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Abstract Abstract 
The idea of “threshold concepts” has been used to identify discipline-based concepts that are critical to 
that academic area. Threshold concepts are often difficult for students to assimilate in a meaningful way 
but, once done, can be powerful for the learner. In general, threshold concepts are 1) transformative to 
learner thinking; 2) bounded by the discipline; 3) integrative with other concepts; and 4) irreversible once 
understood (Meyer and Land 2003). This paper presents five threshold concepts in quantitative reasoning 
(QR) developed by transdisciplinary faculty workgroups that may be applicable for non-mathematics 
disciplines as well. They are as follows: 1) QR is an iterative process; 2) Abstract patterns can represent 
relationships between variables or objects; 3) There is a bidirectional translation between the concrete 
and the abstract; 4) Effective comparison depends on proportional reasoning; and 5) Different visual 
representations can communicate varying perspectives on the same quantitative information. The 
purpose of this paper is twofold: to explore and justify the proposed concepts as threshold concepts in 
QR-based courses and to offer practical examples which might assist students in developing and 
understanding these proposed threshold concepts. 
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Introduction 

The idea of “threshold concepts” has been used to identify discipline-based 
concepts that are critical to their academic area. Threshold concepts are generally 
considered 1) transformative to learner thinking; 2) bounded by the discipline; 3) 
integrative with other concepts; 4) irreversible once understood; and 5) troublesome 
for learners to understand (Meyer and Land 2003). Threshold concepts that develop 
skills in quantitative reasoning (QR) are often taught in the context of a general 
education course in mathematics or statistics. While mathematics courses certainly 
provide a natural setting for QR development, threshold concepts can also be 
applied to non-mathematics-based disciplines to meaningfully develop QR skills. 

We propose that threshold concepts in quantitative reasoning are not exclusive 
to mathematics and statistics courses and that there is an advantage to defining 
threshold concepts in quantitative reasoning generally that are not mathematics-
discipline specific. Therefore, we posit five threshold concepts in QR that can be 
applied across other disciplines. 
 

1. QR is an iterative process; 
2. Abstract patterns can represent relationships between variables or objects; 
3. There is a bidirectional translation between the concrete and the abstract; 
4. Effective comparison depends on proportional reasoning; and 
5. Different visual representations can communicate varying perspectives on the same 

quantitative information. 
 

These five threshold concepts for QR were identified by a transdisciplinary 
faculty workgroup based on the Meyer and Land (2003) threshold concept 
framework. We provide justification based on faculty discussions and the literature 
that each proposed concept meets the definition of a “threshold concept.” We also 
provide examples of how these threshold concepts have been embedded into first-
year general education mathematics and statistics coursework, pedagogy, and 
curricular structures at our institution. Because every first-time freshman student is 
required to complete a QR-based course for general education credit, the focus on 
threshold concepts in such courses supports deeper learning in QR across the 
disciplines. Thus, this paper has two specific goals: 1) to explore and justify the 
proposed concepts as threshold concepts in QR-based courses and 2) to offer 
practical examples which might assist students in developing and understanding 
these proposed threshold concepts. 

 
Literature Review 
Threshold Concepts and Quantitative Reasoning 
 

The American Association of Colleges and Universities defines quantitative 
literacy as: 
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A “habit of mind” or competency and comfort in working with quantitative data, results, 
or forms and the ability to reason or solve problems in a wide variety of authentic contexts 
and everyday life situations (Rhodes 2010, 25). 

 

The terms QR, quantitative literacy, and numeracy tend to be used 
interchangeably, although Vacher (2014) gives a framework for the distinctions 
between these terms. With respect to this framework, the above definition for 
quantitative literacy is also appropriate for QR for our purposes. However, QR is 
not synonymous with or limited to mathematics. In the “Pedagogy in Action” 
toolkit, Grawe (2022) describes how QR emphasizes context and real-world data. 
Because of its contextual nature, it is present across disciplines, not just in 
mathematics. In Achieving Quantitative Literacy, Steen (2004) writes: 

 

If quantitative literacy remains the responsibility solely of mathematics 
department—especially if it is caged into a single course such as ‘Math for Liberal 
Arts’—students will continue to see it as something that happens only in the 
mathematics classroom (18).  

 

While QR is not bounded by a particular discipline, within each discipline are 
specific concepts and applications at its core that are troublesome, yet 
transformative for students. These are the threshold concepts. 

The framework for threshold concepts was introduced by Meyer and Land 
(2003). Threshold concepts differ from learning outcomes or core concepts in that 
“a threshold concept is discipline-specific, focuses on understanding of the subject 
and … has the ability to transform learners’ views of the content” (Zepke 2013, 
98). Threshold concepts describe a process and experience with which students 
need to actively engage to achieve academic outcomes in a particular discipline or 
course. According to Meyer and Land (2003), a threshold concept has the following 
five characteristics: 

 

• Troublesome: There are many forms of troublesome knowledge, including ritual 
knowledge (e.g., giving a “canned” response to a particular type of question), conceptually 
difficult knowledge, and idiosyncratic language and notation. Each of these relates to 
troublesome areas of acquiring quantitative knowledge. The difficulty and frustration that 
students experience while encountering a threshold concept speaks to its troublesome 
nature.  

• Irreversible: Once acquired, the student is unlikely to forget or “unlearn” the concept. 
Practitioners refer to “crossing the threshold” with the intention that the student is unlikely 
to revert to their earlier perspective after doing so. 

• Integrative: The concept “exposes the previously hidden interrelatedness of something” 
(Meyer and Land 2003, 416). Because QR is inherently multidisciplinary, it is a fertile 
ground for integrative concepts. 

• Transformative: Once the student understands the threshold concept, their perception of 
the subject shifts. This characteristic can also include an affective component when the 
students’ values, feelings, or attitude changes as a result of their change in perspective. The 
affective component is particularly relevant in acquiring quantitative skills because of the 

2

Numeracy, Vol. 17 [2024], Iss. 1, Art. 1

https://digitalcommons.usf.edu/numeracy/vol17/iss1/art1
DOI: https://doi.org/10.5038/1936-4660.17.1.1446



 

identity and power dimensions that students often encounter through experiences with 
school mathematics (Gutiérrez 2009). 

• Bounded: This characteristic helps to define the conceptual areas of a particular discipline; 
in other words, how one discipline differs from another.  

 

Meyer and Land (2003) note that this notion of boundedness is not necessarily 
present in every context for threshold concepts. We discuss this tension for QR 
more in the following section. 

Current State of Research 

Proportional reasoning is well-established as a fundamental threshold concept in 
QR. More than sixty years ago, Inhelder and Piaget (1958) established proportional 
reasoning as a key concept in the formal operations stage of thinking. Proportional 
reasoning as a threshold concept is not limited to developmental psychology; it has 
also resonated as a challenge for adults in popular culture. In 1988, John Allen 
Paulos’ bestselling book, Innumeracy, lamented the ways in which our ability to 
deal with very large numbers and the probabilities associated with them have led to 
a host of negative societal outcomes. A lack of understanding of proportional 
reasoning and comparison is at the heart of this argument. Building on this work, 
Steen’s landmark 1990 article, “Numeracy,” described the “rising tide of numbers” 
and described examples of struggles with comparing fractions, evaluating loan 
options, and playing lotteries—all of which require proportional reasoning skills. 
Lamon (2007) identified fractions, ratios, and proportions as simultaneously the 
most difficult to teach, yet the most essential to success, in higher mathematics and 
science. More recently, Ryan and Gass (2017) identified conversions as one of six 
troublesome areas in QR. Frith and Lloyd (2016) specifically justified proportional 
reasoning as a threshold concept in quantitative literacy. They also noted that most 
of the prior research has focused on the development of proportional reasoning in 
children and adolescents, and very little in higher education. Taken together, this 
history of proportional reasoning at the center of conversations around numeracy 
(or innumeracy), the development of quantitative skills for children and for adults, 
suggests that it is clearly a threshold concept in quantitative literacy.  

While proportional reasoning is a threshold concept in quantitative literacy or 
QR, it is not the only one. In addition to conversions, Ryan and Gass (2017) 
identified five additional troublesome areas: switching context, understanding 
math, student reflection, graphing and statistical software, and data literacy. Ryan 
and Gass categorized these troublesome areas into two broad learning thresholds: 
(a) the ability to apply QR across a range of contexts and use it as a tool or a form 
of language for scientific problem solving, and (b) fluency in data literacy which 
enables a student to effectively work through the scientific process. However, Ryan 
and Gass state that specific threshold concepts have yet to be determined under 
these learning thresholds.  
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Additional recent work on the notion of threshold concepts in higher education 
come from the partner disciplines of statistics (Beitelmal et al. 2022), finance 
education (Hoadley et al. 2016), and computer science (Farjudian 2023). The 
discipline of statistics has considerable overlap with QR, but they are not 
interchangeable (similar to the relationship between QR and mathematics). 
Notably, the Beitelmal et al. study (2022) argues that the concept of boundedness 
does not apply to the statistical context. We adapt this perspective for QR as well, 
since, like statistics, QR spans across disciplines. We therefore justify each of our 
proposed threshold concepts in terms of the other four characteristics of a threshold 
concept.  

The current state of the literature suggests that some specific threshold 
concepts in QR in addition to proportional reasoning have yet to be identified. 
Based on the literature and our own research in this area, this paper proposes the 
possible additional threshold concepts for QR in higher education based on Meyer 
and Land’s 2003 framework. The proposed threshold concepts were developed by 
a transdisciplinary faculty working group, with each person contributing their 
expertise in their field and examples of where and how students struggled with QR 
in their courses. We use the term “transdisciplinary” to describe a holistic approach, 
where the output is created as a result of disciplines communicating and integrating 
their contexts. We then present examples of how these concepts are introduced and 
developed in a first-year QR mathematics and statistics course context to 
demonstrate building a foundation for students over their undergraduate careers, 
with the understanding that many students will likely “cross the threshold” in later 
courses in their own chosen major.  

 
Method 
Context 
 

California State University Monterey Bay (CSUMB) is a four-year public 
university and one of the twenty-three campuses in the California State University 
system. CSUMB is a primarily undergraduate institution, with about 7,000 students 
and 26 undergraduate degree programs. The university maintains an outcomes-
based curriculum with four undergraduate learning outcomes that are foundational 
to all undergraduate degree programs and regularly assessed within each program. 
The first of these learning outcomes is labeled Intellectual Skills and includes 
critical thinking, written and oral communication, information literacy, and QR. In 
2017, as part of ongoing projects assessing intellectual skills campus-wide, 
CSUMB determined that it would benefit the campus to develop Threshold 
Concepts for each of the intellectual skills. The purpose was to help faculty to 
understand more deeply how students learn Intellectual Skills which would, in turn, 
inform their teaching practices. Hendrawati et al. (2021) identified the most 
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commonly used methods to identify threshold concepts as (in order) interviews with 
students, surveys of students and teachers, focus-groups of students, content 
analysis, tests, workshops, concept maps, and quizzes. In line with Loertscher et al. 
(2014) and others (see Hendrawati et al. 2021), the university chose the facilitated 
workshop approach to identify threshold concepts in QR and the other Intellectual 
Skills.  

Process 

A one-day workshop brought faculty from across disciplines together to develop a 
shared understanding of threshold concepts and to initiate the development of 
threshold concepts for each of the intellectual skills. The QR working group was 
composed of six members from the disciplines of mathematics, statistics, biology, 
business, music, and health sciences. The core premise of any threshold concept is 
that it arises from student struggles and is not necessarily what an expert might 
identify as a “difficult concept.” Therefore, the student perspective was the primary 
focus when proposing threshold concepts. As student struggles were identified, a 
flow chart authored by the workshop facilitators (Figure 1) provided a mechanism 
for the evaluation of struggles as something other than a threshold concept, such as 
a technical or mechanical issue or a struggle that was not transformative. 
 

 
 
Figure 1. Flow chart for identifying threshold concepts created by workshop facilitators. 

 
After the one-day workshop, the transdisciplinary QR cooperative faculty 

group worked to further refine the proposed threshold concepts by evaluating their 
own understanding, identifying examples within their own disciplines, and 
evaluating if the proposed ideas truly met the definition of a threshold concept. 
Through this process, the group was able to come to a consensus and to also reject 
some initially proposed ideas on the basis that they didn’t progress on the chart 
(Figure 1). For example, “Selecting appropriate tools to answer a question about 
data, interpretation, and justification” was originally proposed, but was deemed 
technical or mechanical and thus not a threshold concept. Other initially proposed 
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concepts were absorbed into others throughout the discussion. The process yielded 
the five following proposed threshold concepts for QR. 

Proposed Threshold Concepts 

Based on the results from the working group, we propose the following 
“metadisciplinary” threshold concepts (Carter 2007) in QR.  

 

1) Quantitative reasoning is an iterative process; 
2) Abstract patterns can represent relationships between variables or objects; 
3) There is a bidirectional translation between the concrete and the abstract; 
4) Effective comparison depends on proportional reasoning; and 
5) Different visual representations can communicate varying perspectives on the same 

quantitative information. 
 

As QR transcends the boundaries of mathematics, although each concept may 
look different in different disciplines, the foundation remains the same. As stated 
earlier, Meyer and Land (2003) proposed that threshold concepts are most often 
transformative, integrative, irreversible, troublesome, and/or bounded. We take a 
similar view to Beitelmal et al. (2022), who focused on statistical reasoning, and 
Hoadly et al. (2016), who focused on finance, that the metadisciplinary nature of 
QR makes boundedness a non-applicable characteristic of threshold concepts for 
QR. Therefore, this paper focuses on the transformative, integrative, irreversible, 
and troublesome nature of the proposed threshold concepts for QR. For each 
threshold concept we will describe the proposed concept and definition, provide 
justification based on both the faculty workgroup discussions and existing 
literature, and give examples of ways that a practitioner might engage students with 
the threshold concepts within the classroom. In Table 1 we justify the ways in which 
each proposed threshold concept addresses the criteria of transformative, 
irreversible, integrative, and troublesome.  

 
Five Threshold Concepts in Quantitative 
Reasoning: Definition, Justification, and Ways to 
Engage Students 
1. Quantitative Reasoning Is an Iterative Process 
 

Definition. QR is a logical, reflective, intuitive, and iterative practice, not a linear 
process, which includes the consideration of context, authority, and appropriateness 
of the quantitative information under consideration. It is an intellectual discourse 
designed to eventually converge, or at least get the practitioner closer to consensus 
while reducing uncertainty in their reasoning. QR requires not just the correct 
selection of appropriate tools, but also a recognition that different tools can lead to   
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Table 1 

Outline of Proposed QR Threshold Concepts and Ways They Meet the Definition of a Threshold Concept 

Threshold 

Concept Troublesome Irreversible Integrative Transformative 

QR is an 

iterative 

process 

Once an “answer” is 
found, additional 
review and revision is 
rarely considered 
necessary by the 
student.  

As a “habit of mind,” it 
is hard to break once 
developed. 

The process of refining 
results and recognizing 
errors reveals unexpected 
similarities in different 
QR applications and 
areas.  

Recognizing that QR is 
an iterative process 
moves from simple 
assertions to more 
sophisticated reasoning. 

Abstract 

patterns can 

represent 

relationships 

between 

variables or 

objects 

In general, real 
relationships are not 
perfect and variability 
unexplained by the 
relationship is difficult 
to interpret. 

Once comfort with 
uncertainty and the 
ability to identify 
assumptions are 
developed, a model 
“feels” incomplete until 
those issues are 
addressed.  

Different types of models 
or relationships can be 
extended beyond one 
area of application to 
many others, bringing 
together a variety of 
apparently unconnected 
contexts. 

The ability to identify 
and describe patterns 
(or to recognize when 
they do not exist) 
allows the student to 
develop more 
sophisticated QR. 

There is a bi-

directional 

relationship 

between the 

concrete and 

the abstract 

 

Bidirectional 
translation requires the 
student to move 
seamlessly between 
contexts and to present 
given information in a 
variety of ways. It 
cannot be done 
through memorization 
or arithmetic tricks. 

Once the reasoning 
necessary to translate 
between the concrete 
and abstract is 
developed, the student 
is capable of creating 
representations through 
derivation rather than 
memorization.  

Translation allows one to 
describe qualitative 
elements in a way that 
operates on them in order to 
draw conclusions (turns 
qualitative information into 
quantitative information, or 
vice-versa) or make 
predictions. 

Formulas represent 
types of problems 
connected to real world 
situations. They can use 
the formula to draw 
conclusions, test ideas, 
and make predictions. 
Similarly, observation 
can be used to construct 
models. 

 
Effective 

comparison 

depends on 

proportional 

reasoning 

Additive reasoning is 
simpler than 
multiplicative. 
Struggles with 
fractions and 
percentages at an early 
age may impact one’s 
ability to make 
comparisons between 
groups that differ at 
baseline. 

The habit of questioning 
the ability to compare 
groups is established 
and proportional 
reasoning is approached 
through multiplicative 
thinking first, not 
additive thinking. 

Proportional reasoning 
allows students to 
evaluate claims across 
contexts through simple 
interrogation of the 
information (e.g., did 
they control for differing 
group sizes?) 

Proportional reasoning 
impacts the students’ 
ability to understand 
probability, draw 
comparisons between 
groups, and generalize 
results to populations 
based on subsets of 
observations.  

Different visual 

representations 

can 

communicate 

varying 

perspectives on 

the same 

quantitative 

information 

Interpretation of visual 
representations as well 
as choices made in the 
creation of visual 
representations are 
challenging as they 
require a meaningful 
understanding of the 
context and the 
limitations of a given 
scenario. 

Creating and refining 
visual representations 
becomes part of making 
sense of given 
information, even when 
it is not otherwise 
prompted for.  

The ability to create and 
interpret allows students 
to apply visual 
representations across 
contexts and integrate 
creative modifications to 
the representation to 
enhance understanding 
and communication.  
 

Visual representation is 
a form of 
communication that 
allows students to 
develop sophisticated 
reasoning through 
multivariate thinking. 

 
different outcomes. Recognition that QR is an iterative process also impacts how 
one views “facts” across disciplines. In addition, the iterative process often involves 
recognizing and addressing errors or gaps in one’s understanding. 
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Justification. Since QR is an iterative process, students necessarily encounter 
difficulties both in recognizing their own errors and misconceptions and correcting 
them, as well as the process of refining a result given new information. In the 
faculty workgroup discussions, faculty members shared how students are prone to 
stop once an “answer” is acquired from a calculation, and that they seldom assess 
if it is reasonable in the context of the situation. Ryan and Gass (2017) also identify 
student reflection as a troublesome concept. In this context, reflection refers to self-
assessment of one’s findings for reasonableness or consistency. Interrogating one’s 
own thinking and other metacognitive practices is transformative and likely to be 
irreversible in that it results in the development of a habit of mind. It is integrative 
because as a student builds the habit of mind to refine one’s results and to recognize 
errors, they can use similar techniques to do so even when learning an unfamiliar 
concept. Identifying QR is an iterative process as a threshold concept also invites 
students into a culture of making mistakes and fixing them which can help to 
cultivate a growth mindset and persistence in developing quantitative skills (Dweck 
2008). Students may also identify others’ mistakes or misleading quantitative 
claims, especially in media, as part of this process. 
 
Ways to Engage Students. Telling students that QR is an iterative process is not 
sufficient to help students develop the habit of mind necessary to pass over the 
threshold. The habit must be cultivated. In Example 1.1, we provide a prompt that 
helps students to consider errors as part of the problem-solving process and 
encourages discussion about the iterative nature of fixing one’s errors. In Example 

1.2, students collect their own data on a geometric probability experiment with a 
known theoretical outcome. They explore how their experimental results converge 
to the theoretical outcomes with more and more repeated trials. 
 
Example 1.1 Sample Task: Math Hospital. Make two columns on a sheet of 
paper. Write an incorrect solution to a problem that we did today on the left. Then, 
on the right-hand side, explain what went wrong, how to fix the mistake, and why 
a person might have made this error. 
 
Example 1.2 Sample Task: Geometric Probability. Students conduct a geometric 
probability experiment of randomly throwing a dart onto a board with a circle 
inscribed in square. They find that a small set of collected data may have a high 
margin of error when compared with the expected value. They discuss how iterating 
the result via more trials should decrease this error. They then use a computer applet 
to generate thousands of trials and observe how it indeed converges to the expected 
outcome, per the Law of Large Numbers. 
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2. Abstract Patterns Can Represent Relationships between 
Variables or Objects 
 

Definition. Quantitative systems often define the relationships among variables or 
objects in terms of abstract patterns, such as correlation, covariation, or even causal 
models. Models necessarily include assumptions and/or uncertainty in the 
identified relationship that must also be described and qualified.  
 

Justification. The struggle students have with relationships between variables or 
objects is two-fold. First, the relationships are never perfectly defined, which 
creates challenges of uncertainty, variability, and/or assumptions necessary to 
ascribe a pattern. Second, and in contrast to the first struggle, cognitive biases tend 
to push individuals to look for and discover patterns even when they may not exist, 
as well as to attribute causality as a result of correlation. Beitelmal et al. (2022) 
found that correlation, association, and causation as well as uncertainty were both 
educator and learner-identified threshold concepts for statistical reasoning. In 
addition, prior research has identified regression (modeling relationships between 
variables) and the statistical description of relationships as threshold concepts in 
statistical reasoning (Beitelmal et al. 2022). Hoadley et al. (2016) identified the 
time value of money as a threshold concept in finance. Students encounter this 
concept throughout their education. In a study of fourth-grade students, Kuhn 
identified students’ struggle with making prediction judgments while reasoning 
with multiple variables, even when students had previously successfully identified 
causal and noncausal variables (2007). The umbrella of “defining relationships 
between variables” captures the discipline-specific applications of the QR threshold 
concept. In faculty workgroup discussions at California State University Monterey 
Bay, similar identification of concepts such as the time value of money by a 
business/finance faculty member or the relationship between supply and demand 
are often troublesome for students to ascertain.  

Recognizing these abstract patterns is irreversible because once comfort with 
uncertainty and the ability to identify assumptions are developed by a student, a 
model may “feel” incomplete until those issues are addressed. Developing more 
sophisticated reasoning as a way to address these issues is transformative. It is 
integrative because students are then able to apply the same habits across 
disciplines.  
 

Ways to Engage Students. In the example below, the data are not perfectly linear, 
which presents the challenge of discovery described above. Students are asked to 
then predict gasoline consumption twelve years later, which invites discussion 
about if there is reason to believe the pattern should continue over time.  
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Example 2.1 Sample Task: 

Linear Model. Gasoline 
consumption in the US has been 
increasing steadily. Consumption 
data from 1992 to 2004 is shown 
below in Figure 2. How would 
you describe this relationship? 
Construct a model to predict the 
amount of gasoline consumed in 
2016. 
 

After the students have constructed their model, the instructor leads a 
discussion about what the model predicts in terms of gasoline consumption by year 
compared to what the recorded data show. This supports the discussion of a clear 
linear pattern emerging, even when the data are not perfectly linear. 

 

3. There Is a Bidirectional Translation between the 
Concrete and the Abstract 

 

Definition. QR involves transitioning back and forth between the concrete (e.g., 
context and observations) and the abstract (e.g., representations) in the creation, 
interpretation, and evaluation of models of reality. It also involves constructing 
multiple representations (e.g., formulas, graphs) and choosing an appropriate 
representation for the situation. 
 

Justification. Bidirectional translation between the concrete and abstract allows 
the learner to move seamlessly between different contexts and to present given 
information in a variety of ways. It is integrative in the sense that it requires the 
student to relate multiple elements together to create a larger picture. For example, 
a student might construct a mathematical model for a given situation. With more 
information, including how well their model performs, they then adjust their model 
over time. This also relates to the first threshold concept presented for QR as an 
iterative process. The first step of the initial model from the concrete to the abstract, 
and vice-versa, is troublesome for many students; the further iteration to refine 
one’s model can be even more so. Ryan and Gass (2017) identified “understanding 
math” as a troublesome concept specifically when students were asked to take a 
mathematical result and relate it back to the “bigger picture” or context. In 
mathematics, for example, a student might be able to perform a calculation that 
includes a logarithm, but when asked to interpret that calculation in a specific 
context (e.g., modeling population growth), the concept of logarithms may not be 
fully understood. In conversations with finance faculty at CSUMB, and further 
supported by Hoadley et al. (2016), students struggle to switch between the contexts 

 

Figure 2. Graph for linear model sample task. 
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of financial formulas and the time-value of money. A student adept at calculation 
may not be able to relate their calculations back to the context of the original 
application, or vice versa (Verschaffel et al. 2020). Once a student crosses the 
threshold of bidirectional translation, it is irreversible because they can derive, and 
not just apply, formulas or other abstract representations. It is transformative 
because they are no longer limited to memorized or previously encountered 
relationships; they can apply their understanding across multiple contexts. 
 

Ways to Engage Students. Instead of teaching rote memorization of calculation 
“tricks” in algebra or “tips” for deciphering the language of a textbook word 
problem, teachers can directly engage students in bidirectional translation. In 
Example 3.1, students demonstrate translation of an abstract idea (a symbolic 
quadratic equation) to a concrete one (algebra tiles representing the equation). They 
use the concrete representation to create a second symbolic representation of the 
factored form equation to solve. By first using concrete materials and then writing 
an abstract representation, this example uses the “concreteness fading” technique 
that combines the advantages of both concrete and abstract instructional materials 
(Fyfe et al., 2014).  In Example 3.2, students discover the (abstract) mathematical 
constant e as it naturally arises by carrying out an application of compounding 
interest as the number of compoundings in a given time period increases.  
 

Example 3.1 Sample Task: Visual Factor. Factor 𝑓(𝑥) = 𝑥2 + 6𝑥 +  8 using the  
diagram provided in Figure 3. 
Describe how the product of 14 and 
12 can be ascertained from this 
model. 
 

The long side can be represented 
by (x + 4) and the short side by (x + 
2). By multiplying the length and 
width of the rectangle, we represent 
the total area with the factored form 
expression: 

 

𝑓(𝑥) = (𝑥 + 4)(𝑥 + 2). 
 

Let x = 10 in the model. Then the product of 14 and 12 is: 100 + 6 (10) + 8 = 
168. 
 
Example 3.2 Sample Task: Discovering e. Suppose you invested $1 for one year, 
at a 100% interest rate (lucky you!). Calculate the total amount of money in the 
account when compounding interest annually, monthly, daily, and hourly. Based 

 
Figure 3. Graph for visual factoring sample task 
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on your findings, what does it mean to compound interest continuously? Why is the 
number e used as the exponential base in this formula? 
 

4. Effective Comparison Depends on Proportional 
Reasoning 
 

Definition. The comparison of two or more quantities often requires the use of 
multiplicative—not additive—thinking, via proportions, percentages, ratios, base 
rates, or probabilities. The interpretation of the comparison of quantities also 
depends on the context of the problem. Lamon (2007) defines proportional 
reasoning in terms of supplying reasons in support of claims made about the 
structural relationships among quantities, including the ability to identify a 
relationship between two quantities and the ability to extend the same relationship 
to other pairs of quantities. 
 

Justification. It is not surprising that a transdisciplinary team identified 
proportional reasoning as a threshold concept within their disciplines, as 
proportional reasoning is a commonly identified threshold concept for numeracy 
(Frith and Lloyd 2016). Lamon (2007) makes the assertion that: 

  

Fractions, ratios and proportions are the most protracted in terms of development, the most 
difficult to teach, the most mathematically complex, the most cognitively challenging, the 
most essential to success in higher mathematics and science. 

 

Similarly, unit conversion (Ryan and Gass 2017) and probability (Beitelmal et 
al. 2022) have also been commonly identified as troublesome or threshold concepts 
in scientific and statistical reasoning, and both fall under the umbrella of 
proportional reasoning and comparisons. In general, proportional reasoning is 
foundational to data literacy and numeracy, as the ability to make comparisons 
between populations that differ at baseline often drives misinformation (and 
disinformation), such as comparisons of quantity of COVID-19 cases or the total 
quantity of 5G cell towers instead of looking at rates per 100,000 people in a given 
area. Therefore, it is not surprising that much of the literature on threshold concepts 
in QR explores proportional reasoning as a threshold concept (see Current State of 
Research). Once the threshold is crossed, students develop the habit of asking the 
question, “Is there a difference at baseline?” The ability to reason with proportions 
allows the student to grow in the sophistication of their QR while able to apply this 
reasoning across disciplines. 
 
Ways to Engage Students. Because students so often misinterpret or 
misunderstand proportional reasoning, providing an incorrect interpretation as a 
discussion prompt can help them to engage in this threshold concept. Example 4.1, 
for instance, invites a discussion of the comparison of two populations with unequal 
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sample sizes, as well as absolute and relative differences. Example 4.2 gives 
students the opportunity to grapple with incomplete information and to connect 
their thinking to data literacy and environmental issues. 
 
Example 4.1 Sample Task: Comparing Quantities. Suppose, in a sample of 
10,000 people, 100 of the survey participants are smokers. In the smoking group, 
43 have developed lung cancer. In the nonsmoking group, 84 have developed lung 
cancer. Explain why this does not imply that lung cancer is more common among 
non-smokers when compared to smokers.  
 
Example 4.2 Sample Task: Comparing Costs. A standard shower head uses 
about 2.5 gallons of water per minute. How much money does it cost for a person 
to take a 10-minute shower? If clean water was not available, and bottled water was 
used instead, how much would the shower cost? Look up costs of municipal water 
and bottled water online and cite your sources.  
 
5. Different Visual Representations Can Communicate 
Varying Perspectives on the Same Quantitative Information 
 

Definition. Visual representations of quantitative information are typically created 
or constructed and used in the processes of inquiry and argumentation. Quantitative 
information dictates which visual representations are appropriate, and each 
appropriate visual representation provides a different perspective on the same 
information. The creator’s point of view is often reflected in the design choices for 
the visual representation and must be considered in the interpretation of the visual 
representation. Visual representations may also be used in the process of 
contextualizing and making sense of quantitative data, such as sketching out a 
model of a given scenario. Visual representations may also be dynamic, using an 
applet or software for real-time manipulation. 
 
Justification. Beitelmal et al. (2022) identified threshold concepts related to 
visualization around the concepts of histograms, scatterplots, and bar charts. The 
interpretation of visual representations is often troublesome for students when 
asked to match a visualization to a description of a relationship, scenario, or 
mathematical equation, a phenomenon which was observed by many in the faculty 
working group. While some aspects of visualization as a threshold concept may 
relate to issues of bidirectional translation and/or the discovery and description of 
relationships between variables, the creation and interpretation of visual 
representations may be, in itself, troublesome. In the context of QR in the sciences, 
Ryan and Gass (2017) identified graphing and statistical software as a troublesome 
concept and emphasized that the troublesome nature of visualization was in the 
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development of the visualization—choosing an appropriate form and/or discerning 
the more appropriate form when more than one option might be possible (e.g., using 
boxplots for comparison of groups versus multiple histograms). The creation of 
visual representations is also often iterative, as several drafts may be necessary to 
create a reasonable representation. This practice is irreversible; once a student is in 
the habit of creating and refining visual representations as they make sense of 
quantitative information, they are unlikely to stop doing so. It is integrative because 
it allows them to apply visual representations across various contexts and integrate 
appropriate modifications to the representation. It is transformative because 
visualization is a form of communication that allows students to develop 
sophisticated reasoning through multivariate thinking. 
 
Ways to Engage Students. Most quantitative situations involve the creation and 
interpretation of visual representations of quantitative information. This means that 
there are many opportunities to engage students. Example 5.1 involves dynamic 
experimentation to choose an appropriate visual representation using software. 
Example 5.2 has a kinesthetic component and prompts students to visually 
represent characteristics of a given graph using different colors. 
 
Example 5.1 Sample Task: Representing Data. Consider a set of data including 
mileage and carbon footprint for several hundred different types of vehicles. 
Experiment with different visual representations of the given data (in a linked Excel 
file). Try a histogram, bar chart, and scatterplot to begin. What does each one tell 
you? Which would you use to try to establish a relationship between these two 
variables? What other visuals could you use? 
 
Example 5.2 Sample Task: Interpreting Graphs. Given several large graphs of 
functions on posters, students are asked to put different color sticky notes to 
represent key features of each graph, including intervals of increase and decrease, 
inflection points, intervals of concavity, non-differentiable points, discontinuities, 
etc. A sample photo from a calculus class is given below in Figure 4. Note that this 
demonstrates various perspectives about the same quantitative information. For 
example, the point (-1, 2) has been identified as both a maximum and a non-
differentiable point.  
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Figure 4. Example of Interpreting Graphs task 
 

Discussion and Conclusion 
 
This paper has proposed five threshold concepts for QR for ongoing consideration: 

 

1) Quantitative reasoning is an iterative process; 
2) Abstract patterns can represent relationships between variables or objects; 
3) There is a bidirectional translation between the concrete and the abstract; 
4) Effective comparison depends on proportional reasoning; and 
5) Different visual representations can communicate varying perspectives on the same 

quantitative information. 
 

Based on the work of Meyer and Land (2003), these concepts have been 
examined based on their troublesome, irreversible, integrative, and transformative 
characteristics (Table 1). Since QR threshold concepts are meant to be broadly 
applicable across disciplines, we did not include boundedness as a factor. The 
diverse collaboration of faculty in the workgroup and subsequent cooperative who 
developed the proposed threshold concepts allowed us to identify threshold 
concepts that may be applicable across domains that require QR as an intellectual 
skill within the discipline.  

Engaging with threshold concepts over time, and at different levels, helps 
students to develop a deeper understanding and sophistication level in reasoning, 
become more comfortable with uncertainty, and transfer their knowledge to other 
domains. Moreover, directing students’ attention to these threshold concepts and 
away from more mechanical tasks creates space for them to develop their own 
mathematical identity and to cultivate a growth mindset. This could be particularly 
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impactful for students who may have struggled with school mathematics in the past. 
It is important to attend to threshold concepts within mathematics and statistics 
courses as we believe that a focus on threshold concepts in QR reinforces the 
transfer of knowledge from general education mathematics and statistics, generally 
completed within the first year of college, to subsequent discipline-specific 
quantitative courses. Samples of student tasks were given as examples of how 
threshold concepts might be applied in a QR-based course and are not prescriptive 
in any way. Rather, the information presented in this paper is meant to serve as a 
catalyst for further discussion about the use and development of threshold concepts 
in QR-based courses. 

Furthermore, threshold concepts in QR connect to the larger context of 
reasoning. Identifying core concepts in reasoning and how to teach them has been 
a subject of debate and research throughout human history (Holyoak and Morrison 
2012). Threshold concepts are specific foundational ideas within a discipline that, 
once understood, transform a learner’s understanding of that field. Reasoning, on 
the other hand, is a broader cognitive process that involves the ability to think 
critically, analyze information, and draw conclusions in various contexts 
(Khemlani 2018). While threshold concepts can be a part of the content learners 
reason about, reasoning encompasses a broader set of cognitive skills and processes 
that are used in learning and problem-solving across different domains. Therefore, 
the proposed threshold concepts in QR should be placed within the larger landscape 
of core concepts in reasoning. However, they are distinct because of the specific 
nature of threshold concepts (Meyer and Land 2003) and the context of QR.  

The work presented here has several limitations. First, while there is 
justification for each of these five threshold concepts in QR, other threshold 
concepts may exist as well. Second, although we were able to develop these 
concepts together with a transdisciplinary team of faculty, the discussion took place 
at a single institution which might limit the scope of experiences of the faculty that 
engaged in the process. Engaging with practitioners across disciplines from 
multiple institutions across various academic levels and communities would help 
to strengthen and refine these concepts. Third, soliciting students’ perspectives on 
how they have experienced these threshold concepts would provide further support 
or refinement to the specific aspects of the proposed threshold concepts that are 
troublesome or transformative, perhaps even identifying additional threshold 
concepts in QR. Finally, assessment of student work on tasks that involve these 
threshold concepts would help us to better understand how students experience and 
make sense of these concepts so that we, as practitioners, can attend to the diverse 
needs of our students as they engage with the troublesome nature of the threshold 
concepts. 

A next step for practitioners may be to consider how to use these threshold 
concepts to facilitate student learning; specifically, to help identify and support 
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pedagogical approaches to engage threshold concepts. We can support students by 
helping them experience cognitive dissonance (Inhelder and Piaget 1958) and 
uncertainty as positive indicators of thinking and learning, and by providing 
learners with concrete strategies for finding and working with confusion and 
uncertainty. In addition, faculty need support to choose and adapt pedagogies that 
give students the tools to identify strategies for finding and working with confusion. 
For example, CSUMB has an ongoing faculty cooperative group in Reading 
Apprenticeship. Reading Apprenticeship is based on the ways that the social, 
personal, cognitive, and knowledge-building dimensions interact to support both 
academic and social-emotional learning (WestEd 2023). Just as students need to 
engage with threshold concepts over time, so too do faculty need ongoing 
exploration and support from experts and peers to guide them. The development of 
curricular and pedagogical approaches that attend to the proposed threshold 
concepts for QR will require time and iteration, just like QR itself. 
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