 2004; Weber, 2005).

In this study, students employed various approaches for understanding and strategies for solving both real-world
contextual and symbolic problems. The classification for the trigonometric problem-solving procedure is
twofold: understanding, which includes reading, clarifying, and comprehending the given problem phases, and
solving, which involves planning, employing strategies to solve problems, and verifying the correctness of the
answers. These phases of solving trigonometric problems resemble Allen’s (2017) classification of strategies for
understanding, simplifying, and solving problems.

Furthermore, the observed patterns in student performance underscore the complexities of problem-solving in
the context of trigonometry. The emphasis on real-world applications, as highlighted in recent literature, aligns
with the findings presented in Table 3. The data suggest that an integrated approach, combining theoretical
knowledge with practical applications, is crucial for enhancing student outcomes. Moreover, the varying degrees
of success across different problem-solving strategies underscore the importance of adaptive pedagogical
methods (Aydogdu & Ayaz, 2008; Spangenberg, 2021).

Within this problem-solving dichotomy for trigonometric problems, there are both approaches and strategic
components. In this study, students adopted various approaches to understand given trigonometric problems.
These approaches can be characterized as writing given information on figures, underlining given information,
describing needed information, redrawing figures using basic geometric shapes, listing given information, and
rewriting the problem statement for clarity.

These approaches align with previous research, such as the understanding and simplifying strategies proposed by
Allen (2017) and the data organization and simpler strategy forms suggested by Posamentier and Krulik (2009).
After understanding trigonometric problems through these approaches, students employed specific strategies to
solve them. These strategies are in line with the problem-solving strategies suggested by Allen (2017),
Posamentier and Krulik (2015), and Schoenfeld (2014), which were proposed for general mathematics
problem-solving rather than specifically for trigonometry. However, since trigonometry is a subset of
mathematics, these strategies can also be applied to trigonometry.

In conclusion, attempting to solve a trigonometric problem presented in either a contextual or symbolic form
without a strategy is likely to be ineffective. Identifying which problems can be more effectively solved with the
aid of a strategy requires practice. Such practices stem from learners’ experiences with problem-solving
scenarios during the learning process (Posamentier & Krulik, 2015). The results of this study led to a
dichotomous process for solving both symbolic and real-world contextual trigonometry problems. These findings
support the existing literature and previous research concerning approaches to understanding and strategies for
solving. In light of this dichotomous process, educators can structure their mathematics lessons and assessments
to foster a meaningful understanding of trigonometric concepts. Additionally, researchers interested in
trigonometric problem-solving processes might consider the approaches and strategies presented in this study to
develop more intricate and detailed problem-solving processes. Finally, these findings can be expanded upon
with empirical evidence through experimental studies.

5. Conclusion

This study undertook a detailed inquiry into the strategies employed by ninth graders when confronting
trigonometric problems. Spanning six problems—three contextual and three symbolic—the examination of 46
students revealed intriguing patterns with significant implications for the pedagogy of trigonometry. Findings
related to the accuracy of students’ answers indicated that students tend to provide more accurate answers to
problems presented in real-world contexts or those requiring the construction of a geometric figure. For instance,
63.1% of students effectively tackled the first problem, which was contextual. However, when problems
transitioned into the symbolic realm, a decline in performance was observed. This aligns with the overarching
narrative of the research, emphasizing the efficacy of real-world scenarios and geometric figures in facilitating
an intuitive understanding of trigonometry.

Furthermore, the strategies identified from the students’ responses characterized the intricate interplay of
contextual understanding and symbolic representation. While students demonstrated a preference for
proportional relations, notably in real-world scenarios, they also exhibited a tendency to use visual aids in
symbolic problems. This duality in approach underscores the necessity for a balanced pedagogical methodology
that integrates real-world applications with symbolic nuances.
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The study underscores the urgency of transitioning from rote memorization to a more holistic conceptual
understanding. By incorporating real-world contexts in the initial phases of trigonometry instruction, educators
can foster a foundational understanding, thereby paving the way for the introduction of more abstract concepts.
In summary, the findings of this study provide insights into the pedagogical strategies employed in solving
trigonometry problems. By merging the tangible with the abstract, educators can cultivate a generation of
students who do not merely memorize trigonometric formulas but understand and appreciate their inherent logic
and beauty. As a foundational step in this academic realm, this study invites further research to delve deeper,
potentially uncovering more nuanced strategies and insights, thus enriching the field of trigonometric pedagogy.
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