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Bayesian Knowledge Tracing (BKT) is a popular interpretable computational model in the educational
mining community that can infer a student’s knowledge state and predict future performance based on
practice history, enabling tutoring systems to adaptively select exercises to match the student’s compe-
tency level. Existing BKT implementations do not scale to large datasets and are difficult to extend
and improve in terms of prediction accuracy. On the other hand, uninterpretable neural network (NN)
student models, such as Deep Knowledge Tracing, enjoy the speed and modeling flexibility of popular
computational frameworks (e.g., PyTorch, Tensorflow, etc.), making them easy to develop and extend.
To bridge this gap, we develop a collection of BKT recurrent neural network (RNN) cells that are much
faster than brute-force implementations and are within an order of magnitude of a fast, fine-tuned but
inflexible C++ implementation. We leverage our implementation’s modeling flexibility to create two
novel extensions of BKT that significantly boost its performance. The first merges item response theory
(IRT) and BKT by modeling multidimensional problem difficulties and student abilities without fitting
student-specific parameters, allowing the model to easily generalize to new students in a principled way.
The second extension discovers the discrete assignment matrix of problems to knowledge components
(KCs) via stochastic neural network techniques and supports further guidance via problem input features
and an auxiliary loss objective. Both extensions are learned in an end-to-end fashion; that is, problem
difficulties, student abilities, and assignments to knowledge components are jointly learned with BKT
parameters. In synthetic experiments, the skill discovery model can partially recover the true generating
problem-KC assignment matrix while achieving high accuracy, even in some cases where the true KCs
are structured unfavorably (interleaving sequences). On a real dataset where problem content is available,
the skill discovery model matches BKT with expert-provided skills, despite using fewer KCs. On seven
out of eight real-world datasets, our novel extensions achieve prediction performance that is within 0.04
AUC-ROC points of state-of-the-art models. We conclude by showing visualizations of the parameters
and inferences to demonstrate the interpretability of our BKT RNN models on a real-life dataset.
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1. INTRODUCTION

It is well-known that one-on-one tutoring is superior to traditional classroom instruction (Bloom,
1984) but the obvious impracticality of assigning a tutor to every student has made intelligent
tutoring systems (ITS) a viable and cheaper alternative to individualized tutoring. ITS show a
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series of exercises for students to practice and are often equipped with extra features such as
video explanations, adaptive hints, and even game-like mechanics. Such systems also enjoy an
important advantage over traditional instruction: they log all the interactions with the student,
providing a wealth of fine-grained data for analysis. Good tutoring systems adapt to the student’s
performance; they provide exercises that are matched to the student’s skill level—not too easy
nor too hard.

This adaptation requires a computational model of the student’s knowledge that can predict
their performance on any given exercise. Research into student performance models has a long
history and has produced models that capture different aspects of performance, such as the
temporal dynamics of learning and forgetting (Corbett and Anderson, 1994; Pavlik et al., 2009;
Pelánek, 2014), or the interaction between problem difficulty and student ability (Reckase, 1979;
Ravand and Robitzsch, 2018; Finch and French, 2018).

One of the most popular temporal models of learning is Bayesian Knowledge Tracing (BKT)
(Corbett and Anderson, 1994) which assumes that a student has a latent binary knowledge state
representing whether they’ve learned the knowledge component (KC) or not. Broadly speaking,
KCs are pieces of knowledge, skills, concepts, principles, or facets that students need to solve a
problem (Koedinger et al., 2012) (e.g. if you need to solve an equation, you need to know how to
add, subtract, and multiply). Throughout this work, we use KC and skill interchangeably. BKT
assumes that KCs are independent: performance on one KC does not inform performance about
another. State space models like BKT are attractive because they offer a clear cognitive story of
how student answers are generated and because they naturally support post hoc state smoothing
of the knowledge states, where the estimate of what the student knew at time t can be refined
based on performance from previous and subsequent trials.

Compared to BKT, neural network (NN) (Goodfellow et al., 2016) models have attained
state-of-the-art performance on benchmark educational datasets (Piech et al., 2015; Zhang et al.,
2017; Gervet et al., 2020; Tsutsumi et al., 2021). NN models are attractive because of mod-
eling flexibility: all that is required is a forward model of computation and the difficult task
of learning and running on parallel processing hardware is left to the underlying computational
framework (PyTorch, Tensorflow, etc.). The performance boost of NN models comes at the cost
of interpretability as these models are either fully or partially uninterpretable.

We define interpretability from a machine learning perspective, which is the ability to un-
derstand the causes of a model’s decision or predictions (as suggested by Molnar (2022)). NN
models often use distributed representations whose contributions to the final prediction are diffi-
cult to pinpoint. For example, in the well-known Deep Knowledge Tracing (DKT) model (Piech
et al., 2015), it is unclear how previous practice history, KC features, and hidden state influence
the predictions of the model. BKT on the other hand, has a handful of well-defined parameters
(as we will see shortly) that interact with each other in a clear way that a human could grasp. As
a result, one can easily understand how BKT’s predictions will change in response to a change
in a parameter or the hidden state of the model.

We have identified three main issues that, if implemented in BKT, could reduce its dis-
advantage to NN models while maintaining interpretability at the same time. The first issue
is unidimensional modeling of students and the inability to generalize to new students.
As stated previously, BKT treats each KC independently so the student’s performance on one
KC does not inform their performance on another. Extensions were developed to fix this by
assuming, amongst other things, that the student has an overall ability level that influences per-
formance on all KCs (Khajah et al., 2014; Gonzalez-Brenes et al., 2014; Pelánek, 2017). These
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extensions improve performance, but they fail to generalize to new students in a principled way
(other than computationally expensive Bayesian implementations), with some implementations
simply assuming that a new student would have an average ability level based on the training
set. Moreover, to our knowledge, there are no BKT extensions that support multidimensional
student abilities (e.g., to model students that learn quickly but forget slowly or vice versa), which
recent literature showed can improve the performance of opaque NN models (Tsutsumi et al.,
2021). The second issue is that BKT needs expert-provided problem-KC assignments. BKT
requires problems to be annotated with the KCs required to solve them. Most existing BKT
implementations assume that the problem-KC assignment matrix is given a priori. This is quite
limiting as the expert-provided assignments require extra data collection and may not be accu-
rate. One previous BKT extension can discover the problem-KC assignment matrix (Lindsey
et al., 2014), but it is computationally demanding and inflexible. Finally, BKT does not lever-
age problem input features such as problem text when making predictions. Such features can
provide vital information about the problems’ difficulty and relationship to other problems, both
of which can improve prediction performance.

Unfortunately, BKT’s implementation liabilities limit its appeal to researchers wishing to
extend BKT and reduce its performance deficit to NN models. The model has five free param-
eters which are commonly trained via brute-force grid-search algorithms (Martori et al., 2015)
that are inflexible and unscalable, and expectation maximization (EM) and gradient descent al-
gorithms (Pardos and Heffernan, 2010; Yudelson, 2022) that are scalable but inflexible. None
of the BKT implementations leverage the parallel processing capabilities of modern Graphics
Processing Units (GPUs).

In this paper, we make three contributions (Figure 1) that solve the above-mentioned issues
with BKT:

1. Fast and flexible BKT implementation: we implement BKT as a fast recurrent neu-
ral network (RNN) layer in PyTorch (Paszke et al., 2019) with optimizations specific to
GPUs. PyTorch supports automatic differentiation and several stochastic gradient descent
algorithms, making it easy to implement complex extensions to BKT, much in the same
way as black box uninterpretable models such as DKT (Piech et al., 2015). This flexibility
is demonstrated by our next two novel contributions.

2. BKT with multidimensional generalizable problem and student effects: this model
fixes inaccurate problem-KC assignments via multidimensional student and problem ef-
fects which are used to contextualize BKT parameters. The abilities of new students are
inferred via a principled sequential Bayesian mechanism.

3. Skill discovery BKT model with problem features: this extension discovers the map-
ping from problems to KCs such that they are inline with BKT’s assumption that all prob-
lems within a KC have the same difficulty. The model is further extended to use problem
input features to contextualize KC membership probabilities, and to use an auxiliary loss
term that encourages KC assignments that result in blocked KC sequences (e.g., KC 1,
1, 2, 2, 3, 3, etc.). We use two metrics to quantitatively measure the agreement between
discovered and true KC assignments, both when KCs are blocked and interleaved. Fur-
thermore, we demonstrate that real-world datasets are not strictly interleaving or blocking
and so the performance of skill discovery is evaluated under shadow versions of real-world
datasets with different KC ordering patterns.
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Our basic BKT RNN implementation is substantially faster than brute-force BKT imple-
mentations and is within an order of magnitude of a fine-tuned C++ BKT implementation. The
GPU-accelerated variant of BKT RNN exploits the special properties of BKT to reduce execu-
tion time, and it matches the fine-tuned C++ BKT model on large datasets. BKT with gener-
alizable multidimensional student and problem effects matches the uninterpretable DKT model
in some real-world datasets or is within a few percentage points of it. On some datasets, mul-
tidimensional student abilities clearly improve upon unidimensional ones. The skill discovery
model can partially recover the true problem-KC assignment matrix in synthetic datasets if pro-
vided with problem representations. On almost all real-world datasets, it performs as well as
BKT with problem effects. On one real-world dataset with problem features, the model matches
the performance of BKT with expert-provided skills.

Figure 1: Our paper’s contributions.

2. BACKGROUND AND LITERATURE REVIEW

An example of an educational dataset used to train computational models in this paper is shown
in Table 1. Every student attempts a series of trials, and every trial is associated with a problem,
KC, and whether the student answered it correctly or not. Typical educational datasets contain
more information such as the start time, number of attempts, and so on, but this paper only looks
at the columns illustrated in Table 1.

The modeling task is to then estimate the following conditional probability:

p(yt = 1 | y1:t−1,x1:t) (1)

where yt is the correctness at time t, y1:t is the correctness of all trials from 1 up to and including
t, and x1:t are all the other information associated with trials 1 up to t (KCs, problems, etc.). For
example, we could ask what is the probability that student S1 answers trial 3 correctly, given all
information about trials 1 and 2. Modeling Equation 1 accurately can enable a more intelligent
selection of exercises for the student to practice; if the software accurately predicts that the
student will solve a problem correctly, it can select a problem that is more challenging to keep
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Table 1: Example of an educational dataset.

Trial Student Problem Problem ID KC Correct
1 S1 3 + 4 1 Addition Yes
2 S1 3

4
2 Fractions No

3 S1 5 + x = 10 3 Equation Solving No
1 S2 10× 8 4 Multiplication Yes
2 S2 3

4
2 Fractions Yes

3 S2 7 + x = 3 5 Equation Solving Yes
... ... ...

the student in Vygotsky’s zone of proximal development, where the student can learn a skill with
some guidance. Models that estimate the conditional probability in Equation 1 can broadly be
categorized into temporal and student-item models.

Temporal models explicitly assume that the student’s knowledge evolves over time, thereby
allowing for learning and forgetting effects. The most prominent of such models is Bayesian
Knowledge Tracing (BKT) (Corbett and Anderson, 1994) which is a simple state space model
where the hidden state represents whether the student knows the KC or not. If the student knows
the KC, they may “slip” with some probability, and if the student doesn’t know the KC, they may
“guess” with some probability. The student has a probability of learning the KC at any given
time step, and they never forget the KC once it is learned. The no-forgetting constraint is too re-
strictive on real-life datasets, and it has been shown that removing it improves performance over
standard BKT (Khajah et al., 2016). Another temporal model is the exponential moving average
(EMA) (Pelánek and Řihák, 2017), where the probability of a correct response is a weighted
average of recent trials, with trial weights exponentially decreasing over time. The downside of
both models, however, is that they are fit on a KC-by-KC basis, so there is one model per KC,
and relationships amongst answers on different KCs are not considered. Furthermore, neither
BKT nor EMA model student abilities or specific problem difficulties.

Unlike temporal models, student-item models assume that the probability of answering cor-
rectly is a function of some set of features of the trial: the student, the problem, the KC, etc.
(item and problem are used interchangeably throughout this paper). Perhaps one of the earliest
examples of such models are Item Response Theory (IRT) models (Boeck and Wilson, 2004;
Finch and French, 2018; Reckase, 1979) which dissociate student ability from problem diffi-
culty. IRT assumes that the probability of answering correctly is a function of the student’s
ability and the problem’s difficulty, so a correct answer may be due to a competent student or
an easy problem. Multidimensional extensions to IRT (Yao and Schwarz, 2006; Reckase, 2009;
Ackerman, 1989) characterize students and problems by more than one dimension, unlocking
greater prediction performance. Regardless of dimensionality, standard non-Bayesian formula-
tions of IRT cannot generalize to new students because they do not make distributional prior
assumptions on the student ability parameters. IRT models are also static in the sense that they
assume that a student’s knowledge state is fixed, so they do not take prior practice history into
account when making a prediction for a new trial. In other words, standard IRT assumes no
learning effects. Wilson et al. (2016) proposed a temporal extension to IRT where a student
has one unidimensional global ability parameter that evolves over time, unlike BKT which as-
signs a binary knowledge state per skill. The model places a hierarchical prior over problem
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difficulties, with problems belonging to the same KC sharing the same prior. Compared to Wil-
son’s approach, BKT is more useful because it provides a finer-grained picture of the student’s
knowledge (i.e., what skills the student knows).

Logistic regression (LR) models, such as Additive-Factors Models (AFM) and DASH (Lind-
sey et al., 2014), have also been used to model student performance. Unlike state space models,
LR models do not assume the existence of a hidden state; instead, they explicitly use prior ob-
servations to calculate the probability of a correct answer. In AFM, that probability depends on
the student’s ability, the problem’s difficulty, and previous successes and failures on each KC
associated with the problem, regardless of how recent those successes and failures were. DASH
addresses this limitation by counting successes and failures within expanding time windows (the
past hour, day, week, month, etc.). While models like DASH consider the temporal distribution
of practice as well as student and problem effects, they do not provide an intuitive generative
story about how the student answers exercises. For this reason, state-space models like BKT re-
main attractive because they offer a clear cognitive story about the student’s performance (e.g.,
the student answered the trial correctly because they knew the KC with probability 90% at that
time).

Indeed, one of the advantages of state-space models is their smoothing ability, in which the
posterior marginal distribution over the knowledge state at any given time step can be estimated
by using previous and subsequent trials. In a predictive regression model, such as AFM and
DASH, the student’s “knowledge state” is inferred based only on past trials. So if one was in-
terested in using such a model for smoothing, they would have to modify the model to account
for future observations. With state space models like BKT, one model can be used both for pre-
diction and smoothing. Figure 2 shows a sample observation sequence (top), and the estimated
filtered and smoothed probability that the student knows the skill (bottom). Filtered probabilities
are based on previous trials while smoothed probabilities are based on all trials (one BKT model
was used to generate both estimates). The smoothed estimates are especially useful for post hoc
diagnosis of student learning. For instance, we see that the orange curve in the Figure is less
“reactive” than the blue curve as the latter tends to sharply change value when an unexpected
observation occurs, which may not be realistic.

Figure 2: An example of how BKT provides filtered (blue) and smoothed (orange) estimates of
the student’s knowledge state. Observations are in the top narrow panel, with magenta and cyan
corresponding to incorrect and correct answers, respectively.

BKT and IRT models were merged such that guessing and slipping probabilities of BKT
are modulated based on the problem’s difficulty and the student’s ability (Khajah et al., 2014;
Gonzalez-Brenes et al., 2014). The method proposed by Khajah et al. (2014) also has the advan-
tage of being able to generalize to new students in a principled way due to its Bayesian nature.
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Both approaches outperformed BKT and IRT, showing that temporal and student-item effects are
complementary. Another approach to leveraging problem information is the Weighted Chinese
Restaurant Process (WCRP) model (Lindsey et al., 2014) which, instead of modulating BKT’s
parameters via problem features, finds better mappings from problems to KCs using a non-
parametric Bayesian approach. In other words, WCRP finds a problem-KC mapping that better
suits BKT’s assumptions than what is provided by experts. Results on several datasets showed
that WCRP finds better KC assignments than the experts and outperforms BKT. But, being a
Bayesian model, WCRP requires extensive computational resources to run. Additionally, mod-
ifying the observation model of WCRP is not trivial due to the complexity of the mathematics
involved in constructing the Markov-Chain-Monte-Carlo (MCMC) sampler, making it difficult
to inject additional features into the model. An alternative popular method for skill discovery is
Learning Factors Analysis (LFA) (Cen et al., 2006), which uses AFM to explore possible KC
splits that would increase AFM’s prediction accuracy. LFA starts from a given problem-KC ma-
trix and searches through the combinatorial space of pre-defined factors along which KCs could
be split. In one study, a BKT-powered intelligent tutoring system that used the problem-KC
matrix generated by LFA was found to be superior in terms of student learning outcomes than
BKT with the initial expert-provided matrix (Liu and Koedinger, 2017). But LFA still requires
manually pre-defining the space of possible KC-splitting factors and the matrices it discovers are
not guaranteed to be optimal for BKT because the underlying model being optimized is AFM,
not BKT.

A recurrent neural network model (RNN) known as Deep Knowledge Tracing (DKT) was
proposed as a replacement for classical BKT (Piech et al., 2015). The model used a vanilla
RNN architecture known as Long-Short-Term-Memory (LSTM) and outperformed BKT on all
the datasets it was tested on. DKT, by virtue of being an RNN, is easy to integrate with other
neural network modules, such as those that learn rich representations from raw problem input
(e.g., problem text or image). But, like most NN architectures, DKT is not interpretable; it is
a black box whose predictions cannot be explained, unlike simpler models like BKT and IRT.
Subsequent investigations of DKT found that its advantage was primarily due to different eval-
uation metrics used for BKT and DKT and that the complex temporal dynamics supported by
DKT are not necessary to achieve good predictive performance (Khajah et al., 2016; Montero
et al., 2018). Since DKT, several neural network black box models have been developed (Zhang
et al., 2017; Ghosh et al., 2020; Tsutsumi et al., 2021) that use RNNs, Transformers, and Dy-
namic Key-Value Memory Networks (DKVMN) (Vaswani et al., 2017) (For an overview, please
refer to Gervet et al. (2020)).

Some of these extensions have attempted to provide partial interpretability, such as Deep-IRT
(Yeung, 2019; Tsutsumi et al., 2021) and context-aware knowledge tracing (Ghosh et al., 2020).
Deep-IRT connects a DKVMN to two shallow networks: a student ability network and a problem
difficulty network. The outputs of the latter two networks are combined via IRT to produce the
final prediction. Ghosh et al. (2020) uses IRT to create regularized raw embeddings of questions
and question-response pairs. The embeddings are fed into a transformer to compute context-
aware embeddings that consider the previous practice history (using a monotonically decaying
attention mechanism to model forgetting). Finally, the context-aware embeddings are fed into
another transformer to estimate the student’s knowledge state before making the final prediction.
The problem with both prior works is they use embeddings whose individual values cannot be
succinctly described in terms of how they affect model predictions. For example, in Deep-IRT, it
is not possible to describe how the 5th, 6th, or 41st value in a KC’s embedding vector contributes
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to the prediction, or what it means in an educational context (is it related to guessing, slipping, or
some other feature?) This lack of interpretability is because neural networks in general are good
at learning distributed representations of inputs, which are difficult to dissect and understand.

In this work, we implement BKT as an RNN to reap the benefits of modeling flexibility and
parallel computing while retaining the interpretability of the model. We showcase the advan-
tages of this approach by creating two main novel extensions of the model that improve per-
formance beyond vanilla BKT: multidimensional BKT+IRT with generalizable student abilities,
and a BKT model that supports end-to-end learning of the problem-KC assignment matrix.

3. METHODS

All models developed here are implemented as RNNs with specialized cell dynamics. RNNs
are neural networks that model time-series data by updating an internal state over time via a
feedback loop. Since neural networks are directed acyclic graphs that do not allow feedback
loops, RNNs are implemented by unrolling the dynamics over a fixed number of time steps.
They are generally defined as follows:

ht = f(ht−1,xt) (2)
ot = g(ht) (3)

where f and g are some parameterized functions, and xt, ht, ot are the input, hidden state,
and output at time t, respectively. At each time step, the cell accepts input features xt and the
previous state ht−1 and emits the new state ht and output ot. Figure 1 graphically illustrates this
process over time (note that all RNN cells in the Figure share the same free parameters). The
differences amongst RNN architectures are due to different choices of f and g above. In this
paper, we propose f and g such that they exactly implement the dynamics of BKT.

Figure 3: A high-level overview of the recurrent neural network architecture.

3.1. BAYESIAN KNOWLEDGE TRACING AS AN RNN

Technically, BKT is a Hidden Markov Model (HMM) (Jurafsky and Martin, 2009) with two
hidden states and two outputs. One BKT model is fit per KC in the dataset, so if a dataset has N
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KCs, then N BKT models would be required. Mathematically, BKT is defined as follows:

p(yt = 1 | st) =
{
pG st = 0

1− pS st = 1
(4)

p(st = 1 | st−1) =

{
pL st−1 = 0

1− pF st−1 = 1
(5)

p(s1 = 1) = pI (6)

where st is the latent binary knowledge state, yt is the observation (correctness) at time t, and
pG, pS , pL, pF , and pI are the guessing, slipping, learning, forgetting, and initial knowledge
probabilities, respectively. The student answers correctly with probability pG if they don’t know
the KC (st = 0) or 1 − pS if they do know the KC (st = 1). The probability that the student
learns or forgets the KC when going from time t− 1 to t is pL and pF , respectively. Finally, the
probability that the student starts out knowing the KC is pI .

Given these probabilities, determining the probability of knowing the KC at time t requires
examining all the possible trajectories of latent states that lead the student to knowing the KC
at time t. The forward algorithm (Jurafsky and Martin, 2009), which computes the likelihood
of a sequence under the model, efficiently solves this problem via dynamic programming. This
algorithm is fully differentiable with respect to the parameters of the model. Therefore, an RNN
implementation of the forward algorithm will automatically compute the gradients necessary
for learning BKT parameters. Figure 4A illustrates the high-level architecture of the BKT RNN
layer for one KC. The inputs to the BKT layer are the answer sequence (yt), the initial, learning,
and forgetting probabilities (pI , pL, pF ), and the guessing and forgetting probabilities (pG, pF ).
The output is the predicted probability of a correct answer, given prior answers as well as the
next state (ht). Supplying BKT’s parameters separately as input to the BKT layer makes it trivial
to integrate the model with other NN modules (later, we will see examples of this). In Figure
4B, the details of a BKT RNN cell are shown. Here, the cell state ht(j) is the probability of
observing all observations up to t − 1 and ending up at knowledge state j ∈ {0, 1} at time t.
This state is updated as follows:

ht(j) = P (st = j, y1...yt−1) =
M−1∑

st−1=0

P (st | st−1)

state transition

P (yt−1 | st−1)

output

ht−1(st−1) (7)

where M = 2 is the number of possible knowledge states and the state transition and output
probabilities are as shown in Equations (5) and (4), respectively. Given the updated state, the
probability of the output at the current time step can be computed:

ot(i) = P (yt = i | y1:t−1) ∝
M−1∑

st=0

P (yt | st)ht(st) (8)

This equation states that the final output probability is a weighted average of the output prob-
ability under every possible knowledge state, with the weight of knowledge state st given by
ht(st).
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Figure 4: (A) High-level architecture of the BKT RNN Layer. (B) Details of one BKT RNN
cell. Learnable parameters and model predictions are colored blue and purple, respectively.

The training objective of the model is the usual binary cross-entropy, which is the negative
log probability of the data under the model:

LBCE(D) = −
S∑

s=1

Ns∑

t=1

ystlogŷst + (1− yst)log(1− ŷst) (9)

where D is the training dataset, S is the number of students, Ns is the length of trial sequence for
student s, yst is the observation at time t from student s, and ŷst is the prediction of the model.

3.1.1. Accelerating BKT RNN

One of the reasons behind the recent success of large language models is the transformer ar-
chitecture (Vaswani et al., 2017), whose computations are especially suited for parallel-compute
hardware such as graphical processing units. The transformer’s match to modern hardware made
training on very large datasets feasible. We can therefore ask: can we apply the same com-
putational philosophy of the transformer to accelerate training and inference in BKT RNNs?
Specifically, can we process more trials in a sequence in parallel?

Note that Equations (8) and (7) process the input sequence one trial at a time, as with any
RNN architecture. However, it turns out that the special properties of BKT allow us to practically
process multiple trials at a time. To see this, recall that the probability of a sequence of N
observations is:

P (y1...yN) =
∑

s

P (y1...yt|s)
Likelihood of s

P (s)

Prior on s

(10)

=
∑

s

N∏

t=1

P (yt|st)P (st|st−1) (11)

The summation in the previous two equations is over all possible state-space trajectories s.
Given a particular trajectory, computing the likelihood of the observations is trivial due to the
independence structure of an HMM. Specifically, all observations are independent given the
trajectory, and the prior on the trajectories just involves successively applying the transition
probability of the HMM, hence the product term in Equation (11). The important point here
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is that products in outer summation can be computed in parallel as well as the terms within a
product.

In BKT’s case, there are only two knowledge states so a sequence of N observations has
2N possible state space trajectories. Obviously, for longer sequences, it would be impractical to
apply Equation (11) directly, but we can combine the scalability of the forward algorithm with
the parallelism of Equation (11). Specifically, the standard state update equation (Equation (7))
would be modified as follows:

ht(j) = P (st = j, y1...yt−1) =
∑

sC

P (yt−C:t−1|sC)P (st−C+1|st−C)ht−C(st−C) (12)

=
∑

sC

(
t−1∏

i=t−C

P (yi|si)
)
P (st−C+1|st−C)ht−C(st−C) (13)

Here, C is the stride or the number of trials that would be processed at one time, and sC are
all state trajectories of length C. When C = 1, we recover the standard forward algorithm
(Equation (7)). For a sensible choice of C, such as between 5 and 7, this modification results in
speed-ups over the standard forward algorithm when implemented on graphics processing units,
as we’ll see in the results section.

3.2. PROBLEM EFFECTS AND GENERALIZABLE STUDENT ABILITIES

In standard BKT, performance on one KC does not inform performance on another. This is
limiting because it does not model the fact that a student who does well on previous KCs is
likely to do well on the next KC. One simple way of addressing this issue is to assume that a
student has an unknown constant ability parameter that influences the probability of answering
correctly (Khajah et al., 2014; Gonzalez-Brenes et al., 2014; Khajah et al., 2016) as follows:

logitpG = γk + θu (14)
logitpS = ψk − θu (15)

where θu is the ability of student u, γk and ψk are offset parameters that behave like the probabil-
ity of guessing and slipping on KC k, respectively, and logit(x) = log

(
x

1−x

)
. In the previous two

equations, the greater the student’s ability, the higher the probability of guessing and the smaller
the probability of slipping, and vice-versa. Because the same ability parameter θu is used in both
equations, the implication is that the student’s baseline probability of answering correctly (i.e.,
when γk and ψk = 0) is the same regardless of whether they know a KC or not. Strictly speak-
ing, the student ability here characterizes their baseline variance in performance: when θu ≈ 0,
the baseline guessing and slipping probabilities will be close to 0.5 (maximum variance), but as
θu → ∞, the probabilities will be close to 0 or 1 (minimum variance), depending on the sign of
θu. If θu is always set to 0, we recover standard BKT. Note that the student’s ability should not
be conflated with their knowledge of the KC. Rather, the student ability parameter transcends
all KCs that the student practices, allowing information about the student’s performance on one
KC to be used for predicting performance on another. For example, if the student does well
on multiplication, that implies they have good general ability, which will transfer to other skills
such as division. If the KCs were annotated properly such that they are fully independent to
satisfy BKT’s assumptions, the student ability parameter would be unnecessary. However, on
real life datasets, KCs are seldom annotated to satisfy BKT’s assumption.
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Misannotation of KCs can also lead to varying problem difficulties within a single KC. To
account for this, separate problem-specific guessing and slipping parameters can be used:

logitpG = γk + ωp + θu (16)
logitpS = ψk + σp − θu (17)

where ωp and σp are the guessing and slipping offsets for problem p, respectively. This formula-
tion assumes that the KC guessing and slipping probabilities are modulated by problem effects.
The latter effects are initialized to 0 to encourage the model to focus on fitting the KC-specific
parameters and to ensure that new problems have ωp = 0 and σp = 0 (potentially enabling better
generalization to new problems). This approach can also be combined with L1 or L2 regulariza-
tion to force problem effects to be close to zero, although we do not apply those techniques in
this work. After applying Equations (16) and (17), the BKT layer in Figure 4 can be used as is
since it allows for the guessing and slipping probabilities to be different at each time step.

However, the above formulation has a problem: new students will not have ability estimates.
Previous Bayesian approaches to this problem handle this in a principled way by drawing new
ability samples from the posterior predictive distribution over student abilities (Khajah et al.,
2014; Khajah et al., 2016). Inspired by these approaches, our approach discretizes the ability
values and sequentially estimates the distribution over these values via Bayes rule. For a new
student, the ability estimate will get progressively better as he or she solves more exercises. Let
θu be a random variable that takes one of V uniformly spaced levels on some interval [a, b]. The
probability of the next observation is then:

P (yt | y1:t−1) ∝
∑

θu

P (yt | y1:t−1, θu)

BKT prediction given θu

P (θu,y1:t−1)

weight of θu

(18)

In other words, the probability of the next observation is proportional to a weighted average
of V BKT models’ predictions, with each BKT model assuming a particular value of θu for
the student. The weight of each value of θu is given by the joint distribution of θu and all
observations up to and including time t− 1:

P (θu,y1:t−1) = P (yt−1 | y1:t−2, θu)

BKT prediction given θu

P (θu,y1:t−2)

Previous joint distrib.

(19)

A uniform prior distribution is assumed over student abilities, P (θu) ∝ 1. We should re-
emphasize that student abilities are assumed to be constant in this model. What changes is
the model’s belief about the distribution over the abilities of the student, given their practice
history.

Implementing generalizable ability inference can easily be done, provided that the answer
sequence and predictions are appropriately pre- and post-processed, respectively (Figure 5). As
is usual with BKT models, the answer sequence is split by KC. Each subsequence is fed into
V BKT layers, with each layer assuming a different ability level (V = 3 in the Figure). The
predictions of all layers are then reassembled, creating V sequences corresponding to predictions
of V BKT models. The sequential Bayesian update layer combines these sequences into the final
prediction using Equations (18) and (19). This complete model is called BKT+IRT because it
merges BKT temporal dynamics with problem and student effects from IRT models.
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Figure 5: Example of how generalizable ability inference is implemented in our models. Square
colors correspond to KCs.

3.2.1. Multidimensional Abilities

The student ability parameter in the previous section was used to modulate the guessing and
slipping probabilities of BKT. However, one can imagine an extension whereby the ability of
the student affects other parameters. For example, a student may learn slowly and forget slowly,
or vice-versa. To support this, we can have four ability dimensions controlling the offsets on the
guessing, slipping, learning, and forgetting probabilities:

logitpL = ℓk + θLu (20)

logitpF = ϕk − θ¬Fu (21)

logitpG = γk + ωp + θGu (22)

logitpS = ψk + σp − θ¬Su (23)

where ℓk and ϕk are the learning and forgetting offsets for KC k, respectively, and θu =
[θLu , θ

¬F
u , θGu , θ

¬S
u ] are the multidimensional student learning, not forgetting, guessing, and not

slipping abilities, respectively. Figure 6 graphically illustrates the previous Equations. Dark blue
edges correspond to proportional relationships (e.g., as the skill guessing offset γk increases, the
probability of guessing on that skill increases). Red edges correspond to inversely proportional
relationships (e.g., as the student’s no-slipping ability θ¬Su increases, the probability of slipping
decreases).

An important point to note here is that, under BKT, the student’s knowledge profile is mul-
tidimensional because the student has a knowledge state per skill. Our multidimensional ex-
tension to BKT deals with the student’s global ability. Previous approaches treated this only
as a scalar that influences the guessing and slipping probabilities of each skill (Khajah et al.,
2014; Gonzalez-Brenes et al., 2014) or as a time-changing ability parameter in IRT (Wilson
et al., 2016). In our multidimensional extension to BKT+IRT, the student’s global ability is
multifaceted. In other words, the student’s knowledge profile and global ability are both multi-
dimensional.

A naive implementation of this model is to enumerate all possible combinations of θu (just as
the ability values in the previous section were enumerated), but that would quickly become com-
putationally infeasible. Instead, we propose learnable student prototypes to enable the model to
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Figure 6: Contextualization of BKT’s probabilities in the multidimensional BKT+IRT model.
Dark blue and red edges correspond to proportional and inversely proportional relationships,
respectively.

learn the common types of students from the training dataset and apply the sequential Bayesian
update layer on those types, as in the previous section. Specifically, let Θ ∈ RR×4 be a learnable
student prototype matrix with R prototypes. The columns correspond to the student’s learning,
not forgetting, guessing, and not slipping offsets. The R ability levels are used to contextualize
those probabilities as described earlier. During the sequential Bayesian update step, the model
will marginalize over all student prototypes (rows of the matrix). The advantage of this approach
is that we do not face the combinatorial explosion problem as we allow the model to learn the
appropriate student prototypes to use. The disadvantage is that it assumes that new students can
be categorized into roughly the same prototypes learned during training which, for large student
cohorts, is not an unreasonable assumption.

3.3. SKILL DISCOVERY WITH THE BKT RNN

Even though each problem in the datasets considered in this work is assigned to a knowledge
component by experts, the true problem-KC assignment matrix is likely to be different from
the expert-provided one. Indeed, it has been shown that extending BKT with mechanisms to
discover problem-KC assignments significantly boosts performance (Lindsey et al., 2014; Ritter
et al., 2009; González-Brenes and Mostow, 2012) and brings it level with DKT on some datasets
(Khajah et al., 2016). Here, we assume that each problem maps to only one underlying KC.
Specifically, we aim to find an assignment matrix of L problems to K underlying KCs, A ∈
{0, 1}L×K , such as that each row of the matrix is all zeros except for one entry which has a
value of 1. Prior approaches to estimating this matrix rely on ad-hoc two-step methods such as
K-means clustering (Ritter et al., 2009), assume that the KC assignment changes on each trial
(González-Brenes and Mostow, 2012), or use mathematically and computationally demanding
extensions to the Chinese Restaurant Process (CRP) (Lindsey et al., 2014). In this section, we
demonstrate a mechanism to estimate this discrete assignment matrix within an NN framework,
which is a feat that, to our knowledge, has not been accomplished before.

The main challenge is that entries of the assignment matrix are binary while neural networks
typically only work with continuous activations. To get around this, the assignment of each
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problem i is sampled from a categorical distribution αi. A categorical distribution is a dis-
crete probability distribution over K values, with each value being assigned a probability mass
∈ (0, 1) such that the sum of all probabilities equals one. Since the probability masses are con-
tinuous values, they have well-defined gradients and can be handled by existing NN optimization
algorithms. The remaining problem is then to backpropagate through the randomly sampled KC
assignment. Fortunately, the Gumbel-Softmax re-parameterization trick (Jang et al., 2017) en-
ables this by transforming i.i.d. random samples from a gj ∼ Gumbel(0, 1) distribution into
samples from a categorical distribution with class probabilities αj

i as follows:

aji =
exp

((
log(αj

i ) + gj
)
/τ
)

∑K
l=1 exp

((
log(αl

i) + gl
)
/τ
) (24)

where aji ∈ (0, 1) is the soft binary variable indicating whether the ith problem belongs to
the jth KC, and τ is a temperature parameter that smoothly anneals the assignment between
hard samples (as τ → 0) and uniform samples (for large values of τ ). For all experiments
in this paper, τ is set to a constant value throughout training. This trick works because it is
straightforward to compute the derivative of the randomly sampled assignments in Equation
(24) with respect to the class probabilities αi.

By sampling the assignment matrix, the optimization objective of the model changes from
maximizing the probability of the observations under model parameters, to maximizing the ex-
pected probability of the observations under the problem membership probabilities:

Ep(A) (p(D | A)) =

∫
p(D | A)p(A) (25)

≈ 1

S

[
S∑

i=1

p(D | A(i))

]
(26)

where S is the number of samples to draw from the categorical distributions over the assignments
of problems p(A), D is the training set, and A(i) is the ith sampled assignment matrix.

One difficulty with KC discovery is that the whole model must be differentiable with respect
to the sampled assignment matrix. The BKT RNN cells we have presented thus far do not
accommodate this because they assume that the sequences will be split by KC. This splitting
operation is not differentiable and thus the BKT layer has to be modified as shown in Figure 7.
The state of the BKT cell now represents the knowledge probability of all K KCs (Ht ∈ RK×2).
At time t, a one-hot vector representing the previous KC κt−1 is used to retrieve the relevant row
from the state matrix (state read operation). This row is combined with the guessing, slipping,
learning, and forgetting probabilities of the previous KC to generate the updated state of the KC,
as per the usual BKT update dynamics (Equation (7)). The updated state is then written back
into Ht (state write operation). Finally, from this updated matrix, the row corresponding to the
current KC κt is used in conjunction with the KC’s guessing and slipping parameters to produce
the prediction for time t.

The above formulation is differentiable with respect to the parameters of the Gumbel-Softmax
distribution. However, since the Gumbel-Softmax re-parameterization trick generates soft sam-
ples (where there is more than one non-zero entry in the sampled assignment vector), using
the sampled assignment directly in the forward pass would not make sense from a probabilistic
modeling perspective as BKT requires the assignment matrix to be strictly binary. To circum-
vent this, hard quantization on the sampled assignment matrix can be performed to replace the
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Figure 7: Multi-KC BKT RNN cell that is differentiable with respect to the problem assignment
matrix.

maximum entry in each row with one, and all other entries in the row with zeros. Of course,
this is not differentiable so Jang et al. (2017) suggests using the Straight-Through (ST) gradient
estimator where the gradient of the quantized matrix with respect to Gumbel-Softmax parame-
ters is simply set to be the gradient of the soft matrix with respect to distribution parameters. In
practice, we found that using the soft assignment matrix during training is more efficient, so all
experiments in this paper do not use the ST estimator. Note, however, that the sampled assign-
ment matrix is always quantized during evaluation to maintain the proper probabilistic dynamics
of BKT. To summarize, Figure 8 illustrates high-level BKT with KC discovery architecture.

Figure 8: High-level architecture of KC discovery with the multi-KC BKT RNN cell.

3.3.1. Using Problem Representations

One of the advantages of implementing BKT within an NN framework is the ability to utilize
arbitrary encoding modules to parameterize the model. For example, a problem may have a
feature vector rp capturing raw or salient attributes (e.g., problem text, image, audio, etc.). We
can use these features to compute the guessing and slipping probabilities in the BKT+IRT model
as follows:

logitpG(rp) = g(rp) + θu (27)
logitpS(rp) = f(rp)− θu (28)

where g and f are arbitrary differentiable functions. A more interesting approach, as pointed
out by our reviewers, is to use problem features to discover KCs that satisfy BKT’s assumptions
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of KC independence and within-KC problem homogeneity. This can be done via a learnable
membership function m(rp) that transforms a problem feature vector of size F into a member-
ship probability vector of size K (corresponding to K KCs). So, the skill discovery model can
now use these problem representations to guide the search for the right problem-KC assignment
matrix.

3.3.2. Auxiliary KC Discovery Loss

Prior information about the structure of the KCs can be used to guide the BKT KC discovery
model via extra terms in the training objective. For example, we consider an auxiliary loss that
rewards the model for finding problem-KC assignments that result in a “blocked” KC structure,
where students practice all problems in one KC before moving on to the next. To compute this
loss, we need the probability that a consecutive pair of trials will have the same KC annotation:

P (κt = κt+1) =
K∑

j=1

ajpta
j
pt+1

(29)

where pt is the problem encountered at time t, and ajp is the probability that p belongs to KC j.
This probability is computed for all sequences and for all consecutive pairs of trials, resulting in
the auxiliary loss:

auxloss(D) =
S∑

s=1

Ns−1∑

t=1

P (κt = κt+1) (30)

where S is the number of students, and Ns is the number of trials practiced by student s. Finally,
the training objective of the KC discovery model becomes:

L(D) = Ep(A) (p(D | A)) + λauxloss(D) (31)

where λ is a hyperparameter that controls the strength of the auxiliary loss.

3.4. DEEP KNOWLEDGE TRACING (DKT)

DKT is a recurrent neural network model adapted for student performance modeling. As stated
earlier, RNNs are trained by unrolling the recurrence relationship so that recurrent connections
become simple feed-forward ones, like in ordinary neural networks. It turns out, however, that
using generic neural networks for f in Equation (2) leads to poor performance due to difficulty
in capturing long-term relationships in a sequence. Long-Short-Term-Memory (LSTM) units
(Hochreiter and Schmidhuber, 1997) address this issue by propagating the cell state almost
unchanged through the unit. DKT is simply an LSTM RNN with a K dimensional output
corresponding to the probability of answering each KC correctly. The input to the LSTM unit is
a one-hot vector of length 2K that indicates what the KC at the previous trial was and whether
the student answered it correctly or not. Unlike BKT, DKT works with entire student sequences
and does not split them by KC. This gives the model the ability to leverage performance on
different KCs to estimate the student’s ability (Montero et al., 2018). The main disadvantage is
a lack of interpretability, i.e., model parameters do not have a clear interpretation. Even though
this work is not intended to showcase models that outperform black box models, we include
DKT to provide a familiar baseline in our comparisons.
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Table 2: Real-world dataset statistics. Novel test problems and trials are averaged over the five
cross-validation splits.

Dataset Students KCs Problems % Novel Test Problems % Novel Test Trials Median Seq Length % Blocking
algebra05 567 271 173,113 68.57 25.86 580 17.1

assistments09 3,114 149 17,708 3.36 0.98 32 77.8
assistments12 22,589 265 52,850 4.28 0.41 59 71.1
assistments15 14,228 100 100 0.00 0.00 31 78.6
assistments17 1,708 411 3,162 4.34 0.18 442 73.4

bridge algebra06 1,130 550 129,263 10.66 2.58 1,376 31.5
spanish 182 221 409 0.00 0.00 2,857 3.4
statics 282 98 1,223 0.00 0.00 637 58.5

equations 22 114 1,193 28.00 14.00 341 16.6

3.5. REAL-WORLD DATASETS

To evaluate the BKT RNN and its extensions, eight pre-processed real-world datasets pub-
lished by Gervet et al. (2020) were used so that direct comparisons to their models can be
made. Two datasets are based on the Algebra I 2005-2006 (algebra05) (Stamper et al.,
2010a) and Bridge to Algebra 2006-2007 (bridge algebra06) (Stamper et al., 2010b)
datasets. Four datasets are created from the ASSISTments intelligent tutoring system in 2009-
2010 (assistments09), 2012-2013 (assistments12), 2015 (assistments15), and
2017 (assistments17) (Feng et al., 2009). One dataset (spanish) is based on the Spanish
vocabulary learning system for middle school students (Lindsey et al., 2014), and one dataset
(statics) is from the civil engineering statics course dataset in PSLC (Koedinger et al., 2010).
Table 2 reports the main statistics of all datasets in terms of the number of students, skills, and
problems. Since all models are evaluated via five-fold cross-validation, the average number of
novel test problems (problems that have not been seen in the training set) and the average number
of test trials involving novel problems are reported over the five splits. The % Blocking column
is the median probability that two consecutive trials will share the same KC. It is computed over
all sequences in the dataset.

To evaluate skill discovery with problem representations, we used the 2007 handwriting
dataset (Ritter et al., 2007; Anthony and Ritter, 2008) (the equations dataset). The dataset
was collected from a study that compared students using a standard cognitive tutor interface to
practice equation-solving exercises with those using a modified interface that recognizes hand-
writing. In the control condition, students solve a question in multiple steps and are provided
with step-level feedback (we consider steps to be problems in this dataset). Only trials belong-
ing to the control condition are used because other conditions display worked examples when
students solve a problem. For the expert-provided skills, we use the default KC model, with
multi-KC assignments collapsed into one joint assignment. Performance on each step is mea-
sured by the correctness of the student’s first attempt on the step. The step name column in the
dataset contains the equation that needs to be transformed to make progress toward the solution.
Equations in this column are cleaned by replacing all ys with xs and all numeric values with
uppercase letters. The equations are then embedded using the all-mpnet-base-v2 pre-
trained model from the sentence-transformers Python module (Reimers and Gurevych,
2019), generating a 768-dimensional feature vector for each problem.
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4. RESULTS AND DISCUSSION

In all experiments below, the models were trained and evaluated via student stratified five-fold
cross-validation (so only new students are encountered during test time). The training portion
of each fold was further split into 80% for optimization and 20% for early stopping (validation).
With early-stopping, model training stops if the Area Under the Receiver Operating Character-
istic Curve (AUC-ROC) (Bradley, 1997) does not improve on the validation set by at least 1%
over the previous best for E epochs. In the case of the skill discovery models, this percentage
was set to 0% so that model training does not end prematurely. AUC-ROC is the probability that
a model ranks a positive instance higher than a negative one and ranges from 0.5 (random) to
1.0 (perfect). Following the practice in (Khajah et al., 2016), AUC-ROC is computed over the
entire test set, not per KC. All models are trained to minimize the negative log-likelihood of the
data (binary cross-entropy), via the NAdam (Dozat, 2016) optimizer.

4.1. RECOVERING BKT PARAMETERS

As we are proposing a new BKT implementation, it is critical to verify that it behaves identi-
cally to a standard BKT implementation; the learned BKT parameter estimates of BKT RNNs
should be similar to those of a reference implementation. To test this, several BKT datasets were
generated with varying numbers of students [10, 100, 1000, 3000]. Each dataset has 25 KCs with
randomly initialized BKT parameters, and every student practices every KC 10 times. The refer-
ence implementation is a brute-force algorithm that performs grid-search over the 5-dimensional
parameter space of BKT for each KC (the grid consists of 5 equally spaced points in the interval
[0, 1] for each parameter, resulting in a total of 55 = 3, 125 evaluations per KC). The reference
and BKT RNN implementations were compared on how well they recapture the parameters that
were used to generate the synthetic datasets. The accelerated BKT implementation used a stride
C = 5 (so it processed five trials at a time). Note that none of the implementations force state
st = 0 to correspond to not knowing and st = 1 to knowing the KC. In other words, it is pos-
sible that after training, the state st = 0 would correspond to knowing the KC and st = 1 to
not knowing the KC, thereby forcing the rest of the learned parameters to be reinterpreted. To
break this symmetry, we assume the knowing state is the one whose initial knowledge estimate
pI is closest to the actual initial knowledge probability. Obviously, this is not possible with real
datasets, but it suffices for the purposes of checking learning on a synthetic dataset.

Figure 9 compares the reference (blue bars), standard BKT RNN (orange bars), and accel-
erated BKT RNN implementations (green bars) in terms of how close their parameter estimates
are to the generating parameters (mean absolute difference between estimated and actual val-
ues). All implementations recover the parameters directly associated with observations (pG, pS ,
pI) better than the parameters governing the hidden state transitions (pT and pF ). Both BKT
RNN implementations are slightly better than the brute force model, most likely because the
latter performs a search over a fixed grid, so it might miss good solutions, while the RNN im-
plementations have no such limitation.

4.2. SCALING TO LARGE DATASETS

The training and prediction execution speed of BKT RNN and its accelerated variant was com-
pared to the reference brute-force implementation and hmm-scalable (Yudelson, 2022), a C++
program designed specifically to fit HMMs at scale. hmm-scalable was configured to use gra-
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Figure 9: Mean absolute difference between the five BKT parameters and the actual generating
parameters of the synthetic datasets, averaged across all folds and KCs (lower is better). Blue,
orange, and green bars correspond to the performance of the reference, RNN, and accelerated
RNN implementations, respectively. Error bars correspond to standard errors of the mean.

dient descent optimization and to allow forgetting in the BKT model. All other settings were
left at their default values. BKT RNNs used training and testing batch sizes of 500 and 1000
sequences, respectively and training stopped if the validation AUC-ROC did not improve by at
least 1% over the previous best for 10 epochs. In addition to comparing the execution speed
of tested models, AUC-ROC is also reported to ensure that faster models do not compromise
predictive accuracy.

The experiments were conducted on synthetic datasets generated as in the previous section,
but with different numbers of students and trials per KC (10, 100, 1000, and 3000 students
and 10, 50, 100, and 500 trials per KC) to evaluate whether sequence length has any impact
on relative model performance. All experiments were conducted on a Ubuntu Linux Server
22.04 workstation with AMD Threadripper 3970X, 256GB RAM, and GeForce RTX 3090 TI.
Although the processor has 32 cores, cross-validation was performed strictly serially: one split
after another.

Figure 10 plots the execution times (training plus prediction) of the four models (top row)
and their test set AUC-ROC (bottom row). Columns correspond to increasing sequence lengths
(left to right). Across all sequence lengths, the brute force model is the slowest of the four
models, and the hmm-scalable model is the fastest. The accelerated variant of BKT RNN (green)
is consistently faster than the standard BKT RNN (orange). hmm-scalable’s advantage over
accelerated BKT RNN shrinks as the size of the datasets increases, and it gets as small as 10-
20% on a dataset of 3,000 students and 100-500 trials per KC. Note that the BKT RNN models
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were not fully optimized for performance and the execution speed could be improved with more
suitable choices of early stopping patience, learning rates, and mini-batch sizes. Of course, the
speed of brute force BKT can be improved by using more CPU cores (i.e., by having each core
evaluate a subset of the search space). However, that model still suffers from a serious lack of
flexibility.

The AUC-ROC results show that all models achieve similar performance. The brute force
implementation is slightly ahead of both BKT RNN variants because it can avoid local minima
by virtue of exhaustive search. BKT RNNs are both consistently better than hmm-scalable.

Figure 10: The execution times (top) and test AUC-ROC (bottom) of four BKT implementations
on synthetically generated datasets with varying numbers of students and sequence lengths. In
the top row, lower is better and in the bottom row, higher is better. Error bars correspond to
standard errors of the mean.

Table 3 lists the reduction in execution time of the accelerated BKT RNN relative to the
standard BKT RNN. The first model can be as much as 47% faster than the second, depending on
the size of the dataset. For short sequences, as the number of students increases, the accelerated
model’s advantage increases, most likely due to it being able to fit and execute large batches
on the GPU. For long sequences, the accelerated model’s advantage shrinks as the number of
students increases, because it is a more memory-intensive model (due to the enumeration of
all possible state space trajectories) so the execution time could be dominated by the cost of
repeated memory allocations.

As stated before and as we shall see in the following sections, the true advantage of BKT
RNNs lies in their flexibility: the ability to extend the model without having to perform com-
plicated mathematics and implement custom optimization algorithms. Specifically, all that is
required to extend the model is a clear definition of the forward computation, which is usually
easy to derive (as with all neural networks); the complicated backward pass is performed by
PyTorch. Furthermore, BKT RNNs have substantially smaller, simpler, and easier-to-modify
codebase (please see our our Github repository).
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Table 3: Percentage reduction in execution time of Accelerated BKT RNN relative to the stan-
dard BKT RNN.

Students
Trials per KC 10 100 1,000 3,000

10 -34.7 -31.4 -41.2 -47.4
50 -34.6 -30.7 -31.1 -33.3
100 -27.8 -28.8 -24.1 -24.3
500 -45.7 -25.0 -18.8 -14.7

4.3. SKILL DISCOVERY

4.3.1. Synthetic Datasets

A comprehensive set of synthetic experiments where the true problem-KC assignments are
known were conducted to test the skill discovery model’s ability to recover those assignments.
Three synthetic datasets consisting of 5, 25, and 50 skills were generated, with 10 problems per
KC and 100 students. For each skill, student answers are generated according to a standard BKT
model with randomly chosen parameter values (pG and pS ranged from 0.1 to 0.4, pL and pF
ranged from 0.01 to 0.2, and pI ranged from 0.1 to 0.9). The problem-skill assignment matrix is
created as follows: for each dataset, a set of K 50-dimensional centroids were generated (K is
the number of skills). A blob of 10 points was then generated around each centroid, correspond-
ing to the 10 problems in the skill. The width or standard deviation of generated points was
chosen such that a simple nearest neighbor classifier would have 85% accuracy in predicting a
problem’s blob. Blob generation was performed using the make blobs() function in Python’s
sklearn library. Two versions of each dataset were generated: blocked and interleaved. In the
blocked version, all problems within a KC are practiced before moving on to the next (e.g., KC
1, 1, 2, 2, 3, 3), while in the interleaved version KCs are practiced in an alternating fashion (e.g.,
KC 1, 2, 3, 1, 2, 3). Problems are randomly shuffled within a KC for each student, so no two
students will have the same problem sequence, but KCs are always practiced in the same order.

Seven BKT models were evaluated in terms of cross-validation AUC-ROC and adjusted
Rand index (ARI) (Hubert and Arabie, 1985), which measures the agreement between discov-
ered and actual problem-KC assignments. The index calculates the proportion of all pairs of
problems where the true and predicted problem-skill assignments agree. Agreement between
the assignments of two problems occurs when either (a) both problems belong to the same skill
in the discovered and actual assignments or (b) both problems belong to different skills in the
discovered and actual assignments. This formulation handles permutations in the assignments.
For example, suppose that problem 1 belongs to skill A, and problems 2 and 3 belong to skill B,
and that the model finds that problem 1 belongs to B′ and problems 2 and 3 belong to A′ (where
A′ andB′ are the labels assigned by the skill discovery model). In this case, the two assignments
are equal because all pairs of problems are in agreement: (1, 2) belong to different skills in the
true and discovered assignments, (2, 3) belong to the same skill in both assignments and so on.
The adjusted Rand index accounts for two assignments agreeing purely by chance. The index
ranges from -0.5 to 1, with 1 and 0 representing perfect and no correspondence, respectively
(negative values indicate worse correspondence than chance). The unadjusted Rand index (RI)
does not correct for chance agreement. It also does not always follow its adjusted counterpart,
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so two models can have the same RI value but one can have significantly higher ARI than the
other. This is because the chance correction in ARI assumes a random permutation with the
same number and size of the discovered KCs. For this reason, we report both RI and ARI, but
we focus on ARI when evaluating skill discovery performance.

One way to interpret the Rand index is to determine how much the ground truth assignments
should be shuffled to achieve a given index value. The left panel of Figure 11 simulates multiple
scenarios with varying numbers of KCs in the ground truth assignments (5, 25, 50, 98, 149,
and 550; the last three scenarios correspond to the number of KCs in three real-world datasets)
and 10 problems per KC. In each scenario, we assume we have a hypothetical predicted assign-
ment containing up to 20 KCs. This predicted assignment is generated by shuffling a random
proportion of the true assignments (the proportion is the x-axis in the Figure). If the number
of true KCs is greater than 20, problems belonging to the extra KCs are equally distributed
amongst the 20 predicted KCs. This is what we call a random permutation model. The adjusted
Rand index is always less than the shuffling proportion (except for the trivial cases at 0 and 1).
When the number of KCs in the true assignment is greater than the maximum available KCs in
the predicted assignment, it cannot possibly achieve a perfect index, hence the corresponding
curves start at a value less than 1.0. To see how non-uniform assignments affect the analyses,
the right panel of Figure 11 simulates three scenarios with the same distribution of assignments
in the statics (98 KCs), assistments09 (149 KCs), and bridge algebra06 (550
KCs) datasets. The latter two datasets have very similar curves, despite the large difference in
the number of KCs, and both curves are substantially different from their counterparts in the left
panel with the same number of KCs. The takeaway from this Figure is that the adjusted Rand
index is sensitive to the distribution of ground truth assignments, and it can give the impression
of worse performance than reality. For example, for 25 true KCs, an adjusted rand index of 0.6
would correspond to shuffling roughly 17% of the true assignments, not 40%. For this reason,
we report the adjusted Rand index and the corresponding % of the assignments shuffled by a
random permutation model in the skill discovery experiments.

Figure 11: Analysis of the Adjusted Rand Index as a function of the randomly-shuffled pro-
portion of assignments in scenarios with uniform ground truth assignments (Left) and realistic
assignments (Right). The identity function (red dashed line) is provided for reference.

We also evaluate the percentage of true KCs that are recovered by the skill discovery models.
A KC is considered “recovered” if it matches any of the discovered KCs. A discovered KC D
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matches a true KC T if D contains all of T ’s problems and none of the problems that do not
belong to T . This definition corresponds to the familiar recall and precision metrics from binary
classification. Specifically, we consider D to match T if its recall and precision is ≥ 0.75
(because no skill discovery model will perfectly recover skills). Based on this, we compute a
weighted average of the recovered KCs, with each true KC weighted by the number of problems
it contains:

V =
1

P

K∑

i=1

niri ri ∈ {0, 1} (32)

where P and K are the number of problems and true KCs, respectively, ni is the number of
problems in the ith KC, and ri is whether the ith KC was recovered or not. A skill discovery
model whose maximum number of KCs M is less than the true number of KCs in the dataset
cannot possibly recover all KCs. The best it can do is to recover the top M − 1 largest KCs. The
upper limit on V in this case is 1

P

∑M−1
i=1 ni (where the nis are sorted in descending order).

In the following experiments, the No SD model assumes each problem is its own KC, Single
KC assumes there is one KC, SD is BKT with KC discovery, SD+AuxLoss is the same model
but with auxiliary blocked KC loss (the auxiliary loss coefficient λ was set to 1), SD+Rep uses
the problem input features to infer the Q-matrix, and SD+AuxLoss+Rep uses both auxiliary
loss and problem input features. The Clustering model uses K-means clustering to cluster the
problem representations into 20 clusters and then runs BKT with the resulting assignments,
similar to the approach by Li et al. (2013). Finally, a BKT model that has access to the true
problem-KC assignments is used as a reference.

Figure 12 reports the 5-fold cross-validation test set AUC-ROC performance (top row), ad-
justed Rand index (middle row), and percentage of recovered KCs (bottom row) on the three
synthetic datasets (with KCs ordered in blocks). As stated earlier, for each adjusted Rand index
value, we report the corresponding percentage of assignments shuffled by a random permutation
model to aid the interpretability of the results. For reference, the unadjusted Rand index value
is also reported (gray lines), as well as the upper limit on the number of KCs recovered (red
dashed lines). The SD model fails to improve over the No SD model and achieves Rand index
values which correspond to 60-70% shuffling of the true assignments. SD+AuxLoss achieves
AUC-ROC close to the true model for KCs = 25 and 50 and achieves reasonable Rand index val-
ues that correspond to 18% to 26% permutation of the true assignments, respectively. SD+Rep
is similar, except that the assignments it found when KCs = 50 are not as good as those found
by SD+AuxLoss. This indicates that it is finding a problem-KC assignment and KC parame-
ters that are nearly as good as the generating model. Adding the auxiliary loss to the model
(SD+AuxLoss+Rep) enables the model to almost find the true assignments when KCs=5, and to
find assignments that correspond to only 12% shuffling when KCs = 25. Finally, the clustering
model is only able to match SD+Rep in predictive accuracy when the number of KCs = 50. Its
assignments are much worse in quality than SD+Rep when KCs = 5, but they improve as the
number of true KCs increases. The clustering model’s reduced predictive performance is likely
due to its rigidity: it assigns problems into exactly 20 KCs before training BKT with those as-
signments. Our models, on the other hand, use the data to infer the number of true KCs (up to
the limit of 20 KCs).

In terms of the percentage of KCs recovered, SD+AuxLoss+Rep recovers almost all KCs
when the number of KCs = 5. The clustering model fails because, as stated earlier, it as-
signs problems to exactly 20 KCs before training BKT. As the number of KCs in the dataset
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increases, the recovery percentage drops and so does the upper limit. At 25 KCs, the clus-
tering and SD+AuxLoss+Rep models recover about half of the possible KCs. At 50 KCs,
SD+AuxLoss+Rep is the strongest and recovers about a third of the maximum possible KCs.

Figure 12: Skill discovery test performance on three synthetic datasets with 5, 25, and 50
underlying KCs that are always sequenced in blocks. The top, middle, and bottom rows report
test AUC-ROC, adjusted Rand index, and percentage of recovered KCs, respectively (higher is
better). The magenta dashed line is the average performance of a BKT model which directly uses
problem-KC assignments used to generate the dataset. The numbers above the bars in the middle
row are the corresponding percentages of assignments shuffled by a random permutation model
(smaller is better). The gray curve is the unadjusted Rand index value. The dashed red line in the
bottom row is the upper limit on recoverable KCs. Error bars correspond to the standard error of
the mean.

Figure 13 shows the results on synthetic datasets with interleaving KCs. The SD model per-
forms similarly to the blocked case in terms of predictive accuracy and matches SD+Rep when
KCs=50. SD+AuxLoss performs worse because it tries to impose an improper blocked structure
over the interleaved KC sequences. SD+Rep performs best when KCs = 5 and 25, perhaps be-
cause it has enough capacity for the number of KCs in the dataset. It also discovers reasonably
good assignments that correspond to 18% shuffling of the true assignments when KCs is less
than 50, although it only recovers about half of the maximum possible KCs. SD+Rep+AuxLoss
understandably does not perform as well due to the inclusion of the auxiliary loss term which
does not match the underlying dataset. As the number of KCs increases, the No SD model
matches the skill discovery models, because, under an interleaving structure with many KCs,
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the learning algorithm would have to capture very long dependencies (i.e., it would have to infer
that a problem 50 trials back belongs to the same KC as the current problem). When the number
of KCs is less than 50, SD+Rep outperforms the clustering model in predictive accuracy, and the
latter finds significantly worse assignments when KCs = 5, again due to its rigidity. When KCs
= 50, only the clustering model is able to recover even about a fifth of the maximum possible
KCs.

Figure 13: Skill discovery test performance on three synthetic datasets with 5, 25, and 50
underlying KCs that are interleaved. Visual elements are the same as in Figure 12.

Real-world datasets may not exhibit a strictly blocking or interleaving pattern. The % Block-
ing column in Table 2 clearly demonstrates this, with the probability of consecutive trials sharing
the same skill reaching as high as 78% and as low as 3.4% on some datasets. Therefore, it is
important to analyze the skill discovery model’s performance on synthetic datasets that mimic
the real-world ordering of the skills. To do this, we created three shadow datasets based on the
bridge algebra06, assistments09, and statics datasets, which cover a wide range
of blocking percentages (31.5%, 58.5%, and 77.8%, respectively). Shadow datasets are identi-
cal to their real-world counterparts (they have the same skill and problem sequences) except that
observations are generated synthetically. For example, Koedinger et al. (2023) used a procedure
to generate simulated student data according to an individualized additive factors model (iAFM)
whose parameters were fitted on real datasets. Their objective was to detect variability in student
learning rates if it was present, so they scaled the fitted parameters to produce low and/or high
variability in initial knowledge and learning rates, respectively. Instead of pre-fitted iAFM, our
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procedure uses BKT with randomly chosen probabilities as the generating model. To generate
problem representations, we used the same procedure as described earlier in the section. The SD
and clustering models used 50 KCs to handle the greater number of KCs in real-world datasets.

Figure 14 shows a clear tension between achieving predictive performance (AUC-ROC) and
recovering as many KCs as possible (ARI and the percentage of recovered KCs). If the objective
is recovery, the clustering model performs very well on two of the datasets. But if the objective
is high predictive accuracy, then SD+Rep is almost level with the true generating model. The
reason for this tension is the limited capacity of the skill discovery and clustering models (50
KCs) compared to the true number of KCs in the datasets. SD+Rep utilizes its available capacity
to find assignments that maximize accuracy, even if it means conflating several KCs, while the
clustering model prioritizes recovery over anything else (by design). In other words, even if it
perfectly recovered the top 49 KCs (by size) in each dataset, the clustering model has no way of
dealing with the rest of the non-recovered KCs.

Figure 14: Skill discovery test performance on three shadow datasets that are identical to their
real-world counterparts, except that answers are generated according to BKT models with ran-
domly chosen parameters. Visual elements are the same as in Figure 12.

It is understandable that, as the number of true KCs increases, skill discovery becomes
harder. KC discovery involves determining which problem subsets belong “together”, while
simultaneously determining the BKT parameters of those subsets. As the number of true KCs
increases, not only does it become more difficult to elucidate dependencies amongst problems,
but KC parameters will be harder to distinguish, leading to identifiability issues. The model can
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be guided with the auxiliary loss term, as long as the loss matches the underlying KC sequencing
structure in the dataset.

Overall, the skill discovery experiments demonstrate that when problem representations are
available, predictive performance will be high, and the true problem-KC assignments can be
recovered partially, although there is still room for improvement compared to the clustering
model on realistically distributed datasets. The experiments highlight the importance of end-to-
end learning of KC assignments and BKT parameters, as doing the two steps separately (as in
the clustering model), often yields worse predictive performance.

4.3.2. Real-World Representation Learning

Figure 15 shows the AUC-ROC of the skill discovery models on the real-world equations
dataset which contains raw problem content. The skill discovery and clustering models used 50
latent KCs (we also evaluated variants with 20 KCs, which had slightly worse performance) and
the patience parameter for early stopping was increased from 10 to 50 epochs as the model’s
validation loss tends to oscillate more on this dataset. The expert KCs model is BKT with
expert-provided KC annotations (extracted from the KC (Default) column in the dataset). Prob-
lem representations bring the skill discovery model level with the expert-provided BKT model,
despite using fewer KCs (50 latent KCs versus 114 expert-provided KCs). The clustering model
performs slightly worse than skill discovery and expert BKT models. The skill discovery model
found a total of 15 KCs, so it is much more sparse than the clustering and expert models. We
should note at this point that the problem-cleaning step described in the datasets section is criti-
cal to achieving this performance, without which the prediction accuracy is reduced noticeably.

Figure 15: Skill discovery test performance on the equations dataset. Error bars correspond to
the standard error of the mean.

Table 4 illustrates the top 5 tokenized representations of the problems in the four most fre-
quently used KCs by the SD+Rep model on one cross-validation split. Initially, we struggled
to provide good labels for the discovered KCs but our reviewers have kindly provided examples
to do so. Problems under KC1 require the student to move the terms involving the variable to
one side of the equation if a mixture of constants and variables appears on one side. Under KC2
it is the opposite: the problems require the student to move all constant terms to one side of
the equation if constants and variables appear on one or both sides. KC3 problems require the
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Table 4: Top KCs discovered by the SD+Rep model on the equations dataset. Problems are
sorted by the probability of getting assigned to the KC. The tokenized representation of the
problems is shown, rather than the literal problem steps in the dataset.

KC1 KC2 KC3 KC4
−A−Bx = Ax A− A = A+Bx− A −x

−A
= A

−B
A = Ax

A

Ax = Ax−B − Ax A−B = A+Bx− A −x
−A

= −A
−B

A = A
x

Ax = −Ax−B − Ax x− A = −Ax+B −Ax
−A

= −A
−B

−A = Ax
A

Ax = A−Bx A−B = A+−Bx− A A
−B

= −x
−A

A
A
= Ax

A

−A−Bx = −Ax x = A+B −A
−B

= −x
−A

A = Ax

student to multiply both sides by a constant, if the equation has a term on each side, and the
constant divides the variable on one side. KC4 problems require the student to cancel a constant
on both sides, if the equation has one term on each side, and each term contains the constant.

One of our reviewers suggested examining whether students learn with repeated opportu-
nities on the discovered KCs (i.e. pL > 0) as a way of measuring the quality of the KCs’
interpretability. On the skills discovered in Table 4, pL is 0.004, 0.004, 0.310, and 0.085 for
KC1, KC2, KC3, and KC4, respectively. Those estimates are based on a single cross-validation
split. Across all cross-validation splits, the average 25%, 50%, and 75% quartiles of pL are
0.057, 0.160, and 0.495, respectively (i.e., on average, 50% of discovered KCs with at least
one problem have pL > 0.160). We can improve the interpretability of discovered KCs by re-
quiring that pL be greater than some threshold value, which can be done with a straightforward
mathematical transformation in the model.

The results on the equations dataset show that problem representations can be used to drive
end-to-end skill discovery without the need for expert annotations. Of course, more performance
could be unlocked with a more suitable choice of embedding models, such as those that can
directly embed tree-structured data (an equation or mathematical expression is a tree structure).
In the next set of experiments, we evaluate how the basic SD model performs on other real-life
datasets, where no representations are available and assumptions about the true KC sequence
structure cannot be made.

4.4. EVALUATION ON REAL-WORLD DATASETS

Six variants of BKT were evaluated on eight real-world educational datasets. BKT is brute-
force BKT, BKT+Abilities is accelerated BKT RNN equipped with inference of student abil-
ities, BKT+Problems is accelerated BKT with problem-specific guess and slip probabilities,
BKT+IRT combines student abilities and problem effects, BKT+IRT (Multidim) is BKT+IRT
with student prototypes and multidimensional student abilities, and SD is BKT equipped with
problem-KC assignment discovery (no auxiliary loss or problem representations).

BKT RNN models without skill discovery were trained with a learning rate of 0.5 and early-
stopping patience of 10 epochs without a minimum improvement of 1% over the previous best.
Depending on the dataset, the training batch size was changed to fit in the memory of the GPU
(minimum and maximum batch sizes were 10 and 500 sequences, respectively). BKT+IRT used
13 equally spaced ability levels in the interval [−3, 3] and the multidimensional variant used 20
student prototypes. For BKT+SD, the learning rate was set to 0.1, early-stopping for 10 epochs
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without improvement over the previous best, training batch size of 100 sequences, τ = 1.5,
maximum of 20 underlying KCs, and 10 hard samples of the problem-KC assignment matrix
for evaluation.

Figure 16: The AUC-ROC of BKT RNN variants on several educational datasets (higher is
better). DKT model scores are the best DKT scores from (Gervet et al., 2020). Absolute Best is
the best-performing model from (Gervet et al., 2020). Error bars correspond to the standard error
of the mean AUC-ROC over 5 cross-validation folds (no error bars are shown for the DKT and
Absolute Best models).

Figure 16 reports the test AUC-ROC of the six tested models on eight datasets. For reference,
the best-performing DKT model results from Gervet et al. (2020) are included (pink bars).
Since they evaluated a variant of DKT that is strictly limited to KC information and a variant
that uses problem and KC information, DKT-Best corresponds to the variant that achieves the
higher AUC-ROC of the two. Note, however, that they were not able to evaluate the second
variant on datasets with a large number of problems: algebra05, assistments15, and
bridge algebra06. Also included is the absolute best model from Gervet’s paper, which
we term Absolute Best.

On the algebra05 dataset, incorporating problem effects (green) provides a greater boost
in performance over vanilla BKT than student abilities (orange). Combining abilities and prob-
lem effects (red) provides a moderate increase over the problems-only model. Adding multiple
student ability dimensions (purple) provides another small increase over the uni-dimensional
BKT+IRT model with the model drawing almost level with DKT but lagging behind the abso-
lute best model. SD lags behind the other models, most likely because 26% of the test trials

30
262 Journal of Educational Data Mining, Volume 16, No 1, 2024



involve novel problems that have no problem-KC assignment. The IRT-based models have bet-
ter performance, even though they also use problem-specific parameters, because their guessing
and slipping probabilities are decomposed into the sum of KC- and problem-specific parameters,
with the latter being initialized to zero (see Methods section). This allows the models to use KC
parameters when a new problem is encountered during evaluation.

On assistments09, combining student and problem effects leads to a clear improvement
over either set of effects alone (red bars vs orange and green bars). BKT+IRT also matches
DKT but lags behind the absolute best model. This supports the importance of modeling student
abilities on this dataset, which explains the SD model’s reduced performance as it does not
incorporate student effects. The multidimensional BKT+IRT model fares slightly worse than
the uni-dimensional variant, perhaps because the latter does not assume that it will encounter
the same kinds of students on testing as in training (because of the uniformly spaced ability
values grid).

On assistments12, BKT+IRT outperforms both BKT+Abilities and BKT+Problems.
SD matches it despite not using KC information and lacking student effects (it may be finding
a KC assignment that mitigates the lack of ability inference, such as one that uses few KCs).
Again, BKT+IRT (Multidim) fares slightly worse, potentially due to the assumption of student
homogeneity between training and testing. Results on assistments15 show a different pic-
ture: here, BKT+Problems is substantially worse than BKT+Abilities because the dataset has
100 KCs and 100 problems, with one problem per KC. Thus, BKT+Problems on this dataset
reduces to BKT, albeit with additional unnecessary parameters which might have crippled train-
ing performance compared to standard BKT. Indeed, the fact that BKT+IRT and its multidimen-
sional variant only barely match the BKT+Abilities model indicates that problem information
does not really contribute anything to predictive performance. SD outperforms BKT+Problems
and matches BKT+Abilities, most likely due to it finding a better assignment of problems to
KCs. On the final ASSISTments dataset (assistments17), BKT+IRT and its multidimen-
sional counterpart are the best of BKT variants, with the SD model fairing worse, which could
be due to the lack of student effects in the model.

On bridge algebra06, multidimensional BKT+IRT matches DKT’s performance. None
of the other variants can improve over plain BKT. On spanish, DKT performs similarly to
BKT, with BKT+IRT and its multidimensional variants coming out on top. The SD model is not
able to improve over BKT, likely due to the declarative nature of the task in this dataset (foreign
language learning). Finally, on statics, all BKT extensions that use problem information
significantly outperform BKT and are close to DKT. The SD model again appears to be suffer-
ing from the lack of student effects. All in all, the Absolute Best model’s greatest performance
advantage is on the assistments17 dataset, where it scores 0.07 AUC-ROC points higher
than BKT+IRT. On the remaining datasets, its advantage never exceeds 0.04 AUC-ROC points.

We should note that the task of finding problem-KC assignments and fitting BKT param-
eters simultaneously sometimes makes the SD model orders of magnitude slower than the
other models, depending on the size of the dataset. The model’s longest runtime is on the
assistments12 dataset, where it takes an average of 51 minutes per cross-validation fold,
compared to BKT+IRT’s 66 seconds (46-fold difference). The smallest difference between the
two models is on the statics dataset, where SD and BKT+IRT take 15.1 and 4.4 minutes,
respectively (3.45-fold difference).
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4.5. BKT+IRT INTERPRETABILITY

To demonstrate the interpretability of our models, we looked at BKT+IRT’s strongest showing,
the Bridge to Algebra 2006 dataset, where it matched DKT. Model parameters were constrained
such that the not-slipping probability is always greater or equal to the guessing probability for
skills, problems, and student prototypes. This is to force the model to produce cognitively
plausible parameter estimates. The constrained model’s test performance did not change on the
Bridge to Algebra dataset. The results below are based on the model being trained on one of the
cross-validation splits in the dataset.

4.5.1. Visualizing Skill, Problem, and Student Effects

The blue panels in the top row of Figure 17 plot the KC probabilities when problem and student
effects are set to zero. Points in the scatter plots correspond to individual skills. Guessing prob-
abilities are symmetrically distributed with a peak at 0.5. As expected, slipping probabilities
are skewed towards smaller values, with the most frequent value being near zero. The diagonal
points correspond to skills where the probability of guessing is equal to not slipping; that is,
whether the student knows the skill makes no difference (around 27% of the skills). This may
seem odd but remember that the observation probabilities of BKT+IRT are functions of the sum
of skill, problem, and student effects, not just skill effects alone. Learning and forgetting prob-
abilities are skewed towards high and low values, respectively, but there is no clear relationship
between them. Initial knowledge probabilities are skewed towards low values but they too have
no clear relationship with learning probabilities.

For problems (orange panel in the top row of Figure 17), the picture is different. Most
problems have a baseline guessing probability of 0.5, but a significant fraction has guessing
probabilities greater than 0.70 (a baseline guessing probability of 0.5 means that the problem
does not contribute to its KC’s guessing probability). The difficulty of all problems remains the
same regardless of whether the student knows the skill or not (all problems are on the diago-
nal). This experimentally agrees with earlier approaches that used one parameter to characterize
problem difficulty in models that merged BKT and IRT (Khajah et al., 2014). The reader might
find it odd that the guessing and slipping probabilities for problems are exactly equal. This is
because the model parameterizes a problem’s not-slipping probability in terms of the guessing
probability and some non-negative boost. The boost is initialized to zero so if the model does
not require it, it will stay at zero, making the guessing and slipping probabilities equal.

Since BKT+IRT parameterizes BKT probabilities using KC, problem, and student effects,
it is important to see how they interact with each other. To illustrate this, we picked the most
frequent student prototype (denoted as prototype T) and generated scatter plots of the five BKT
probabilities (bottom row of Figure 17). Including student and skill effects shifts the guess
probability downwards and skews the slipping probabilities toward zero. This is not unexpected
as prototype T has small guessing and slipping offsets, as we shall see shortly. The concentration
of slip probabilities near zero indicates that, for all problems, students are unlikely to slip once
they have mastered the KC. Similarly, the learning and forgetting probabilities are also skewed
towards lower values when including student and skill effects, because of prototype T’s small
learning and forgetting offsets. The initial knowledge probabilities are unaffected because they
are only a function of skill effects.

As explained in the methodology, student effects in BKT+IRT are captured using learnable
prototypes. We illustrate the top six discovered student prototypes and their frequency over the
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Figure 17: Scatter plots of the fitted skill (blue) and problem (orange) probabilities from the
BKT+IRT model on the bridge algebra06 dataset. Blue and orange points correspond to
individual skills and problems, respectively. Problems Only corresponds to problem effects
only, Skills Only corresponds to skill effects only, and All corresponds to the combination of
problem effects, skill effects, and the most frequent prototype’s student effects (Prototype T).

entire dataset in Figure 18a. The frequency of a prototype g is the number of students whose
most likely prototype, after observing all of their trials, is g. Prototypes are sorted according to
their frequency, from smallest to largest. Note that the prototype letter only serves to identify the
prototype and has no additional interpretation. We report not-slipping and not-forgetting proba-
bilities, instead of slipping and forgetting, so that higher values of all four probabilities always
correspond to more skilled students. As with the previous analyses, here we consider student
effects in isolation, so the probabilities are calculated by setting skill and problem effects to zero.
Prototype T is the most frequent and students belonging to it have guessing, slipping, learning,
and forgetting probabilities of 0.23, 0.20, 0.18, and 0.10, respectively. The next most common
prototype, S, has a significantly greater guessing probability (0.5), a smaller slip probability
(0.11), and smaller learning and forgetting probabilities (0.15 and 0.06, respectively). Note that
prototype S and R’s guess probability of ≈ 0.5 corresponds to an offset θGu = 0, so they do not
contribute to their students’ guessing probabilities. Similarly, prototype P does not contribute to
its students’ slipping probabilities.

Figure 18b shows the meaning of the parameter estimates in Figure 18a. At the top, the
probability of knowing the KC over time P (st = 1) is plotted for each prototype, averaging
over all skills (more frequent skills get weighed more). In the bottom, the probability of a
correct answer P (yt = 1) is plotted as a function of knowledge probability, averaging over all
problems and skills by their frequency. Higher learning rates do not always correspond to higher
knowledge probabilities by the end of the trial sequence. For example, Prototype O (brown)
learns slightly more quickly than R (green) but saturates at a lower level. This is because O has
a higher learning offset but a smaller not-forgetting offset than R. Prototype S (orange) is also
slower to learn but ultimately catches up and slightly exceeds O for the same reason. In terms of
predicted correctness, the relative ordering of prototypes changes, with O achieving the highest
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(a) (b)

Figure 18: (a) Learned student prototypes from the multidimensional BKT IRT model on the
Bridge to Algebra 2006 dataset. The top panel plots the relative frequency of each prototype
in the whole dataset (training and testing). The bottom panel plots the four probability values
associated with each prototype (guessing, not slipping, learning, and not forgetting) assuming
that skill and problem effects are set to zero. (b) The prior knowledge state trajectory (top) and
correctness (bottom) for each prototype, averaging over all KCs and problems by frequency.

predicted correctness because of its high guessing and not-slipping offsets, whereas prototype
R achieves lower performance because of a smaller not-slipping offset, and the fact that it does
not contribute to the guessing probability. The blue line has the steepest slope, indicating that
students belonging to prototype T achieve the biggest improvement in correctness when knowing
the KC.

Similarly to the previous analysis, we can analyze the meaning of the parameters of selected
KCs. KCs were filtered to exclude those with less than 5,000 trials in the dataset. Then, they
were sorted by their maximum knowledge probability according to the model, pL

pL+pF
. From this

sorted list, 10 KCs were selected uniformly. Figure 19 plots the prior knowledge state trajectory,
predicted correctness, and within-KC problem variability, for each selected KC. The trajectories
and predicted correctness are obtained by taking a weighted average over all student prototypes
and problems. The actual KC label is included, although the KC annotations in this dataset are
not always clear. One of the most difficult skills to learn and answer is Write expression, any
form: after 20 trials, the prior probability of knowing the skill is less than 0.5, and even then,
the student only has a 75% chance of answering correctly. In contrast, most students do not start
knowing the Identify fraction associated with each piece of a vertical bar skill, but they learn
it quickly by the 5th opportunity, at which point they would have ≈ 90% chance of answering the
skill correctly. Identify LCM - one number multiple of other is an anomaly: it is very difficult
to learn yet very easy to answer correctly on regardless of knowledge. The initial knowledge
probability of that KC is greater than the maximum knowledge probability due to the KC’s high
forgetting factor. However, students still have more than a 75% chance of answering correctly
on the KC, regardless of whether they know it or not. This kind of anomaly could be resolved
by placing extra constraints on the model. First, we can parameterize the initial knowledge
probability such that it is always less than the maximum knowledge probability. Second, we
can limit the guess and slip probabilities so that they do not exceed a certain threshold, such
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as 0.4 for example. Problem variability within the selected KCs is illustrated in the right panel
of Figure 19. The x-axis is the guessing offset of problems within the KC (recall that the not-
slipping offset for problems is the same as the guessing offset). Five out of 10 KCs have a
25% percentile that is greater than zero, indicating that problems within those KCs increase the
guessing probability over the KC’s baseline probability. The Identify LCM skill has problems
with logits that are reliably less than zero, indicating that they reduce the guessing probability
relative to their KC’s baseline. All in all, the high variability of guessing probabilities indicates
that problems within KCs in this dataset are not homogenous in terms of difficulty.

Figure 19: (Left column) The prior knowledge state trajectory (top) and correctness (bottom)
for each KC, averaging over all problems and student prototypes by frequency. (Right column)
Box plot of the guessing logits of problems within each KC.

4.5.2. Exercise Selection

One of the reasons for using predictive models in tutoring systems is to select problems with
the appropriate level of difficulty for the student. Both black-box and interpretable models can
be used for this task. However, from a researcher’s or teacher’s perspective, it is important to
understand why a scheduling algorithm selects a particular problem. Figure 20 shows how the
prototype of the student in BKT+IRT modulates the guessing (left panel) and slipping probabili-
ties (right panel) of the optimal problem to present at t+1 (based on the Enter items numerator
skill, which has 417 problems). The optimal problem here is defined as the one that the model
predicts to be answered correctly with a probability of 0.75. For clarity, student prototypes were
qualitatively labeled based on their parameter estimates in Figure 18: O is strong all-around,
P is weak all-around, Q is strong but has weak dynamics, R and S are weak learners, but they
don’t slip, and T is weak but doesn’t forget. Overall, when the student does not know the skill
(P (st = 1|y1:t) close to zero), the optimal problem will have high guessing and low slipping
probabilities. As the probability of knowing the skill increases, the guessing and slipping prob-
abilities decrease and increase, respectively. The following list highlights specific differences
among prototypes:

• Strong versus weak students: Prototypes O (brown) and P (purple) are strong and weak
all-around, respectively, so the optimal problem for the former will be harder than the
latter (i.e., the problem will have smaller guessing and not-slipping offsets). Q is also
strong but is less likely to learn and retain knowledge than O, so the algorithm presents Q
with slightly easier problems than O.
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• Forgetting: Prototypes T (blue) and P (purple) are both weak so they get assigned easier
problems than the others. Both have similar guessing and learning offsets, so their optimal
problems will be similar when the student’s knowledge probability is low. However, as
that knowledge probability increases, the blue and purple curves diverge because T is less
likely to forget than P, so it is more likely to know the KC at t + 1. Because of this, T
will be assigned problems with higher slipping probabilities (right panel) and since the
problem guessing and slipping probabilities are inversely related (Figure 17), T’s optimal
problems will have smaller guessing probabilities than P’s.

• Slipping: Prototypes S (orange) and R (red) are both weak but don’t slip, so their optimal
problems will be harder than those of P and T.

Figure 20: The guess (left) and slip probabilities (right) of the best problem to show to the
student as a function of their knowledge state (x-axis) and prototype (colored curves).

4.5.3. Visualizing Student Performance

BKT+IRT can be used to trace the student’s hidden knowledge state, just like BKT. Figure 21
digs into the performance of two students A and B (representing the lowest 1% and top 99%
in terms of average correctness, respectively). The selected students practiced mostly different
skill sets that overlapped in 21 skills only. Thus, we limited the visualization to focus on trials
involving those overlapping skills. In the top row, a moving average with window size of 10%
of total sequence length is used to display the response accuracy. The magenta line represents
the average on those trials. The next row plots the smoothed estimates of the probability that
the student knows each of the 21 skills. The last row shows the probabilities associated with the
most likely student prototype (for visualization, probabilities are calculated assuming skill and
problem effects are zero). The two students do not practice for the same number of trials (560
versus 101). Student B has greater guessing, learning, and not-slipping probabilities than student
A. Both students have similar not-forgetting probabilities. By the end of the trial sequences,
students A and B have a median knowledge probability of 0.16 and 0.50, respectively, indicating
that student B has mastered more skills than student A.
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Figure 21: Two examples of student performance and the inferred knowledge state and student
ability estimates. Each column corresponds to a student. The top row shows a moving average
of response accuracy (window size 10% of total sequence length). The middle row shows the
smoothed probability that the student knows each skill. The bottom row shows the most likely
prototype’s parameters over time (with problem and skill effects set to zero).

5. CONCLUSION

Bayesian Knowledge Tracing has always been trained with brute-force or custom fine-tuned
expectation maximization or gradient descent training algorithms that limit the model’s utility
and extensibility. Our contributions are three-fold: (a) efficient implementations of BKT RNN
cells that could be easily extended and integrated with other NN modules, (b) a multidimensional
BKT+IRT RNN model that can generalize to new students in a principled way, and (c) a skill
discovery BKT RNN model that learns the problem-KC assignment matrix end-to-end.

Efficiency is achieved by leveraging first-order gradient descent optimizers in PyTorch and
accelerated parallel processing capabilities of graphical processing units. The binary knowledge
state of BKT also permits even more speedups by allowing the learning algorithm to process
multiple trials in the sequence in parallel. Flexibility is possible due to PyTorch’s automatic
symbolic differentiation capabilities which only require the modeler to specify the forward com-
putation pass, leaving the complicated backward pass to the framework.

To demonstrate the flexibility of our implementations, two novel extensions to BKT were
developed and evaluated. The first extension, multidimensional BKT+IRT, enables the model to
contextualize predictions based on multidimensional problem and student parameters. Similar
existing implementations of this model only use one ability dimension, which fails to capture
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situations such as students learning slowly and forgetting slowly, etc. Also, our implementation
can generalize to new students in a principled way via the application of Bayes rule, unlike other
implementations. In cases where the distribution of student abilities may differ from training to
testing, we also demonstrate a more basic variant of the model which discretizes the ability
values over a one-dimensional grid.

The second extension is the skill discovery BKT model which uses a novel multi-KC BKT
RNN cell whose output is differentiable with respect to the problem-KC assignment matrix. This
cell receives KC assignments from a stochastic NN layer that is parameterized by the problem-
KC membership probabilities and can generate differentiable Q-matrices based on them. The
model is also augmented with an auxiliary loss objective that guides it towards plausible KC
sequences, as well as the ability to use problem features to contextualize the problem-KC as-
signment probabilities.

On large synthetic datasets, BKT RNN is within the same order of magnitude as an optimized
implementation in terms of execution speed. The accelerated BKT RNN is even faster, achieving
speedups of up to 47% over BKT RNN, depending on the size of the dataset. Both BKT RNN
models recover the generating parameters of the synthetic datasets as well as, if not better than,
the reference brute force model.

Thorough synthetic skill discovery experiments, where the true problem-KC assignments
are known, show that the true order of KCs and their number in the dataset influences model
performance. When KCs are structured in blocks, skill discovery models that use problem
features as inputs can achieve high predictive accuracy while partially recovering the problem-
KC assignment matrix. Guiding those models with the blocked-KC auxiliary loss improves
their ability to recover that matrix even further. When the number of true KCs is small, this
guidance almost fully recovers the true problem assignments. When KCs are interleaved, the
task is much harder as it requires examining very long range dependencies. Nonetheless, for
a moderate number of true KCs, using problem input features still provides high predictive
accuracy and can recover about half of the maximum possible number of KCs. On real-world
datasets, problem features enable the skill discovery model to match BKT with expert-provided
skills in terms of accuracy. However there is tension between predictive performance and the
KC recovery percentage, so there is room for improving our models in this regard. All in all, we
recommend the inclusion of raw problem content in more EDM datasets as it does not require
additional effort to collect (unlike skill annotations, which have to be created manually).

On real-world datasets, the multidimensional BKT+IRT model often performs the best out
of all BKT extensions, and, in some cases, matches the performance of DKT. Indeed, except for
one dataset, the best-performing BKT extension never lags DKT by more than 0.04 AUC-ROC
points. The skill discovery model usually matches or exceeds the BKT+Problems model (these
two models are comparable because they use the same set of information, skills and problems,
but in different ways). However, when student effects are added to create the BKT+IRT model,
skill discovery struggles to match it on most datasets.

BKT+IRT has well-defined parameters that interact with each other to generate predictions in
a clear way. To demonstrate the model’s interpretability, we illustrated several visualizations of
model parameters and their meaning from a dataset where BKT+IRT matches DKT and showed
how student prototypes in BKT+IRT modulate the problem selection process.

There are several limitations to this work that could be addressed in the future:

• Static student abilities: student abilities in BKT+IRT and its multidimensional coun-
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terpart are assumed to be static: a student has an unknown fixed global ability level (or
prototype) which the model tries to discover via sequential Bayesian updating. One ex-
tension to the model is to assume that student abilities evolve over time according to some
temporal function, similar to the approach by Wilson et al. (2016). Our hypothesis is that
this approach will not greatly improve BKT+IRT’s performance because BKT already has
temporally evolving knowledge states (per skill).

• Lack of student effects in the skill discovery model: the absence of student effects
likely hurt the model’s prediction ability on real-world datasets. Therefore, one future
direction would be to include student effects in the form of unidimensional ability levels
or multidimensional prototypes.

• Strong skill discovery performance requires problem representations: on synthetic
datasets, strong skill discovery performance requires access to problem features or repre-
sentations (though the model still does a good job on real-world datasets without problem
representations). The situation is the same on the one real-world dataset we used that has
problem features. And since the model uses high-dimensional problem features, there is
always a risk of overfitting on small datasets. Therefore, one future direction is to develop
a two-stage pipeline for skill discovery. The first stage consumes the dataset and outputs
problem features (one naive representation of a problem is its correlation in terms of cor-
rectness with every other problem). The second stage would apply the skill discovery
model with the representations learned from the first step.

• Rigid auxiliary loss: the auxiliary loss of the skill discovery model only favors blocked
skill sequences, but one can imagine generalizing that loss to allow for other kinds of
sequences, such as interleaving sequences. The auxiliary loss does not have to be related to
sequence ordering either; it could for example encourage certain structures in the problem-
skill matrix (e.g., skills should have a similar number of problems).

• Binary knowledge states: the standard BKT RNN code supports more than binary states
and outputs, so a useful direction in the future would be to explore how increasing the
number of states affects the developed extensions.

• Lack of hyperparameter optimization: no systematic hyperparameter optimization was
performed on the developed BKT implementations, so extra predictive performance could
be unlocked (e.g., batch sizes, learning rates, auxiliary loss coefficient, Gumbel-Softmax
temperature, etc.). We left those out as we believe they are more relevant to production
deployments where extracting every bit of performance is important.

• BKT parameter constraints: In vanilla BKT without forgetting, the student always
gets better with successive opportunities a priori (probability of mastery monotonically
increases). With forgetting, the probability of mastery will saturate at pL

pL+pF
. There-

fore, whether the student gets better with successive opportunities depends on their initial
knowledge probability. If the initial knowledge probability is less than the saturation point,
the student will get better and vice-versa. Thus, one way to improve the plausibility of the
parameters of BKT with forgetting is to force the initial knowledge probability to be less
than the saturation probability. Another related issue is to constrain the guessing and slip-
ping offsets to be below certain thresholds so that knowing the KC is always guaranteed
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to significantly improve the likelihood of a correct answer. This is straightforward to do
and left for future investigations.

• Student features: the flexibility of our models makes it easy to incorporate student
features into the model. For example, in BKT+IRT the student’s GPA, prior academic
achievements, etc. could be injected into the model via a linear neural network layer
that outputs a distribution over student prototypes (e.g., a student’s GPA would determine
which prototype they’d fall into). We have not looked into this as our datasets do not have
such features.

• Skill discovery runtime: on large datasets, the SD model is orders of magnitude slower
to train than the non-skill discovery models in this paper. The SD model cannot split
the student’s trial sequence by skill as in BKT and BKT+IRT because the SD BKT cell
has to be differentiable with respect to the problem-KC assignments. This is likely to
be the reason behind the model’s poor training speed. Future investigations could look
into modifications to allow the model to break trial sequences by skill whilst maintaining
differentiability.

With the developed BKT RNNs and their extensions, we show that BKT still has its place
amongst state-of-the-art student performance models, and can reap the same benefits that newer
neural network models enjoy. The model’s implementation and all relevant code needed to
reproduce the results of this work are available at our Github repository.
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APPENDIX

Table A1: Data in Figure 12.

Model Dataset AUC-ROC ARI % Shuffling RI % Recovered % Recovered Limit AUC-ROC Stderr ARI Stderr % Recovered Stderr
No SD 5 KCs 0.62 nan 0 0.00 0 100 0.01 nan 0.00

Single KC 5 KCs 0.68 nan 0 0.00 0 100 0.02 nan 0.00
SD 5 KCs 0.62 0.17 59 0.82 4 100 0.02 0.10 4.00

SD+AuxLoss 5 KCs 0.70 0.52 26 0.75 36 100 0.02 0.18 19.39
SD+Rep 5 KCs 0.71 0.70 18 0.92 56 100 0.02 0.08 7.48

SD+AuxLoss+Rep 5 KCs 0.74 0.95 2 0.98 92 100 0.01 0.05 8.00
Clustering 5 KCs 0.64 0.35 42 0.86 0 100 0.01 0.00 0.00

No SD 25 KCs 0.66 nan 0 0.00 0 76 0.00 nan 0.00
Single KC 25 KCs 0.68 nan 0 0.00 0 76 0.00 nan 0.00

SD 25 KCs 0.65 0.07 71 0.92 0 76 0.00 0.01 0.00
SD+AuxLoss 25 KCs 0.70 0.48 22 0.93 23 76 0.01 0.03 2.94

SD+Rep 25 KCs 0.70 0.45 24 0.94 21 76 0.00 0.03 5.15
SD+AuxLoss+Rep 25 KCs 0.70 0.63 12 0.96 35 76 0.01 0.02 2.33

Clustering 25 KCs 0.69 0.59 14 0.96 40 76 0.00 0.00 0.00
No SD 50 KCs 0.67 nan 0 0.00 0 38 0.00 nan 0.00

Single KC 50 KCs 0.64 nan 0 0.00 0 38 0.03 nan 0.00
SD 50 KCs 0.66 0.04 73 0.91 0 38 0.01 0.00 0.00

SD+AuxLoss 50 KCs 0.70 0.35 18 0.94 8 38 0.00 0.01 1.10
SD+Rep 50 KCs 0.69 0.19 38 0.92 3 38 0.00 0.02 0.49

SD+AuxLoss+Rep 50 KCs 0.69 0.36 16 0.94 12 38 0.00 0.01 1.79
Clustering 50 KCs 0.69 0.32 20 0.95 8 38 0.00 0.00 0.00

44
276 Journal of Educational Data Mining, Volume 16, No 1, 2024

https://github.com/myudelson/hmm-scalable
https://github.com/myudelson/hmm-scalable


Table A2: Data in Figure 13.

Model Dataset AUC-ROC ARI % Shuffling RI % Recovered % Recovered Limit AUC-ROC Stderr ARI Stderr % Recovered Stderr
No SD 5 KCs 0.61 nan 0 0.00 0 100 0.01 nan 0.00

Single KC 5 KCs 0.51 nan 0 0.00 0 100 0.00 nan 0.00
SD 5 KCs 0.60 0.08 73 0.79 0 100 0.02 0.02 0.00

SD+AuxLoss 5 KCs 0.53 -0.00 95 0.63 0 100 0.01 0.02 0.00
SD+Rep 5 KCs 0.73 0.71 18 0.92 48 100 0.01 0.04 4.90

SD+AuxLoss+Rep 5 KCs 0.59 0.26 46 0.62 8 100 0.02 0.03 4.90
Clustering 5 KCs 0.64 0.35 42 0.86 0 100 0.01 0.00 0.00

No SD 25 KCs 0.66 nan 0 0.00 0 76 0.00 nan 0.00
Single KC 25 KCs 0.51 nan 0 0.00 0 76 0.00 nan 0.00

SD 25 KCs 0.66 0.07 71 0.91 0 76 0.00 0.01 0.00
SD+AuxLoss 25 KCs 0.60 0.20 48 0.88 0 76 0.00 0.04 0.00

SD+Rep 25 KCs 0.70 0.55 18 0.96 36 76 0.00 0.03 6.62
SD+AuxLoss+Rep 25 KCs 0.57 0.18 53 0.80 0 76 0.01 0.01 0.00

Clustering 25 KCs 0.68 0.59 14 0.96 40 76 0.00 0.00 0.00
No SD 50 KCs 0.67 nan 0 0.00 0 38 0.00 nan 0.00

Single KC 50 KCs 0.51 nan 0 0.00 0 38 0.00 nan 0.00
SD 50 KCs 0.66 0.03 75 0.92 0 38 0.00 0.00 0.00

SD+AuxLoss 50 KCs 0.59 0.16 42 0.91 0 38 0.00 0.02 0.80
SD+Rep 50 KCs 0.67 0.20 36 0.94 2 38 0.00 0.01 0.75

SD+AuxLoss+Rep 50 KCs 0.58 0.15 46 0.86 0 38 0.01 0.02 0.00
Clustering 50 KCs 0.67 0.32 20 0.95 8 38 0.00 0.00 0.00

Table A3: Data in Figure 14.

Model Dataset AUC-ROC ARI % Shuffling RI % Recovered % Recovered Limit AUC-ROC Stderr ARI Stderr % Recovered Stderr
No SD bridge algebra06 0.61 nan 0 0.00 0 54 0.00 nan 0.00

Single KC bridge algebra06 0.55 nan 0 0.00 0 54 0.01 nan 0.00
SD bridge algebra06 0.61 0.00 95 0.97 0 54 0.00 0.00 0.00

SD+AuxLoss bridge algebra06 0.55 0.00 100 0.97 0 54 0.00 0.00 0.00
SD+Rep bridge algebra06 0.68 0.37 32 0.97 6 54 0.00 0.01 1.28

SD+AuxLoss+Rep bridge algebra06 0.60 0.02 87 0.40 11 54 0.00 0.01 1.36
Clustering bridge algebra06 0.63 0.61 12 0.99 37 54 0.00 0.02 1.09

No SD statics 0.62 nan 0 0.00 0 92 0.00 nan 0.00
Single KC statics 0.54 nan 0 0.00 0 92 0.01 nan 0.00

SD statics 0.61 0.02 95 0.75 0 92 0.00 0.00 0.00
SD+AuxLoss statics 0.55 0.01 97 0.75 0 92 0.00 0.00 0.00

SD+Rep statics 0.65 0.42 44 0.83 11 92 0.00 0.04 0.35
SD+AuxLoss+Rep statics 0.57 0.47 40 0.74 48 92 0.00 0.00 0.02

Clustering statics 0.63 0.10 83 0.77 10 92 0.00 0.00 0.00
No SD assistments09 0.63 nan 0 0.00 0 73 0.00 nan 0.00

Single KC assistments09 0.62 nan 0 0.00 0 73 0.02 nan 0.00
SD assistments09 0.63 0.01 93 0.96 0 73 0.00 0.00 0.00

SD+AuxLoss assistments09 0.68 0.17 55 0.96 0 73 0.00 0.01 0.00
SD+Rep assistments09 0.71 0.46 24 0.97 19 73 0.00 0.00 0.75

SD+AuxLoss+Rep assistments09 0.66 0.05 77 0.53 10 73 0.00 0.02 1.48
Clustering assistments09 0.66 0.70 6 0.99 48 73 0.00 0.02 2.24

Table A4: Data in Figure 16.

Model algebra05 assistments09 assistments12 assistments15 assistments17 bridge algebra06 spanish statics
BKT 0.76 0.71 0.68 0.69 0.64 0.76 0.83 0.70

BKT+Abilities 0.77 0.73 0.69 0.70 0.65 0.74 0.85 0.70
BKT+Problems 0.79 0.71 0.70 0.66 0.67 0.75 0.84 0.79

BKT+IRT 0.81 0.75 0.73 0.69 0.70 0.76 0.86 0.81
BKT+IRT (Multidim) 0.82 0.75 0.72 0.70 0.70 0.78 0.86 0.81

SD 0.75 0.73 0.73 0.70 0.69 0.75 0.83 0.80
DKT-Best 0.82 0.76 0.77 0.73 0.77 0.78 0.83 0.83

Absolute Best 0.83 0.77 0.77 0.73 0.77 0.80 0.86 0.83
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Table A5: Data in Figure 18a.

Prototype Frequency p G p NS p L p NF
O 0.02 0.74 0.96 0.26 0.89
P 0.03 0.20 0.55 0.16 0.78
Q 0.07 0.68 0.95 0.15 0.81
R 0.16 0.47 0.89 0.18 0.95
S 0.26 0.51 0.89 0.15 0.94
T 0.37 0.23 0.80 0.18 0.90

Table A6: Data in Figure 19.

KC Min Q1 Median Q3 Max
Identify fraction associated with each piece of a vertical bar -2.16 0.18 1.09 2.00 3.34

Identify multiplier in equivalence statement -2.38 -0.14 0.48 1.16 3.18
Enter quantity from diagram by reading -1.95 0.00 0.82 1.56 3.18
Identify improper fraction from option 2 -1.33 0.09 1.14 2.27 2.97

Rewrite fraction with common denominator -2.78 0.00 0.59 1.27 2.90
Entering a given -2.74 0.56 1.66 2.28 3.30

Represent first fraction on number line -2.31 -0.10 0.82 1.48 3.24
Identify that a fraction can be simplified -2.49 -0.27 0.73 1.82 3.49

Write expression, any form -2.80 -1.07 -0.17 0.72 3.43
Identify LCM - one number multiple of other -2.62 -1.59 -1.26 -0.40 0.36
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