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Abstract: This study investigates school-age children’s arithmetic operations performance while solving larger-size problems which 
produces interferences in memory. Complex problems can trigger competing responses in working memory, which are irrelevant to 
a task goal and increase the likelihood of interference from previously learned problems (De Visscher et al., 2018). Interference 
control in working memory is required to be able to manage and suppress irrelevant information while performing cognitive tasks 
such as arithmetic problem-solving (Unsworth, 2010). The present study explores potential cognitive processes while performing 
arithmetic tasks and emphasizes the important role of interference control for better performance in such tasks. This study applied a 
mixed-effect model experimental design. Forty-four primary school children were involved in the study. The results showed that 
children’s performance in terms of correct responses was similar for both small-size and large-size problems. However, their 
response speed was significantly lower in larger-size problems, which created more interference in working memory. 
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Introduction 

Proficiency in basic arithmetic operations is a fundamental cornerstone of mathematics (math) learning; hence, four-
operation problems are part of the math curriculum for most at the primary school level (Boz & Erden, 2021; Ministry 
of National Education (2018). According to Berg (2008), difficulty in this area contributes to a negative impact on 
children’s educational development. Therefore, understanding the reasons why they struggle in arithmetic operations 
can be considered a significant aspect when planning to focus on how to improve their math skills. From this 
perspective, possible cognitive processes of arithmetic performance in children at the primary school level were 
included in this study to provide a broad view of exploration in math learning. 

All processes of understanding numbers and counting involve cognitive mechanisms (Hubber et al., 2014) where 
children store, monitor and manipulate information in their memory and those processes are related to working 
memory (WM) (De Stefano & LeFevre, 2004; Raghubar et al., 2010). An interference framework of WM (Cowan, 1999; 
Oberauer, 2001) has been examined to discover the role of WM in arithmetic operation tasks since interference control 
allows children to suppress distractions or irrelevant information and maintain their attention on relevant information 
for a task goal, which is crucial for solving complex arithmetic problems (Campbell & Oliphant, 1992). Specifically, this 
framework (Cowan, 1999; Oberauer, 2001) provides a distinctive structure to understand individual differences in WM 
performance. For instance, individuals who have a better ability to resist interference, as defined by interference 
control models, may exhibit better WM performance and potentially better mathematical skills (Kane & Engle, 2000). 

Previous research demonstrates that arithmetic problems are more associated with interference control in WM during 
information processing in problem-solving tasks (e.g. De Visscher & Noël, 2016). Therefore, involving the interference 
framework of WM in this study presents a highly promising approach (Marton et al., 2014) to understand how 
cognitive abilities and math performance are correlated with each other. From this perspective, the main purpose of 
this study is to investigate how school-age children perform when they are exposed to interferences during arithmetic 
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tasks. Within the exploration of the role of interference control in arithmetic skills, this study can provide valuable 
insights into educational strategies to support children’s development in math. 

Literature Review 

Arithmetic Skills 

The most important goal of math education is to enable students to become problem solvers. Due to this goal, problem-
solving is a main activity in teaching math (Schoenfeld, 1989; Silver, 1985). Since arithmetic operations are the most 
important prerequisite for problem-solving, it has been the core skill of math curricula for primary school learners. 
Difficulties in this skill pose considerable problems for children’s development in math. For instance, if students are not 
able to solve simple addition problems, they cannot perform more complex addition problems (Geary & Brown, 1991), 
and if they do not succeed in addition problems, they cannot develop their multiplication skills (Cooney et al., 1988).  

Calculation abilities form a basis for advanced mathematical skills (Ashcraft, 1992) because proficiency and fluency in 
arithmetic operations when making calculations and gaining knowledge about strategies, build strong foundations in 
basic math skills before advancing to complex math problems (Geary, 2003). Fuchs et al. (2008) proved that there were 
conceptual relationships between problem solving and arithmetic skills. In this perspective, arithmetic skills and 
fluency are assumed to be prerequisites of math skills. A variety of cognitive processes and strategies are required to 
accomplish these objectives. For instance, an answer of simple addition is retrieved from memory, and procedural 
strategies, such as counting or decomposition, are used while doing complex addition (Hubber et al., 2014). The 
activities, such as the ability to store, monitor, and manipulate information, which are required for arithmetic 
operations, are related to WM (De Stefano & LeFevre, 2004; Raghubar et al., 2010).  

Recent research (Ji & Guo, 2023) has also demonstrated that children who have strong WM skills can perform better in 
math, underlying the relationship between arithmetic skills and cognitive processes. WM skills are required to manage 
multiple steps in complex calculations and solve problems effectively and more accurately. These findings assure that 
supporting WM development can enhance school-age children’s math proficiency (Sala & Gobet, 2017; Shipstead et al., 
2012). 

Interference Framework of WM and Math 

WM is the system used for short-term storage and where cognitive task-related information, such as reasoning, 
thinking, and problem-solving, is manipulated throughout performing the task (Baddeley, 1992). The capacity of WM is 
limited, and this characteristic of WM can lead to poor performance in cognitive tasks. It is possibly caused by 
inadequate control of irrelevant information (Hasher & Zacks, 1988). When the incoming information exceeds the 
available capacity, individuals may experience limitations in holding information in memory and updating the items 
during the processing of new information. This may result in difficulties in differentiating old information from new 
information. This phenomenon is called proactive interference (Jonides & Nee, 2006) when previous information or 
traces in memory can interfere with the processing of new information during task performance. For example, when an 
individual must deal with this kind of distraction in memory while performing a task, such as counting or reading, 
representations of the distractor are encoded into WM and create interference (Engle et al., 1999; Oberauer et al., 2012; 
Oberauer & Lewandowsky, 2008).  

The information must be suppressed when it distracts current or new information. Otherwise, representations of 
relevant information will interfere with the irrelevant information, which will then be recalled instead of the target 
items (Palladino, 2006). Since relevant and irrelevant information compete to have access to WM during the 
processing, interference control is required to resist the irrelevant information to prevent it from taking first place or to 
remove it once it enters the memory (Hasher et al., 2007; Unsworth & Engle, 2007). Learners who are able to control 
this mechanism can perform better in cognitive tasks. 

Regarding the context of math, learning difficulties in complex topics derive from previously learned knowledge and 
procedures (Lee & Lee, 2019). For example, a person with misconceptions is more prone to choosing an improper 
strategy to solve a math problem in which well-entrenched heuristics or strategies substitute new information that 
seems to share a similar structure (McNeil & Alibali, 2005). Therefore, the efficiency of memory representations of 
arithmetic problems relies on problems which were learned previously (Nairne, 1990). For instance, a problem that is 
mostly similar to a previously learned problem is a strong element for the occurrence of interference during the storage 
stage and thus will reduce the possibility of retrieval of relevant items from the memory (De Visscher & Noël, 2014). 
This phenomenon can impact the efficiency and accuracy of problem-solving, probably resulting in decreased 
performance and more errors (Dotan & Zviran-Ginat, 2022). This notion is also supported by Oberauer and Kliegl 
(2006), in such that when two similar items with overlapping features need to be stored in memory, the features of 
representatives are more prone to interacting with each other, leading to interference. As an example, since 
multiplication is a repeated addition of equal quantities, it shares common cognitive skills with addition. The 
simultaneous processing for both addition and multiplication contributes to interference, potential retrieval errors 
and/or slow processing. 
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There is a common consensus that arithmetic facts are constructed in interrelating structures in long-term memory 
(e.g. Campbell, 1995) and that when one encounters an arithmetic problem, pertinent incorrect answers might be 
activated. As a result, the cluster of related but incorrect answers creates competition with correct answers which 
interfere with the process of retrieving correct answers (Campbell & Tarling, 1996). This interference results in failures 
and slow processing of information (Noël & De Visscher, 2018). 

Tasks with increased complexity typically involve multiple steps and are therefore more susceptible to interference. 
This highlights the significance of monitoring the progression of a task, understanding which steps have been 
completed, and providing accurate calculations at each step. Therefore, monitoring skills can be an indicator of solving 
multi-step mathematical problems. However, monitoring is highly demanding on WM because information is 
maintained and manipulated while its quality is evaluated simultaneously (Morris & Jones, 1990). As an example, when 
an individual is performing arithmetic operations, retaining the intermediate result is required. During this process, 
recalling and employing arithmetic procedures could potentially be disrupted by proactive interference. Additionally, 
larger problems are more susceptible to generating incorrect answers due to the problem size effect. The typical 
explanation for this problem size effect is that smaller problems (e.g., simple additions, single-digit multiplication) are 
more commonly solved through the retrieval strategy compared to larger problems (e.g., complex subtraction, multi-
digit problems) (Thevenot et al., 2010; Zbrodoff & Logan, 2005). As procedural strategies which require previously 
learned information are employed to solve larger problems, the weight of proactive interference increases. In addition 
to this, the complexity and the large quantity of information contribute to the increase in binding numerical values to 
their corresponding operation types (Oberauer et al., 2012). Dynamic binding is needed for the mechanism where the 
new information is constructed and maintained in WM by integrating it with its representations. Bindings must be 
quickly built and dissolved again when the representations are updated or discarded (Oberauer & Lange, 2009). All 
these cognitive processes can be executed efficiently with strong management of interference control which is 
considered as a factor influencing children’s arithmetic skills.  

Although various research has delved into the cognitive processes involved in arithmetic skills (De Visscher & Noël, 
2014; Lee & Lee, 2019), there is little consensus about the specific effect of interference caused by problem size. Recent 
research suggested that larger or more complex problems are apt to create higher cognitive load and interference 
(Thevenot et al., 2010; Zbrodoff & Logan, 2005). Larger problems are more prone to trigger proactive interference 
because procedural strategies that require recalling previously learned problems are used to solve larger problems 
(Zbrodoff & Logan, 2005). From this view, the present study was constructed from the inference-based phenomenon to 
highlight the important role of interference control in school-aged children’s problem-solving skills in math. It was 
anticipated that the pattern of performance in arithmetic operations would be different for the two conditions of 
multiplication and division and that participants would perform better in small-size problems than larger-size ones. 
This study demonstrated a clear understanding of how interferences affected participants’ performance in arithmetic 
operations when the complexity of problems increased.  

Methodology 

Research Design 

A mixed-effect model experimental research design was used in this study to generalize linear models with 
observations to predict discrete outcome variables. 

Sample and Data Collection 

Participants included 44 (19 female and 25 male) typically developing children in primary school between the ages of 9 
and 11 years. The mean age of the participants was 10.5 (SD = 0.9). All participants fulfilled the following criteria: 1) no 
learning disability, no emotional or neurological disorder, or no communication impairment, 2) a Mathematics score 
between 70 and 100 out of 100, 3) a score within the average of the Test of Nonverbal Intelligence (Brown et al., 2010). 
The mean score of the intelligence test was 111.14 (SD = 10.86) ranging from 91 to 134. Participants were students 
who had been studying in different schools in the same region in Istanbul. All children in this study were Turkish and 
spoke Turkish as their first and primary language. According to the results of the questionnaire which was used to 
collect demographic information and socio-economic status data, children’s parents’ education level ranged from high 
school to college degree.  

All participants completed the arithmetic tests to understand the effect of interference within subjects and to compare 
their performance in different operation tasks. All tasks were administered online using E-Prime Go which was 
obtained from E-Prime 3.0 software (Psychology Software Tools, 2020) to present stimuli and record responses 
remotely. Response time was not limited, and participants were allowed to use paper and pencil. Accuracy and reaction 
time data were collected from each task through E-Prime Go result sheets. Accuracy and reaction time data were used 
separately as dependent variables to compare within-subject performance at arithmetic tests. 
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Instruments 

Baseline and interference conditions of arithmetic operations were administered to test children’s WM capacity in 
terms of interference control while solving arithmetic problems. Participants completed the tasks in a quiet place at 
their house in a Zoom meeting. A link was sent to download the test from E-Prime Go. They were presented with 
questions online on the computer screen. They could use pencils and paper to solve the problems. The stimuli were 
shown until they answered the question. All instructions for the tasks were displayed on the computer screen. This test 
constituted four subtasks: Addition, Subtraction, Multiplication, and Division, and each task included 10 questions 
within two different conditions. During the tasks, participants had to press a key on the keyboard (A, B, C or D), that 
were associated with answer options. The baseline condition contained simple operations with small sizes (e.g., 3-digit 
numbers) of operands for each operation, whereas the interference condition involved large-size operands. Each 
subtask contained 10 questions. For addition, subtraction, multiplication, and division, the baseline condition included 
seven, five, five, and four questions, respectively. The rest of the 10 questions for each subtask belonged to the 
interference-based condition. The difficulty of the arithmetic operations was adjusted to the children’s grade level and 
the Turkish math curriculum was considered to decide the digit size of the numbers for each math test. They performed 
a singular iteration for each task within the developed baseline and interference conditions.  

For testing validity and reliability, the pilot study was conducted with a smaller sample of children who have similar 
characteristics as the participants of the present study. The expert review confirmed the content validity of the 
arithmetic operations test. It was ensured that the arithmetic problems aligned with the educational curriculum and 
standards for the age group of the study. The pre- and post-test results were compared to confirm construct validity 
and it was found that the test measures the task goal accurately. Reliability was assessed by using Cronbach’s alpha, 
which provided a satisfactory value (α = 0.82).  

 

Figure 1. Example of the baseline condition 

 

Figure 2. Example of the interference condition 

Analyzing of Data 

This study conducted mixed-effects regression analyses to investigate the within-subject effect on hierarchical data. 
Subsequent analyses were used to determine if there was a significant difference in terms of accuracy and reaction time 
performance patterns in the different conditions and operation types of the arithmetic operations task. Each set of 
analyses was examined to understand whether there was a main effect of conditions or item types in terms of accuracy 
and reaction time performance patterns across the different conditions and the different operation types of the 
arithmetic operations test.  

Correct and incorrect answers in accuracy data were collected as binary data and a mixed-effects logistic regression 
model was conducted in condition of family binomial and link logit. Unaggregated reaction time data normally 
distributed was transformed for each participant after removing the outliers. This mixed-effects linear regression 
model was conducted with maximum likelihood estimation.  

The responses and level-1 variables for each task were nested within each participant. To do this, the dependent 
variable was identified, its distributions were checked, and the model was initially run without any predictors. Level-1 
predictors were incrementally added in subsequent analyses. The Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) statistics were compared to evaluate whether the model was the best fit. The model chosen 
for this study had the lowest AIC/BIC values. R studio version 4.2.1 (R Core Team, 2022) was used for both data 
processing and analysis. 
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Findings / Results 

A set of analyses was conducted to address the purpose of this study, which was built to interpret participants’ 
performance in the arithmetic operation tasks. The accuracy and reaction time data of the tasks were analyzed across 
the baseline and the interference conditions, and the operation item types (addition, subtraction and division).  

The main effect of the condition was not significant for accuracy, but it was significant for reaction time. Participants 
showed higher reaction time performance in the interference condition compared to the baseline condition whereas 
they performed with similar accuracy across the condition. 

Table 1. Arithmetic operations accuracy and reaction time predicted by condition 

Accuracy    
Variable Estimate (SE) z p 
Fixed effects    
Intercept 2.990 (0.558)  5.354  < .001 
Interference 0.556 (0.499)  1.114  0.265 
Random effects Variance sd  
Intercept 0.768 0.877  
Reaction time    
Variable Estimate (SE) t p 
Fixed effects    
Intercept 20201.9 (1015.9)  19.886 < .001 
Interference 4488.1 (556.9)  8.06 < .001 
Random effects Variance SD  
Intercept 34318402  5858  
Residual 188381619  13725  

Note: Sample n = 44. The reported data for fixed effects consists of unstandardized coefficients, 
while for random effects, it includes variance. 

In the baseline condition, the main effect of operation type was not significant for accuracy, but it was significant for 
reaction time. Participants’ accuracy performance was similar across operation types, however, participants had higher 
reaction times on multiplication and division than on addition and subtraction (see Figure 3). 

Table 2. Arithmetic operations accuracy and reaction time predicted by operation type of baseline condition 

Accuracy    
Variable Estimate (SE) z p 
Fixed effects    
Intercept  57.46 (319.5)  0.180  0.857 
Subtraction -17.53 (320.8)  -0.055  0.956 
Multiplication -18.37 (277.2)  -0.066  0.947 
Division -18.18 (278.2)  -0.065  0.948 
Random effects Variance SD  
Intercept 0  0  
Reaction time    
Variable Estimate (SE) t p 
Fixed effects    
Intercept 16046.5 (724.1)  22.16  < .001 
Subtraction 3171.9 (711.6)  4.457  < .01 
Multiplication 693.1 (548.7)  1.263  0.208  
Division 1308.6 (580.3)  2.255 < .05 
Random effects Variance sd  
Intercept 13070892  3615  
Residual 39107925  6254  

Note: Sample n = 44. The reported data for fixed effects consists of unstandardized coefficients, 
while for random effects, it includes variance. 

In the interference condition, again, the main effect of operation type was not significant for accuracy, but it was 
significant for reaction time. Participants performed with similar accuracy across operation types, while their reaction 
time performance was higher in multiplication than in addition, subtraction, and division (see Figure 3). Specifically, 
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participants showed higher reaction time performance in interference condition than in baseline condition (see Figure 
3). 

Table 3. Arithmetic operations accuracy and reaction time predicted by operation type of interference condition 

Accuracy    
Variable Estimate (SE) z p 
Fixed effects    
Intercept 0.137 (1.489)  0.092  0.927 
Subtraction 1.104 (0.838)  1.318  0.187  
Multiplication 1.171 (1.245)  0.941  0.347 
Division 0.423 (0.818)  0.517  0.605  
Random effects Variance sd  
Intercept 1.525  1.235   
Reaction time    
Variable Estimate (SE) t p 
Fixed effects    
Intercept 17020.2 (947.8)  17.96  < .001 
Subtraction 2230.1 (614.9)  3.626  < .001 
Multiplication -641.6 (581.5)  -1.103 0.271  
Division 1366.7 (619.8)  2.205 < .001 
Random effects Variance sd  
Intercept 30286992  5503  
Residual 45521185  6747  

Note: Sample n = 44. The reported data for fixed effects consists of unstandardized coefficients, 
while for random effects, it includes variance. 

 

Figure 3. Arithmetic operations accuracy means by condition and operation type 

Discussion 

In this study's context, arithmetic tasks consisting of all four types of operations were used to test mathematical skills 
under the baseline and interference conditions. The purpose of using those tests was to verify whether participants 
perform differently while solving large-size problems which create interference in memory. The assumption based on 
the impact of problem size in the performance of arithmetic operations was the notion that larger-size problems would 
trigger more interference since the nature of the task required participants to recall procedures that were previously 
learned (Zbrodoff & Logan, 2005). According to the results of the analysis, participants showed similar accuracy 
performance in both baseline and interference conditions, whereas their reaction time performance was higher in the 
interference condition than in the baseline condition. Since the interference condition contains the larger-size 
problems, these findings align with the assumption. Furthermore, participants exhibited higher reaction time 
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performance in multiplication and division in the baseline condition, whereas their reaction time performance was 
considerably higher in multiplication in the interference condition. Participants spent a longer time when they solved 
the multiplication and the division problems due to the higher complexity of those tasks. Since multiplication and 
division require more complex calculations and step-by-step processes, reaction time can increase to decrease the 
likelihood of errors (LeFevre et al., 1996). Heitz’s (2014) speed-accuracy trade-off theory can explain this, which 
proposes that decisions made fast might be less accurate, whereas decisions made more accurately can contribute to 
longer time.  

Additionally, while operating large-size numbers, participants need to control which steps are taken, which ones are 
left out, and whether the calculations at each step are correct. Being able to manage those steps is possible with good 
monitoring skills. However, monitoring may create high demand in WM since evaluating the quality of information is 
required besides maintaining and manipulating the information (Morris & Jones, 1990). For example, when individuals 
are engaged in carrying and borrowing numbers in arithmetic operations, intermediate steps need to be monitored in 
the process where recalling and applying arithmetic procedures can be potentially disrupted by proactive interference, 
resulting in slow processing in WM. In larger-size problems, the increased binding in previous information can 
interfere with the bindings of the current information (Oberauer et al., 2012). On the other hand, updating was used 
while solving larger-size problems; in other words, more complex tasks require the execution of various operations 
simultaneously, such as progressing problem steps, accessing new information, applying calculations, and improving 
the understanding of the problem (Ecker et al., 2010). This continuous updating may lead to proactive interference if a 
similarity occurs between old and new information in complex forms. 

Overall, although extensive research provides resources on the connection between arithmetic skills and WM, the 
impact of interference has not been fully understood. This study contributes to a nuanced understanding of cognitive 
processes underlying arithmetic problem-solving in educational psychology, thereby offering practical implications in 
education settings. By considering cognitive load in terms of problem size and complexity, which create interferences, 
more effective teaching methods can be developed to enhance children’s mathematical proficiency (Geary, 2011).  

Conclusion 

The present study explored the relationship between cognitive and mathematical skills for school-age learners. The 
results support that the interference model of WM provides an effective framework to understand the reasons for 
different skill levels in math in terms of WM. These findings also highlight the necessity for early intervention in 
children with low WM capacity or poor interference control. The arithmetic operation tasks designed based on a 
theoretical basis of cognitive settings and including manipulations of the task goal can determine the impact of 
interferences and cognitive load. Since these cognitive skills are essential for success in math, interventions designed to 
enhance these abilities can yield long-term efficacy not only in math but also in other academic disciplines. All in all, 
this study suggests that considering the cognitive skills of school-age children in math proficiency can encourage the 
continuation of this research line to support the interdisciplinary approach by involving cognitive processes in 
mathematical practices for learners.  

Recommendations 

The outcomes of this study when applied in educational settings can have practical implications. This study provides an 
interdisciplinary approach where mathematical implications are incorporated with cognitive manipulations, enabling 
researchers to continue this research path. Future researchers should investigate a longitudinal study where they can 
include WM training to analyze its effect on cognitive and math skills and the findings can be used in early intervention 
for children with low WM capacity or poor interference control.  

Cognitive skills are essential not only in math but also in other subject areas. Therefore, different interventions can be 
designed to enhance cognitive skills and yield long-term efficacy in other academic disciplines. 

Limitations 

The present study has notable limitations that need to be acknowledged. Most prominently, the study lacks an 
appropriate sample size. It was possible to conduct research with such a sample size, but this could potentially impact 
the statistical power of the findings and generalizability. Despite the limited number of participants, this study may 
help and be the initial catalyst for further research to understand to what extent interference control in working 
memory impacts mathematical skills.  
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