

Journal of Learning and Teaching in Digital Age, 2024, 9(2), 111-128
https://dergipark.org.tr/en/pub/joltida

ISSN: 2458-8350 (online)

Research Paper

111 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Sustaining Undergraduate Students’ Metacognitive Regulatory Actions During Online
Flipped Programming Course

Gamze Türkmena, Sinan Hopcan*b , Elif Polatc

a(ORCID ID: 0000-0002-4695-9159), Manisa Celal Bayar University, Faculty of Education, Computer Education and Instructional Technology,
Manisa, Turkiye, gamze.turkmen@cbu.edu.tr
b(ORCID ID: 0000-0001-8911-3463), İstanbul University-Cerrahpaşa, Hasan Ali Yücel Faculty of Education, Computer Education and
Instructional Technology, İstanbul, Turkiye, sinan.hopcan@iuc.edu.tr
c(ORCID ID: 0000-0002-6086-9002), İstanbul University-Cerrahpaşa, Hasan Ali Yücel Faculty of Education, Computer Education and
Instructional Technology, İstanbul, Turkiye, elif.polat@iuc.edu.tr
*Corresponding author

ARTICLE INFO
Received: 15 November 2023
Revised: 16 April 2024
Accepted: 26 April 2024

Keywords:
Programming instruction
Metacognitive regulation
Flipped classroom
Flipped programming learning

doi: 10.53850/joltida.1391039

ABSTRACT
This research explores how metacognitive strategies influence the metacognitive awareness
of undergraduate students enrolled in an online flipped programming course. It specifically
focuses on regulatory actions crucial for success in programming instruction and distance
education settings. The primary objective is to contribute to the existing literature by
investigating the implementation of online flipped programming courses that integrate
metacognitive-oriented approaches to support students' metacognitive regulatory actions.
The study employed an explanatory sequential mixed methods design. A total of 29
university students enrolled in programming courses participated in the study, engaging with
instructional videos provided before each 10-week lesson. They were administered the
Metacognitive Awareness Scale and supplementary forms designed to assess their
metacognitive awareness and regulatory actions. A detailed coding scheme was developed
to analyze students' metacognitive regulation activities during programming lessons. The
study also evaluated the impact of supportive activities on students' metacognitive
awareness. While no statistically significant difference was found in the students'
metacognitive awareness through quantitative analysis, qualitative data revealed that
activities supporting metacognition significantly enhanced students' comprehension of the
programming content.

INTRODUCTION

In academic discourse, learning and teaching programming is acknowledged as a challenging field due to the structural complexity
inherent in programming. Despite a high level of interest and motivation among students to learn programming, many either drop
out or struggle to pass. Programming demands strong problem-solving skills, and, as Mayer (1998) emphasized, it is insufficient
for students to merely understand "what" to do in solving routine, new, or previously challenging problems. They must also grasp
"when" to apply specific problem-solving strategies. Furthermore, programming problem-solving involves cognitive processes
where students must know which strategies to employ and how to use them effectively (Bernard & Bachu, 2015). This underscores
the importance of metacognition, defined by Anderson (2002) as the ability to reflect on one's own cognitive processes. This
complex concept encompasses an individual's thought processes and self-regulation during problem-solving (Schoenfeld, 2016),
making metacognition a critical higher-order thinking skill that enables students to understand, analyze, and evaluate their cognitive
processes (Bernard & Bachu, 2015).

Programming skills, as described by Sun et al. (2022), are multifaceted and include metacognition, deemed essential. Metacognitive
skills—planning, self-monitoring, and evaluation—are crucial for computer programming, a problem-solving activity (Avcı, 2022).
Research suggests that acquiring metacognitive skills during programming instruction can enhance students' problem-solving
abilities and performance (Scherer et al., 2020). Hence, programming presents a significant challenge to novice learners, who must
develop not only coding skills but also metacognitive abilities (Nurulain Mohd Rum & Zolkepli, 2018). The lack of metacognitive
skills can hinder programming learning (Pea et al., 1987), making the development of these skills vital for training competent
programmers.

Reflecting on one's programming knowledge and skills, metacognitive skills are essential for achieving expertise in programming.
Through metacognition, individuals can identify and correct errors, seek assistance, and program more effectively (Pea et al., 1987).
Thus, it is crucial for students to reflect on their programming strategies and critically assess their approaches (Çakıroğlu & Er,

https://dergipark.org.tr/en/pub/joltida
gamze.turkmen@cbu.edu.tr%20
sinan.hopcan@iuc.edu.tr%20
elif.polat@iuc.edu.tr%20

G. Tükrmen, S. Hopcan, & E.Polat

112 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

2020), and to make connections between concepts (Bernard & Bachu, 2015). Utilizing error messages, feedback, and related tools
in programming enhances metacognitive skills and awareness (Çakıroğlu & Er, 2020). Loksa (2020) highlighted the scant research
on fostering metacognitive awareness in programming instruction. Metacognitive skills provide students with effective problem-
solving strategies (Anderson, 2002). Educators across various fields, including programming and mathematics, employ
metacognitive strategies to help students organize their learning through planning, monitoring, and evaluation (Tsai et al., 2022).
Employing these strategies supports struggling students, enabling them to learn more deeply and achieve greater success (Anderson,
2002). This research aims to help students understand how to apply the basic concepts learned in programming lessons to create
algorithms and solve problems by focusing on metacognitive regulation stages such as planning, monitoring, and evaluating.

Metacognitive skills are also deemed essential in online learning environments (Zhao & Ye, 2020). Implementing metacognitive
strategies in online learning has yielded positive outcomes (Broadbent & Poon, 2015; Karatas & Arpaci, 2021; Yılmaz & Keser,
2017; Zhao & Ye, 2020). As online learning gains popularity, researchers have adopted the "online flipped classroom" model,
building on the success of traditional flipped classrooms (Polat et al., 2022). This model involves students learning core content
independently before class through pre-recorded videos and/or lecture notes (Clark et al., 2022). The online flipped classroom also
requires students to complete pre-class activities asynchronously, such as participating in discussion forums, watching videos, and
taking quizzes, with the primary difference being the virtual rather than physical interaction between students and instructors (Jia et
al., 2023). In this model, students must be aware of their own knowledge and skills and capable of planning, monitoring, and
evaluating their learning progress (Yılmaz & Baydas, 2017).

Purpose of The Study

Stöhr et al. (2020) observed a growing interest in online flipped classrooms, despite limited studies evaluating this approach. While
previous studies on metacognition in programming instruction exist (Atmatzidou et al., 2018; Bergin et al., 2005; Cetin et al., 2014;
Çakıroğlu & Er, 2020; Loksa et al., 2016; Wang, 2019; Yıldız Durak & Uslu, 2022; Zhou et al., 2021), few have explored
metacognitive strategies within the online flipped classroom context. This investigation aims to address the gap in knowledge
regarding the impact of metacognitive strategies on undergraduate students' metacognitive awareness scores in an online flipped
programming course. It focuses on metacognitive regulatory actions critical to success in programming instruction and online
learning environments, examining how students apply metacognitive strategies to complete algorithm assignments. This study's
significance lies in its contribution to the literature on implementing an online flipped programming course that integrates
metacognitive strategies to promote students' metacognitive regulatory actions.

BACKGROUND

Metacognition in Definition

Metacognition is the knowledge and understanding of cognitive processes, specifically an individual's ability to think, comprehend,
and manage their own learning (Schraw & Dennison, 1991: p. 460). It encompasses an individual's awareness of their own cognitive
control, including the evaluation of the effectiveness of past strategies used, the monitoring of self-efficacy, and the assessment of
metacognitive knowledge based on feedback (Prather et al., 2020). Metacognition comprises three components: metacognitive
knowledge, metacognitive experiences, and metacognitive strategies (Lee & Mak, 2018). Metacognitive knowledge refers to an
individual's knowledge about their own learning, including their cognitive processes related to person, task, and strategy (Flavell,
1979). Metacognitive experiences relate to cognitive or affective experiences that are associated with intellectual tasks.
Metacognitive awareness, on the other hand, involves monitoring one's mental state and being aware of the mental processes
currently in operation (Loksa, 2020). Metacognitive strategies refer to the ability to utilize strategies to achieve specific goals
(Flavell, 1979). Students use these strategies to plan, monitor, and evaluate their own learning (Lee & Mak, 2018). These strategies
(Figure 1) include planning, monitoring, and evaluating, which help students control and manage their learning (Pintrich, 1999).
Metacognitive strategies have a significant impact on students’ academic achievements (Pintrich, 1999).

 Enhancing Metacognition in Online Flipped Programming

113 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Figure 1. Some examples for planning, monitoring and evaluating strategies

Metacognition in Programming Instruction

Research on metacognition in programming education has gained increasing attention in recent years, with studies revealing the
potential for metacognitive skills to aid students in mastering the subject (Prather et al., 2020). Several studies have indicated that
programming students struggle with the subject and need to develop cognitive and metacognitive skills to improve their performance
(Falkner et al., 2014; Loksa et al., 2022). Reflective activities and structured assignments, such as code explanation and reflective
writing, have been reported as effective pedagogical approaches in metacognition studies related to programming education (Prather
et al., 2020). Studies have also shown that students who use metacognitive strategies achieve better performance in programming
(Bergin et al., 2005) and that interventions designed to enhance metacognitive awareness and problem-solving skills have been
effective in improving programming performance (Atmatzidou et al., 2018; Zhou et al., 2021). Enriching programming courses with
activities that support metacognition, as well as using structured worksheets, have been found to positively affect the development
of metacognitive strategies and improve programming performance (Çakıroğlu & Er, 2020; Yıldız Durak & Uslu, 2022).
Additionally, interventions based on metacognition have been found to be more effective in teaching basic programming, and
teaching metacognitive strategies has also been shown to improve programming success (Cetin et al., 2014; Wang, 2019).
Furthermore, studies have found that metacognitive awareness has a positive effect on basic programming achievement, and
programming education can also increase students' metacognitive awareness (Korucu & Atıcı, 2018; Rum & Ismail, 2016).

Online Flipped Classroom

The online flipped classroom is a variation of the traditional flipped classroom, according to Hew et al. (2020). Stöhr et al. (2020)
suggest that the online flipped classroom is a promising teaching approach that involves both synchronous and asynchronous online
learning. Students are required to watch pre-recorded video lessons with quizzes as preparation for online lessons, instead of in-
person lessons in the traditional flipped classroom. Unlike the traditional flipped classroom, the online flipped classroom is
conducted remotely with teachers and students connecting online. Since the pandemic, research into the online flipped classroom
has increased, with positive outcomes reported in studies such as Gok et al. (2021), Hew et al. (2020), Korkmaz & Mirici (2021),
Stöhr et al. (2020), and Tang et al. (2020).

METHOD

In this explanatory sequential under the mixed methods study, the aim is to investigate the impact of metacognitive strategies on
the metacognitive awareness of undergraduate students in an online flipped programming course, with a focus on regulatory actions
that are relevant to success in programming instruction and distance education learning environments.

The mixed method was preferred because it complements the weak aspects of qualitative and quantitative methods (Creswell &
Plano Clark, 2011). This mixed-method study structured in three phases to evaluate the impact of an intervention on participants'
metacognitive awareness and strategies. Initially focusing on quantitative measures, the study begins with metacognitive strategy
training and assessment through an awareness inventory. During the intervention, qualitative methods such as video materials and
metacognitive-oriented forms, along with individual interviews, are employed. After the intervention, the study integrates both

• What should I do next? (Ku & Ho, 2010)
• How much time do I need to complete this task? (Thamraksa,

2005)
• What do I most want to learn in this course? (Medina et al.,

2017)

Planning involves scheduling tasks by
selecting appropriate strategies and

cognitive resources (Schraw & Moshman,
1995).

• What does this sentence mean? (Ku & Ho, 2010)
• Am I on the right track? (Thamraksa, 2005)
• What is most challenging for me about this task? (Medina et al.,

2017)

Monitoring includes awareness of one's task
performances and self-testing skills while

learning (Schraw & Moshman, 1995).

• I’ve generated three hypotheses, the first one seems more
correct. (Ku & Ho, 2010)

• What did I learn from doing this task? (Thamraksa, 2005)
• What did I find most interesting about class today? (Medina

et al., 2017)

Evaluation refers to the evaluation of the
effectiveness of learning products and

regulatory strategies used in the process
(Schraw & Moshman, 1995).

G. Tükrmen, S. Hopcan, & E.Polat

114 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

quantitative and qualitative approaches, re-evaluating metacognitive awareness and supplementing with focus group interviews to
gather comprehensive insights into the intervention's effectiveness. In current study, the problem was identified and a detailed
literature review was carried out. Afterwards, the aim of the study and the sampling method were determined. Data collection tools
were determined and developed. The syllabus, content and course materials of the course were prepared. It was decided to give the
algorithm design and development course with the online flipped classroom method. Figure 2 and Figure 3 shows the examples of
online course and video. Afterwards, the implementation process was carried out (see Fig 4.). This process took 10 weeks.

Figure 2. A screenshot from the online courses

Figure 3. A screenshot from the videos

Participants

Purposive sampling method was used in this study. The participants of this study are 29 freshmen enrolled in the algorithm design
and development course. Students are first year students of Computer and Instructional Technologies Department. 30% of the
students are males and 70% are females. The average age is 18-20 (%80). 80% of students have not taken a programming course
before. 76% of students had never heard of the flipped classroom. "Open-ended questions" and "multiple choice questions" were
placed in the videos in order to ensure both interaction and control the viewing status of the students. The number of questions is 3
open ended or 5 close-ended in each video.

Instruments

Metacognitive awareness inventory (MAI), Planning Form, Monitoring Form, Evaluation Form, Semi-Structured Interview
Questions for One-on-One Interviews and Semi-Structured Interview Questions for Focus Group Interviews are recruited in this
study as instruments. Sample items and questions from instruments are given in Appendix A.

 Enhancing Metacognition in Online Flipped Programming

115 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Demographic Form

This form was developed by researchers to obtain demographic information of students. It consists of seven close-ended questions.

Metacognitive Awareness Inventory (MAI)

The MAI, developed by Schraw and Dennison (1994) and adapted into Turkish by Akın et al. (2007), was used in the study. The 5-
point Likert-type inventory is a 52-item inventory developed to assess metacognitive awareness. Eight sub-dimensions under the
basic dimensions of knowledge and regulation of cognition were obtained. These sub-dimensions are declarative knowledge,
procedural knowledge, conditional knowledge, planning, monitoring, evaluation, debugging, and information management. Test-
retest reliability coefficients were found to be .95. For our study, the Cronbach's alpha coefficient was found to be .90.

Planning Form

The form was developed by researchers and contains 6 open ended items. Weekly assignment was given to the students. Weekly
assignments included an algorithm question (problem). In the first stage of solving the problem, the students filled out the planning
form while planning. The form developed to reveal metacognitive schemes of the students while preparing to solve the problem.
Each student filled these forms while planning the solution of the problem through Google Forms.

Evaluation Form

It is prepared to reveal the metacognitive schemes after students have solved the algorithm problem. The form consisting of 4 open-
ended questions was developed by the researchers. Each student filled these forms when they solved the problem through Google
Forms.

Semi-Structured Interview Questions for One-on-One Interviews

These are open-ended questions prepared by researchers to reveal students' metacognitive processes during the process. In the
retrospective interviews, questions about feelings (3 questions) under 3 main headings, 3 questions for each of the students who
gave and did not give details in the planning/monitoring/evaluation forms, and lastly 2 concluding questions were asked. The form
developed by the researchers was examined by an educational technology expert in terms of clarity, comprehensibility and scope.
In addition, a pilot study was conducted with 3 students and their opinions were received on the questions.

Semi-Structured Interview Questions for Focus Group Interviews

These open-ended questions prepared by researchers to reveal students' metacognitive processes at the end of the process. These
questions were about the planning, monitoring and evaluation processes. Finally, suggestions were asked in the form to organize
these processes. These suggestions were classified as form designs, selection expectations, writing habits, expressions for planning-
monitoring and evaluation processes. There are 7 open-ended questions in the focus group interview form: questions about feelings,
questions about algorithm problems, questions about strategies used and questions about forms. The form developed by the
researchers was examined by an educational technology expert in terms of clarity, comprehensibility and scope. In addition, a pilot
study was conducted with 3 students and their opinions were received on the questions.

Implementation Process and Procedures

It is possible to consider the stages of the research as before the intervention, during the intervention and after the intervention. In
the first week, the students were informed about the purpose of the study, the syllabus, the teaching of the course and the voluntary
basis. The study took place over a period of 10 weeks in total (see Appendix B for the course content). The researcher who teaches
the course has 10 years of experience in algorithms and programming.

Before the intervention, metacognitive awareness inventory was applied as a pre-test to determine students' metacognitive
awareness. In addition, students were given metacognitive strategy lesson, which lasted approximately 1.5 hours. In this way, they
have gained knowledge about the basic metacognitive strategies that they can use during this course. Examples of metacognitive
strategies are self-questioning, thinking aloud, reflection, and note-taking.

During the intervention, students took the algorithm design and development course in an online flipped classroom environment. In
this classroom model, approximately 20-30 minutes of videos prepared by the instructor before the lesson were shown to the
students. "Open-ended questions" and "multiple choice questions" were placed in the videos in order to ensure both interaction and
control the viewing status of the students. The number of questions is 3 open ended or 5 close-ended in each video.

In the online synchronous lessons, the students' questions were answered after a brief review of the topic. Afterwards, algorithm
problems were solved in the practical part. Online synchronous lessons lasted 2-2.5 hours. After each lesson, students were given

G. Tükrmen, S. Hopcan, & E.Polat

116 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

an algorithm problem as assignment. Google Classroom was used as the sharing platform of the course and Edpuzzle program was
used for sharing course videos. At the end of each lesson, the solutions of the examples covered in the lesson and the lecture notes
were shared with the students through Classroom. Students were told that they could ask questions through Classroom and
immediate feedback was given by the instructor.

The total number of assignments is six. For the assignment given every week, students were asked to answer in the planning (when
planning the solution of the problem), monitoring (while solving the problem) and evaluation (when solving the problem) forms via
Google Forms. In addition, students' weekly assignment grades, quiz grades, midterm grades, final grades, weekly video watching
grades were recorded during the study period. During the study process, one-on-one interviews were conducted with students which
took approximately 30 minutes.

After the intervention, the process was over, MAI was applied to the students as a post-test. In addition, focus group discussions
were also conducted. Focus group interviews took approximately one hour. In the one-on-one interviews, three students were
selected and interviewed from the students. The number of students randomly assigned to a focus group is in the range of 4-5 people.
Audio recording was taken with the permission of the students. The interviews were conducted online. While one of the researchers
conducted the one-on-one interviews, both researchers took part in the focus group interviews. Both researchers are experienced in
qualitative research methods (see Figure 4.).

Figure 4. Implementation process of the study

Data Analysis

The data analysis of this study was completed in two stages as the formation of the coding scheme and the analysis of the data of
the metacognitive awareness inventory. First, the coding scheme (see Appendix C) was created using the thematic analysis method
taking the metacognitive regulation-oriented flipped classroom course design as a central theme (Braun & Clarke, 2006). Second,
to compare pre and post-test scores for metacognitive awareness inventory, Wilcoxon Z Test was applied due to the non-parametric
nature of the collected data. Replay rates were measured for each student, and it was taken as covariate in Quade nonparametric
analysis of covariance.

To note that, the study's reliability and validity are subject to several limitations: the coding scheme's reliability and validity are
uncertain due to the low level of inter-rater reliability measures (which was 72%) and rigorous establishment of its alignment with
the study's theme. Concerns also arise regarding the reliability of statistical techniques, such as the Wilcoxon Z Test, and the validity
of covariate selection, particularly the use of replay rates. These limitations hinder the generalizability of findings, highlighting the
need for future research to address these issues through measures like higher inter-rater reliability assessment and validation studies
for measurement instruments.

FINDINGS

The first set of research questions aimed to examine the extent to which students’ flipped classroom experiences supported their
metacognitive processes on the basis of four metacognitive regulatory categories as orientation, planning, monitoring and
evaluating. The first section has analyzed the metacognitive regulations during flipped programming taking metacognitive support
forms for programming questions and has argued that monitoring of progress and monitoring of strategy use were highlighted for
designing the course. Whereas the second section questions whether there is a difference between students’ metacognitive
awareness. In addition, a summary of main findings regarding students’ suggestions for their flipped classroom experiences was
given.

Before the Intervention During the Intervention After the Intervention

Metacognition awareness
inventory

Metacognitive strategy
training

Videos before the lecture

Metacognitive-oriented
forms

Metacognition awareness
inventory

Focus group interviews

Quan Qual Quan + Qual

Individual interviews

 Enhancing Metacognition in Online Flipped Programming

117 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Metacognitive Regulatory Actions during Flipped Programming Course

Orientation

Orientation for the programming exercises produced four main themes as self-knowledge, other-knowledge, task analysis and
content orientation. The most prominent finding for the orientation category was finding task connections (f=22) before the students
were planning for the solution. Moreover, they mentioned about their awareness of own feelings that they have felt before planning
the solution as challenging, enjoyment, achievement, stressed, uneasiness, or curiosity. Students mentioned about the negative
feelings as challenging, stressed or uneasiness at the beginning that they first encountered with the question. Otherwise, the positive
feelings as achievement and enjoyment were experienced by students at the end of their solution. Students mainly produced
utterances about their peers’ comprehensibility for a variety of conditions when their solutions can be predictable, declarative,
having unique algorithm design and connected to lesson. Also, they mentioned about filling the form approach as they are oriented
to be aware of different strategies during problem solving, and to be aware of the steps they will go through to get along with the
solution (see Table 1).

Content orientation before they plan the problem solution was another important issue for the students. They mentioned when they
first encounter a programming question, they perform the processes for activating prior knowledge, anticipating the potential
solution and anticipating new knowledge at the end of the solution. Following utterance is an example of activating prior knowledge
for content orientation to programming exercise:

“First of all, I was checking my information. Do you have this information? I was starting the question accordingly.”

Table 1. Students’ utterances regarding orientation to the programming exercise

 First Second Total
Self-knowledge
 Alternative solution ways 6 1 7
 Knowledgeability 6 3 9
 Study habits 7 4 11
 Feelings 21 17 38
Other-knowledge
 Filling the form approach 12 12 24
 Knowledgeability 2 0 2
 Comprehensibility 9 0 9
 Instructor’s approach 1 0 1
Task analysis
 Task materials 2 1 3
 Task connections 16 6 22
 Task difficulty 0 2 2
 Task demands 2 1 3
Content orientation
 Anticipating solution 5 1 6
 Anticipating new knowledge 4 1 5
 Activating prior knowledge 8 1 9

Planning

Planning during the programming produced two main themes as planning in advance, and interim planning (see Table 2). Both of
them provided utterances in regard of task objectives and task solution approach. During the planning phase, students mentioned
they had a tendency to identify the approach for solving the task. Considering the shortest route and transforming flowchart to code
blocks were embraced in planning in advance by the students; whereas, self-questioning and considering the shortest route were
considered for interim planning. For the intersection of planning action for both interviews and for both sub-themes of planning,
considering the shortest route was uttered frequently compared to other sub-actions by the students. Following utterance was for
task solution approach during interim planning:

“Sometimes while I was designing, when I used decision structures, I wondered if it was tiring. As mentioned in the question, I
thought there might be differences in these aspects to see if there could be a shorter path.”

G. Tükrmen, S. Hopcan, & E.Polat

118 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Table 2. Students’ utterances regarding planning the programming exercise

 First Second Total
Interim planning
 Task objectives 5 0 5
 Task solution approach 5 1 6
Planning in advance
 Task objectives 1 0 1
 Task solution approach 8 0 8

Monitoring

Monitoring revealed three main themes as comprehension monitoring, monitoring of progress and monitoring of strategy use. While
the majority of the students had utterances focused on error detection in the middle of the semester, they frequently stated that they
showed error correction behavior in the interviews held at the end of the semester (see Table 3). Students mentioned that they
demonstrated error correction and error detection behaviors during their programming exercise.

“Write characters properly. Using neat shapes. Then, when trying at the exit part. Does it give correct answers at all values? Like
we found the truth by mistake. I was generally reviewing, but I was also hitting on the character writing.”

Similarly, the majority of the students produced more discourse on using their individual strategical preferences and strategies used
in the course during solving programming exercise.

Table 3. Students’ utterances regarding monitoring during solving the programming exercise

 First Second Total
Comprehension monitoring
 Demonstrating comprehension by

differentiating
7 4 11

 Noticing lack of comprehension 5 0 5
Monitoring of progress
 Error correction 14 17 31
 Error detection 19 5 24
Monitoring of strategy use
 Feeling-based 3 0 3
 Person-based 15 34 49
 Course-based 13 19 32
 Example-based 2 8 10

Evaluating

Evaluating revealed a total of six subthemes under evaluating learning process and evaluating learning outcome’s main themes (see
Table 4). Reflecting on task demand and self-efficacy revealed the highest proportion of the students’ utterances. Students mentioned
the difference between open-ended and multiple-choice questions and reflected their needs to take feedbacks on their answers to the
questions to be sure as a facilitator to lower the task demand. Following utterance is an example of reflecting on task demand:

“I used to get stuck with open-ended ones, usually what kind of answer should be given. I wasn't sure how to respond. Since I
couldn't predict those open-ended multiple-choice, multiple-choice seemed better to me.”

Table 4. Students’ utterances regarding evaluating the programming exercise

 First Second Total
Evaluating learning
process

 Reflecting on task demand 2 18 20
 Reflecting on task difficulty 0 1 1
 Reflecting on self-efficacy 12 4 16
Evaluating learning
outcomes

 Checking clarity of the solution 3 0 3
 Reflects on effectiveness of the solution 4 1 5
 Checking correctness of the solution 4 1 5

 Enhancing Metacognition in Online Flipped Programming

119 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Metacognitive Awareness Inventory

Metacognitive awareness inventory contains six factors to compare for pre and post-test scores. Although it does not reveal any
significant difference for pre and post test scores when Wilcoxon Z Test was applied, it seems that monitoring and planning produced
a differentiation for the mean scores. While mean value of monitoring was 3.72 for the pre-score, it was 3.39 for the post-score (see
Table 5).

Table 5. Non-Parametric Wilcoxon Z Test for Pre and Post MAI Scores

Scale Factor Form period (n=23)
Z Wilcoxon p Pre Post

 Mean Std. Dev. Mean Std. Dev.
Declarative knowledge .53 .15 .57 .08 1.14 .25
Procedural knowledge .31 .12 .27 .05 .85 .39
Conditional knowledge .35 .06 .36 .04 .52 .59
Planning .48 .10 .45 .10 1.15 .24
Monitoring .56 .13 .51 .10 -1.84 .06
Evaluating .40 .09 .40 .08 .07 .94
Debugging .34 .08 .35 .05 .43 .63
Information Management .64 .10 .62 .09 -.84 .39
Total awareness score 3.64 .68 3.58 .44 -.62 .53

Replay Rate as Covariate in Quade Nonparametric Analysis of Covariance

When replay rate is taken as covariate for the pre and post test scores, mean differences between the declarative, procedural,
condition knowledge, monitoring, evaluating, debugging, and information management showed significance. However, planning
does not result in any significant difference for the replay rate as a covariate. The total value showed a significant difference as well:
T(44)=6.120, p<0.01

Students’ Overall Suggestions for the Programming Course-Design

On Filling the Form Approach: The evaluations made by the students regarding the form filling approach were evaluated under the
"other-knowledge as an orientation issue" in general terms. At the end of the study, the students expressed their suggestions about
this approach, including triggering the planned activity, increasing awareness of different learning strategies, and considering that
writing takes time. They also mentioned the need for hint and feedback availability for filling the question form. The following
discourses include the evaluations of the students about this approach:

“My teacher, I felt the need to check myself again. While doing that homework, I say to myself again like the question on the form,
don't be distracted, go to a quiet place, put the phone down. Because of that question on the form, I always have to focus like this.
This is my favorite part. I'm giving myself self-control.” (Triggering planned activity)

“In other words, if there is such a convenience, I wonder if they think something wrong in the form, while designing the algorithm,
you can know from there whether they are progressing correctly, such small feedbacks can be good.” (Need for feedback
availability)

“For example, from my point of view, when I first started, for example, I did not understand what to do. You know, little hints there,
hints about what you want to do here would be nice.” (Need for hint availability)
“As a strategy, I started to learn a little more about what strategy is, thanks to the forms you provided.” (Awareness of different
strategies)

“It seemed a bit long to write the sequence I envisioned here.” (Take long time to write)

On Open Ended and Multiple-Choice Questions Embedded in Videos: Within the course videos, two types of questions, open-ended
and multiple-choice, were presented to the students. Due to the need for feedback, most of the students suggested that multiple
choice questions should be increased or feedback should be provided in open-ended questions:

“I don't know if I made the right or wrong answers to the classical questions. I shoot and that question reverberates in my head that
week. I wonder what will happen if I did wrong, should I go back? That's why I don't like classical questions at all.” (Feedback
availability)

“I used to get stuck with open-ended ones, usually what kind of answer should be given. I wasn't sure how to respond. Since I
couldn't predict those open-ended multiple-choice, multiple-choice seemed better to me.” (Feedback availability)

G. Tükrmen, S. Hopcan, & E.Polat

120 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

“Do we understand the video at once and it shows it.” (Video comprehension)

On Video-Represented Course: The majority of the students stated that presenting videos in the programming course facilitated the
learning process. Students suggested that it is beneficial for them to watch the video repeatedly during their comprehension process,
so the presentation of the videos should continue.

“I also need to watch the previous lesson video before I start, otherwise I can't do it. I'm trying to do it by looking at the algorithm
that the teacher asked, which one did it with.” (Simultaneous programming)

CONCLUSION, DISCUSSION AND SUGGESTIONS

This study aimed to examine the metacognitive regulatory actions of undergraduate students and the impact of a form approach on
their metacognitive awareness in the context of a flipped programming course. This study provides a coding scheme for
programming education and found that, with replay rate as a covariate, metacognitive awareness scores were significant except for
the planning process. The results suggest that the processes frequently used by undergraduates might reveal their needs for a basic
programming course.

The findings derived from the orientation segment of programming exercises reveal several significant insights into how students
approach problem-solving in programming tasks. The four key themes - self-awareness, external knowledge, task analysis, and
content comprehension - illuminate various aspects of students' cognitive and emotional engagement in the problem-solving process.
The most noteworthy discovery, highlighted 22 times, is the prioritization of identifying task connections prior to formulating a
solution. This indicates that students attribute importance to comprehending the context and requirements of the task, suggesting a
strategic problem-solving approach that emphasizes thorough analysis and comprehension before initiating solution planning. This
underscores the crucial role of task analysis in programming education, serving as a cornerstone for crafting effective problem-
solving methodologies. Çakıroğlu and Er (2020) echoed a similar perspective in the context of flipped programming education.
Hence, the necessity for students to seek guidance and establish task connections before tackling programming problems may be
significant. Consequently, there could be a requirement for a supportive system that offers examples enabling novice students to
establish task connections before commencing programming exercises, non-example solutions, or process breakdowns to facilitate
their ability to do so. In this scenario, the questions provided in the forms for students' planning processes could be construed as
guiding tasks. Additionally, besides endorsing this proposal, integrating a feature into the system allowing students to receive hints
and automated feedback for refining the suggestion could be contemplated for future research.

Moreover, an intriguing discovery was the observation of undergraduates frequently mentioning the shortest route while planning
compared to other sub-actions. This might be due to the form approach promoting a common language among students during
programming exercises. This supports the idea that planning involves forethought and activation of prior knowledge (Loksa et al.,
2022). Additionally, the rare mention of planning processes in the second set of interviews suggests automation of this process as
students practice. This aligns with previous research by Lui et al. (2006) which found that novice programmers improve and become
more efficient as they gain experience.

A significant finding was that the Quade nonparametric analysis of covariance revealed a difference in undergraduates'
metacognitive awareness scores pre and post-test except for the planning process, when replay rate was used as the covariate.
Although the frequency of planning process utterances decreased between the two sets of interviews, the lack of significance even
with replay rate as the covariate may require further investigation. It may be that planning is automated as students gain proficiency
in regulating their metacognitive actions, and thus awareness of planning is not impacted by differences in replay rates. This could
be due to students' preference for replaying after monitoring and evaluating phases during programming exercises. Furthermore, it
is hypothesized that students might prefer to replay after the monitoring and evaluating phases during programming exercises. This
preference might be influenced by their cognitive strategies (Ahsan & Obeidellah, 2021), or prior experiences (Loksa & Ko, 2016),
which could impact how they engage with the replay function and subsequently affect their metacognitive awareness during different
phases of problem-solving in a programming task. In conclusion, contrary to the findings of the study, an enhancement in students'
metacognitive awareness as a result of the flipped classroom approach (Limueco & Prudente, 2019; van Alten et al., 2020) was not
observed when the covariance of replay rate was not taken into account.

In addition, the data analysis revealed that in the second interview, the students reported a higher frequency of statements related to
error correction than error detection. It's possible that this shift in perception is due to the students' understanding of error detection
and correction as interrelated processes by the end of the course. However, it's unclear whether the method of form approach or
video learning influenced this perception. Furthermore, the specific type of errors that the students were referring to in this qualitative
finding cannot be determined. While previous studies have suggested that syntactic errors have a positive effect on programming
learning (Beege et al., 2021), it's uncertain which aspect of the flipped course design may have influenced the reported outcome.
Therefore, several uncertainties necessitate further exploration. Firstly, it remains unclear whether the instructional methods utilized
in the course, such as the form approach or video learning, influenced the observed change in students' perceptions regarding error
detection and correction. Understanding how different teaching approaches impact students' learning processes is essential for
crafting effective instructional strategies in programming education. Moreover, the specific categories of errors discussed by

 Enhancing Metacognition in Online Flipped Programming

121 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

students are unspecified, which limits the depth of analysis. Diverse types of errors may exert distinct influences on students' learning
journeys and achievements. For instance, while prior research suggests that syntactic errors may enhance programming learning, it
remains uncertain whether this factor contributed to the observed shift in student perspectives.

It is noteworthy that students appeared to contemplate their self-efficacy while completing programming exercises in the middle of
the semester, but shifted their focus towards the task demands of the exercises towards the end of the semester. The change in
reflection patterns observed among students, from self-efficacy during the middle of the semester to task demand at the end of the
semester, could potentially be attributed to increased academic demands and exam pressures towards the end of the term, rather than
solely due to the programming course. This emotional strain may lead to a decline in students' self-efficacy. While previous studies
have not encountered findings supporting this notion, evidence has been found indicating an increase in self-efficacy in middle
school student groups participating in robot programming activities (Yıldız Durak et al., 2019). Similarly, in adult groups, software
development has been associated with a positive attitude towards programming and an increasing perception of self-efficacy (Kovari
& Katona, 2023). Although no experimental research supporting this finding has been identified at this stage, future research
addressing this gap could be crucial.

The results of this study are significant in that they shed light on the positive influence of metacognitive regulation support on
students' metacognitive awareness and programming learning. Although the findings require further examination, they offer
valuable insights for the design of flipped programming courses. It's important to note that the students' self-efficacy perceptions
may decline towards the end of the term, and therefore, self-efficacy could also be measured alongside metacognitive awareness in
future studies. Overall, this study provides a comprehensive understanding of flipped course design for programming instruction
and points to the need for further research in this area.

Disclosure Statement
There is no conflict of interest for this study.

Ethics and Consent: Ethics committee approval for this study was received from the Ethics Committee of Manisa Celal Bayar
University (Date: 12.02.2021; Approval Number: 2021/03, E--050.01.04-26870)

REFERENCES

Ahsan, Z., & Obaidellah, U. (2021). Visual behavior on problem comprehension among novice programmers with prior knowledge.

Procedia Computer Science, 192, 2347–2354. https://doi.org/10.1016/j.procs.2021.09.003
Akın, A., Abaci, R., & Cetin, B. (2007). Bilişötesi Farkındalık Envanteri’nin Türkçe Formunun Geçerlik ve Güvenirlik

Çalışması. Educational Psychology, 67, 483-496.
Anderson, N. J. (2002). The Role of Metacognition in Second Language Teaching and Learning. ERIC Digest.
Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How does the degree of guidance support students’ metacognitive and problem

solving skills in educational robotics?. Journal of Science Education and Technology, 27, 70-85.
Avcı, Ü. (2022). A predictive analysis of learning motivation and reflective thinking skills on computer programming

achievement. Computer Applications in Engineering Education, 30(4), 1102-1116.
Beege, M., Schneider, S., Nebel, S., Zimm, J., Windisch, S., & Rey, G. D. (2021). Learning programming from erroneous worked-

examples. Which type of error is beneficial for learning? Learning and Instruction, 75, 101497.
https://doi.org/10.1016/J.LEARNINSTRUC.2021.101497

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning on introductory programming
performance. In Proceedings of the first international workshop on Computing education research (pp. 81-86).

Bernard, M., & Bachu, E. (2015). Enhancing the metacognitive skill of novice programmers through collaborative
learning. Metacognition: Fundaments, Applications, and Trends: A Profile of the Current State-Of-The-Art, 277-298.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
https://doi.org/10.1191/1478088706qp063oa

Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning
environments: A systematic review. The internet and higher education, 27, 1-13.

Çakıroğlu, Ü., & Er, B. (2020). Effect of using metacognitive strategies to enhance programming performances. Informatics in
Education, 19(2), 181-200.

Cetin, I., Sendurur, E., & Sendurur, P. (2014). Assessing the impact of meta-cognitive training on students' understanding of
introductory programming concepts. Journal of Educational Computing Research, 50(4), 507-524.

Clark, R. M., Kaw, A. K., & Braga Gomes, R. (2022). Adaptive learning: Helpful to the flipped classroom in the online environment
of COVID?. Computer Applications in Engineering Education, 30(2), 517-531.

Creswell, J. W. & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Los Angeles, CA: Sage.
Falkner, K., Vivian, R., & Falkner, N. J. (2014). Identifying computer science self-regulated learning strategies. In Proceedings of

the 2014 conference on Innovation & technology in computer science education (pp. 291-296).
Flavell, J. H. (1979). Metacognition and cognitive monitoring—A new era of cognitive-developmental inquiry. American

Psychologist, 34, 906–911.

G. Tükrmen, S. Hopcan, & E.Polat

122 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Gok, D., Bozoglan, H., & Bozoglan, B. (2021). Effects of online flipped classroom on foreign language classroom anxiety and
reading anxiety. Computer Assisted Language Learning, 1-21.

Hew, K. F., Jia, C., Gonda, D. E., & Bai, S. (2020). Transitioning to the “new normal” of learning in unpredictable times:
pedagogical practices and learning performance in fully online flipped classrooms. International Journal of Educational
Technology in Higher Education, 17, 1-22.

Jia, C., Hew, K. F., Jiahui, D., & Liuyufeng, L. (2023). Towards a fully online flipped classroom model to support student learning
outcomes and engagement: A 2-year design-based study. The Internet and Higher Education, 56, 100878.

Karatas, K., & Arpaci, I. (2021). The role of self-directed learning, metacognition, and 21st century skills predicting the readiness
for online learning. Contemporary Educational Technology, 13(3).

Korkmaz, S., & Mirici, İ. H. (2021). Converting a conventional flipped class into a synchronous online flipped class during COVID-
19: university students’ self-regulation skills and anxiety. Interactive Learning Environments, 1-13.

Korucu, A. T., & Atıcı, K. (2018). The determination of metacognitive awareness situations of secondary school students receiving
programming education with Alice. Journal of Learning and Teaching in Digital Age, 3(1), 3-11.

Kovari, A., & Katona, J. (2023). Effect of software development course on programming self-efficacy. Education and Information
Technologies, 28(9), 10937–10963. https://doi.org/10.1007/s10639-023-11617-8

Ku, K. Y., & Ho, I. T. (2010). Metacognitive strategies that enhance critical
Lee, I., & Mak, P. (2018). Metacognition and metacognitive instruction in second language writing classrooms. tesol

QUARTERLY, 52(4), 1085-1097.
Limueco, J. M., & Prudente, M. S. (2019). Flipped classroom enhances student’s metacognitive awareness. ACM International

Conference Proceeding Series, 70–74. https://doi.org/10.1145/3306500.3306507
Loksa, D. (2020). Explicitly Training Metacognition and Self-Regulation for Computer Programming. University of Washington.
Loksa, D., & Ko, A. J. (2016). The Role of Self-Regulation in Programming Problem Solving Process and Success. Proceedings of

the 2016 ACM Conference on International Computing Education Research. https://doi.org/10.1145/2960310.2960334
Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016). Programming, problem solving, and self-

awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI conference on human factors in computing
systems (pp. 1449-1461).

Loksa, D., Margulieux, L., Becker, B. A., Craig, M., Denny, P., Pettit, R., & Prather, J. (2022). Metacognition and self-regulation
in programming education: Theories and exemplars of use. ACM Transactions on Computing Education (TOCE), 22(4), 1-31.

Lui, K. M., & Chan, K. C. C. (2006). Pair programming productivity: Novice–novice vs. expert–expert. International Journal of
Human-Computer Studies, 64(9), 915–925. https://doi.org/10.1016/J.IJHCS.2006.04.010

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional science, 26(1-2), 49-63.
Medina, M. S., Castleberry, A. N., & Persky, A. M. (2017). Strategies for improving learner metacognition in health professional

education. American journal of pharmaceutical education, 81(4).
Nurulain Mohd Rum, S., & Zolkepli, M. (2018). Metacognitive strategies in teaching and learning computer programming.

International Journal of Engineering & Technology, 7, 788–794.
Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of programming expertise. Focus on Learning

Problems in Mathematics, 9, 5-30.
Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International journal of

educational research, 31(6), 459-470.
Polat, E., Hopcan, S., & Arslantaş, T. K. (2022). The association between flipped learning readiness, engagement, social anxiety,

and achievement in online flipped classrooms: a structural equational modeling. Education and Information
Technologies, 27(8), 11781-11806.

Prather, J., Becker, B. A., Craig, M., Denny, P., Loksa, D., & Margulieux, L. (2020, August). What do we think we think we are
doing? Metacognition and self-regulation in programming. In Proceedings of the 2020 ACM conference on international
computing education research (pp. 2-13).

Rum, S. N., & Ismail, M. (2016). Metacognitive awareness assessment and introductory computer programming course achievement
at university. Int. Arab J. Inf. Technol.(IAJIT), 13, 667-675.

Scherer, R., Siddiq, F., & Viveros, B. S. (2020). A meta-analysis of teaching and learning computer programming: Effective
instructional approaches and conditions. Computers in Human Behavior, 109, 106349.

Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics
(Reprint). Journal of education, 196(2), 1-38.

Schraw, G. & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19,
460-475.

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational psychology review, 7, 351-371.
Stöhr, C., Demazière, C., & Adawi, T. (2020). The polarizing effect of the online flipped classroom. Computers & Education, 147,

103789.
Sun, L., Guo, Z., & Zhou, D. (2022). Developing K-12 students’ programming ability: A systematic literature review. Education

and Information Technologies, 27(5), 7059-7097.
Tang, T., Abuhmaid, A. M., Olaimat, M., Oudat, D. M., Aldhaeebi, M., & Bamanger, E. (2020). Efficiency of flipped classroom

with online-based teaching under COVID-19. Interactive Learning Environments, 1-12.
Thamraksa, C. (2005). Metacognition: A key to success for EFL learners. BU Academic Review, 4(1), 95-99.

 Enhancing Metacognition in Online Flipped Programming

123 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Tsai, C. W., Lee, L. Y., Cheng, Y. P., Lin, C. H., Hung, M. L., & Lin, J. W. (2022). Integrating online meta-cognitive learning
strategy and team regulation to develop students’ programming skills, academic motivation, and refusal self-efficacy of
Internet use in a cloud classroom. Universal Access in the Information Society, 1-16.

van Alten, D. C. D., Phielix, C., Janssen, J., & Kester, L. (2020). Self-regulated learning support in flipped learning videos enhances
learning outcomes. Computers and Education, 158. https://doi.org/10.1016/J.COMPEDU.2020.104000

Wang, Y. (2019). Study of Metacognitive Strategies' Impacts on C Language Programming Instruction. In 2nd International
Conference on Contemporary Education, Social Sciences and Ecological Studies (CESSES 2019) (pp. 112-116). Atlantis
Press.

Yıldız Durak, H., Karaoğlan Yilmaz, F. G.., & Yilmaz, R. (2019). Computational Thinking, Programming Self-Efficacy, Problem
Solving and Experiences in the Programming Process Conducted with Robotic Activities. Contemporary Educational
Technology, 10(2), 173–197. https://doi.org/10.30935/cet.554493

Yıldız Durak, H., & Atman Uslu, N. (2022). Investigating the effects of SOLO taxonomy with reflective practice on university
students’ meta-cognitive strategies, problem-solving, cognitive flexibility, spatial anxiety: an embedded mixed-method study
on 3D game development. Interactive Learning Environments, 1-23.

Yilmaz, R. M., & Baydas, O. (2017). An examination of undergraduates’ metacognitive strategies in pre-class asynchronous activity
in a flipped classroom. Educational Technology Research and Development, 65, 1547–1567. https://doi.org/10.1007/s11423-
017-9534-1

Yılmaz, R., & Keser, H. (2017). The impact of interactive environment and metacognitive support on academic achievement and
transactional distance in online learning. Journal of Educational Computing Research, 55(1), 95-122.

Zhao, L., & Ye, C. (2020). Time and performance in online learning: Applying the theoretical perspective of
metacognition. Decision Sciences Journal of Innovative Education, 18(3), 435-455.

Zhou, P., Li, J., Chen, F., Zhou, H., Bao, S., & Li, M. (2021). Design of metacognitive scaffolding for k-12 programming
education and its effects on students’ problem solving ability and metacognition. In 2021 Tenth Intern ational
Conference of Educational Innovation through Technology (EITT) (pp. 182–186). IEEE.

APPENDICES

Appendix A. Data Collection Tools

Instruments Reference Sample Items/Questions
Metacognitive awareness inventory (MAI) Akın et al. (2007) • I consider a few alternatives before answering a

problem.
• I try to use the strategies I have used in the past.

Demographic Form Developed by researchers • Age
• Gender

Planning Form Developed by researchers • Deciding on my prior knowledge about the algorithm
I will design

• Before I start my algorithm design, asking myself
questions.

Monitoring Form Developed by researchers • Questioning whether strategies different from those I
have applied can be applied to complete the
algorithm design

• Checking if I am distracted while completing the
algorithm design

Evaluation Form Developed by researchers • Deciding whether I have achieved the task given as a
result of my algorithm design

• Summarizing what I learned after algorithm design
Semi-Structured Interview Questions for
One-on-One Interviews

Developed by researchers 1. How did you feel while answering the planning questions?
2. In the planning forms, it seems that you wrote short answers
such as "I tried to give, I have enough information". Is there any
particular reason for this?
a. What did you pay attention to before creating the algorithm?
b. What did you include in your planning?
c. Why did you decide to include them in your planning?

Semi-Structured Interview Questions for
Focus Group Interviews

Developed by researchers What's your first step in an algorithm question?
What was your favorite aspect of form designs? Why?

Appendix B. Course Content

Algorithm 1st Week Topics Learning Objectives
1. What is an algorithm - To understand what an algorithm is and its purpose.
2. Flow charts and figures - To gain the ability to represent algorithms visually using flowcharts and figures.
3. Algorithm printing - To develop the ability to write algorithms in a structured format.

Algorithm 2nd Week Topics
1. Using FcPro3 - To gain the ability to use FcPro3 flowcharting program.
2. Definition of operators (+,-,/,*,%) - To define mathematical operators (+, -, /, *, %) and apply them in algorithm design.

G. Tükrmen, S. Hopcan, & E.Polat

124 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

3. Condition structures - To use condition structures to direct the flow of the algorithm.
4. Logical operators (==, <, >, <=, >=, !=, <>, !<, !>,
&&, ||)

- To understand and use logical operators (==, <, >, <=, >=, !=, <>, !<, !>, &&, ||) for
creating complex conditions.

Algorithm 3rd week Topics
1. Loops To master the concept and use of loops to perform repetitive tasks within an algorithm.

Algorithm 4th weekTopics (C# Lesson 1)
1. Using Visual Studio - To learn for installing Visual Studio and use it for C# programming.
2. Printing code on the screen - To do code printing on the screen with C#.
3. Using arithmetic operations with C# - To apply arithmetic operations in C# applications.
4. What is the description line, how to create it - To understand what comment lines are and learn how to create them.
5. What are bool, string, integer, char, double and
where are they used

- To learn the use of basic data types such as bool, string, integer, char, double and the
differences between them.

Algorithm 5th week Topics (C# Lesson 2)
1. Receiving data from user - To gain the ability to receive data from the user and process this data in a C# program.
2. If – else, else if - To apply conditional constructs such as if-else, else if to control program flow.
3. Switch-case - To understand and use switch-case constructs for multiple branch options.
4. Use of codes like ToLower – ToUpper - To use methods such as ToLower and ToUpper to convert string expressions to

upper/lower case.

Algorithm 6th week Topics (C# Lecture 3)
1. Nested conditional structures - To understand and create nested conditional structures for complex decision making.

Algorithm 7th weekTopics (C# Lecture 4)
1. While - To use the while loop for iterative execution based on a conditional state.
2. For - To learn the for loop to iterate over a given number of steps.
3. Do while - To understand the do while loop and its unique execution flow for repeated

operations.
4. Random use - To understand random number generation in C# and its applications.

Algorithm 8th weekTopics (C# Lecture 5)
1. Use of nested loops To master the use of nested loops to handle multi-dimensional operations.
a. An example of nested for loop structure is given in
the video

Algorithm 9th week Topics (C# Lecture 6)
1. What are arrays, where do we use them - To understand what arrays are and where they are used.
2. Index definition - To understand what indexing is and how to access elements in arrays.
3. Creating an array and assigning values - To create arrays in C# and assigning values to them.
Algorithm 10th week Topics (C# Lecture 7)
1. Break – Continue - To use break and continue statements to control loop execution.
2. Return - To use return statements to return values from functions.
3. Use of functions and their intended use - To understand the creation and use of functions to modularize code.
4. What are the concepts of receiver and giver - To understand the concepts of 'receiver' and 'transmitter' in the context of function

parameters and return values.

Appendix C. Coding Scheme for Interviews

Category Theme Sub-theme Definition Example Utterance
Orientation Content Activating prior

knowledge
Prior knowledge
regarding the content
including operators,
course experience,
other-experience (which
may include) is being
activated at the first
sight of the algorithm
question.

Eng: “First of all, I was checking my information. Do you
have this information? I was starting the question
accordingly.”
Tr: “öncelikle bilgilerimi kontrol ediyordum. bu bilgiler
var mı yok mu. ona göre soruya başlıyordum.”

 Anticipating
solution

 Eng: “I think in my head, if I design it in an algorithm, I
will get results.”
Tr: “Kafamda düşünüyorum bunu nasıl bir algoritmada
tasarlarsam sonuç elde ederim diye.”

 Anticipating new
knowledge

At the end of the
algorithm, one
anticipates which kind
of operations regarding
the algorithm design

Eng: “I need information first. I think it is necessary to
know the meanings of those decision structures and the
structures used in the flowchart. that information is
needed. If we are going to do a homework about numbers,
which is also necessary for homework, there is a need to
know the meanings of those numbers.”

 Enhancing Metacognition in Online Flipped Programming

125 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 112-129

Category Theme Sub-theme Definition Example Utterance
will be acquired as new
knowledge.

Tr: “önce bilgiye ihtiyacım. o karar yapıların, akış
şemasında kullanılan yapıların anlamlarını bilmek
gerektiğini düşünüyorum ki do yapısını ben aslında bu
dersin ödevlerini yaparken daha iyi kavradım. o bilgiye
ihtiyaç var. aynı zamanda ödev için gerekli olan, sayılar
ile ilgili bir ödev yapacaksak o sayıların anlamlarını
bilmeye ihtiyaç var.”

 Task analysis Task demands One specifies task
demands as how much
time may it take, what
kind of operators may be
used, how may the
question is different
from the previous ones
regarding its demands.

Eng: “I have to determine which operation you want.
Which way should I go? detail of the operation to be
performed, will the counter or the loop be used? I tried to
look at these kinds of things”
Tr: “hangi işlemi istediğini onu belirlemek zorundayım.
hangi yoldan gitmem gerektiğini. yapılacak işlemin
ayrıntısını, sayaç mı kullanılacak döngü mü kullanılacak?
bu tarz şeylere bakmaya çalıştım”

 Task difficulty One specifies the
question difficulty
regarding the demand,
differences, time and
familiarity.

Eng: “The first thing I did after I realized how hard it was
for me”
Tr: “anladıktan sonra yaptığım ilk şeyde benim için ne
kadar zor olup olmadığı”

 Task connections One specifies the
connections within the
question and between
the question. As
semestre continues,
these connections are
getting complex.

Eng: “It requires more than one condition. It was a little
more difficult to figure out where to reach which result.
When I didn't take a step, the conditions were mixed.”
Tr: “birden fazla koşul istiyor. hangi sonuca nereden
ulaşacağımı bulmak biraz daha zor oluyordu. adım
atmayınca koşullar birbirine giriyordu.”

 Task materials One specifies the
materials needed for the
task completion.

Eng: “If it is an algorithm that will force me, I take paper
and a pen and write”
Tr: “eğer beni zorlayacak bir algoritma ise elime kâğıt,
kalem alıp yazıyorum”

 Self-
knowledge

Awareness of
own feelings

One is aware of own
feelings regarding the
algorithm question and
form.

Eng: “When we didn't do an assignment, there was a task
phase, a plan phase, and I was writing them down on
forms. In a way, this is the planning phase of the
assignment, so I enjoyed it while filling it out. At first, yes,
it was a bit different, boring, but then I enjoyed it.”
Tr: “bir ödevi yapmadığımızda bir görev aşaması, plan
aşaması oluyordu ve bunları formlara yazıyordum. Bu bir
bakıma ödevi planlama aşaması olduğu için ben zevk
aldım yani doldururken. İlk başta evet biraz değişik sıkıcı
geldi ama sonradan keyif aldım.”

 Awareness of
alternative
solution ways

 Eng: “Because, my teacher, shorter structures are said in
the lesson, teacher, if we do this, it will be shorter. There
are things that are used interchangeably, I believe, there
are definitely different solutions.”
Tr: “Çünkü hocam derste de daha kısa yapılar söyleniyor
hocam bunu yaparsak daha kısa olur. birbirinin yerine
kullanılan şeylerde var ben inanıyorum mutlaka farklı
çözüm yolları da vardır.”

 Self-knowledge
of study habits

One has self-knowledge
on how one may prefer
to study for applied
courses.

Eng: “I don't like to mess with a strategy or something I'm
doing. For example, if I am rote in biology, I will continue
to rote. You know, when I turn it into something else, it
looks like it will break, but the teacher had already told us
in only one of my assignments. It was on my mind. When
I did the coding directly without drawing anything, it
worked in the program. I'm firm on some things. I don't
spoil anything much. So I don't know if it's regular or not.
In other words, if I can continue with something that is
complete, I am not in favor of changing it much.”
Tr: “Bir stratejim ya da yaptığım bir şeyi çok bozmayı
sevmem. Mesela biyolojide ezbere gidiyorsam ezbere
gitmeye devam ederim. Hani onu başka bir şeye
çevirdiğimde sanki bozulacak gibisinden ama sadece bir
tane ödevimde hoca zaten bize anlatmıştı. O aklımda
kalmıştı. Hiç çizmeden bir şey yapmadan kodlamayı direk
yaptığımda programda çalıştı. Bazı şeylerde sabit
fikirliyimdir. Çok bir şeyleri bozmam. Yani düzenli mi
oluyor onu da tam bilmiyorum. Yani yaptığım bir şeyi tam

G. Tükrmen, S. Hopcan, & E.Polat

126 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Category Theme Sub-theme Definition Example Utterance
olmuşsa öyle devam edebiliyorsam çok değiştirme
taraftarı olmuyorum.”

 Awareness of
own-
knowleadgeabilit
y

One has self-knowledge
on how much one knows
about solving algorithm
question.

Eng: “I asked myself what do I know, what do I not
know?”
Tr: “kendime sordum ne biliyorum, ne bilmiyorum?”

 Other-
knowledge

Instructor’s
approach

One has ideas on what
instructors’ approach
may be during the
course.

Eng: “Since the teaching style of one teacher is different
from that of another teacher, this method was very good
for both my teacher X and my teacher Y, of course, my
teacher Z.”
Tr: “bir hocanın anlatma tarzı ile diğer hocanın anlatma
tarzı farklı olduğu için bu yöntem X hocam da Y hocam
da gayet iyi oldular Z hocam da tabii ki.”

 Filling the form
approach

One has ideas on used
approach regarding
filling the form.

Eng: “As a strategy, I started to learn a little more about
what strategy is, thanks to the forms you provided.”
Tr: “Strateji olarak ise stratejinin ne olduğunu, sizin
verdiğiniz formlar sayesinde biraz daha fazla öğrenmeye
başladım.”

 Peers’
comprehensibilit
y

One has ideas on how
peers feel.

Eng: “My friend who designs algorithms in the way I do
and makes the algorithm can understand. But my friend,
who designs an algorithm in a very different style of his
own, cannot understand.”
Tr: “Benim yaptığım tarzda algoritma tasarlayan,
algoritmayı yapan arkadaşım anlayabilir. ama kendine
özgü çok farklı tarzda bir algoritma tasarlayan arkadaşım
anlayamaz.”

Planning Planning in
advance

Task solution
approach

One automatically plans
the solution approach
before solving the
algorithm problem:
considering shortest
route, transforming
flowchart to code block,
using code blocks

Eng: “Then I think that it is necessary to pass the process
through your own mind and transfer it to the paper and
transfer that paper back to the computer.”
Tr: “daha sonra işlemi kendi zihninden geçirip kağıda
aktarıp, o kağıdı tekrar bilgisayara aktarmanın olması
gerektiğini düşünüyorum.”

 Task objectives One determines the
objectives necessary for
solving the problem
before attempting.
These objectives might
be either course-based
or anticipated new
knowledge-based.

Eng: “Does the homework (programming output) fulfill
the task given first?”
Tr: “ödev ilk önce verilen görevi yerine getiriyor mu?”

 Interim
planning

Task solution
approach

One adapts the solution
approach during solving
the problem.
Considering shortest
route and self-
questioning

Eng: “Sometimes when I use decision structures while
designing, I wonder if it gets tiring. As mentioned in the
question, I thought there might be differences in these
aspects to see if there could be a shorter way.”
Tr:“bazen tasarlarken de hani karar yapılarını kullandığım
zaman acaba yoruyor mu diye düşünüyordum. zaten
soruda da belirtildiği gibi daha kısa yolu olabilir mi diye
bu yönlerden farklılıklar olabileceğini düşündüm.”

 Task objectives One adapts the
necessary objectives
during solving the
problem.

Eng: “So I said that if the assignment is usually about the
if structure, I will use the if structure”
Tr: “yani ödev genellikle if yapısı ile alakalı ise if yapısını
kullanacağımı söyledim”

Monitoring Monitoring
of strategy
use

Feeling-based Used strategies based on
students’ feelings

Eng: “It had an impact on organizing my thoughts. I tried
to calm myself down by sitting down and not getting
completely stressed, saying okay, I'm taking a break,
without straining myself. because after a while, morale
starts to depress why I can't do it. in such things. I say to
myself, can't I do it? when I sit down and start resting
somewhere. sitting in my head. My thoughts are sitting in
my head. The things I want to do actually fall into place
more when I take a break when I am in pieces.”
Tr: “düşüncelerimi düzenleme açısından etkisi oldu.
kendimi kasmadan tamam ben mola veriyorum diyerek,
bir kenara oturarak tamamen strese girmeden, kendimi
sakinleştirmeye çalıştım. çünkü bir yerden sonra neden
yapamıyorum diye moral bozukluğu başlıyor. bu tür

 Enhancing Metacognition in Online Flipped Programming

127 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 112-129

Category Theme Sub-theme Definition Example Utterance
şeylerde. hani olmuyor mu ben yapamıyor muyum
diyorum kendi kendime. oturup bir yerde dinlenmeye
başladığım zaman. kafamda oturuyor. düşüncelerim
kafamda oturuyor. yapmak istediklerim aslında param
parça bir şekildeyken mola verdiğimde daha fazla
yerlerine oturuyor.”

 Person-based Used strategies based on
students’ own
characteristics

Eng: “We were also using a counter, while we were
adjusting the counter in algorithms, for example, we were
determining the first number, the second number, the
third number. When we gave i a value we wanted it to
continue in numbers, I struggled a lot doing it and when
I found my mistake, I tried a lot until I found my mistake.
I finally found it.”
Tr: “bir de sayaç kullanıyorduk, algoritmalarda sayaç
belirlemede onu ayarlarken örneğin birinci sayı, ikinci
sayı, üçüncü sayı diye sayaç belirliyorduk. i'ye bir değer
verdiğimizde onun devam etmesini istiyorduk sayılarda,
onu yaparken çok fazla uğraştım ve hatamı bulduğum
zaman, hatamı bulana kadar çok fazla deneme yaptım.
sonunda da buldum.”

 Course-based Used strategies based on
the course that students
attend

Eng: “So when I watch the videos before the lesson, I
definitely do it in the program. Just to see how it works,
maybe I'm typing something wrong?"
Tr: “Yani ders öncesinde videoları seyrederken
muhakkak programda yapıyorum. Nasıl çalıştığını
görmek için bide tabii acaba bir şeyleri yanlış yazıyor
olabilir miyim?”

 Example-based Used strategies based on
different examples not
available in courses

Eng: "If we haven't done it in the past classes, I'm looking
for it on the internet."
Tr: “Eğer geçmiş derslerde de yapmadıysak internetten
araştırıyorum.”

 Monitoring
of progress

Error detection
by reviewing the
code

One detects error by
reviewing the written
rows

Eng: “Don't write the characters properly. using neat
shapes. then when trying at the exit part. Does it give
correct answers at all values? Like we found the truth by
mistake. I was usually skimming, but I was falling for the
character writing.”
Tr: “karakterleri düzgün yazma. düzgün şekiller
kullanma. sonrasında da çıkış kısmında denerken. bütün
değerlerde, doğru cevapları veriyor mu. yanlışlıkla mı
doğruyu bulduk gibi. genelde gözden geçiriyordum ama
karakter yazımında üstüne düşüyordum.”

 Error detection
by seeing the
unwanted result

One detects error by
seeing the result has
missing value

Eng: “For example, because he said to enter a number on
the screen. I entered the 1st came again. I entered three. I
got seven. I hit zero. the answer was directly zero, that is,
it tried to multiply by zero. It wasn't supposed to hit him."
Tr: “mesela ekrana bir sayı gir dedi diye. girdim 1. bir
daha geldi. üç girdim. yedi girdim. sıfıra bastım. cevap
direkt sıfır oldu yani sıfır ile çarpmaya kalktı. onu
çarpmaması gerekiyordu.”

 Error detection
by seeing the
unworked result

One detects error by
seeing the failure

Eng: “I couldn't see my mistake especially in grading. I
saw it after running it.”
Tr: “özellikle notlandırmada yanlışımı görememiştim.
çalıştırdıktan sonra gördüm.”

 Error correction
by questioning

One corrects the solution
by questioning on the
reasons of failure

Eng: “While changing it, the other one disappeared and
there is something, there was a question mark in my
head.”
Tr: “değiştirirken diğeri yok oldu da bir şey vardır,
kafamda bir soru işareti de oldu.”

 Error correction
by revisiting the
recorded videos

One corrects the solution
by revisiting the recorded
videos

Eng: “There were also times when my instructors shared
their lectures and I watched them and corrected my
mistakes.”
Tr: “hocaların ders kayıtlarını paylaştığında ve onları
izleyip hatalarımı düzelttiğim de oluyordu.”

 Error correction
by revisiting the
notes taken
during watching

One corrects the solution
by revisiting the taken
notes

Eng: “I was trying to review the examples we did in class.
I was just trying to find my fault.”
Tr: “derste yaptığımız örnekleri gözden geçirmeye
çalışıyordum. öyle hatamı bulmaya çalışıyordum.”

G. Tükrmen, S. Hopcan, & E.Polat

128 © 2024, Journal of Learning and Teaching in Digital Age, 9(2), 111-128

Category Theme Sub-theme Definition Example Utterance
videos and
course hour

 Comprehensi
on
monitoring

Noticing lack of
comprehension

One is aware of lack of
comprehension regarding
the algorithm elements

Eng: “When I did it with the method we always do, I
couldn't get results, I couldn't get an answer. missing
algorithm. I realized there had to be a change there.”
Tr: “her zaman yaptığımız yöntem ile yapınca sonuç
alamadım, cevap alamadım. eksik algoritma oldu.
değişiklik olması gerektiğini anladım orada.”

 Demonstrating
comprehension
by
differentiating

One differentiates
between logical operators
and algorithm problems

Eng: “There was a pretty big difference between the
second and third. In the third, there was an assignment
called multiplication until you hit zero for the first time.
It was the first time such an assignment until the end, in
short.”
Tr: “ikinci ve üçüncü arasında bayağı büyük fark vardı.
üçüncüde ilk defa sıfıra basana kadar çarpma işlemi diye
bir ödev vardı. sonuna kadar ilk kez böyle bir ödev oldu
yani kısaca.”

Evaluating Evaluatin
g learning
outcomes

Checking correctness of
the solution

One checks the
correctness of the
solution

Eng: “I'm assigning the name of the variable, let it be a
variable. I distinguished variable s and ş. Just because I have
to write s. For example, I'm going to assign a name to a
variable. I will write a variable, not a variable. I assign this
to my distraction as the income variable. In this case, there
is an error in the program. so I look directly at the variables
first, to see if I wrote it correctly.”
Tr: “değişkenin ismi atıyorum değişken olsun. degisken s ile
ş yi ayırt etmiştim. s yazmam gerekiyor diye. mesela
değişken diye bir isim atayacağım. değişken değil de,
degisken yazacağım. bunu ben dalgınlığıma gelir değişkeni
değişken diye atarım. bu durumda programda hata olur. o
yüzden direkt değişkenlere bakıyorum ilk olarak, doğru mu
yazmışım diye.”

 Reflects on
effectiveness of the
solution

One reflects on the
effectiveness of the
solution

Eng: “I decided this was shorter, the second I did. I sent two
solution methods while submitting the assignment.”
Tr: “bunun daha kısa olduğuna karar verdim, ikinci
yaptığımın. iki tane çözüm yöntemi gönderdim ödevi
gönderirken.”

 Checking clarity of the
solution

 Eng: “I always paid attention to make it understandable
rather than abbreviated.”
Tr: “kısaltmaktan ziyade anlaşılır olmasına dikkat etmiştim
hep.”

 Evaluatin
g learning
progress

Reflecting on self-
efficacy

One reflects on self-
efficacy after
completing

Eng: “I haven't done anything like that until now, but first I
determine it in my head, then I apply it, and then I evaluate
myself whether it's really what I'm missing.”
Tr: “öyle bir şey yapmadım şu zamana kadar ama önce
kafamda belirleyip sonrasında onu uygularım ve sonrasında
gerçekten ne eksiğim var, gerçekten olmuş mu diye
değerlendiririm kendimi.”

 Reflecting on task
demand

One reflects on task
demand after
completing

Eng: “After that, I opened the forms and put the algorithm
directly next to it. Before I did this algorithm, I thought about
what was going through my mind and wrote answers to the
forms, in the scoring places.”
Tr: “ondan sonra formları açıp algoritmayı direkt yanına
koymuştum. bu algoritmayı yapmadan önce aklımdan neler
geçiyordu diye düşünüp formlara cevaplar yazmıştım,
puanlama yerlerine.”

