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Understanding students’ learning of knowledge components (KCs) is an important educational data min-
ing task and enables many educational applications. However, in the domain of computing education,
where program exercises require students to practice many KCs simultaneously, it is a challenge to at-
tribute their errors to specific KCs and, therefore, to model student knowledge of these KCs. In this paper,
we define this task as the KC attribution problem. We first demonstrate a novel approach to addressing this
task using deep neural networks and explore its performance in identifying expert-defined KCs (RQ1).
Because the labeling process takes costly expert resources, we further evaluate the effectiveness of trans-
fer learning for KC attribution, using more easily acquired labels, such as problem correctness (RQ2).
Finally, because prior research indicates the incorporation of educational theory in deep learning models
could potentially enhance model performance, we investigated how to incorporate learning curves in the
model design and evaluated their performance (RQ3). Our results show that in a supervised learning sce-
nario, we can use a deep learning model, code2vec, to attribute KCs with a relatively high performance
(AUC > 75% in two of the three examined KCs). Further using transfer learning, we achieve reasonable
performance on the task without any costly expert labeling. However, the incorporation of learning curves
shows limited effectiveness in this task. Our research lays important groundwork for personalized feed-
back for students based on which KCs they applied correctly, as well as more interpretable and accurate
student models.
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1. INTRODUCTION

Modeling the state of students’ knowledge as they work, or student modeling, has great potential
to benefit students and to provide insight to instructors and researchers (Ai et al., 2019; Muldner
et al., 2015; Cen et al., 2006). To accomplish this, most student models have two requirements
at a minimum: 1) a set of skills, or knowledge components (KCs, Koedinger et al. (2012)), that
students are learning, and 2) a way to automatically assess what KC a student is practicing,
and whether they have applied that KC correctly. Historically, this has been accomplished by
creating problems, or problem sub-steps, that practice one KC at a time, which can be auto-
matically assessed (e.g., fill-in-the-blank or multiple-choice questions, e.g., in datasets collected
from ASSISTments Selent et al. (2016)). If a student gets the step correct, the student model
knows they have demonstrated knowledge of the corresponding KC, and vice versa. However, in
many domains, such as computer programming, students practice problems that require applying
multiple KCs simultaneously, which cannot easily be broken down into automatically-assessed
sub-steps (e.g. writing a function using loops, variables and conditionals). Similar challenges
also exist in other domains, such as open-ended learning environments (Kinnebrew et al., 2014),
game-based learning (Tobias et al., 2014), and natural language writing (McNamara et al., 2013)
domains. In these situations, when a student gets the problem wrong, they may have still applied
some KCs correctly but failed to apply others, causing them to get the problem wrong. In this
case, a student model must determine which KCs the student applied correctly and which they
applied incorrectly. We call this challenge the Knowledge Component attribution problem.

As an example, consider the context of this paper: computing education. Instructors often
ask students to write programs that combine a variety of KCs (e.g., related to conditionals,
boolean logic, and operators), which may take significant time and multiple attempts to complete
successfully. Students’ work (i.e., code submissions) is assessed automatically by test cases, but
these test cases often do not have a direct correspondence to individual KCs. As a result, when
a student submits code that is not fully correct, it is not clear which KCs they have applied
correctly and incorrectly. For example, consider two students writing a piece of Java code to
solve a problem. As part of that solution, the code must check whether the variable age is in
the range of 11 to 20, inclusive, and run code block A if so, or else run code block B. Assume
that two different students write code shown in Figure 1. In this example, both solutions are
incorrect, but for different reasons. The first submission has an issue of misusing the || operator
in the range, while the second submission has incorrect output from the inversed logic under the
two conditions. The two submissions are both incorrect, but a student model should treat them
differently, for instance, by giving them additional practice with the concepts they are struggling
with, not the ones they have successfully demonstrated.

if (age <= 20 || age >= 10) {
    Condition A;
} else {
    Condition B;
}

if (age <= 20 && age >= 10) {
    Condition B;
} else {
    Condition A;
}

Figure 1: Examples of two incorrect submissions with different KCs incorrectly demonstrated.

Prior work that has tried to solve what we call the KC attribution problem in programming
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has raised three critical questions that we try to address in this paper: 1) The first question is
how to define and represent KCs in programming. Prior work on KC attribution in program-
ming (Hosseini and Brusilovsky, 2013; Rivers et al., 2016) has treated programming keywords
and identifiers (e.g., if and for) as proxies for KCs. While looking for the keyword if is
a practical solution, defining KCs in this way might not lead to a KC model that is nuanced
enough to capture more detailed aspects of student’s knowledge. For example, students might
know how to apply in one context, but not in another. In this work, we address this question by
using domain experts to define the KCs that will be assessed so that KCs are meaningful and
consistent. In addition, after defining and representing KCs, prior works have evaluated the suc-
cess of KC attribution by using learning curves (e.g., in Rivers et al. (2016), the authors checked
whether the attributed KCs fit ideal learning curves) instead of labeled KC correctness. In this
work, we directly provide hand-labeled KCs and create a ground truth dataset for evaluation.1

2) The second question is, when KC attribution labels are limited, how do we still train a model
for the task we aim to solve? Specifically, in our context, we use the transfer learning strategy
to take the data of student submission correctness and use the information for the KC attribution
task. KC attribution can be formulated as a classification problem, requiring a training dataset
with expert-authored labels indicating the practice of the individual KCs, and it calls for infor-
mation transferred from another relatively effortless source. Prior work (Rivers et al., 2016) has
solved this using a data-driven hint system (Rivers and Koedinger, 2017), which learns a model
of correct and incorrect behavior from prior student data. In our paper, we address the question
with transfer learning and evaluate how transfer learning performs for the KC attribution task.
3) The third question is aligning the KC attributions with learning theory. It was shown that
token-based KCs in prior work often do not behave like KC ought to. I.e., the power law of
practice postulates that a student’s performance in a particular KC increases with the number of
KC practice opportunities (Snoddy, 1926) (details in Section 2.1). Students’ overall error rate
in practicing a KC should drop at an exponential rate as they practice more, fitting into a curve
(i.e., learning curve). Our method further incorporates the expected learning curve into the deep
learning model, and we evaluate the performance of models after incorporation.

In this paper, we present methods for addressing the KC attribution problem in program-
ming, and explore tradeoffs in addressing the above questions. Our analysis focuses on the
publicly available CodeWorkout dataset (Edwards and Murali, 2017), consisting of interaction
data from students in an introductory level Computer Science course. Our goal is to solve the
KC attribution problem: to determine, given a student’s incorrect code, which relevant KC(s)
they have applied correctly and incorrectly. We start by investigating how effectively a deep
learning model can solve this problem when trained on a corpus of expert-labeled data. Our
results show that compared with the traditional shallow models, a deep learning model such as
code2vec (Alon et al., 2019) performs better, even with limited labeled data (students n = 48).
To address the challenge of annotating code submissions with KC labels, we not only examined
the performance of the deep learning model with different sizes of labeled data. We also em-
ploy transfer learning (Torrey and Shavlik, 2010) to address the challenge of using transferred
information from submission correctness labels to train a model without hand-labeling any data.
We also built multi-task learning (Caruana, 1997) models to investigate the information trans-
ferred between the two tasks (i.e. KC attribution and KC relevance detection using submission
correctness). Without using any hand-labeled data, our model was still able to achieve better

1The ground truth dataset is stored in https://github.com/YangAzure/KC-Attribution-Tracking/tree/main/data.
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classification results than our baseline models that did have access to labeled data, though it
performed worse than the deep learning model in the supervised scenario which used the la-
beled data. To further explore possible improvements on the transfer learning scenario for better
performance, inspired by prior work integrating quantitative properties of KCs into machine
learning models (e.g., Cen et al. (2006), Shi et al. (2023)), we also explore how to incorporate
some of the theoretical properties of KCs into the model, specifically the power law of practice,
described in Section 3.2.5. Our results are mixed: learning curves in the best possible scenario
may bring improvement in the KC attribution task on certain KCs.

In summary, we answer three research questions (RQs) in the paper as our contributions:

• RQ1: How do deep learning methods that analyze students’ code perform on the KC
attribution problem, how does this compare to traditional models, and how does this per-
formance vary with the amount of available training data?

• RQ2: To what extent can information learned from other, more readily available labels
(i.e., submission correctness) be applied to solving the KC attribution problem?

• RQ3: To what extent does incorporating ideal learning curves of KCs improve the perfor-
mance of KC attribution?

2. RELATED WORK

2.1. KNOWLEDGE COMPONENT AND LEARNING CURVE

In our work, knowledge components (KCs) are a set of constructs referring to the skills students
learn when practicing programming through open-ended problems. KCs are a cognitive concept
introduced in the Knowledge-Learning-Instruction (KLI) framework (Koedinger et al., 2012),
defined as a set of unobservable states in the learning process through observable instructional
(e.g., lectures) and assessment (e.g., tests) events. KCs serve as a bridge between instructional
and assessment events. When instructors teach through instructional events, students learn from
them and internalize them as their own knowledge, measured by properly sized pieces as KCs.
KCs are then evaluated through assessment events such as exams and tests and probed through
these observable activities. While KCs can represent different knowledge, we focus on KCs in
a programming context. For example, “knowing how to write an ‘if’ statement to solve a prob-
lem with two possible conditions” is a concrete procedural skill (KC) that we explore in this
study. KCs can be represented in different granularity. For example, knowing “how to represent
a range of variables in an ‘if’ condition” is a skill frequently used in students’ code, and a finer-
grained skill can be knowing “the difference between open and closed intervals”. To associate
KCs with the problems practicing KCs, Barnes et al. used Q-matrix to represent their relation-
ships (Barnes, 2005). Rows and columns in Q-matrices are problems and KCs respectively, and
the corresponding cells in the matrices are zero/one binaries. A one-value in a cell means the
corresponding KC is practiced in the problem. Our paper follows this representation in the KC
defining and labeling process.

Knowledge components can be used in a variety of educational applications. In learning ana-
lytics, knowing the status of students’ knowledge can help teachers make pedagogical decisions.
For example, the Open Learner Model (Barria-Pineda et al., 2018) uses KCs to guide students to
needed learning activities. Researchers also benefit from knowing students’ mastery of KCs and
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can derive insights such as their process of studying worked examples and knowledge transfer
(Salden et al., 2009). Students’ mastery of KCs can also be used to show students how they learn
as visual (Labra and Santos, 2023) and textual (Graesser et al., 2018) feedback. The informa-
tion about which KCs are correctly and incorrectly practiced can also be used for personalized
instruction by guiding problem recommendation for students (Aleven and Koedinger, 2013).

While KCs can be defined by expert definitions (as introduced in Section 3.1), the demon-
stration of KCs by students is a cognitive process that cannot be observed directly (Koedinger
et al., 2012). However, the definition allows KC to be inferred from students’ performance data
(Koedinger et al., 2012), supported by cognitive science theory. For instance, the power law of
practice states that if the set of KCs is well defined (i.e. in a well-defined cognitive model), the
error rate of students practicing the individual KCs decreases at an exponential rate (Newell and
Rosenbloom, 2013; Snoddy, 1926; Cen et al., 2006). It has been mathematically modeled as

Y = aXb

, where Y refers to the error rate, X refers to the number of opportunities students practiced on
the KC, and a and b are parameters of the curve, controlling the starting error rate and learning
rate, respectively. We focus on how the learning curve property can be used to further help the
KC attribution model training process.

2.2. KNOWLEDGE COMPONENT ATTRIBUTION

It is important to distinguish the KC attribution problem from the common task of knowledge
tracing (KT, see Corbett and Anderson (1994)). In KC attribution, the focus is on the student’s
observable work (e.g., a submission to a programming problem), and the task is to determine
whether that submission correctly or incorrectly applies a set of KCs; i.e., does it serve as evi-
dence for or against a student’s mastery of these KCs. By contrast, knowledge tracing typically
takes as input a set of observations of student’s correct/incorrect application of a KC, and tries
to assess the unobservable state of a student’s mastery of that KC, to make predictions about
future performance (Corbett and Anderson, 1994; Piech et al., 2015). In other words, KC attri-
bution is in some sense a prerequisite to knowledge tracing. In learning environments with short
problems or steps that practice one KC at a time, this step is simple. However, in domains such
as programming, where problems may practice many interrelated KCs, this information is not
available. To address this, prior work, such as Code-DKT has proposed simply using the prob-
lem ID to represent each problem, and using a deep neural network to learn the relationships
between problems (Shi et al., 2022). While this approach has been quite successful at predicting
future performance on problems, it does not actually represent students’ underlying mastery of
specific, human-interpretable KCs, making it less useful to researchers and instructors. Such
models, in other words, can say that a student might fail a problem, but they cannot say why,
or what skills the student must practice to get it right. However, if we can solve the KC attri-
bution problem, as this work takes a step toward doing, these KT models would be far more
interpretable, and possibly more accurate, by reasoning directly about KCs.

Prior works have been addressing the KC attribution problem. For example, MacLellan
et al. proposed a three-step method to cluster student work in an educational game into pat-
terns and clustered them into KCs (MacLellan et al., 2015). The game aims to teach students
three concepts of structural stability and balance. Their formulation of the KC attribution task
has similarities with ours, as they attribute human-defined concepts from student submissions
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of the game, while we attribute defined KCs from code submissions. Their clustering meth-
ods work for KCs relatively less intertwined. However, the attribution problem could be more
complicated for specific domains, such as computing education. Previous works in computing
education have been leveraging the content submitted by students to identify their understanding
of programming KCs. Traditionally, programming concepts have been taught in a step-by-step
fashion (e.g., Lisp Tutor Anderson and Reiser (1985)), which allows KC attributed by step cor-
rectness. However, more recent programming tutoring systems have been prompting students
to write code in an open-ended way, and in such scenarios, more advanced methods for KC
attribution are required. For example, Rivers et al. leveraged canonicalized code submissions
and extracted the nodes in abstract syntax trees (ASTs) for an automatic hint system (Rivers
and Koedinger, 2017), and they used the hints to identify nodes as KCs to attribute when stu-
dents make incorrect submissions. Similarly, Hosseini et al. introduced JavaParser, which also
considered nodes in ASTs from student submissions as KCs (Hosseini and Brusilovsky, 2013).
However, KCs defined as programming nodes don’t follow the power law of practice (as seen
in Shi et al. (2023)) and may represent many different skills (as introduced in Section 1). Our
deep learning-based method focuses on expert-defined KCs instead of node KCs and achieves
the KC attribution task.

2.3. STUDENT MODELING IN COMPUTING EDUCATION

Source code analysis has been a pivotal tool in understanding and modeling student perfor-
mance in CS. Jin et al. (2012)’s approach to student modeling in CS education involved using
the structure of code for generating programming hints. This method leveraged linkage repre-
sentations reflecting code structure. Yudelson et al. (2014) focused on extracting code features
from a Java MOOC to predict student success and recommend appropriate problems. They use
atomic code features for problem recommendation but did not evaluate its model directly on KT
tasks. In Rivers et al. (2016) work, they employed abstract syntax trees (ASTs) for the gener-
ation of KCs and hint creation within a programming tutor, a significant step in applying KCs
in practical educational tools. Their work mirrors Nguyen et al. (2019)’s application of refine-
ment techniques to digital learning games by modeling KCs by problem types. This highlights
the expanding scope of student modeling, from traditional learning environments to interactive
digital platforms. Furthermore, Rivers et al. analyzed student learning curves using ASTs and
error rate curves presents an innovative method of extracting meaningful KCs from student code
(Rivers et al., 2016). Similarly, Wang et al. (2017) worked with “hour of code” exercise using a
deep learning method, however, the code representations used are natural language based and do
not contain structural information derived from student code. These diverse methods in student
modeling within CS education, from linkage representations to advanced deep learning tech-
niques, demonstrate the field’s evolving complexity and potential. Our approach builds upon
these foundations by using code2vec, a deep neural network that extracts structural information
to attribute KCs in complex programming tasks, addressing the challenge of assessing multiple
KCs simultaneously.

Student modeling in computing education has been evolving, with a shift from predicting
compiler errors (Kamberovic et al., 2023) to actively enhancing student learning experience. A
recent systematic literature review by (Hellas et al., 2018) showed an increase interest in predict-
ing student performance research in computing education, as well as an increase in variety of
data-driven techniques used. In (Kamberovic et al., 2023) work, they initially addressed student
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modeling with a focus on predicting compiler errors, demonstrating the potential for personal-
ized tasks and code improvements. Other recent work (Morshed Fahid et al., 2021) introduced a
progression trajectory-based student modeling framework to compared diverse student program
to expert solutions and found three distinct clusters to better understanding student behaviors in
individual programming activities.

Some direct applications of student modeling are built upon the aforementioned work. For
example, some recent works have focused on extending hint generation for block-based pro-
gramming languages (Fein et al., 2022; Price et al., 2017; Morshed Fahid et al., 2021). In
(Fein et al., 2022), the authors developed a tool for generating next-step hints for Scratch by
comparing student attempts with model solutions with AST encoding. A common technique in
these systems is the use of edit distance calculations between students code states and expert
solutions (Morshed Fahid et al., 2021; Paassen et al., 2018; Rivers and Koedinger, 2017). Sim-
ilarly, (Gonçalves and Santos, 2023) developed a tool for generating contextual hints for Java
exercises, moving from typical error detection to facilitating engaged student learning. Another
body of work on the application of student modeling has focused on clustering novice program-
ming behavior into student learning trajectories (Jiang et al., 2022; Blikstein, 2011; Maniktala
et al., 2020; Perkins and Martin, 1986; Wiggins et al., 2021; Morshed Fahid et al., 2021) and
to identify coding misconceptions (Emerson et al., 2020). These applications are crucial for
informing pedagogical decisions and improving learning outcomes, and they largely rely on
automatic and accurate attribution of KCs. Our work on the KC attribution task serves as an
upstream improvement, and we look to further strengthen these applications through further
study.

2.4. DEEP LEARNING IN EDUCATION

The recent development of deep learning technology has improved the performance of tasks not
only in educational data mining domains, but also in more general software engineering areas,
such as code summarization, program name detection, and bug detection areas. For example,
Allamanis et al. (2016) introduced a convolutional neural network (CNN) model to summarize
code snippets by integrating attention mechanisms. In 2019, Alon et al. (2019) proposed the
code2vec model to extract programming code information from abstract syntax trees (ASTs)
as code paths (Alon et al., 2018), and use a simple attention layer to calculate the importance
of code paths, for the classification of method names. These methods fueled recent research
on data mining in computing education. Shi et al. (2021) leveraged the code2vec model for
student error clustering in an unsupervised way and further classified student bugs with a semi-
supervised method in a later work (Shi et al., 2021; Shi and Price, 2022). Fein et al. (2022)
and Hoq et al. (2023) used the code2vec model for code classification tasks and improved the
performance from traditional text mining models. The model has also been incorporated into
student performance prediction (Mao et al., 2021) and KT (Shi et al., 2022) tasks, making it
promising for more complex student modeling tasks such as KC discovery (Shi, 2023; Shi et al.,
2023). Our research further extends this line of research to leverage students’ code features and
educational theory for the KC attribution task.
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if (age <= 20 && age >=
10) {
    Condition A;
} else {
    Condition B;
}

if (age < 20 && age >
10) {
    Condition A;
} else {
    Condition B;
}

Correct
Code

Incorrect
Code

Between N Way 2xN

if (age <= 20 && age >=
10) {
    Condition A;
} else if (age < 10) {
    Condition B;
} else {
    Condition C;
}

if (student) {
    if (age <= 20 && age
>= 10) {
        Condition A;
    } else {
        Condition B;
    }
} else {
    if (age <= 20 && age
>= 10) {
        Condition B;
    } else {
        Condition A;
    }
}

if (age <= 20 && age >=
10) {
    Condition A;
} else if (age < 10) {
    Condition C;
} else {
    Condition B;
}

if (student) {
    if (age <= 20 && age
>= 10) {
        Condition B;
    } else {
        Condition A;
    }
} else {
    if (age <= 20 && age
>= 10) {
        Condition A;
    } else {
        Condition B;
    }
}

KC

Figure 2: Examples of labeled KCs in correct and incorrect code submissions. Each column
of code belongs to a defined KC. The first row shows correct code examples for the KCs. The
second row shows incorrect code examples.
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3. METHOD

3.1. DEFINING Q-MATRICES

The first step before attributing KCs is to define a set of KCs that is relevant for our dataset
from an introductory computing course. The definition of KCs could be achieved manually via
a variety of methods. One common way to define KCs is through cognitive task analysis (CTA,
Clark et al. (2008)). One key step of CTA is knowledge elicitation (Cooke, 1994), where a
knowledge engineer works with the domain experts to codify the knowledge into a structured
format. Although some recent work has provided a way to extract KCs automatically, the KCs
are not directly interpretable as programming code and still need further revising (Shi et al.,
2023). In this paper, we decided to manually extract KCs for interpretability considerations, but
in a simpler way than CTA. Instead of having specific knowledge engineers elicit the process of
solving the problem, we had experts (authors who are experienced in teaching and computing
education research) work together to define the KCs in our scenario.

KCs were defined by two experienced authors with teaching experience in introductory com-
puting courses for at least two semesters in a university setting. In this process, two authors
went through all ten problems in the assignment and determined common KCs practiced in the
dataset. In the labeling process, two authors first read through the problem requirements and then
checked random incorrect submissions from students to determine the KCs practiced. They first
summarized the potential KCs as phrases, and collected all KC phrases to determine whether
such KCs are kept and discussed. If a potential KC was kept, they went through all problems
and labeled the Q-matrix, while using a sentence to define the KC. They also defined two stan-
dards to select KCs that cover a range of problems. The first standard to defining a KC is that a
KC should be practiced quite frequently in the dataset. If a KC is only practiced in one or two
problems, then it might be a KC that is not fundamental to the assignment, making it difficult to
model accurately, and not as useful. They also had a standard that a KC cannot be practiced in
every problem. If a KC was practiced in all problems, such as exercising the correct syntax in
Java, they considered this part of the general challenge programming, which was not our goal to
model. They targeted KCs that are practiced in at least three problems and no more than eight
problems to follow the two standards. There may be more KCs practiced in the dataset, but they
mainly focus on the KCs fitting these two standards. Because our goal for this KC identification
process was to reach consensus, rather than to create a standard that each expert could carry
out individually, experts worked together synchronously, and they did not attempt to measure
inter-rater reliability. Any conflicts, for example when the experts identified different KCs or
defined KCs differently, were resolved as they emerged as follows: If a KC was only identified
by one of the experts, they discussed to determine if it is a focused KC (meeting the criteria) in
the assignment, and worked together to create a definition for it. If a KC was defined differently
by the two experts, they resolved the difference by a discussion using examples from student
submissions.

The three KCs they defined in the first assignments are:

• Between: Construct a boolean expression to determine if a variable is between (two)
constants. Examples of the KC is shown in the first column of Figure 2, where the correct
constraint is 10 ≤ age ≤ 20 in the correct code, but incorrectly practiced as 10 < age <
20 in the incorrect code.

• N Way Sequential Conditions: Order if-statements to reflect mutually exclusive outcomes
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based on a problem prompt. Example submissions practicing this KC can be found in the
second column of Figure 2. In the correct code, when the first if condition is met, the
condition B should be executed. However, in the incorrect code, the condition C
is executed in this situation.

• 2xN: Interacting Conditions: Nested if-statements (or create complex expressions in non-
nested if-statements) to reflect outcomes at the intersection of two decisions. The exam-
ples of this KC are shown in the third column of Figure 2. In the incorrect code, the
conditions of the inner if-statement are inversed from the correct code, causing incorrect
logic and the incorrect application of this KC.

3.2. MODEL DESIGN

3.2.1. Supervised Learning

Our goal is to train a model to achieve a supervised learning task: KC attribution (to determine
which KCs the student applied correctly and which they applied incorrectly). We define the
supervised learning version of the task as follows: Given an incorrect attempt at a problem,
and a relevant KC for that problem, determine whether the KC was applied correctly (1) or
incorrectly (0). While our goal is to identify all KCs that can be attributed for the incorrect
results, we can apply models trained to attribute all relevant KCs get the full list of correctly and
incorrectly applied KCs.

3.2.2. Code2vec Model

We use code2vec for solving the KC attribution task. The model code2vec is introduced in Alon
et al. (2019) to embed programming code into vectors and use them for tasks such as code clas-
sification. Similar to our prior works (Shi et al., 2021; Mao et al., 2021), in this paper, code2vec
is used as a base model for the purpose of code embedding. The structure of code2vec is shown
in Figure 3. While many more potential code embedding approaches such as CodeBERT (Feng
et al., 2020) could be used instead, there are two main reasons why we select code2vec in this
work. 1) It has recently been used as the model for investigation in several prior works besides
our own work (Fein et al., 2022; Cleuziou and Flouvat, 2021). 2) It represents a category of
methods that emphasizes the structural information from programming code through the rep-
resentations of the abstract syntax tree (AST; see Alon et al. (2018)). By contrast, CodeBERT
embeds code at the token level, which loses this syntactic structure. Additionally, pretrained
models, such as CodeBERT, are pretrained on massive industrial datasets, which differ mean-
ingfully from our educational context. For simplicity, we therefore focus only on code2vec in
this paper, but further studies could compare alternative models to explore language models’
impact on educational tasks, such as KC attribution.

Code Path Extraction: The code2vec model takes students’ code submissions as input, and
they are processed into the z vectors to embed the information from students’ code. Students’
code can be represented in abstract syntax trees (ASTs) as shown in Figure 4. Students have
simple code submissions, the pseudocode is represented as an AST, and the code2vec model
leverages paths as input. For example, the red-labeled path is represented as

input|method|body|doSomething|input.
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Figure 3: The code2vec base model architecture. Blue nodes
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layers. The model further extends to classification layers.

input

method

body

def method(input):
   doSomething(input)
   return "value"

Code
stringASTdoSomething

input

AST

value

Figure 4: Abstract syntax tree and
code paths. A code snippet is
parsed into an AST. The red la-
beled structure represents a code
path used by the code2vec model.

There are three such paths in the simple pseudocode, while in an actual student code submission,
there are much more. Each code path is indexed as three numbers according to two vocabularies.
Two vocabularies are extracted from training datasets. All leaf nodes are represented in a dictio-
nary Dn, and all paths are represented in a dictionary Dp. If the red-labeled path is the i-th code
path in the submission, it is represented as a three-number index bi = {si, pi, ei} as the input
for the code2vec model specified in Figure 3, where si denotes the starting leaf node index, pi
denotes the path node index, while ei denotes the ending node index. In the red-labeled path of
Figure 4, nodes input are indexed into numbers according to the index of input in Dn, while
the path “input|method|body|doSomething|input” is indexed into another number
according to its index in Dp.

Code Path Embedding: A code submission can be represented as multiple code paths. If it
has in total r paths, each path i is represented as a triplet (si, pi, ei) and processed by embedding
layers Wenode and Wepath. Leaf node indices si and ei are embedded as es,i ∈ Rcn and ee,i ∈ Rcn ,
and path indices pi are embedded as ep,i ∈ Rcp . The dimensions of the embedding matrices
are defined by hyper-parameters and the length of dictionaries. The node embedding layer
Wenode has a dimension (ln + 2, cn), where ln denotes the length of leaf node dictionary Dn,
and cn denotes a hyperparameter of the embedded dimension for nodes, and similarly the path
embedding layer Wepath has a dimension (lp + 2, cp). The extra two rows of both embedding
layers represent two additional scenarios of nodes and paths. As padding is needed in our models
due to unequal numbers of paths, we assign a row to embed paddings in both embedding layers.
As the dictionaries are derived from the training dataset and may encounter unknown nodes and
paths in validation or testing datasets, we assign a row to account for unknown nodes and paths
in both embedding layers.

Attention Mechanism (Xu et al., 2015): Nodes and paths are embedded into vectors, and
for each code path indexed as i, the representation is a triplet (es,i, ep,i, ee,i), concatenated as a
vector ei ∈ R2cn+cp . The vectors then go through an attention mechanism to calculate the final
vectorial representation z ∈ R2cn+cp of the code submission. The attention mechanism has two
parts, the weight calculation and the weighted average. In the weight calculation process, every
code path embeddings are stacked as a two-dimentional vector E ∈ R[r,(2cn+cp)]. The vector then
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passes through an attention layer Wa ∈ R[(2cn+cp),1] to calculate a set of weight values a:

a = EWa. (1)

The vector a has r elements, and every element refers to the importance of the corresponding
path. For calculating the weighted sum of vectors, the weight values are normalized to a 1-sum
vector through SoftMax:

α =
ea∑r
i=1 e

ai
. (2)

The weight vector α is used to calculate the weighted average for E through a dot product
operator for the calculation of z:

z = αTE. (3)

In our paper, we use the z vectors to represent a code submission, processed by the next
functional layers for the KC attribution task. The loss function it optimizes on in the training
phase is:

Lbase = CrossEntropy(ya, ŷa). (4)

In the equation, the loss Lbase is the CrossEntropy (De Boer et al., 2005) of the expected KC
attribution label (ŷa)) and model output (ya), where positive (1) means the KC is correctly
applied in the submission. The model is trained and tested on labeled KC attribution data,
as we mentioned the labeling process in Section 4.3. This is a traditional supervised learning
approach, and it addresses research question (RQ1) about how well deep learning will solve
the KC attribution task with different sizes of training data. Our expectation for code2vec is
that code2vec will perform better than traditional machine learning methods such as SVM and
logistic regression, as it has been better in other educational tasks (e.g., Shi et al. (2021), Shi
et al. (2022)).

3.2.3. Transfer Learning

As we have only limited access to labeled data for the supervised learning task of KC attribution,
we need a method that leverages less labeled information but still works for the KC attribution
task. We use the transfer learning method (Torrey and Shavlik, 2010) in this paper and evaluate
how this method compares with the supervised learning method. Transfer learning is a strategy
in which we have a model trained in one task (Task A) and have the model applied to another
task (Task B), and one hypothesis is that the information learned in Task A can be used directly
in Task B (Torrey and Shavlik, 2010). The task of KC attribution fits well along this hypothesis:
We have an abundance of labels about whether a submission is correct or not, and the automated
grading is achieved by automatic grading tools such as test cases (e.g., Wick et al. (2005)). Our
hypothesis in this paper is that if we train a model from this information, it can be applied for
the KC attribution task. We define the task we train the model on as the KC relevance detection
task: Given a student’s correct attempt at a problem, determine whether a given KC is relevant
(1) or not relevant (0) to that problem. Solving this problem is of less value by itself, as it is not
hard to manually label relevant KCs for a problem. However, we hypothesize that solving it will
transfer to the KC attribution task. We make the simplifying assumption that a problem has a
fixed set of KCs, which are always relevant and present in all students’ solutions. This generally
holds for our problem set but may not hold in all situations. To facilitate the setting of transfer
learning, we set up the experiments as indicated in Figure 5. The model is trained and tested
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on labeled correctness data of the submissions. This model is used for the evaluation of transfer
learning performance for the KC attribution task (RQ2). We won’t expect that the transfer model
will perform as good as the supervised model, but this method requires no manual labeling, and
we hypothesize that the transfer model works well in certain cases where transfer learning may
work. To evaluate whether the KC relevance detection task could benefit the supervised learning
task, we combined the two tasks in the model. We created a multi-task model to evaluate if the
performance of KC attribution can further improve.

3.2.4. Multi-Task Model Design

We further explored whether the KC relevance task could be designed to serve as a component
in the supervised model training, merging the two tasks in one multi-task model. The design is
shown in Figure 6. The model combines KC relevance detection and KC attribution using two
branches in the training process. When input belongs to a group (relevance or attribution), the
model calculates only one branch. For example, when the input is a correct submission, only KC
relevance loss is calculated for optimization, while when a labeled incorrect submission is the
input, the KC attribution loss will be calculated. More specifically, when the input is a correct
submission, we calculate the loss function as

Lmultitask = CrossEntropy(yr, ŷr), (5)

and when the submission is incorrect but relevant to the KC we detect, the loss function is

Lmultitask = CrossEntropy(ya, ŷa), (6)

where yr, and ŷr represent the detected value and ground truth, respectively, for KC relevance.
In the training process, we do not include any samples from students in the testing or validation
splits, even though the correct submissions from these students are not evaluated in the vali-
dation or testing phases. More details of data usage schema can be found in Section 4.4. We
hypothesize that if the simple combination of the two tasks in the multi-task model improves the
performance of supervised learning, the submission correctness labels extend the information
learned by the model beyond what it can learn from the KC attribution labels. However, if it
does not perform better than supervised learning, it may indicate that the information contained
in submission correctness labels is a subset of information in KC attribution labels when we
train a model for the KC attribution task. This helps us further understand how transfer learning
works, what information can be transferred, and whether the submission correctness labels offer
more information.

3.2.5. Learning Curve Integrated Model Design

As introduced in Cen et al. (2006), the practice of KCs from a group of students should follow
the power law of practice (Snoddy, 1926), namely their error rate Y on a KC when practicing
relevant problems start at a rate a and drop at an exponential rate b with the increase of practice
opportunities X , as specified in Section 2.1. In our work, we assume that students experience
the exponential learning curve on both manually defined KCs and discovered KCs. The learning
curve theory is known as the basis of many methods (Cen et al., 2006; Pavlik et al., 2009;
Chi et al., 2011) in KC refinement tasks. Under this theory, we have the a and b parameters
fixed at an assumed value in the attribution of KCs, since such parameters cannot be inferred
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before we know the actual students’ demonstration of KCs on each step. We expect the learning
curve could improve the performance of KC attribution due to the theoretical support from the
literature. However, it may also not work because students’ work may not adhere to learning
curves. For example, when the model output is close to 0.5 without a learning curve constraint, it
means that the model does not have a strong attribution. Having the ideal learning curve to yield
an output closer to the expected error rate makes the attribution fit better to theory. It is worth
noting that incorporating learning curves may or may not provide a great direction to optimize,
since our expert labels (as introduced in Section 4.3) do not yield perfect learning curves. In
our experiments, we explore, in the best scenario, how much improvement the learning curves
can bring to the models, and we inferred the best a and b parameters from the labeled data using
non-linear least squares methods (Moré et al., 1980) to fit the exponential curve.

The learning curve incorporated transfer model structure is shown in Figure 7. It has two
parts following the code2vec model introduced in Figure 3 in the training process for loss calcu-
lation and optimization. In the training process of the transfer learning scenario, learning curves
further augment the code2vec model. In the inference process, the trained model is used to
attribute KC and the results are evaluated on the labeled data. The loss Llc is calculated as:

Llc = αLbase + (1− α)
1

T

∑

T

|ct − ĉt|. (7)

In this equation, we denote the learning curve value of the KC we focus on a submission t as
ct, and in total, there are T submissions that are expected to practice the KC. As introduced in
Equation 4, Lbase indicates the loss value of the base model, and α is a factor controlling the
weight of learning curves calculated in the process. Another important part of the equation ĉt
refers to the expected error rate of the batch of students on the t-th submission. It is calculated
using the power law of practice as introduced in Section 2.1. It has two assigned parameters: the
learning rate b and the starting error rate a. The value of the detected KC error rate is calculated
as the mean of attribution kn,t at submission t for student n in this KC using an equation:

ct =
1

N

∑

N

kn,t, (8)

where N refers to the batch size of students in optimization. Since we aim to examine whether
ideal learning curves would help model training, we extracted the a and b values in all three KCs
using our labeled data.

3.2.6. Baseline Models

We leveraged baseline models to evaluate and compare the performance of deep learning-based
models as our work builds upon the optimization of deep neural networks. The baseline models
are created for both supervised learning and transfer learning scenarios to make comparisons
and show whether deep learning methods work better in either/both scenarios. As introduced
in Section 3.2.2, we processed students’ programming code into code paths as the input of the
code2vec model. However, for baseline models, such processing does not directly apply. In this
paper, we compare our results with two commonly used baseline models (as used in Marwan
et al. (2021) and Gervet et al. (2020)): logistic regression (LR) and support vector machine
(SVM). Students’ code are processed by the TF-IDF method for both baseline models, which
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Figure 5: Structure of the
code2vec model for KC attri-
bution problem in the trans-
fer scenario. The dashed ar-
row from code2vec to KC
attribution indicates the test-
ing/inference process.
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Figure 6: Structure of the
multi-task model combining
KC attribution and KC rele-
vance detection. The KC rele-
vance loss is calculated in the
training process, and the KC
attribution is used in inference
for evaluation.
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Figure 7: Structure of the
code2vec model with the
learning curve incorporated in
the transfer scenario.

extracts the frequency of terms showing up in students’ code. LR and SVM methods use the
frequency features to detect the correctness of KCs, serving as baseline models to compare
with the other models we proposed in the paper. The comparisons of baseline models help us
understand the roles of deep learning in solving the KC attribution task. With the comparison,
we will understand how much advancement a deep learning model could bring over traditional
machine learning methods. We further explore whether the differences apply in supervised
learning scenarios and transfer learning using the comparisons with baseline models. There
are many advanced models such as Feng et al. (2020) that could also serve as baseline models,
which we save as future work.

4. EXPERIMENT

4.1. DATASET

We use the publicly available CodeWorkout dataset2 for our experiments. The dataset is col-
lected in Spring 2019 from Virginia Tech in an introductory Java Course (CS1 Java), and con-
tains five assignments as practices for students to write code and practice their skills learned in
classes. The dataset contains submissions from 410 students, averaging 10 to 20 lines of code.
It is stored in ProgSnap2 (Price et al., 2020) format, and geographical information has been
unidentified for ethical considerations. In each of the five assignments, students write code in
the CodeWorkout platform (Edwards and Murali, 2017) to solve ten problems and submit their
finished code to the system to check the correctness. We selected the first assignment as our
data source. As introduced in Section 3.1, three KCs are tagged from 48 students in the dataset.
Among all submissions in the first assignment, 26.14% of code submissions pass all test cases
and are labeled as correct.3

2https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
3Code is available at https://github.com/YangAzure/KC-Attribution-Tracking/tree/main/KCAttribution.
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Figure 8: Learning curve of labeled submissions for the KCs Between, N Way, and 2xN. The
y-axes are error rates of the KCs across the labeled students, while the x-axes are opportunities
for students practicing the corresponding KC.

4.2. DATA PROCESSING

We followed similar data processing steps introduced in Shi et al. (2023), as this work also used
the CodeWorkout dataset. Processing the students’ code submissions involves two key steps:
labeling the first submissions and filtering potential cheating students.

The step of labeling first submissions from students is different from the Shi et al. (2023)
paper. In our scenario, both the first and non-first submissions are needed for both the training
and validation processes, and keeping both submissions have been the setting by other previous
work (e.g., Rivers et al. (2016)). Marking first submissions are necessary for the application of
learning curves in the model, and the calculation of learning curves should only involve the first
submissions from students.

We further observed several potential cheating students in the dataset. For example, some
students struggled early in the course, barely finishing the first easier problems with less than
ten attempts, but after a certain time, they achieved the goals of problems with their first try in
much more difficult problems. We reduced the risk of including cheating students’ data in a
student model and used some preliminary effort to exclude potential cheating students. Without
evidenced methods available, we follow previous work in Shi et al. (2023) to use a threshold
and exclude students with submission traces struggling first and achieving all more difficult
problems later.

4.3. KC LABELING

After defining the KCs, we sampled 48 students to label their incorrect submissions and attribute
their errors to the KCs we defined for each assignment. Specifically, the 48 students were divided
into two groups: 10 and 38. Two authors independently labeled the 10 students’ submissions and
merged them to see potential inconsistencies and look for updates in the definitions in the first
round. In the first round of labeling, the two authors checked the KCs labeled and found that the
labeling were consistent with Cohen’s Kappa value of 76.46%, reaching excellent agreement
(Fleiss et al., 2013). Then after discussing to resolve the conflicts, one author labeled all the
remaining 38 students’ incorrect submissions. This labeled dataset will be later released as a
benchmark for future research.

We plotted the learning curves from the 48 labeled students for the KCs defined in the first
assignment, shown in Figure 8.

16
16 Journal of Educational Data Mining, Volume 16, No 1, 2024



4.4. TRAINING, VALIDATION, AND TESTING SCHEME

The detailed schedule of data usage can be seen in Figure 9. All students’ data are split into two
subsets: one set with 48 students which we label the KC attributions, and another set we don’t
have the KC attributions. To tune the hyperparameters, we performed 5-fold cross-validation on
splits of students. We performed the hyperparameter grid search on training epochs (20 through
200) and learning rates (1e-5 through 1e-3), and the averaged AUC values across folds are used
to determine the hyperparameters of the models.

In the scenario of supervised learning, as shown in Figure 9, we performed nested cross-
validation. The supervised learning model is trained, validated, and tested by labeled KC attri-
bution data. The outer layer of cross-validation is for the train test split, and we perform this
layer of cross-validation to report the stable testing result averaging from the five folds. Inside
each training-validation run, we perform another layer of 5-fold cross-validation to determine
the hyperparameter that achieves the best results.

In the transfer learning scenario, the model is trained on the KC relevance detection task on
the unlabeled dataset for the KC attribution task. Compared with the supervised learning task,
the outer layer of cross-validation is replaced by ten times repeated runs to report stable results.
In the 10-fold cross-validation hyperparameter selection process, we made early stops when the
results reached 95% AUC and continued growing when we changed the hyperparameter to more
complex models. We made the threshold choice since the high performance on the KC relevance
detention task does not reflect a high performance on the KC attribution task, as the testing is on
the KC attribution labels of incorrect submissions. Too high performance with better than 95%
AUC on the KC relevance detection task makes little contribution to the KC attribution task.

The multi-task model (introduced in Section 3.2.4) has a similar setting with supervised
learning, and the difference is that besides the labeled data used for training, the multi-task
model leverages unlabeled samples, and the model is trained with a mixture of labeled and
unlabeled data points on the task of KC attribution, as it achieves learning of two tasks, KC
relevance detection and KC attribution at the same time.

For the other baseline models, both models used the same parameter searching process, with
10-fold cross-validation, to find the best performance in the validation dataset, and results are
evaluated on the testing dataset.

5. RESULTS

5.1. SUPERVISED KC ATTRIBUTION

In this subsection, we aim to answer RQ1: How do deep learning methods that analyze students’
code perform on the KC attribution problem, how does this compare to traditional models, and
how does this performance vary with the amount of data available?

We examined the performance of code2vec and other traditional models in the task of KC
attribution using supervised learning scheme mentioned in Section 4.4. The results are shown
in Table 1. As the table suggests, KC attribution using students’ code is a difficult problem to
solve. Baseline models using standard TF-IDF do not achieve AUC values above 0.5, meaning
all baseline models are worse than chance. This reinforces what prior work has suggested about
the challenges of understanding student code. Despite the challenge, a deep learning model is
still making meaningful predictions using supervised learning. It outperforms the baselines on
AUC by 0.4-0.1. The AUC values it achieves are all better than chance, and on some KCs, such
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Figure 9: Schedule of data usage for the training, validation, and testing of the supervised learn-
ing, transfer learning, and multi-task models. Red bins refer to a mix of labeled and unlabeled
datasets, green bins are unlabeled datasets for the KC attribution model, while blue bins refer to
datasets with KC attribution labeled. Yellow arrows refer to the cross-validation processes.

as between, are potentially accurate enough to generate useful insights for students, instructors
and researchers. However, performance varies a lot across KCs (though not across runs), sug-
gesting that this approach may not always produce actionable predictions. We perform further
analysis on scenarios when the supervised code2vec models work and don’t work in Section 5.4.

5.1.1. Cold Start Experiment

We also conducted a cold start experiment (like in Shi et al. (2021)) when trained with lim-
ited data to determine the relationship between data size and performance for the supervised
code2vec model. We started from 30 labeled students and incremented by five labeled students
in the training dataset to reach the total 48 labeled students’ data, and visualized the results in
Figures 10 and 11. The cold start curves suggest that while the relationship is not entirely lin-
ear, more data seems to help. While generally, the model performs better when more data is
available, the performance of 2xN and N Way correctness detection dropped with lower AUC
and F1 scores when using full 48 labeled students’ data. A minimum amount of data is neces-
sary for deep models to converge. When the number of training samples is deficient (e.g., when
there are only 15 samples), the performance achieved by the models is not stable enough to be
reported and considered valid. It also shows that we still need more data labeled to reach more
stable results. This data is very costly to produce; thus, we need to evaluate the second research
question in the next section: When we don’t have labels about KC attribution, could transfer
learning work?
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Table 1: KC attribution result of labeled submissions for the KCs across baseline models,
code2vec models with labeled samples, and the proposed methods. Bold numbers refer to the
best results across the board. Standard deviation is represented in parenthesis, and standard error
is represented as +- values.

KC Metrics SVM LR code2vec

Between
AUC 0.3303 0.3611

0.8076 (0.0751)
+-0.0335

F1 Score 0.7636 0.7857
0.8289 (0.0427)
+-0.0191

N Way
AUC 0.2813 0.2570

0.7680 (0.0988)
+-0.0442

F1 Score 0.6923 0.6400
0.5910 (0.0813)
+-0.0363

2xN
AUC 0.4564 0.4666

0.5872 (0.1107)
+-0.0495

F1 Score 0.4545 0.4615 0.4352 (0.1241)
+-0.0555

Figure 10: KC attribution AUC values with dif-
ferent training sample sizes.

Figure 11: KC attribution F1 values with differ-
ent training sample sizes.
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Table 2: KC attribution results of baseline models and code2vec using transfer learning strategy,
compared with supervised learning strategy. Bold numbers refer to the best results across the
board (not counting the supervised learning strategy), whereas italic numbers refer to the second-
best results. Standard deviation is represented in parenthesis, and standard error is represented as
+- values.

KC Metrics
Transfer
SVM

Transfer
LR

Transfer
code2vec

Transfer
code2vec +
Learning Curve

Multi-Task
code2vec

Supervised
code2vec

Between
AUC 0.4353 0.4259

0.7169
(0.0480)
+-0.0089

0.7242
(0.0519)
+-0.0096

0.7383
(0.0941)
+-0.0420

0.8076
(0.0751)
+-0.0335

F1 Score 0.7735 0.7735
0.8008
(0.0148)
+-0.0027

0.8019
(0.0265)
+-0.0049

0.7926
(0.0656)
+-0.0293

0.8289
(0.0427)
+-0.0191

N Way AUC 0.3553 0.4268
0.6798
(0.0659)
+-0.0122

0.6297
(0.0589)
+-0.0109

0.7865
(0.0609)
+-0.0272

0.7680
(0.0988)
+-0.0442

F1 Score 0.5517 0.5479
0.5968
(0.0387)
+-0.0027

0.5453
(0.0476)
+-0.0071

0.5848
(0.0658)
+-0.0294

0.5910
(0.0813)
+-0.0363

2xN
AUC 0.4928 0.4228

0.5035
(0.0458)
+-0.0085

0.5704
(0.0470)
+-0.0087

0.5637
(0.0833)
+-0.0372

0.5872
(0.1107)
+-0.0495

F1 Score 0.6162 0.6162
0.6100
(0.0182)
+-0.0033

0.5906
(0.0269)
+-0.0050

0.1947
(0.2348)
+-0.1050

0.4352
(0.1241)
+-0.0555

5.2. TRANSFER KC ATTRIBUTION

In this subsection, we aim to answer RQ2: To what extent can information learned from other,
more readily available labels (i.e., submission correctness) be applied to solving the KC attribu-
tion problem?

The results are reported in Table 5.2. One observation from the table is that the baseline
transfer models perform generally lower than the transfer code2vec models. In all three KCs,
the transfer code2vec model performed better than the transfer support vector machine (SVM)
and logistic regression (LR) models. On the Between and N Way KCs, code2vec achieves
about 25% better in the AUC metric. However, on 2xN correctness detection, the performance
of code2vec is only 1% better than SVM, but all models on 2xN correctness detection suffer
from very low performance with highest performance of 58.72% when the code2vec model
is trained in a non-transfer way. In general, the models perform much better in detecting the
Between KC correctness than detecting the correctness of the other two KCs.

Another direct observation is that the supervised model performed better than the transfer
models, with all AUC scores better than other models, though with lower F1 scores than two
KCs. The result shows that although trained with much more unlabeled data (data only with
problem correctness information from 362 students), the code2vec model still performs better
when trained with limited labeled data (data with KC correctness information from 38 students).
The difference between transfer code2vec and the supervised version is smaller than 10% in

20
20 Journal of Educational Data Mining, Volume 16, No 1, 2024



Table 3: The comparison of KC attribution performance when using different α values (Equa-
tion 7) on the learning curve incorporated code2vec model in transfer learning scenario.

KC Metrics
Transfer code2vec

α = 0 α = 0.001 α = 0.00011 α = 0.0001 α = 0.00009 α = 0.00001

Between
AUC

0.7169 (0.0480)
+-0.0089

0.6709 (0.0783)
+-0.0145

0.7185 (0.0530)
+-0.0098

0.7242 (0.0519)
+-0.0096

0.7235 (0.0535)
+-0.0099

0.7142 (0.0541)
+-0.0100

F1 Score
0.8005 (0.0148)

+-0.0027
0.7853 (0.0215)

+-0.0040
0.8016 (0.0258)

+-0.0048
0.8019 (0.0265)

+-0.0049
0.8007 (0.0270)

+-0.0050
0.7988 (0.0166)

+-0.0075

N Way
AUC

0.6798 (0.0659)
+-0.0122

0.6014 (0.0429)
+-0.0079

0.6135 (0.0534)
+-0.0099

0.6297 (0.0589)
+-0.0109

0.6606 (0.0727)
+-0.0135

0.6735 (0.0800)
+-0.0125

F1 Score
0.5968 (0.0387)

+-0.0027
0.5194 (0.0472)

+-0.0087
0.5412 (0.0523)

+-0.0097
0.5453 (0.0476)

+-0.0071
0.5558 (0.0430)

+-0.0079
0.5997 (0.0404)

+-0.0075

2xN
AUC

0.5035 (0.0458)
+-0.0085

0.5218 (0.0503)
+-0.0093

0.5613 (0.0569)
+-0.0105

0.5704 (0.0470)
+-0.0087

0.5554 (0.0557)
+-0.0103

0.5647 (0.0513)
+-0.0095

F1 Score
0.6100 (0.0182)

+-0.0033
0.5479 (0.0718)

+-0.0133
0.5913 (0.0348)

+-0.0064
0.5906 (0.0269)

+-0.0050
0.5824 (0.0339)

+-0.0062
0.6211 (0.0228)

+-0.0042

AUC score, showing that while no information about KC attribution is available, the model
learned needed information from the KC relevance labels.

5.2.1. Multi-Task Model Results

As introduced in Section 3.2.4, we also worked on analyzing the performance of the multi-task
model. Our results in Table 5.2 show that with the help of KC relevance detection information,
the multi-task model performed even lower than the supervised code2vec model, showing that
without specific considerations in model design, the information contained in the data used
for the KC relevance task does not add much to KC attribution, and is likely a subset of the
information contained in the labeled data when training for the task of KC attribution.

5.3. THE EFFECT OF LEARNING CURVE INCORPORATION

We further examined whether learning curve incorporation could further improve the results
of transfer learning, as asked in RQ3. As Table 3 suggests, comparing the results of transfer
code2vec models with or without learning curves, we find that in the task of detecting the cor-
rectness of two of the three KCs, learning curves show the potential of helping the model to
perform better. In the attribution of Between, the learning curve helped the model to improve
by 0.73%, while in the attribution of 2xN, the improvement is 6.69%. However, in the KC N
Way, the performance is lower than the transfer model without incorporating learning curves.
Our experiment shows that learning curves could or may not be helpful for the transfer model in
the KC attribution task, depending on the actual KC we work on.

In Section 3.2.5, we introduced that the learning curve has been incorporated to the code2vec
model using an α parameter to control the weight in the loss function. To further evaluate when
learning curves perform better for the three KCs, we ran multiple runs using different weights
on learning curve losses. We changed the value of α (see Section 3.2.5) to control the portion
of loss coming from the learning curve and KC existence label cross-entropy. We tested the
α values in a range of 1e − 3 to 1e − 5 as larger values yield results that overly fit to the
learning curves. Our results are shown in Table 3, which shows results for various alpha values.
When α = 0, the model is equivalent to the Transfer code2vec model in Table 5.2. The model
performance seems best overall when α is assigned as 0.0001. In detecting the KC Between,
we found that adding learning curves did not bring big performance improvements across all α
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Table 4: Code submitted and the detected values from models in Case A.

Code KC
Transfer
Attribution

Learning Curve
Transfer Attribution

Supervised
Attribution

public int sortaSum(int a, int b) {
if (a + b == 10 || a + b == 19) {
return 20;

} else {
return a + b;

}
}

Between 0.1278 0.0777 0.3159

values. For the detection of KC N Way, the incorporation of learning curves did not improve the
performance, with the best performance achieved by no learning curve weight involved and the
second best performance achieved by our lowest α value attempted. The detection of KC 2xN
was improved by incorporating a learning curve loss function. While the changes of α values
make bigger differences than the other two KCs, the presence of learning curves helped across
all scenarios compared with no learning curve involved. Our results show that in the base cases,
learning curves may or may not be used as an additional source of information to enhance the
performance of KC attribution transfer models, and it depends on a good selection of α values.

5.4. CASE STUDIES: WHEN WILL TRANSFER WORK?

The quantitative data clearly shows that the transfer model performs better than chance, and
is clearly picking up on relevant features, and we use examples to illustrate why and how this
may have been possible. We show several cases when transfer models work and don’t work and
the impact of including learning curves on the model training process in this section. For each
of the cases, we train and run the model ten times and report the average detected probability
of students achieving the KC, compared across the transfer model, the learning curve improved
transfer model, and the supervised model. In all cases, detection values ≥ 0.5 suggest a detection
of the KC is correctly practiced.

5.4.1. Case A: Transfer Learning on Non-Existing KC

Problem Description: Write a function in Java that implements the following logic: Given
2 ints, a and b, return their sum. However, sums in the range 10..19 inclusive, are forbidden, so
in that case just return 20.

As shown in Table 4, the goal of the code is to return a number, either 20 or the sum of the
two inputs. It is determined by the if condition. The condition implemented in the code is that
either the sum of the two inputs equals to 10 or 19. However, it does not satisfy the requirement
of the problem, which requires a range to be implemented. Since the implementation of range
does not exist, the practice of the KC between is incorrect. Thus, since the transfer model is
trained on the KC relevance detection task, it is able to detect that the KC is not practiced, which
is a correct detection for the task of KC attribution. Besides the transfer model, the learning
curve improved transfer model and the non-transfer model both make correct predictions as
well on this submission.
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Table 5: Code submitted and the detected values from models in Case B.

Code KC
Transfer
Attribution

Learning Curve
Transfer Attribution

Supervised
Attribution

public int dateFashion(int you, int date) {
if (you >= 8 || date >= 8) {
if (you <= 2 || date <= 2)
return 0;

else
return 2;

} else
return 1;

}

N Way 0.9942 0.4448 0.4000

5.4.2. Case B: Learning Curve Improved Correctness Detection

Problem Description: You and your date are trying to get a table at a restaurant. The parameter
you is the stylishness of your clothes, in the range 0..10, and date is the stylishness of your date’s
clothes. Write a method that returns your chances of getting a table, encoded as an int value with
0 = no, 1 = maybe, 2 = yes. If either of you is very stylish, 8 or more, then the result is 2 (yes).
With the exception that if either of you has style of 2 or less, then the result is 0 (no). Otherwise
the result is 1 (maybe).

In Table 5, we show a case that the transfer model fails to attribute the KC N Way, but
the incorporation of learning curves helps the model make the correct attribution. The code is
intended to solve a problem of parallel conditions, practicing the KC N Way. From the code,
we can see the KC has been practiced, although in a nested way. The issue of the submission is
that when the input has a number smaller than integer 8 and another number smaller or equal to
integer 2, the output will be integer 1. However, it is supposed to return an integer 0. It has been
unique for this problem across the dataset, and the KC can be incorrectly applied only this way
in this problem. However, the transfer model cannot learn the information from other problems.
The transfer model detects the relevance of the KC N Way and returns that the KC is correctly
practiced, while the non-transfer model successfully detects that the KC is practiced incorrectly,
returning that the KC is incorrectly practiced. The incorporation of learning curves helped the
model to drop the probability of the KC correctness to make it closer to the expected value in
the ideal learning curve, since the problem is one of the relatively early problems practiced in
the dataset. In general, students are less likely to practice it correctly, and thus, with the help
of learning curves, the average detected probability of KC correctness has been dropped to less
than 0.5, leading to an accurate detection. It is also worth noting that it could be misleading in
other cases since the learning curve is not personalized to the student, simply taking the number
of prior relevant practices on the KC.

5.4.3. Case C: Limitations of Supervised code2vec

Problem Description: When squirrels get together for a party, they like to have cigars. A
squirrel party is successful when the number of cigars is between 40 and 60, inclusive. Unless
it is the weekend, in which case there is no upper bound on the number of cigars. Return true if
the party with the given values is successful, or false otherwise.

While the supervised model successfully detected the correctness of the KCs in the previous
two cases, it may fail in certain cases. We show an example of a failure from the supervised
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Table 6: Code submitted and the detected values from models in Case C.

Code KC
Transfer
Attribution

Learning Curve
Transfer Attribution

Supervised
Attribution

public boolean cigarParty(int cigars,
boolean isWeekend) {
if(isWeekend)
return (cigars >= 40);

return (cigars >=400 && cigars <60);
}

2xN 0.6754 0.5599 0.3712

model in Table 6. The students’ code is incorrect only due to a typographical error in the
number of if conditions. It could be seen as an incorrectly practiced KC Between, but the
practice of KC 2xN is successful. While both transfer models accurately attributed the KC 2xN,
the supervised model failed to make the detection. One primary reason might be the limited
training dataset of the supervised model, and such a typographical error may not have been
available in the training dataset, leading to an incorrect model result.

The above three case studies show how the transfer learning and learning curves help in the
task of KC attribution. While they only represent a single case presented in the dataset, we hope
to use the cases to raise plausible explanations for why we saw the results earlier. These cases
show that the transfer model learns the information of KC relevance, which is likely a subset of
information of KC attribution. If a KC is supposed to be practiced but not even present, it cannot
be correctly practiced. While the transfer model does not have any information about correctly
practiced KCs, the incorporation of learning curves introduces another source of information –
from an angle of educational theory to generally regulate the results depending on the number of
questions students already practiced for the KC. We also show that in certain cases, supervised
models could fail on the task of KC attribution simply due to the lack of labeled data points,
which is one reason why we apply transfer learning methods.

6. DISCUSSION

6.1. RESEARCH QUESTION 1: KC ATTRIBUTION WITH DEEP LEARNING METHOD

Our results indicate that it is possible to solve the KC attribution problem in programming using
expert-defined KCs, rather than using syntax tokens as KCs as in prior work (Hosseini and
Brusilovsky, 2013; Rivers et al., 2016). This approach presents a number of advantages (e.g.,
clear human interpretability, ability to align with educational theory and curriculum design, etc.).
Our results show that using expert-defined KCs, the problem is tractable but challenging, with
our best-performing model achieving about 80% AUC scores in the KCs. We also found that the
learning curves from our expert-labeled KCs were not unreasonable but were far from ideal. This
is likely due to the granularity of KCs we focused on (e.g., omitting KCs that were present across
all problems or only on one problem), and the general challenge of building learning curves
for multi-KC problems. Another implication is that the code-specific deep learning models
clearly outperform traditional text feature extraction approaches, adding to prior literature on the
advantage of domain-specific models for student modeling (Shi et al., 2021; Shi et al., 2021).
From the relatively low performance of the supervised learning, we found that data labeling
is necessary for any supervised learning approach, although time-consuming and challenging.
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Results from the cold start analysis also show the necessity of a minimum labeled dataset size
and the potential gains of labeling more data.

6.2. RESEARCH QUESTION 2: KC ATTRIBUTION WITH LIMITED DATA

Our experiments with transfer learning and multi-task models have further implications. The
results indicate that some information transfers from the KC relevance problem to the KC attri-
bution problem. These are two very different problems with two very different datasets. One
contains only correct solutions, and we’re trying to transfer to incorrect submissions. The result
shows the potential of transfer learning in this context. We also found that transfer learning
works on some KCs, but it may also not work without further improvement on other KCs (e.g.,
N Way). The multi-task model results show that the information learned from the KC relevance
problem is largely redundant with the information learned from the KC attribution problem.
When using a multitask learning approach, our results show that combining information learned
from these tasks does not lead to meaningful improvement over the basic supervised learning
approach.

6.3. RESEARCH QUESTION 3: LEARNING CURVE INCORPORATION

Our experiments on incorporating learning curves have further implications as well. The results
show that aligning KC attribution predictions to learning curves helps predictions in some cases,
harms them in others, and has little effect overall. The results are achieved using hard-coded hy-
perparameters of the ideal learning curves, extracted from labeled KC attribution dataset, but
still, the results show that the integration of learning curves is not very effective for improve-
ments in performance. Given that our expert-labeled KCs did not produce particularly power-
law-aligned learning curves, it is not surprising to find limited improvement in the incorporation
of ideal or expected learning curves.

6.4. TEACHING AND RESEARCH IMPLICATIONS

There are many ways to use this KC attribution model in practical computing education. The
KC attribution method can directly be leveraged to provide formative feedback (Shute, 2008)
to students. Since the method indicates the incorrectly practiced KCs, students can refer to this
information to correct their understanding of certain knowledge they practiced. The work will
also benefit teachers in understanding students’ understanding of KCs in general as summative
feedback with statistical analysis of the model results. For example, without extensive effort,
teachers can send the new batch of student submissions to a trained model and generate a dis-
tribution of students’ correctness on KCs they have taught and required students to practice on.
Such information can be used to improve their pedagogical design and choices further. Further-
more, our work can be an initial step for personalized learning. When we receive confirmed and
repeated incorrect submissions on certain KCs from a student, automated interventions such as
relevant problems can be recommended to students and let them further improve. Our work can
serve as the supporting algorithm behind an interface for instructors and students to improve
learning experiences.

Our work also contributes to student modeling tasks. It is worth noting that KC attribution is
not the same as knowledge tracing, but it could improve knowledge tracing. Currently, knowl-
edge tracing models in programming (Shi et al., 2022) make predictions about which problems
will be right but not which KCs the students have mastered. Using KC attribution as input to
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knowledge tracing could allow it to predict the KC level more accurately. Additionally, in a lot
of publicly available and especially large datasets (Pandey and Srivastava, 2020; Zhang et al.,
2017; Schmucker et al., 2022; Huang et al., 2023; Shen et al., 2021; Yang et al., 2020), they
only include true or false, multiple choice, or short answer questions. Such questions often only
require students’ mastery of a small number of KCs, and they don’t have the information directly
showing the steps students take to solve the questions. In our scenario, we have the information
about students’ actual programs and thus leveraged them to pursue further the knowledge-level
detection and profiling with designed feature extraction methods stemming from code2vec (Alon
et al., 2018; Alon et al., 2019). Our work provides a direct detection of students’ knowledge by
applying deep data-driven models.

6.5. CAVEATS AND FUTURE WORK

Our work has several limitations to consider when applied to broader contexts. One important
limitation is that our results are based on a small set of population with more than 300 stu-
dents. We only used students’ submissions on one assignment, although it is a core topic in CS1
courses. Further work can further explore an expansion of population, assignments, and courses.
Our method is currently based on the code2vec model, while many more possible deep learn-
ing models, such as CodeBert (Feng et al., 2020), could also serve as the base model and may
get different results. We use this research as an example to show that the code2vec model can
achieve low-label detection in a relatively usable performance, and transfer learning could be an
alternative method when no labels are available. While the experiments show that on two of the
KCs we can achieve AUC scores higher than 75%, it is still relatively low, and the reliability
of the model when deployed in classrooms will need further improvement. We also have some
internal experimental caveats in the paper. For example, the labeling process only involved two
authors extensively, while the KC attribution and definitions may need rigorous cognitive task
analysis (Clark et al., 2008). KC, by the definition of the Knowledge-Learning-Instruction (KLI)
framework (Koedinger et al., 2012), should not be directly observable as a cognitive process of
the human brain. In our KC attribution project, this detection refers to the KCs practiced in the
submissions since our goal is to explore the possibility of detecting KCs demonstrated in the
problems, which caused our choice of labeling from the dataset. One of our contributions is that
we explored the impact of learning curves on the performance of the models. This contribution
aims to explore the best scenario of such incorporation with ideal learning curves and is based
on the assumption that the a and b parameters are known from the testing population. While in
practice, this won’t be true, our results show that given an estimate of the parameters, in best
scenarios, the learning curves do not benefit the performance by much. While learning curves
do not help much for the KC attribution task, as we show in our experiments for the dataset,
it may still be worth trying in other datasets or domains. Our work is still relatively early, and
many more are to be done along this line of research.

In the future, we envision three directions as extensions of the work. We will continue
to work on more datasets collected in different courses with different populations, and work
on other assignments. Since our results were limited to the CodeWorkout dataset, replication
studies on more datasets are important to confirm the generalizability of our results, and we
plan to explore different scenarios and evaluate if they are consistent. As we mentioned in
Section 3.2.2, this work only investigates the performance of a single deep learning model,
code2vec, on the KC attribution task, and many more base models (e.g., CodeBERT (Feng et al.,
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2020), code2seq (Alon et al., 2019)) could also be implemented in future study to explore how
different base models achieve the KC attribution task. Our second direction is to create tools
based on such detections to evaluate if the detector-based interventions can benefit students’
learning. Further research can create prototype interfaces to return feedback to students and
use tests, surveys, and interviews to investigate students’ learning gain with the help of more
pinpoint feedback for students, as well as potential affect measures such as engagement in the
class. Finally, one potential direction is to compare the currently available large language models
on KC attribution. While LLMs offer off-the-shelf detection and are usually trained under huge
amounts of information, their performance may not be better than our specifically designed
models. Further investigations on leveraging the information from LLMs in our models could
also bring further improvements as a future study.

7. CONCLUSION

In this paper, we introduce a knowledge component (KC) attribution method using students’
program submissions in a CS1 Java course. Our results show that the code2vec model is able to
use a small amount of labeled data to achieve higher than 75% AUC scores in two of the three
KCs we work on, and using transfer learning, we can train a model from KC relevance labels
and achieve comparable performance to the supervised code2vec model. Our experiments on
learning curves further show that they hold the potential to improve further the performance of
KC attribution on transfer models, but our extensive experiments did not return results improved
by much with the help of ideal learning curves. Our work can be one of the stepping stones of
future research in personalized interventions, such as providing formative feedback to students,
as well as student knowledge profiling tasks to gain more understanding of their knowledge
status.
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