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This study examines the effects of a working memory (WM) sensitive math 
intervention in students with learning disabilities (LD). The intervention 
aims to improve early mathematical competencies while accounting for 
weak cognitive resources through a reduced instructional design. These 
principles are considered to be effective for learning. Ten students with 
mild to moderate intelligence impairment participated in our study. 
We applied an AB single-case intervention study across participants 
to evaluate the effects of the intervention. The students take part in at 
least 10 30-minute intervention sessions. Non-overlap indices, as well 
as regression analysis, support positive effects on students’ mathematical 
competencies. Nevertheless, there are still students for whom the effects 
were unstable or failed to materialize. Besides the effectiveness of the 
WM-sensitive math intervention, the results support the assumption 
that the mathematical learning of students with LD is similar to that of 
students without LD but delayed. 
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IntroductIon

Basic mathematical skills are important for independent living and social 
participation in everyday life – for people with learning disabilities (LD) as well. 
There are different ideas and constructions of the term learning disability (Grünke 
& Morrison Cavendish, 2016). For the present work, we use the term learning 
disability in the UK sense. This means that the students not only show low academic 
performance but also have reduced intellectual abilities associated with difficulties in 
everyday activities. In other works, the term (mild or moderate) intellectual disabilities 
is also used here. Students with LD typically show lower levels of math performance 
compared to their nondisabled peers. For students with below-average achievement 
in mathematics, extra support for basic mathematical skills is suggested (Andersson, 
2010; Ise et al., 2012). Early mathematical competencies (i.e. early numeracy) provide 
an important basis for learning arithmetic. In the German-speaking area, different 
models describe the development of these early competencies (Aster et al., 2005; Fritz 
& Ricken, 2008; Krajewski, 2003, 2013). 

One model that also underlies the intervention in the present study is 
Krajewski’s model (2003, 2013), which describes how early mathematical competencies 
are acquired via three developmental levels. At the first level, children have two basic 
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skills that are not linked to each other: Quantity discrimination and number word 
sequence. At the second level, these two competencies gradually link together. First, 
children “assign number words to rough quantity categories“ (Krajewski & Schneider, 
2009, p. 517). Subsequently, the children develop the competence to distinguish 
exactly between adjacent numbers. Finally, the number words are connected to 
exact quantities. On the third level of quantity-number competence, the awareness 
develops that a certain quantity is composed of parts and that these parts can be 

described by numbers as well (“I can split 8 into 5 and 3”, “5 and 5 are 10”). 
Early mathematical competencies are good predictors of later math 

performance and are useful for fostering students with poor mathematical skills (Ise 
et al., 2012; Jordan et al., 2007). Evidence-based interventions are recommended to 
improve the competencies of these students (Schnepel & Aunio, 2022; Witzel et al., 
2023). To date, students with LD have been less in the focus of intervention research. 
For these reasons, we examine the impact of an intervention to improve the early 
mathematical competencies of students with LD.

Mathematical development of students with LD
Unfortunately, few studies have addressed the mathematical development 

of students with LD. For example, Bashash et al. (2003) investigate the basic counting 
and number skills of students with LD, respectively ‘moderate intellectual disabilities’. 
Their results indicate a similar learning pattern for the number-word sequence 
compared to typically developing students. Students with LD also made the same 
typical errors, used one-to-one correspondence, used stable-order principle and 
understood cardinality (Baroody et al., 1999; Bashash et al., 2003; Schnepel et al., 
2020). As it is known from typical development, there was a relationship between 
counting skills and number concepts. Brankaer (2011) and Brankaer et al. (2013) 
investigated the ability to process numbers and quantities in children and adolescents 
with LD and found the same mathematical processes as in typical developing 
learners. Garrote et al. (2015) results show that students with LD (regardless of age 
and degree of mental retardation) have basic numerical competencies like number 
word sequence.

However, tasks in which numbers must be linked to a precise quantity, 
number relations and arithmetical tasks are more difficult. Number binding (or 
number decomposition) was one of the most difficult tasks for students with LD. 
Schnepel et al. (2020) investigated the mathematical profiles of students with LD and 
came to four different groups: (1) Basic knowledge, no quantity-number concept, (2) 
Basic knowledge up to 100, quantity-number concept up to 20, (3) Basic knowledge 
up to 100, solid knowledge of quantity-number concept, first computation skills 
and (4) Basic skills up to 1000, computation, understanding the base-ten system. 
Furthermore, their results show that prior knowledge in math seems to be the most 
important predictor for mathematical learning – more important than IQ.

Taken together, there is evidence that the mathematical development of 
students with LD follows the same sequence as in typically developing students – 

but delayed and perhaps limited. Thus, the development of early mathematical 
competencies of students with LD can be explained adequately by the so-called 
developmental approach (Kuhl et al., 2012; for the developmental approach, see 
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Burack et al., 1998; Zigler, 1982; Zigler & Hodapp, 1986). This leads to the idea that 
students with LD can be provided with the same interventions as all other students 
with mathematical difficulties. 

Fostering mathematical competencies in students with LD
Based on their findings, Schnepel et al. (2020) conclude that interventions 

with a strong focus on arithmetic are not useful for students with LD. It seems 
to be important – as it is for typically developing students – first to acquire early 
mathematical competencies (e.g., relational understanding of numbers). However, 
previous literature reviews on teaching mathematics to students with LD have shown 
that most intervention studies focus on addition and measurement skills (including 
money) (Browder et al., 2008; Cannella-Malone et al., 2021). Only a few intervention 
studies aim to improve early mathematical competencies of students with LD.

For example, Kuhl et al. (2012) evaluate a quantity-number competencies 
training in students with LD respectively ‘intellectual disabilities’ and show positive 
effects. Kuhl et al. (2012) adapted a training designed for typically developing 
preschool children (Ennemoser et al., 2017; Sinner & Kuhl, 2010) for their study. 
This training is highly structured, uses direct instruction and includes many tasks on 
a concrete activity level. Acting with concrete materials is considered very important 
for comprehending mathematics and is a part of proven didactic principles, e.g. the 
EIS Principle (enactive-iconic-symbolic) by Bruner (1966). According to Kuhl et al. 
(2012), the effect comes mainly from improvements in understanding the linkage 
between quantities and number words. This is an important finding, representing a 
key milestone in mathematical development. Lanfranchi et al. (2015) have studied 
the effectiveness of numerical skill training in students with down syndrome. The 
intervention addresses the reading and writing of numbers up to 19, flexible counting 
up to 10, precise understanding of quantities up to 10, and solving simple addition 
and subtraction tasks. After training, the intervention group performed better in 
numerical tests. 

Schnepel and Aunio (2022) examined the characteristics of effective math 
interventions for students with LD and showed systematic and explicit instruction as 
effective instructional approaches. “Successful interventions are generally conducted 
in one-to-one or small group settings with an instructor who adapts the lessons to 
the student’s achievement level by providing prompts, feedback, and repetitions” 
(Schnepel & Aunio, 2022, p. 672). It is particularly useful if the interventions occur 
in at least two weekly sessions and employ manipulatives, visual representations and 
graphic organizers (Schnepel & Aunio, 2022). Most of the studies were published 
several years ago. So, there is a great need for evidence-based interventions and 
studies with students with LD.

Working memory sensitive math intervention – for students with LD?
Despite a small number of studies, we have shown that there is some evidence 

on how an effective intervention for students with LD should be designed. For 
many students with LD, developing basic numerical skills is appropriate. According 
to Lanfranchi et al. (2015), low executive functions are one reason for problems in 
mathematical learning. Attention and working memory skills are needed, as they are 
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important learning requirements (Pressley et al., 1989) and should be considered 
when fostering students with LD. 

Working Memory
Based on a common model provided by Baddeley (Baddeley, 1986, 1996, 

2000), working memory (WM) is defined as a mental system that is responsible for 
the processing and short-term storage of information (the short-term memorizing 
of images, words or movements). In Baddeley’s hierarchical model, WM consists 
of three subsystems: Central executive, phonological loop and visuospatial sketchpad 
(Baddeley, 2012). The central executive controls and regulates the cognitive processes 
occurring in the two limited-capacity components, coordinating several tasks 
(Baddeley, 1996). The phonological loop stores auditory or acoustic information 
for a limited time; for example, it is necessary when we are asked to memorize a 
telephone number. The visuospatial sketchpad is the counterpart to the phonological 
loop for visual and spatial information (Baddeley, 2012). Academic learning is 
about retaining information and connecting it to existing knowledge, so WM is an 
important domain-general learning requirement (Pressley et al., 1989).

WM in individuals with LD
WM plays a crucial role in every mental task and mathematical learning. 

This individual learning requirement is particularly weak in individuals with LD 
(Henry, 2001; Pickering & Gathercole, 2004; Schuchardt et al., 2010; van der Molen 
et al., 2007). Even findings suggest that the weaker the intelligence, the weaker the 
WM (Schuchardt et al., 2010). Some studies report the particular importance of the 
central executive for number skills and arithmetic reasoning in students with LD 
(Henry & McLean, 2002; Henry & Winfield, 2010). The phonological loop has a lesser 
impact (Henry & McLean, 2002). Therefore, Henry, and Winfield (2010) recommend 
reducing the central executive load to support the mathematical learning of students 
with LD.

We would like to note that it is difficult to interpret the picture that emerges 
from empirical studies of WM functioning in individuals with LD because the 
samples examined are as diverse as the WM tests used. Considering all limitations, 
the findings indicate a relative impairment within the phonological loop, meaning 
the performance of the phonological loop does not correspond to the functional 
capacity that would be expected on the basis of mental age (Henry, 2012; Lifshitz 
et al., 2016). For the central executive, on the other hand, the majority of studies 
suggest that performance appears to correspond to mental age (Kehl & Scholz, 2021). 
Regarding the visuospatial sketchpad, some studies show relative strength (Henry 
& MacLean, 2002; Rosenquist et al., 2003), while others argue that the performance 
corresponds to the mental age at least (Kehl & Scholz, 2021).

Cognitive Load during learning
Consequently, special attention to weak WM functioning may be appropriate 

in fostering mathematical competencies in students with LD. However, a look at 
school practice reveals that tasks in textbooks and intervention programs often place 
a high load on WM.
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For a long time, empirical research has been concerned with this cognitive 
load during learning, so several theoretical models are available by now. A significant 
amount of research takes place within the framework of the Cognitive Load Theory 
(CLT, Sweller, 1988; Sweller et al., 1998; overview of the development: Moreno & 
Park, 2010). The key assumption of CLT is that only a limited amount of cognitive 
resources can be used for problem-solving and learning (Sweller, 1988). The 
cognitive load imposed on a person by a particular task can be an important factor in 
impairing learning (Sweller, 1988). There are three types of cognitive load: intrinsic 
cognitive load, extraneous cognitive load and germane cognitive load (Sweller et al., 
1998). Intrinsic cognitive load arises from the subject matter itself. It results from the 
difficulty and complexity of the subject matter. Extraneous cognitive load arises from 
the task design. For example, task-irrelevant information increases extrinsic load (e.g. 
seductive details, Harp & Mayer, 1997). The germane cognitive load arises from the 
demands of the learning process (Sweller et al., 1998). During this process, a range 
of information must be combined, which requires the information to be maintained 
and processed in the WM. Having as many resources as possible for this process is 
beneficial. 

The authors of CLT derive principles for the design of learning materials. To 
use limited WM resources efficiently, the learning material should, for example, not 
contain unnecessary format switches and irrelevant information. Based on the CLT, 
principles for designing learning materials and settings have already been formulated 
(e.g. Gathercole & Alloway, 2008; Krajewski & Ennemoser, 2010; Wiley et al., 2014). 
However, in Germany, no compact and evidence-based math intervention programs 
meet these requirements.

Working memory sensitive math intervention
Therefore, Schulze (2020) developed and evaluated the so-called working 

memory (WM) sensitive math intervention. The intervention aims to improve early 
mathematical competencies and is designed according to the assumptions and 
findings of the CLT. The program has already been evaluated positively in children 
with mathematical difficulties (Schulze et al., 2020a; Schulze et al., 2020b). Generally, 
it is a small-step and structured approach, with few central materials, in order not to 
put an unnecessary load on the WM. The authors ensured there were no unnecessary 
changes in task formats and no irrelevant but interesting stimuli. Moreover, they 
use familiar and meaningful content, reduce the amount of material and emphasize 
repetitive practice. For example, these principles can be found in Gathercole and 
Alloway (2008).

AIm And reseArch questIon

The studies by Lanfranchi et al. (2015) and Kuhl et al. (2012) show that 
students with LD can improve their basic numerical skills. However, there are hardly 
any intervention studies with students with LD. Many studies focused on basic 
reading skills (Cannella-Malone et al., 2021). Schulze’s (2020) WM sensitive math 
intervention aims to improve early mathematical competencies while accounting for 
weak cognitive resources through a reduced design. The approach was developed to 
foster students with persistent mathematical learning difficulties. As students with LD 
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tend to learn slower, remain at lower competency levels and show weaker cognitive 
abilities, WM sensitive math intervention could be an option for individuals with 
LD as well. Our study addresses the following research question: To what extent does 
the WM sensitive math intervention affect the early mathematical competencies of 
students with LD? 

We expected a gradual improvement in level and slope during the 
intervention. Replication of positive effects in a new sample also helps to validate the 
WM sensitive approach further.

methods

Consent Procedures
Only students who had the written consent of their parents took part in 

the study. Parents were informed about the project’s aims and received information 
about the data collection type, security, and processing procedures.

Participants
The present study occurred in five special needs education schools in North 

Rhine-Westphalia, Germany. Ten students (table 1) from the lower grades – between 
the third and fifth year of school attendance – participated in this study. We used 
a German standardized quantity-number competencies test to measure students’ 
mathematical competencies before the intervention (MBK 1+ by Ennemoser et al., 
2017). All students showed a T-value ≤ 32.

According to the ICD-10 categories, intelligence impairment was classified 
as mild to moderate in all participants. All students visit a school for special needs 
education. Two students (Lara and Jana) had additional special educational needs 
in the sensory and physical areas (in Germany, Förderschwerpunkt körperliche und 
motorische Entwicklung). Jana has a developmental language disorder as well. For 
communication, she uses a talker. Matheo was diagnosed with early childhood autism.

Most students showed below-average performance in most of the WM skills 
measured (table 2). Here, we used the age-specific norm values. However, in the object 
span, which is a test for central executive, 6 out of 10 students were even on average 
(Mia, Marcel, Lara, Jana, Anne, Lisa). In the two other tests for central executive 
function, all children except Lisa were below the average. Lisa showed the strongest 
WM performance of all participants. She was in the average range in all tests except 
counting span and even showed above-average performance in the visuospatial 
sketchpad tasks. Another eye-catching result is the relatively good performance of 
Lara, Jana, Anne, Paul, Lisa, and Anna in the nonword repetition task. However, they 
(except Lisa) were below average in the second phonological loop task (digit span). 
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Table 1. Participant Overview

MBK 1+ 
Raw Score

MBK 1+ 
T-value

 Sex Age Pre Post Pre Post nA nB

Mia f 9 21.50 32.00 17 34 6 12
Marcel m 8 28.50 31.50 28 33 5 12

Lara f 8 23.00 31.50 20 33 7 12

Jana f 7 17.50 31.50 11 33 5 12

Anne f 8 27.50 38.50 27 44 7 14

Paul m 8 26.00 39.50 25 46 5 12

Lisa f 8 20.50 22.50 16 19 4 12

Anna f 9 31.00 41.50 32 49 4 13

Matheo m 10   6.00 17.50 <7 11 7 10

Robin m 10 16.00 24.50 9 22 5 12

Note. f = female, m = male; MBK 1+ = German standardized quantity-number competencies 
test; nA = Number of observations in phase A; nB = Number of observations in phase B 

Design and procedure
We used a series of AB single-case designs to replicate the previous findings. 

Thereby, different persons were observed at different times, also labelled as non-
concurrent multiple baseline across-individuals design (Watson & Workman, 1981). 
The AB-plan consists of a baseline phase (A-phase, without intervention) which is 
immediately followed by an intervention phase (B-phase, with WM sensitive math 
intervention) (Kazdin, 1993). In the B-phase, students participated in 10 to 14 
30-minute intervention sessions, which took place in a 1-to-1 setting. Every student 
worked with the same instructor from our team for the entire study. At the end of 
each baseline or intervention session, mathematical competencies were measured 
with short tests which lasted a maximum of 20 minutes. The A-phase had a minimum 
of four measurements (M = 5.5, SD = 1.18). To analyze the effect of the intervention, 
an intra-individual comparison of the A and B phases is used (Kazdin, 1993).

To ensure treatment fidelity, the instructors participated in three 1.5-hour 
training sessions in which they were taught the key principles of the intervention. 
The training topics included the development of early mathematical skills, counting 
and relational number sense, typical difficulties/mistakes, WM and mathematical 
learning, and using different representation levels (enactive-iconic-symbolic). During 
the entire intervention, regular meetings were held between all instructors involved. 
It was possible to adapt tasks, e.g., to choose a smaller number space.
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Intervention
The intervention sessions were designed based on an unpublished manual 

and the research subject in Schulze et al. (2020b). The manual consists of different 
modules and blocks. For our study, we used module numbers up to 20 (module 1) and 
number bindings up to 10 (module 2). Module 1 aims to build a deep understanding 
of numbers up to 20, and it is structured over three blocks (number word sequence 
up to 20, numbers as quantities, quasi-simultaneous representation of quantities). 
Module 2 aims to develop a relational understanding of numbers, especially in the 
automation of number bonds. Finally, the students understand that part-whole 
relationships between quantities can be represented with precise number words 
(part-whole number bonds, e. g. split 10 into 6 and 4). They can also describe exact 
differences between numbers (e.g. the difference between 5 and 3 is 2). Module 2 is 
structured over three blocks (number bonds of 5, number bonds of 10, number bonds 
of all numbers up to 10). In addition, the number bonds are developed at different 
representation levels (enactive, iconic, symbolic). The twenty frame with small plates 
(figure 1) serves as the central representation tool. It is divided into quadrants with 
engraved lines through the middle, which helps to see small plates as groups of five.

Figure 1. Twenty Frame With Small Plates 

In turn, each block consists of various tasks and exercises. So, first of all, 
students need to acquire the exact number word sequence (module 1, block 1). This 
includes, for example, the number-word sequence forwards and backwards, knowing 
about predecessors and successors and counting in steps. As stated in the previous 
work, this ‘requires the repetition of single number words but also depends on 
updating the relevant segment of the number word sequence in working memory 
for the correct reproduction’ (Schulze et al., 2020b, p. 2020). This illustrates the 
importance of not overloading the WM with irrelevant stimuli during learning. 
The low-impact design is a main feature of the WM sensitive math intervention (see 
section 1.4).  

The second block of the first module (numbers as quantities) focuses on 
developing the quantity-number concept. One goal to reduce the WM load is to 
build mental images of the twenty frame. These mental images can make it easier 
to calculate and build math strategies. For example, the students are asked to 
remember the number of structured small plates. The task is explicitly to memorize 
the structured small plates so that the students can use their free WM capacities for 
math learning. This is just one example of the explicit encouragement to use the WM 
in learning, which is a key principle of the intervention.
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Dependent variables and measurement

Quantity-number competencies
Based on the developmental model described above, quantity-number 

competencies (QNC) at Levels I, II and III were recorded by a standardized German 
test for assessing early mathematical competencies, the MBK 1+ (Ennemoser 
et al., 2017). The test can be used 6 weeks after school entry but is also for older 
children with special educational needs. The test’s quality criteria have been tested by 
several studies, where it was shown that the retest reliability is satisfied and internal 
consistencies are good. As in Schulze et al. (2020b), we used the test for an initial 
assessment of mathematical competencies and for a second time after the B-phase.

Number Line and Relational understanding of numbers 
As the present work is a conceptual replication, we have also used Schulze 

and Kuhl’s (2020a, 2020b) number line and number bonds tasks to study the 
development of early mathematical competencies across the phases. The number 
line task measures the understanding of the exact number word sequence. The 
participants are asked to fill in missing numbers on a number line (0 to 10 and 10 to 
20). As a dependent variable, we measured the number of errors (out of 11 tasks).

The number bonds task measures the understanding and automation of 
relations between numbers by using number bonds in the form of the so-called 
pyramid notation (Schulze et al., 2020b). In this task, a number is divided into two 
parts (e.g. 5 in 3 and 2), with one part missing in the illustration, which has to be 
added by the children (5 – 3 – ?). To eliminate the need for operation signs (+ and 
–), the initial number stands at the top and the two parts below the initial number, 
similar to the format of the number houses. The test consists of two levels, which we 
have combined in the following so that all bonds of all numbers up to 10 are tested. 
The number bonds task is a pure symbol level task, but it is possible to do the test with 
material if it is too difficult for the students. We measured the number of errors (out 
of 16 tasks) as the dependent variable.

Working memory
According to the model of Baddeley (1986), we assessed WM using the 

Working Memory Test Battery for Children Aged Five to Twelve Years (AGTB 5–12; 
Hasselhorn et al., 2012). The AGTB is a computer-based and adaptive German test 
battery with good results for test quality. For test economic reasons, we did not use 
all the subtests. 

We used the digit span to measure the phonological loop, where sequences 
of two to eight digits are presented acoustically. These have to be reproduced by 
the participants immediately after the presentation. As a further measure, we used 
a nonword repetition task. Here, tri- to pentasyllabic nonwords must be repeated 
immediately after acoustical presentation. 

To measure the visuospatial sketchpad, we used the corsi block span and the 
matrix span. In the corsi block span, the students are asked to remember a sequence 
of two to eight smileys (the impression is that the smiley moves from one square to 
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another). In the matrix span, students are required to remember a static pattern, so 
the task operationalizes the storage capacity of the static-visual cache. 

Three further tests were used to measure the central executive: backward 
digit span, counting span and object span. These tasks require not only the storage 
of information but also the simultaneous processing of information. Similar to the 
forward digit span, a digit sequence is presented acoustically and has to be reproduced 
immediately but in the reverse order. In the counting span, a picture with squares and 
one to nine circles is presented on a screen. The participants have to count the circles. 
The subjects receive a sequence of two to seven of these pictures, and the number of 
circles has to be reproduced verbally in the same order. In the object span, subjects are 
presented with a sequence of two to seven objects. For each object, they have to say 
if it is edible or not. Afterwards, the participant has to reproduce the objects verbally 
in the presented order.

Data analysis
The measurements across the baseline (nA ≥ 4) and intervention phase (nB 

≥ 10) resulted in 14–21 data points per student (table 1). For data analysis, the R 
package SCAN by Wilbert and Lüke (2021) was used. In addition to the descriptive 
analysis of the graphed data, we calculated different overlap and correlation-based 
effect sizes: the percentage of all nonoverlapping data (PAND; Parker et al., 2007), 
the standardized mean difference (SMD; Glass, 1976) and the baseline corrected Tau 
(Tarlow, 2017), which conceptualizes the homogeneity of phases as effect size after 
correcting for monotonic baseline trends using Theil-Sen regression. Additionally, a 
piecewise regression analysis across all cases (level 2) was conducted.

results

We used two tests to measure the development of basic mathematical skills: 
The number bond test and the number line test. As the students had different learning 
starting points, the individual intervention was adapted to their background. This 
was possible due to the modular intervention. But, that has also led to the result that 
the number bond test was still too difficult for some students in the B-phase (Paul, 
Matheo, Robin); there is no effect at all. We reported the results from the number line 
test for these students, which was too easy for the rest. So, the test presented in Table 
3 corresponds to the zone of proximal development.

Most students displayed increased problem-solving accuracy from the 
baseline condition (figure 2).
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Figure 2. Dependent Variable in Phases A and B for Each Participant
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Figure 2 continued. Dependent Variable in Phases A and B for each participant

As seen in Table 3, only Lisa shows no change in her error rate agreeable 
to the phase changes. For Paul, we see a very small change; whether this is due to 
the phase change is questionable as well. The remaining majority of the students 
showed small (e.g., Anne) to large reductions in their error rates. The majority of 
them reduced their average error rate in the intervention phase (number bonds: M

B
-

M
A
: M = -5.46, Min–Max = -0.33 – -11.27; number line: M

B
-M

A
: M = -3.34, Min–

Max = -1.45 – -5.10). The trend towards error reduction remained or even improved 
(number bonds: T

B
-T

A
: M = -0.58, Min–Max = 1.70 – 2.22; number line: T

B
-T

A
: M 

= -0.66, Min–Max = -0.25 – -2.02). The error reduction in the number bonds test 
is more distinct than in the number line test. Except for Lisa, the SMDs also show 
moderate to strong intervention effects. 

The PAND – whose values range between 50 and 100 – suggests a strong 
intervention effect in the cases of Mia and Anna and a moderate effect in the cases of 
Marcel, Lara, Jana, Matheo and Robin. According to the PAND, there is no effect for 
Paul and Lisa.

The Tau value is interpreted as a rank correlation coefficient. Except for Paul 
and Lisa, it indicates strong (for Mia, Lara, Anna, Matheo) and moderate (for Marcel, 
Jana, Anne, and Robin) intervention effects.
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Table 4 summarizes the results of the piecewise regression analysis across the 
cases (level 2). In the number bond task, there is a highly significant intercept effect. 
A highly significant level effect indicates a direct improvement from the start of the 
intervention. Furthermore, there is a highly significant slope effect concerning the 
comparison between the two phases. In summary, the participants decreased their 
errors in the test by 0.775 per intervention session. However, there is no trend effect.

For the number line task, we also see a highly significant intercept effect 
across all participants. However, neither the trend, level, nor slope effects are 
significant (tab. 4).

Table 4. Piecewise Regression Model for Number Bonds (Errors) and Number Line 
(Errors) (Level 2 Analysis)

 B SE t p
number bonds (errors)

Intercept 10.683 1.385  7.713 0.00**
Trend   0.303 0.305  0.994 0.32
Level  -3.655 1.221 -2.993 0.00**
Slope  -0.775 0.319 -2.428 0.01**

number line (errors)
Intercept   7.157 1.237  5.788 0.00**
Trend  -0.356 0.302 -1.182 0.24
Level   0.214 1.394  0.154 0.88
Slope  -0.111 0.320 -0.347 0.73

*significant at the .05 level, **significant at the .01 level

dIscussIon

Main findings
In the present study, we investigated the extent to which the WM sensitive 

math intervention affects the early mathematical competencies of students with LD? 
We expected a gradual improvement in level as well as slope during the intervention. 
Our results indicate that the intervention can improve the early mathematical 
competencies of students with LD. Therefore, our findings are in accordance with the 
results of a systematic review by Cannella-Malone et al. (2021), which showed that 
across studies, interventions enabled students with LD to make progress in academic 
skills across different content areas. Our findings extend previous results in so far as 
our study focuses on fostering early mathematical competencies. To date, there have 
only been a few studies in this area, and most of the math interventions relate to the 
field of addition (Cannella-Malone et al., 2021). 
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Nevertheless, not all students reduced their errors in both tests; for some, 
the number bond test was the appropriate measure (Mia, Marcel, Lara, Jana, Anne, 
Lisa, Anna). For the others, the number line test was appropriate (Paul, Matheo, 
Robin). Overall, most participants display improvements in measured performance 
throughout the study. The non-overlap indices and the regression analysis support the 
descriptive analysis, showing that the intervention positively affected the dependent 
variables. In the visual analysis, however, we observe outliers in some data graphs. We 
can see this, for example, in Mia, Lara, Anne, and Anna (figure 2). Robin’s data points 
are also highly variable in the first half of the B-phase. This result is not unusual in 
our target group, as learning generally takes longer (Brankaer et al., 2011), and what 
has been learned cannot be recalled with certainty. 

However, our results do not indicate any learning developments that we can 
attribute to the intervention for Paul and Lisa. As in Schulze et al. (2020b), some 
participants have not responded to the intervention as expected. At first glance, the 
result in Lisa’s case is surprising. Lisa did not have the weakest math skills before 
the study, compared to her peers, measured using the MBK 1+. Moreover, she 
has the strongest WM performance compared to her peers. Schulze et al. (2020b) 
found an interesting pattern regarding WM performance in some nonresponders: 
Two students had a very poor performance in the so-called Corsi block backward 
task. The Corsi block backwards task requires the combination of central executive 
and dynamic visuospatial functions. We can’t say whether Lisa – and Paul as well – 
have difficulties with these special requirements despite her good WM performance 
because we used other WM tests. Perhaps a particular difficulty lies here, which we 
did not clarify in our study. 

On the other hand, Paul is also well below average in the forward Corsi block 
test, whereas he is in the average range in the static matrix span task. Nevertheless, it 
might be that Lisa’s relatively weak results are not due to the WM, in particular, and 
that another variable we did not capture impacted performance (e.g., attention and 
focus on the learning task). In any case, we suspect that Lisa and Paul would have 
needed many more intervention sessions. For example, Brankaer et al. (2011) showed 
that students with LD need more time to acquire the linkage of numbers to quantities 
and the numerical magnitude representation. However, in our study, increasing the 
sessions further for organizational reasons was not possible.

Moreover, not all participants for which we conclude effects show the 
same pattern across the two phases. As such, Mia, Lara, Anna Matheo, and Robin 
show improvement relatively immediately after entering the B-phase. Even if their 
performance varies, they gradually improve from the intervention phase. In the 
case of Marcel and Jana, there is only a gradual improvement after about half of the 
intervention phase. And for Anne, we first see an increase in performance towards 
the end of the intervention. Nevertheless, this result is plausible, as our sample is 
very heterogeneous, and not all students with LD can acquire the same level of 
mathematical competencies (Browder et al., 2008).

Another interesting finding, also shown by Schulze et al. (2020b), is the 
improvement in early mathematical skills measured by the MBK 1+. All participants 
improved, most of them even strongly (MBK 1+ Pre: M = 22.39; MBK 1+ Post: M 
= 31.05). Just as Schulze et al. (2020b) have already said, ‘Unfortunately, the retest 
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reliability of the test varies between r = .67 and r = .77; we must consider the possibility 
that this is an effect of retesting’ (p. 233). Nevertheless, we consider our findings to 
be encouraging. Our sample is very heterogeneous, and some students have multiple 
special needs areas. For this reason, the results show that the WM sensitive approach 
is suitable for diverse learning backgrounds.

Limitations
Despite the encouraging results, some limitations should be mentioned. 

First, we cannot say whether the positive learning development is also stable. It may 
be that the students need ongoing intensive learning support because of the nature of 
the intervention. Because of the study’s context, we could not extend the intervention 
phase, so we can only speculate whether more intervention sessions would have been 
useful for nonresponders like Lisa and Paul. In future studies, introducing follow-up 
testing might be the best option, e.g. 1 month later.

Second, we did not systematically capture attention, motivation and 
language proficiency. For attention and motivation, we have only the reports and 
observations of the instructors.

Finally, as in most of the studies (Canella-Malone et al., 2021), our sample 
consists of students with mild to moderate intelligence impairment. Thus, studies 
investigating the efficacy in people with more significant impairments are still 
outstanding. 

conclusIons

According to Schnepel et al. (2020), we assume that mathematics instruction 
for students with LD has to be very tailored and adaptive because the WM sensitive 
math interventions by Schulze (2020) meet these characteristics, and our study 
provides evidence for the effectiveness of this approach in students with LD. 

As we were able to replicate the previous results (Schulze et al., 2020a; 
Schulze et al., 2020b) in a sample of individuals with ID, our results support the 
hypothesis that the mathematical development of students with LD is similar to 
typical development, but delayed and slower (Baroody, 1999; Bashash et al., 2003). 

It is also particularly positive that the test instructors have not attended any 
extensive training courses and can work well with the manual. This is an important 
aspect for the feasibility of the concept. However, the implementation should be 
investigated in future studies. To sum up, our findings provide further evidence for 
the effectiveness of the WM sensitive math intervention and its practical relevance. 
We want to emphasize the importance of teaching early mathematical skills (such as 
relational understanding of numbers) to students with LD. Our results suggest that 
the WM sensitive math intervention fits this purpose.
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