
International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Collaboration of Unplugged and Plugged Activities for Primary
School Students: Developing Computational Thinking with

Programming

Semra FİŞ ERÜMİT

semrafiserumit@ktu.edu.tr

Karadeniz Technical University, Trabzon, Türkiye

DOI: 10.21585/ijcses.v6i3.173

Abstract

This study investigates the contribution of plugged and un-plugged activities to primary school students’
development of computational thinking skills. The plugged and unplugged activities were used together in this
study. In the implementation, in addition to the un-plugged activities prepared by the “Ministry of National
Education,” activities prepared by the researcher were also used. Plugged activities were also determined and
implemented on the code.org website according to the age of the students and subjects. A quasi-experimental
design was used with a single group to determine the changes before and after learning and to investigate the
research questions. The measurements were performed with the Bebras tasks both before and after the
implementation. Bebras consists of internationally valid tasks that measure computational thinking. The results
showed that the combination of plugged and unplugged activities helped improve students' computational thinking
skills. Our findings show that using a combination of unplugged and plugged activities is beneficial for primary
school students. Further research is needed to evaluate these activities separately and their role in providing gains.
Additionally, the effects of using different teaching methods in programming education can be examined.

Keywords: Primary School, Teaching Programming, Computational Thinking, Un-plugged activities, Plugged
activities

1. Introduction

When Wing (2006) first referred to computational thinking (CT), it was defined as analysing problems, using
abstraction to make their structures understandable, and logically developing solutions to them. In later years,
Wing (2017) defined CT as the skill to find and pursue solutions to problems in a manner compatible with computer
operations; in other words, approaching problems as computer scientists would. Accordingly, Grover and Pea
(2013) defined CT as the process of formulating problems in a format that can be solved by computer
programming. The International Society for Technology in Education (ISTE) determined the concept of CT as a
combination of “algorithmic, creative, and logical thinking and problem-solving skills” (ISTE, 2015).
Correspondingly, in many studies, the concept of CT is construed as the ability to create solutions to problems
using algorithmic thinking to analyse, abstract, and transform information with computer applications, and to use
modelling skills in succession (Durak & Saritepeci, 2018; Tsarava et. al., 2022). Different definitions continue to
be established regarding the concept of CT (Shute et al., 2017).

Today, it is widely accepted that in addition to cognitive skills, learners should develop skills such as problem-
solving, critical thinking, communication, cooperation, and self-management, which are referred to as 21st-century
skills (Nouri et al., 2020). It is assumed that individuals who have these skills will become inquiring, analytical,
and productive citizens that our times require. In this context, the improvement of CT is directly related to
developing problem-solving and critical-thinking skills (Kong, 2016). Considering that computer science interacts
with multiple fields, it may be inferred that CT proficiency affects the skills of people in different science and
mathematics disciplines, including problem-solving, algorithmic thinking, creative thinking, analytical and logical
thinking skills (Popat & Starkey, 2019; Tsarava et. al., 2022). Acquiring these skills beginning in the early grades
will facilitate learners’ development of these skills throughout their schooling and prepare future generations for
the rapid change characteristic of a technology-driven society. For this reason, the importance of beginning training
in coding and CT in primary school has been emphasized (Durak & Sarıtepeci, 2018), and important issues include

mailto:semrafiserumit@ktu.edu.tr

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

the kinds of activities that should be used for learning programming at primary school, which activities can develop
CT skills, and what planning should be done in the execution of the activities.

Within this context, programming training was provided to primary school students, and the development of both
programming sub-skills and CT were examined. Recently, many studies have been conducted on the development
of CT through programming teaching (Ching, Hsu, & Baldwin, 2018; Tikva & Tambouris, 2021). Studies on this
topic have either focused on plugged activities (Armoni, Meerbaum-Salant, & Ben-Ari, 2015; S'aez-L'opez et al.,
2016) or unplugged activities (Brackmann et al. 2017; Tsarava, Moeller, & Ninaus, 2018), as well as activities that
compare both approaches (del Olmo-Muñoz et al., 2020; Erümit & Sahin, 2020; Sigayret, Tricot, & Blanc, 2022;
Kirçali & Özdener, 2022), or have applied both methods together (Jiang & Wong, 2019; Tsarava et al., 2017).
Studies generally focus on various purposes, such as activities, the effects of coding activities on learning and
motivation, the improvement of CT, and the practice of different methods, such as game-based activities. In this
study, unlike previous studies, a different perspective for primary school students is presented by investigating
what plugged and unplugged activities can be at primary school, especially how these activities can be used
together, and how these activities affect students' CT. In addition, measuring CT with internationally accepted
Bebras’ activities will contribute to evaluation studies in this field.

1.1. The Significance of Developing CT

Nowadays, it is considered necessary for K-12 students to develop 21st-century skills to be successful in their lives
(Partnership for 21st Century Skills, 2013). Acquiring such skills at a young age enables them to develop the
flexibility to entertain multiple perspectives and produce different solutions to open-ended problems, which will
support their success in professional and social lives (Chalkiadaki, 2018). Therefore, developing problem-solving
skills is directly related to programming training and accordingly, the acquisition of CT in children.

Learning coding, an important digital literacy skill in today's digital world, is also a means of developing CT
(Gretter & Yadav, 2016). Programming is not only about creating a computer program but also about structuring
problems and producing appropriate solutions (Shin et al., 2013), which calls for computational and CT, such as
reasoning, systematic thinking, and evaluation of evidence. Therefore, programming is interrelated with problem-
solving, creativity, and CT, which is now seen as essential throughout K-12 education (Wong & Cheung, 2020).
Many countries (Australia, the UK, Sweden, South Korea, the United States, and Macedonia) have included
computer science topics in their primary school curricula, and some (Estonia, Finland, and Norway) have included
programming education as a compulsory course in primary schools (Balanskat & Engelhardt, 2015; Hijón-Neira
et al., 2017). Because educators globally accept 21st-century skills as necessary for children, many other countries
have also started to provide programming education in the early grades (Wong et al., 2015; Manches & Plowman,
2017; Webb et al., 2017). Additionally, it has been stated that CT approaches will become the main topic in all
disciplines and that advances in informatics will allow students to design strategies for problem-solving and control
of solution steps in both the digital and real world. Weintrop et al. (2016) stated that activities that support critical
thinking have been used in mathematics and science courses. The study emphasizes the importance of including
CT in new-generation science standards as a basic scientific practice. It has been stated that there is a strong
connection between coding, CT, and problem analysis strategies in different content areas such as Science,
Technology, Engineering, and Mathematics (STEM) (Tsarava et al., 2017).

Providing programming activities, especially in primary schools, can greatly contribute to students' development
of creativity skills (Denner et al., 2012) and CT at different stages of coding (DeJarnette, 2012), and debugging
activities help students develop problem-solving strategies (Mishra & Yadav, 2013). Thus, primary school students
should be given training to improve CT in addition to basic lessons such as reading, writing, and mathematics (Hsu
et al., 2018), which can begin with teaching programming (Kong, 2016; Webb et al., 2017). However, there is a
need to support research on how to develop suitable activities, how to teach CT-related subjects, and which
activities should be used for K-12 (Tran, 2020; Rehmat et al., 2020).

1.2. Use of Plugged and Unplugged Activities in Programming Teaching

Different types of tools, such as plugged activities, block-based tools, and online applications, are used to help
students acquire CT. Unplugged activities, such as block-based tools or online applications, include coding
activities with a computer, and unplugged activities include coding activities without the use of digital tools
(Brackmann et al., 2017). Currently, many block-based applications for children, such as Scratch, are used. These
applications provide easy-to-use teaching opportunities for children with simple syntax and drag-and-drop features
(Fessakis et al., 2013). Lin and Weintrop (2021) examined 46 block-based programs and specified areas where

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

these programs were used separately. Game and simulation design, data science, physical computing, and
multimedia are the main applications. These block-based programs are the most suitable programs that can be used
to teach programming to children. In particular, block-based coding tools, which are widely used to teach children
programming, are easy to use (Papadakis et al., 2019). There are many block-based coding platforms for teaching
programming to children. Code.org, such as Alice, Blockly Games, and Kodu (Kalelioğlu, 2015). Alice is a block-
based environment in which students can create animations, interactive stories, and simple games while learning
basic programming concepts (Costa & Miranda, 2017). Blockly Games are platforms that allow users to organize
and interlock graphical elements or blocks (Shih, 2017). Code.org, which is based on object-oriented
programming, is a coding platform that is widely used around the world and supported by many large companies
such as Apple, Microsoft, Facebook, and Google, which provide support in 63 languages. On this platform, users
carry out the assigned tasks gradually by dragging and dropping the code blocks to the workspace. After the
students completed the task, the next task appeared. If a student is unsuccessful, a hint screen will appear, providing
the help needed to solve the problem (Kale & Yuan, 2020).

Unplugged activities, in which students learn CT and computer science concepts without using computers, offer
an alternative method for easy teaching of difficult subjects and are used for teaching programming, especially for
children (Caeli & Yadav, 2020). In unplugged activities, role-playing to simulate programming processes can be
carried out in such ways as bodily actions with objects, such as papers and cards, that allow students to explore
fundamental ideas about programming (Aranda & Ferguson, 2018). Tsarava et al. (2018) found that third- and
fourth-grade students can comprehend CT processes by engaging in unplugged activities. Although many studies
on CT have been conducted for middle and high school students (Cheng, Wang, & Ritzhaupt, 2023), the current
focus on CT activities for primary school students is still at the beginning (del Olmo-Muñoz et al., 2020). It was
also stated that unplugged activities should be supported by plugged activities to develop students' CT. It seems
more appropriate to provide unplugged and plugged activities together, particularly to improve programming
skills. For students to understand the programming processes and what computers can do in this process, plugging
activities should be undertaken. Algorithms must be implemented using a machine to test problem solutions and
computational ideas (Denning, 2017; Caeli & Yadav, 2020). Unplugged activities should be prepared by relating
them to real life with concrete examples and increasing student motivation. For this reason, it is appropriate to
prepare activities that will attract the attention of primary school students and enable them to follow topics without
getting bored with teaching programming (Duncon, 2019). It is quite common to use unplugged activities in many
countries for teaching programming to children, both for this purpose and because of their cognitive level (Bell et
al., 2009; Tsarava et al., 2018). These activities provide the development of an appropriate CT at the beginning of
programming teaching. There are studies aiming to improve CT using only plugged activities (Yildiz Durak, 2018;
Kalelioğlu & Gülbahar; 2014; Kale & Yuan, 2020), comparing plugged and unplugged activities (Polat & Yilmaz,
2022; Sigayret et al., 2022), and using both activities together (Lee et al., 2021; Saxena et al., 2020; Tsarava et al.,
2017). However, because unplugged and plugged activities were seen as more appropriate to be given together to
reinforce the topics, this study was planned in which both activity types were used together. At this point, it is
important to determine the kinds of activities that should be used for programming teaching in primary school,
which activities can develop CT skills, and what kind of planning should be done in the execution of the activities.
This study will guide the planning of the process and which activities can be used in programming training for
primary school students.

1.3. Purpose of the Study

As both “plugged” and “unplugged” activities can be used to develop programming and CT skills in primary
school children, there remains a need for more research on how programming should be taught to them and with
which activities. Accordingly, this study aims to find out the effect of applying both plugged and unplugged
activities for teaching programming to primary school students on students' CT skills. Therefore, the research
questions of this study are as follows.

RQ1. How does incorporating "plugged" and "unplugged" activities together in primary school students' learning
affect their CT skills?

RQ2. What are the effects of programming teaching using “plugged” and “unplugged” activities together on the
primary school development of students' programming skills?

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Before

implementation

After

implementation

8 weeks

2. Method

2.1. Research Design

In this study, a one-group pre-test and post-test quasi-experimental design was used. The purpose of this method
is to determine the improvement of CT in students at the end of the training process, in which plugged and
unplugged activities are applied together. Thus, the suitability of the training program for CT development of CT
will be understood. The research process is illustrated in Fig. 1.

Figure 1. Research Study

During implementation, the students were first unplugged and then plugged. At the end of the training, the
measurement tool at the beginning of the implementation was applied again to evaluate the progress of the group's
CT. In this quasi-experimental design, measurements were made using the same tool before and after training.
When the group's post-test and pre-test scores were compared, implementation was considered effective if the
post-test scores were significantly higher (Creswell, 2012). Accordingly, the Bebras tasks were administered to
the students before starting the implementation, and this process was repeated after the implementation was
completed.

2.2. Sample

The sample was determined by convenience sampling, which is a purposeful sampling method. Convenience
sampling is a type of non-random sampling that meets practical criteria such as easy access to the target group,
geographical proximity, and accessibility at a certain time (Etikan et al., 2016). In this study, a close and accessible
sample was chosen from the university where the researcher works. In addition, the researcher taught coding
education to children at the university and could easily access the sample. The research was conducted with 18
primary school students (11 girls and 7 boys) who participated in programming training at a university in Türkiye
(Table 1).

Students

Pre-test (Bebras)

Implementation

Post-test (Bebras)

Prior Knowledge of CT

Unplugged and plugged

(code.org) Activities.

Post Knowledge about CT

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Table 1. Information of sample

 S: Student

The coding and robotics training in which the students participated for a fee was given at the research and
application centre of a university as part of a program for primary “grade 1-4,” middle “grade 5-8,” and high school
“grade 9-12” students. There are no prerequisites for such training programs. Applications made at Code.org are
designed in such a way that each student can perform the activities in the education centre using a computer. The
students participating in the study were from different primary schools and voluntarily sought programming and
robotics training. The students had not previously studied computer science or programming.

2.3. Procedure

Coding and robotics training consists of different skill modules, including visual and robotic programming skill
training. Before starting special skill modules, all primary school students first completed a module on general
topics related to programming, critical thinking, logic, and algorithms.

In this introductory module, children learn to develop strategies for solving different problems, create problem-
solving steps, create algorithms for the solution paths they determine, and write basic codes. The activities in this
module guide students in developing strategies and steps to solve problems they encounter in their daily lives and
mathematical and logical problems. In addition, students are prepared for subsequent modules, particularly visual
programming and robotics, so they can integrate problem-solving steps, writing algorithms, and basic
programming logic into their work in these modules. The current implementation was conducted in the first
training module (Figure 2).

 Figure 2. Students' implementations of unplugged activities

Within the context of the implementation, the main concepts and approaches to problem-solving, suggestions for
solutions to problems in daily life, problem analysis, operators, using expressions and equations, creating
algorithms, and flowchart components were taught. At the end of the initial unplugged activities, the course content
(Course D), prepared for primary school students aged 7-11, was selected on code.org, and an account was opened

 Student Age Class Girl Boy
S1 8 3 ✓
S2 8 2 ✓
S3 8 3 ✓
S4 8 2 ✓
S5 8 3 ✓
S6 8 3 ✓
S7 9 3 ✓
S8 8 3 ✓
S9 8 2 ✓
S10 7 2 ✓
S11 8 3 ✓
S12 8 3 ✓
S13 8 3 ✓
S14 7 2 ✓
S15 8 3 ✓
S16 8 3 ✓
S17 8 3 ✓
S18 8 3 ✓

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

for each student. The students completed applications of sequencing, events, loops, and conditional sections in this
course, and the completed applications were checked by the teacher (Figure 3).

 Figure 3. Plugged activities on Code.org

In the first module, a total of 24 hours of training was given for eight weeks. The training activities were conducted
at the centre where the training was held. The planning of the training contents and some of the activities were
prepared by the researcher who provided training at the centre. In addition, some of the Keşf@ Teacher Portal
(www.kesfetprojesi.org) activities, implemented in collaboration with Google and the Ministry of National
Education of the Republic of Türkiye (MoNE) in 2014, were used to prepare the contents. Before implementation,
Bebras tasks were administered to the students to measure their CT (see 2.4). In the six-week part of the
implementation, 23 unplugged activities were provided.

The content of the 12 activities prepared by the researcher was checked by a team of four experts in coding and
programming education, all of whom had more than 15 years of experience in this field. Other activities were
chosen from those prepared by the MoNE. The purpose of the researcher's planning of unplugged activities in the
study is to support MoNE activities to improve programming and CT and to increase examples of unplugged
activities that can be applied. In addition, code.org activities were conducted to support programming gains with
computer applications and to convert an algorithm into program code and observe the results. The programming
subjects, activities related to these subjects, their relationship with CT, and learning outcomes are shown in Table
2.

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Table 2. Contents of programming training

Week Activity Content Activities Programming Gains Learning Outcomes
1 Identifying the Problem-Solving

Strategies
“Cat-Dog-Mouse” Activity (MoNE) • Abstraction

• Algorithmic Thinking
• Recognizes problem-solving steps.
• Analyses a problem.

Tower of Hanoi (MoNE)
“Fishbone” Activity (MoNE) • Dealing with Uncertainty

• Algorithmic Thinking
• Algorithm Design
• Decomposition
• Generalization

• Recognizes problem-solving steps.
• Analyses a problem.
• It offers solutions to problems in daily life.
• Solves problems using appropriate solutions

“What Should I Do Now” Activity (MoNE)
2 Identifying the Problem-Solving

Strategies
“Mixed situations” Activity (MoNE)
Tangram (MoNE)

Creating Problem Solving Steps-1
(Researcher)

• Algorithmic Thinking
• Algorithm Design
 Creating Problem Solving Steps-2

(Researcher)
3 Algorithm and Strategy “Karobot” Activity (Researcher) • Sequencing

Navigating with a map (Researcher)
Writing Algorithms (Researcher)

• Algorithmic Thinking
• Algorithm design

• Writes an algorithm and creates a flowchart for
this algorithm

4 Flowchart Preparation Creating a Flowchart (Researcher)
Writing Algorithms and Creating Flowchart
(Researcher)
“Flowcharts mixed up” Activity (MoNE)

5 Concepts Used in Programming
“loops, conditionals,
mathematical and logical
operators”

Mathematical and logical operators
(Researcher)

• Algorithmic Thinking
• Logical questioning

• Gives examples of the use of operators in problem-
solving.
• Uses operators to solve a problem.
• Understands Loops and Conditionals

Loops and conditionals (Researcher)
“Choosing Occupation” Activity
(Researcher)
“Colors of Nature” Activity (MoNE)
“Winning a Scholarship” Activity
(Researcher)

6 Concepts Used in Programming
(variable-constant)

“Who Stays Here” Activity (MoNE)
• Decomposition
• Data Analysis

• Explains the “variables”, “constants”, and
“operations” used for problem-solving.
• Explains data types.

“Breakfast Habits” Activity (MoNE)
“Making a cake” Activity (MoNE)
“Variable-Constant in Our Lives” Activity
(Researcher)

7 Converting Algorithm to
Program Code

Making applications on Code.org • Creating program code • Implementing applications involving algorithms,
conditionals, and loops on the computer

8 Converting Algorithm to
Program Code

Making applications on Code.org • Creating program code • Implementing applications involving algorithms,
conditionals, and loops on the computer

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

First, problem-solving strategies were taught at the beginning of training. In teaching this subject, “Cat-Dog-
Mouse”, Tower of Hanoi, “Fishbone”, “Mixed situations”, Tangram, and “Creating Problem-Solving Steps”
activities were used. In the 3rd week, activities were conducted to write algorithms and determine strategies for
solving problems. In this context, writing algorithms for a problem given in daily life, "Karobot” and “Navigating
with a map” activities were used. In the 4th week of training, flow-chart preparation education was provided. In
this context, step-by-step algorithm writing for problem-solving in daily life and a flowchart of the algorithms
were created. In the 5th week, exercises related to the concepts of mathematical and logical operators, conditionals,
and loops, and their use were performed. In the 6th week, the concept of the variable constant was taught, and
practices related to the subject were implemented. In the 7th and 8th weeks, the plugged activities on the code.org
site were applied individually by each student. Examples of the applied activities are listed in Table 3.

Table 3. Relationship of activities with CT and implementation steps
Activities CT and Programming

Skills
Implementation

Activity name: “Cat-Dog-Mouse”
Activity (MoNE)

• Abstractions
• Algorithmic thinking

This activity is a different version of the "wolf-
lamb-grass" problem. The students are asked to
find the fewest solution steps that will enable
the farmer and the objects to cross by boat.

Activity name: Tower of Hanoi
(MoNE)

• Algorithmic thinking
Decomposition
• Generalization

Students are given towers of Hanoi in the
classroom and asked to move the rings from the
1st column to the 3rd column. Students are
asked to move first 3 rings and then 4 rings to
the 3rd column, respectively.

Activity name: Tangram (MoNE)

• Algorithmic thinking

The tangram pieces were handed out to the
students in the classroom. Students individually
created shapes that were projected on the
screen.

Activity name: Creating an
Algorithm (Researcher)

• Algorithm design
Sequencing

Students are asked to list the problem-solving
steps and write the algorithm by giving
problems from daily life. The given problems
are in the form of describing a day at school,
describing the activities carried out on the
weekend, adding and subtracting 2 numbers,
and describing the formation of day and night.

Activity name: Karobot
(Researcher)

• Sequencing
• Algorithmic thinking

Activity papers are distributed to the students.
On the paper, they are asked to move the robot
to the specified points in order. While writing
the steps, they are asked to use the "forward-
turn right-turn left" commands.

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Activity name: Creating
Algorithms and Flowcharts
(Researcher)

• Sequencing
• Algorithm design
• Loops

Students are given examples of flowchart
shapes with explanation of they do. Then they
are asked to write the algorithms of the given
problems and create a flowchart. Papers on
which they can write the algorithm and
flowchart for each problem separately are
distributed to the students. The problems given
are going to the market to buy the ingredients
to make a cake, cross the road, getting food in
a cafeteria, adding and subtracting two
numbers, and going out in rainy weather.

Activity name: Career choice
(Researcher)

• Algorithmic thinking
• Conditionals
• Mathematical and
logical operators
Decomposition

Activity sheets are distributed to the students,
on which different occupations are shown and
instructions are given. Using the "and," "or,"
and "not" operators, the students are asked to
find the occupation described in the given
statement.

Activity name: Winning a
Scholarship (Researcher)

• Algorithmic thinking
• Mathematical and
logical operators
• Conditionals

The students are given an activity paper with a
table showing their age and scholarship status.
Students are asked use operators to write an
algorithm to identify 11-year-old recipients of
scholarships and then to write the names given
in the table that meet these criteria.

Activity name: Variable-Constant
in Our Lives (Researcher)

• Decomposition
• Generalization
• Variable-constant

After receiving an explanation of “constant”
and “variable,” students, are given examples
from daily life (school, shopping mall, hide and
seek game) and asked to determine the
variables and constants. Finally, students are
asked to compare two numbers and write the
algorithm necessary for finding the larger
number, by specifying the variables.

2.4. Computational Thinking Test (Bebras)

Although there are various opinions on how to measure CT in children, there is still no consensus regarding this
issue (del Olmo-Muñoz et al.,2020). Selby and Woollard (2013) state that CT development is determined by
measuring CT sub-skills. In this study, Bebras tasks for primary school students, which have international validity,
were used as data tools. Bebras is an international contest created in Lithuania to encourage K-12 students to learn
about information technologies and develop CT (Cartelli et al., 2012; Dagiene & Stupuriene, 2016). The
International Bebras Committee has many members, with 52 full members and 22 provisional members, and the
number of members increases every year. Türkiye was also a full member of this community
(https://www.bebras.org/community.html). Three committees have been established to manage the Bebras events.
These committees include the National Bebras Organization, International Bebras Community, and Bebras Board.
The National Bebras Organization is responsible for an all-year Bebras contest in a country. This committee has
duties such as preparing and presenting new events, reviewing and evaluating events, selecting events from the
international pool, translating them into the native, and arranging the challenges of the events. The selection of the

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

activities to be held in Türkiye, the translation of the activities into Turkish, and the organization of the activities
are done by the faculty members in charge of this committee. Determining and scoring the difficulties of the
activities were also performed by this board (Gülbahar et al., 2020). Bebras tasks are intended to measure the sub-
skills of CT including “algorithmic thinking,” “abstraction,” “decomposition,” “generalization,” and “evaluation.”

For this study, the activities were selected from the Turkish version of the problem set for the second and third
grades. These activities can be solved by students who have no prior knowledge in the field of informatics, but
they must have high-level critical thinking skills, such as making calculations and decisions, analytical thinking,
and problem-solving. The tasks are related to CT, such as algorithms, condition and comparison, and pattern
recognition. The tasks selected for this program included low, medium, and high difficulty levels. Low-difficulty
tasks scored 6 points, medium tasks scored 9 points, and difficult questions scored 12 points. Two points were
deducted for incorrect solutions to low-difficulty activities, three points for incorrect solutions to medium-
difficulty activities, and four points for incorrect solutions to high-difficulty activities (Gülbahar et al., 2020). For
this study, 12 activities corresponding to specific lesson contents were selected from the three levels of difficulty
at the primary school level (Table 4).

Table 4. Contents of Bebras tasks used for pre & post-test
Task
Number

Task
Name

Difficulty
Level

Description of the Problem Programming Skills

1 Footsteps Easy
(6 points)

Students are requested to find a solution by
comparing a defined pattern with other
patterns. Similar processes are also used in the
areas of pattern recognition and image
detection in Informatics.

Abstractions and pattern
recognition

2 Table
Preparation

Easy
(6 points)

Students are requested to find the order of the
tableware. This problem involves
decomposing and changing the order of
different elements through layers.

Sequencing

3 Choosing
Food

Easy
(6 point)

Students are requested to establish a condition
by finding similarities and differences in the
food.

Conditionals
Algorithm design

4 Vehicle
Transfer

Easy
(6 points)

Students are given priority rules regarding
production priorities for vehicles and are
requested to use these rules to order vehicles
according to their priority ratings.

Sequencing
Algorithm design
are given to facilitate
coordination Loops

5 Geometric
Bracelet

Easy
(6 points)

Students are requested to verify a solution
concerning the order of the shapes on a
bracelet.

Abstractions and pattern
recognition

6 Faces and
Glasses

Easy
(6 points)

Students are requested to choose glasses
suitable for their face shape according to the
given condition.

Conditionals
Mathematical and logical
operators

7 Crazy Stars Easy
(6 points)

Students are requested to rank the stars by
finding a common feature.

Abstractions and pattern
recognition
Sequencing

8 Ice cream Easy
(6 points)

Students are requested to find the ice cream
order in the cone by the given condition. Sequencing

9 Directions Easy
(6 points)

Students are requested to give directions for
the shortest route from one point to another
point

Algorithm design

10 Honeypot Medium
(9 points)

Students are requested to interpret the data in
the visual given and make predictions to find
the shortest way to reach the honeypot.

Algorithm design
Conditionals

11 Clothes Medium
(9 points)

Students are requested to find the order of
folding clothes according to the instructions
they are given.

Sequencing
Algorithm design
Loops

12 Similar
Foods

Hard
(12
points)

Students are requested to establish a condition
by finding similar and different materials used
in the given meals.

Conditionals
Algorithm design

Before implementation, the Bebras tasks were applied to the students in writing, and no positive or negative
feedback was given to the students about their answers and solutions. The students were not informed that these
activities would be re-applied or that the Bebras tasks were applied. After the implementation process was

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

completed, the same activities were applied again in writing, and the students’ overall scores on this activity and
their CT subskills were calculated.

2.5. Data Analysis

Bebras tasks were used to measure the development of students' programming and CT. For this reason, the
consistency of the scores obtained from the questions also expresses reliability (Golafshani, 2003). Cronbach’s
alpha coefficient for the scale was 0.782. Cronbach’s alpha coefficient was above 0.7, indicating that the reliability
of the measurement tool is high (George & Mallery, 2003).

The Wilcoxon signed-rank test was used to compare students' total scores on CT and their scores on programming
knowledge (abstractions and pattern recognition, sequencing, algorithm design, and conditionals). The Wilcoxon
signed-rank test was used to test the significance of the difference between the scores of the two related
measurement sets in non-parametric measurements (Büyüköztürk, 2007). This test method was chosen because
the sample size was insufficient for parametric tests, and the scores of the two related measurement sets were
compared.

3. Findings

3.1. The Effect of Teaching Plugged and Unplugged Activities on Students' CT Skills

First, the change in the students' CT skills was evaluated by examining the pre- and post-test scores obtained from
the Bebras scores. When looking at the changes in the total scores of 18 students in the Bebras tasks, it was
observed that most students increased their scores (Figure 4).

 S: Student
 Figure 4. Comparison of pre-and post-test scores

Figure 4 graphically illustrates the comparison of the students’ pre-test and post-test scores, which shows that their
post-test scores are higher than their pre-test scores, with an average increase of 38.47. The lowest total score that
could be obtained from the questions was -30, and the highest score was 90. The lowest pre-test score was − -27
(S3), and the highest score was 46 (S13). The lowest post-test score was 2 (S4) and the highest score was 74 (S7,
S17). Table 4 provides a statistical comparison of students’ pre-test and post-test scores. The difference between

42

6

-27

8

-5
-2

18

20

-22-14

18
1946

-24
-14

5
6
14

66
42

46

2 46

50

7430

5446

26
38

50

30

18

46

74 46

-40

-20

0

20

40

60

80
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

Pre-test Post-test

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

the pre-test and post-test scores of the group is shown in Table 5, and Figure 5 shows the change in pre-test post-
test averages.

Table 5. Descriptive statistical results of CT

Group Pre-test Post-test

N 𝒳 S Min Max 𝒳 S Min Max

Experimental Group

(Unplugged

Activities- Code.org)

18 5.22 20.81 -27 46 43.55 18.26 2 74

Figure 5. Improvement in Bebras pre- and post-test score averages

Table 5 shows the min (-27) and max (46) scores obtained by the students from the pre-test and the min (2) and
max (74) scores from the post-test. The results prove that the scores increased in favour of the post-test. The
Wilcoxon signed-rank test was applied to determine whether the increase in the minimum and maximum scores
was significant. By comparing the pre-and post-test scores, the effect of the activities on the CT skills of the
students was determined due to the difference in the CT scores determined by the Bebras. The results of a Wilcoxon
signed-rank test comparing the Bebras pre- and post-test scores are shown in Table 6.

Table 6. Results of Wilcoxon Signed-Rank Test regarding the CT skills

 Pre-test - Post-test N Mean
Rank

Sum of
Rank

z p Effect
size (r)

Bebras Score Negative ranks 1 2.00 2.00 -3.637* 0.000 0.857
 Positive ranks 17 9.94 169.00
 Ties 0c

*Based on negative ranks.

The results of the analysis show that the post-test score (M = 43.55, SD = 18.26) was significantly higher than the
pre-test score (M = 5.22, SD = 20.81), indicating that the implementation had a significantly positive effect on
students' CT skills (z=-3,637, p<.05). It is seen that there is one student whose score decreased after the training
and 17 students whose score increased. The average rank value of the scores of the students whose scores increased
was determined as 169. A statistically significant difference was detected between the average success scores of
the students before and after the training (p <.05).

In this study, the effect size of the comparison results of Bebras pre- and post-test scores was calculated. Effect
size is useful because it provides an objective measure of the importance of the effect (Field, 2009). Calculating
and interpreting effect size values in hypothesis tests increases the comprehensibility of the results (Büyüköztürk,
2010). Pearson's correlation coefficient r is an effect value coefficient. The r value takes a value between 0 (no
effect) and 1 (perfect effect). The r value is evaluated independently of its sign. An r value of 0.1 is considered a

5.22

43.55

0.00

10.00

20.00

30.00

40.00

50.00

Pre-test Post-test

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

small effect, 0.3 is considered a medium effect, and 0.5 is considered a large effect (Field, 2009). The square of
the r coefficient (r2) expresses how much of the total variance it explains. The r2 value shows how much of the
change the independent variable explains on the dependent variable. In this study, the effect size of the comparison
results of Bebras pre- and post-test scores was found to be r = 0.857 and the variance was r2 = 0.734. This finding
shows that the difference obtained has a large effect and 73% of the total variance is explained by the independent
factor (coding training).

3.2. The Effect of Teaching Plugged and Unplugged Activities on Students' Programming Skills.

It was determined that training in which plugged and unplugged activities were implemented together improved
the CT skills of the students. To determine which programming sub-skills the activities applied to the students
developed, the pre- and post-test scores for the programming sub-skills in Bebras were compared. The Wilcoxon
signed-rank Test was applied to compare the pre- and post-test scores for the programming sub-skills (Table 7).

Table 7. Results of Wilcoxon Signed-Rank Test regarding the plugged and unplugged activities on programming
skills

Comparisons Pre-test - Post-test N Mean
Rank

Sum of
Rank

z p Effect
size (r)

Abstractions and
Pattern Recognition
Scores

Negative ranks 3a 5,83 17.50 -2.228* 0.026
0.525 Positive ranks 11b 7,95 87.50

Ties 4c

Sequencing Scores
Negative ranks 5a 5.80 29.00 -2.251* 0.024

0.53 Positive rank 12b 10.33 124.00
Ties 1c

Algorithm Design
Scores

Negative ranks 1a 2.50 2.50 -3.616 0.000
0.85 Positive rank 17b 9.91 168.50

Ties 0c

Conditional
Structures Scores

Negative ranks 0a 0.00 0.00 -3.523* 0.000
0.83 Positive rank 16b 8.50 136.00

Ties 2c
* Based on negative ranks.
a Pre-test score > post-test score
b Pre-test score < post-test score
c Pre-test score = post-test score

In Table 7, the Wilcoxon signed-rank test results of the analysis show a significant increase in the students’ post-
test scores after the implementation. When the pre- and post-test scores of the students on abstraction and pattern
recognition (tasks 1, 5, and 7) were compared, a significant difference was found (z=-2.228, p<.05). Similarly,
when the pre- and post-test sequencing (tasks 2, 4, 7, 8, and 11) scores of the groups were compared, there was a
significant difference between the scores (z=-2.251, p<.05). Likewise, when students' algorithm design (tasks 3,
4, 9, 10, 11, and 12) and pre- and post-test scores were compared, a significant difference was observed between
the scores (z=-3.616, p<.05). Finally, there was a significant difference in the students’ pre- and post-test scores
in the conditional structures (tasks 2, 6, 10, and 12) (z=-3.523, p<.05). When the effect size and variances of the
pre- and post-test scores in the programming sub-skills were examined in this study, r = 0.525 and variance was
found to be r2 = 0.275 for abstractions and pattern recognition. This finding shows that the difference obtained has
a large effect and approximately 28% of the total variance is explained by the independent factor (coding training).
It was found that r=0.53 and variance was found to be r2=0.28 for sequencing. This finding shows that the
difference obtained has a large effect and approximately 28% of the total variance is explained by the independent
factor. For algorithm design, r = 0.85 and variance was found to be r2 = 0.726. This finding shows that the
difference obtained has a large effect and approximately 73% of the total variance is explained by the independent
factor. For conditional structures, r=0.83 and variance was found to be r2=0.689. This finding shows that the
difference obtained has a large effect and approximately 69% of the total variance is explained by the independent
factor.

Accordingly, it is seen that education in which plugged and unplugged activities are implemented together
contributes to the development of students in all programming sub-skills. The increase in students' post-test scores
for all programming subskills is shown in Figure 6.

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Figure 5. Improvement in scores for programming sub-skills

These increases in students' post-test scores on abstractions and pattern recognition, sequencing, algorithm design,
and conditionals indicate that the students' programming knowledge levels in these areas increased after the
implementation. The highest score increase was in the algorithm design (23.33), and the lowest score increase was
in abstractions and pattern recognition (5.78).

4. Discussion and Conclusion

In this study, an eight-week training program for primary school students on programming and CT with “plugged”
and “unplugged” activities was implemented. Unplugged activities prepared by the MoNE and designed according
to these activities by the researcher were used. It has been stated in the literature that written, visual, and applied
activities include sequencing, creating algorithms, visual presentations, video demonstrations, game activities,
puzzles (Bell et al., 2009), finding solutions to daily life problems, map activity, drawing with instructions, and
finding a route between two nodes (Brackmann et al., 2017) have been used.

Regarding the RQ1, it was observed that children’s' CT significantly improved. Tsarava et al. (2018) stated that
performing plugged activities after unplugged activities not only improved CT skills but also increased students'
motivation to learn coding. Olmo-Munoz et al. (2020) compared only unplugged activities with both unplugged
and plugged activities among primary school students and concluded that the application of both will improve CT
better than the application of only unplugged activities. The current study also confirms that the collaboration
between plugged and unplugged activities helps improve primary school students' CT. It has also been stated that
applying plugged activities to students after unplugged activities is beneficial not only in terms of students' CT,
but also in increasing their motivation (del Olmo-Munoz et al., 2020; Tsarava et al., 2018). Due to their cognitive
abilities, it is more beneficial for primary school students to start programming processes with unplugged activities,
which are more fun and tangible, for the development of their CT. Because it is stated that the development of CT
depends on the development of cognitive skills, therefore the challenges experienced in cognitive processes will
negatively affect the development of CT (Ambrosio et al., 2014; Marinus et al., 2018; Tsarava et al., 2022). In this
study, students mostly carried out unplugged activities in which they experienced the processes concretely, and
after these activities, they had the chance to transfer what they learned to the digital environment with plugged
activities. The improvement in students' CT in all sub-skills was an indicator of this.

3.33

9.11

0.00

5.00

10.00

Pre-test Post-test

Abstractions and pattern
recognition

-0.67

11.11

-5.00

0.00

5.00

10.00

15.00

Pre-test Post-test

Sequencing

2.67

26.00

0.00

10.00

20.00

30.00

Pre-test Post-test

Algorithm design

3.67

20.44

0.00
5.00

10.00
15.00
20.00
25.00

Pre-test Post-test

Conditionals

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Regarding the RQ2, the results of the comparison of the students’ pre- and post-test scores showed they became
better able to perform the applications of creating patterns, algorithms, loops, and conditionals correctly with fewer
errors. The activities prepared for the curriculum in this study were matched to the students’ cognitive levels to
support their understanding of concepts they were learning for the first time, such as algorithms, flowcharts, loops,
and conditional structures, and concrete examples from daily life were constantly provided. Hsu et al. (2018) stated
that the content, methods, and approaches used in CT teaching should be adapted to learners’ cognitive levels.
However, it is difficult for children to understand and apply certain concepts. Although the success of the group
increased in the post-tests, some individual students were unsuccessful. Concerning Piaget's cognitive theory
(1962) development, abstract thinking skills develop after the age of 11 (Babakr et al., 2019), suggesting that the
low or lack of increase in the scores of some students was due to their level of cognitive development. Although
plugged activities are concretely associated with daily life, when students' scores from the post-test are examined,
it is seen that they have difficulty interpreting advanced applications of the concepts of "sequencing, algorithm
design, abstractions, conditionals, mathematical and logical operators" and associating them with plugged
activities. It is possible that this is because students' abstract thinking skills are not fully developed.

Unplugged activities associated with daily life have drawn attention in the field of programming teaching. In this
study, the activities prepared were similarly related to daily life and included written, visual, and in-class
implementations. In the literature, it is stated that algorithms in unplugged activities can include comprehensive
activities that present the procedures in our daily life as a sequence of steps. However, while learning about
algorithms, it is also very important that they are designed in such a way that a machine can understand. Daily life
examples such as describing addresses, preparing meals, or making a cake can be useful to illustrate and teach the
algorithm. However, these agents should not be used alone. Unplugged activities gain meaning with plugged
activities used together (Caeli, & Yadav, 2020). Plugged activities were applied using code.org. in this study.
Although unplugged and plugged activities on code.org are powerful methods on their own, applying these
methods alone poses the risk of finding solutions to real problems and not solving original problems. Therefore,
unplugged activities and code.org activities were used together, and the equivalents of algorithms and solutions
on the machine were observed.

5. Limitations and Suggestions

The study was limited to a small number of primary school students attending a university's coding training. A
similar application can be applied to a larger group of students in primary school. In addition, plugged activities
were applied after unplugged activities in this study. The effects of these applications on CT can be compared by
conducting comparative studies in which only unplugged activities, only plugged activities, and both activities are
applied together.

Although the activities implemented in the study were included in the MoNE curriculum, the activities prepared
by the researcher were controlled by an expert team, and they were associated with increases in skills; thus, their
effects could not be definitively determined. Therefore, more research is needed to determine how each of the
unplugged activities used in the study contributes to the gains students achieve after implementation. Studies can
be conducted on the evaluation of these activities separately, their role in providing the gains, and students'
thoughts about these activities. No interviews were conducted regarding the practices and processes in which the
students had difficulty or their thoughts. Through interviews, students' opinions were obtained about the questions
on which they increased their scores less, or about the positive or negative practices they experienced regarding
CT sub-skills and programming processes. Students’ opinions on activities can be obtained in different studies.

The study has become an example of how to provide programming training by using “unplugged” and “plugged”
activities together in primary school. The results also showed that this training improved the students' CT.
However, no analysis was conducted of the teaching methods used in the study. Future studies can examine the
effects of using different teaching methods in programming education. This study focused on the types of activities
but did not focus on the types of teaching methods and their effects on the process. The literature states that there
are many learning strategies for CT and programming teaching (Hsu et al., 2018). Studies can be conducted on the
effects and contributions of different learning strategies, such as game-based learning, collaborative learning, and
individual and group activities, on CT and programming teaching, especially for primary school children.

In addition to increasing educational activities and practices, measurement tools should also be developed to
determine the development of students' programming and CT (Roman-Gonzalez et al., 2017). Although
international Bebras tasks were used to measure programming and CT in the study, measurement tools associated
with the gains need to be developed or increased for students of all age groups. In this study, it was difficult to

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

identify questions related to the subject or gain. Therefore, it is necessary to conduct more studies on the
development of programming and CT measurement tools for primary school students.

Acknowledgments

Part of this study was presented orally at the "8th International Eurasian Educational Research Congress" and
included in the abstract book.

References

Aranda, G. & Ferguson, J. P. (2018). Unplugged Programming: The future of teaching computational thinking?
Pedagogika, 68(3). https://doi.org/10.14712/23362189.2018.859

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming. ACM
Transactions on Computing Education (TOCE), 14(4), 1–15. https://doi.org/10.1145/2677087

Ambrosio, A. P., da Silva Almeida, L., Macedo, J., & Franco, A. (2014). Exploring core cognitive skills of
computational thinking. In Psychology of programming interest group Annual conference 2014 proceedings,
july, 25–24. http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf.
http://citeseerx.ist.psu. edu/viewdoc/download? doi=10.1.1.698.1911&rep=rep1&type=pdf.

Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019, June). Piaget's Cognitive Developmental Theory: Critical
Review. Education Quarterly Reviews, 2(3), 517-524. https://doi.org/10.31014/aior.1993.02.03.84

Balanskat, A. & Engelhardt, K. (2015). Computing our future computer programming and coding priorities, school
curricula and initiatives across Europe. European Schoolnet. Retrieved from
http://fcl.eun.org/documents/10180/ 14689/Computing+our+future_final.pdf

Bell, T, Alexander, J, Freeman, I., & Grimley, M. (2009). Computer science unplugged: school students doing real
computing without computers. New Zealand Journal of Applied Computing and Information Technology,
13(1), 20-29. https://www.citrenz.ac.nz/jacit/

Büyüköztürk, Ş. (2010). Sosyal Bilimler İçin Veri Analizi El Kitabı, 11. Baskı, Pegem Akademi, Ankara.
Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017,

November). Development of computational thinking skills through unplugged activities in primary school. In
Proceedings of the 12th Workshop on Primary and Secondary Computing Education, Nijmegen, Netherlands,
November 8–10, 2017 (WiPSCE ’17) (pp. 65-72). https://doi.org/10.1145/3137065.3137069

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical perspective.
TechTrends, 64(1), 29-36. https://doi.org/10.1007/s11528-019-00410-5

Cartelli, A., Dagiene, V., & Futschek, G. (2010). Bebras contest and digital competence assessment: Analysis of
frameworks. International Journal of Digital Literacy and Digital Competence (IJDLDC), 1(1), 24-39.
https://doi.org/10.4018/jdldc.2010101902

Chalkiadaki, A. (2018). A systematic literature review of 21st century skills and competencies in primary
education. International Journal of Instruction, 11(3), 1-16. https://doi.org/10.12973/iji.2018.1131a

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing computational thinking with educational technologies
for young learners. TechTrends, 62, 563–573. https://doi.org/10.1007/s11528-018-0292-7

Cheng, L., Wang, X., & Ritzhaupt, A. D. (2023). The Effects of Computational Thinking Integration in STEM on
Students’ Learning Performance in K-12 Education: A Meta-analysis. Journal of Educational Computing
Research, 61(2), 416-443. https://doi.org/10.1177/07356331221114183

Citt`a, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S.Sciortino, M., … (2019). The effects of
mental rotation on computational thinking. Computers & Education, 141, 103613.
https://doi.org/10.1016/J.COMPEDU.2019.103613.

Costa, J. M. & Miranda, G. L. (2017). Relation between Alice software and programming learning: A systematic
review of the literature and meta‐analysis. British Journal of Educational Technology, 48(6), 1464-1474.
https://doi.org/10.1111/bjet.12496

Creswell, W. J. (2012). Educational Research: Planning, Conducting, and Evaluating Quantitative and
Qualitative Research. Boston, United States of America: Pearson Education.

Dagiene, V. & Stupuriene, G. (2016). Bebras--A Sustainable Community Building Model for the Concept Based
Learning of Informatics and Computational Thinking. Informatics in education, 15(1), 25-44.
https://doi.org/10.15388/infedu.2016.02

DeJarnette, N. K. (2018). Implementing STEAM in the Early Childhood Classroom. European Journal of STEM
Education, 3(3), 18. https://doi.org/10.20897/ejsteme/3878

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020, June). Computational thinking through
unplugged activities in early years of Primary Education. Computers & Education, 150, 103832.
https://doi.org/10.1016/j.compedu.2020.103832

https://doi.org/10.14712/23362189.2018.859
https://doi.org/10.1145/2677087
https://doi.org/10.31014/aior.1993.02.03.84
https://www.citrenz.ac.nz/jacit/
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.4018/jdldc.2010101902
https://doi.org/10.1007/s11528-018-0292-7
https://doi.org/10.1177/07356331221114183
https://doi.org/10.1016/J.COMPEDU.2019.103613
https://doi.org/10.1111/bjet.12496
https://doi.org/10.15388/infedu.2016.02
https://doi.org/10.20897/ejsteme/3878
https://doi.org/10.1016/j.compedu.2020.103832

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6),

33–39. https://doi.org/10. 1145/2998438.
Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to

measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.
https://doi.org/10.1016/j.compedu.2011.08.006

Duncan, C. (2019). Computer science and computational thinking in primary schools. Doctoral Dissertation.
University of Canterbury, New Zealand.

Durak, H. Y. & Sarıtepeci, M. (2018). Analysis of the relation between computational thinking skills and various
variables with the structural equation model. Computers & Education, 116 (January 2018), 191-202.
https://doi.org/10.1016/j.compedu.2017.09.004

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling.
American journal of theoretical and applied statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11

Erümit, A. K., & Sahin, G. (2020). Plugged or Unplugged Teaching: A Case Study of Students' Preferences for
the Teaching Programming. International Journal of Computer Science Education in Schools, 4(1), 1-14.

Fessakis, G., Gouli, E. & Mavroudi, E. (2013, April). Problem solving by 5-6 years old kindergarten children in a
computer programming environment: A case study. Computers & Education, 63, 87-97.
https://doi.org/10.1016/j.compedu.2012.11.016

Field, Andy. (2009) Discovering Statistics Using SPSS, (Third Edition), Sage Publications Ltd., London
George D, & Mallery P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th

ed.). Boston: Allyn & Bacon.
Golafshani N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4),
597-606. https://doi.org/10.46743/2160-3715/2003.1870
Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational

Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051
Gülbahar, Y., Kalelioğlu, F., Doğan, D., & Karataş, E.(2020). Bilge Kunduz: Enformatik ve bilgi-işlemsel

düşünmeyi kavram temelli öğrenme için toplumsal bir yaklaşım. Ankara Üniversitesi Eğitim Bilimleri
Fakültesi Dergisi, 53(1), 241-272. https://doi.org/10.30964/auebfd.560771

Hijón-Neira, R., Santacruz-Valencia, L., Pérez-Marín, D., & Gómez-Gómez, M. (2017, November). An analysis
of the current situation of teaching programming in Primary Education. In 2017 International Symposium on
Computers in Education (SIIE) (pp. 1-6). IEEE.

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018, November). How to learn and how to teach computational thinking:
Suggestions based on a review of the literature. Computers & Education, 126, 296-310.
https://doi.org/10.1016/j.compedu.2018.07.004

ISTE (2015). CT leadership toolkit. http://www.iste.org/docs/ctdocuments/ct-leadershipttoolkit.pdf?sfvrsn=4.
Jiang, S., & Wong, G. K. (2019). Primary school students' intrinsic motivation to plugged and unplugged

approaches to develop computational thinking. International Journal of Mobile Learning and Organisation,
13(4), 336-351.

Kale, U. & Yuan, J. (2021). Still a new kid on the block? Computational thinking as problem solving in Code. org.
Journal of Educational Computing Research, 59(4), 620-644. https://doi.org/10.1177/0735633120972050

Kalelioğlu, F. (2015, November). A new way of teaching programming skills to K-12 students: Code. org.
Computers in Human Behavior, 52, 200-210. https://doi.org/10.1016/j.chb.2015.05.047

Kalelioğlu, F., & Gülbahar, Y. (2014). The effects of teaching programming via scratch on problem solving skills:
A discussion from learners' perspective. Informatics in Education, 13(1), 33–50.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic
research review. Baltic J. Modern Computing, 4(3), 583-596. https://www.bjmc.lu.lv/

Keşfet Projesi, (2018). Keşf@ Öğretmen Portalı, Kodlamayı Keşfediyorum. Retrieved from June 10, 2020, from
https://kesfetprojesi.org/kodlamayi-kesfediyorum

Kirçali, A. Ç., & Özdener, N. (2023). A comparison of plugged and unplugged tools in teaching algorithms at the
K-12 level for computational thinking skills. Technology, Knowledge and Learning, 28(4), 1485-1513.
https://doi.org/10.1007/s10758-021-09585-4

Kong, S. C. (2016). A framework of curriculum design for computational thinking development in K-12
education. Journal of Computers in Education, 3(4), 377-394. https://doi.org/10.1007/s40692-016-0076-z

Lin, Y., & Weintrop, D. (2021). The landscape of Block-based programming: Characteristics of block-based
environments and how they support the transition to text-based programming. Journal of Computer
Languages, 67, 101075. https://doi.org/10.1016/j.cola.2021.101075

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018). Unravelling the cognition of coding in
3-to-6-year olds. In Proceedings of the 2018 ACM conference on international computing education research
- ICER ’18, august (pp. 133–141). https://doi.org/10.1145/3230977.3230984

Manches, A., & Plowman, L. (2017). Computing education in children's early years: A call for debate. British
Journal of Educational Technology, 48(1), 191-201. https://doi.org/10.1111/bjet.12355

https://doi.org/10.%201145/2998438
https://doi.org/10.1016/j.compedu.2011.08.006
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.46743/2160-3715/2003.1870
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.30964/auebfd.560771
https://doi.org/10.1016/j.compedu.2018.07.004
http://www.iste.org/docs/ctdocuments/ct-leadershipttoolkit.pdf?sfvrsn=4
https://doi.org/10.1177/0735633120972050
https://doi.org/10.1016/j.chb.2015.05.047
https://doi.org/10.1007/s10758-021-09585-4
https://doi.org/10.1007/s40692-016-0076-z
https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1111/bjet.12355

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Mishra, P. & Yadav, A.(2013). Rethinking technology & creativity in the 21st century. TechTrends, 57(3), 10-14.

https://doi.org/10.1007/s11528-013-0655-z
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital competence

and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 1-17.
https://doi.org/10.1080/20004508.2019.1627844

Piaget, J. (1962). Play, dreams, and imitation in childhood. New York, US: W Norton & Co.
Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: examining basic programming achievement and

computational thinking of 6th-grade students. Education and Information Technologies, 1-35.
https://doi.org/10.1007/s10639-022-10992-y

Popat, S. & Starkey, L. (2019, January). Learning to code or coding to learn? A systematic review. Computers &
Education, 128, 365-376. https://doi.org/10.1016/j.compedu.2018.10.005

Partnership for 21st Century Skills, (P21). (2013). Framework For 21st Century Learning. Retrieved from
November 06, 2020, from http://www.p21.org/about-us/p21-framework

Papadakis, S., Kalogiannakis, M., Orfanakis, V., & Zaranis, N. (2019). The appropriateness of scratch and app
inventor as educational environments for teaching introductory programming in primary and secondary
education. In Early Childhood Development: Concepts, Methodologies, Tools, and Applications (pp. 797-819).
IGI Global.

Rehmat, A. P., Ehsan, H., & Cardella, M. E. (2020). Instructional strategies to promote computational thinking for
young learners. Journal of Digital Learning in Teacher Education, 36(1), 46-62.
https://doi.org/10.1080/21532974.2019.1693942

Roman-Gonzalez, M., Perez-Gonzalez, J.-C., & Jimenez-Fernandez, C. (2017, July). Which cognitive abilities
underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human
Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047.

S´aez-L´ opez, J. M., Rom´an-Gonz´alez, M., & V´ azquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two years case study using “scratch” in five schools.
Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2020). Designing unplugged and plugged activities to
cultivate computational thinking: An exploratory study in early childhood education. The Asia-Pacific
Education Researcher, 29(1), 55-66. https://doi.org/10.1007/s40299-019-00478-w

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition.
http://eprints.soton.ac.uk/id/eprint/356481.

Shin, S., Park, P., & Bae, Y. (2013). The Effects of an information-technology gifted program on friendship using
Scratch programming language and clutter. International Journal of Computer and Communication
Engineering, 2(3), 246-249. https://doi.org/10.7763/IJCCE.2013.V2.181

Shih, W. C. (2017, June). Mining learners' behavioral sequential patterns in a blockly visual programming
educational game. In 2017 International Conference on Industrial Engineering, Management Science and
Application (ICIMSA) (pp. 1-2). IEEE.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017, November). Demystifying computational thinking. Educational
Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Sigayret, K., Tricot, A., & Blanc, N. (2022). Unplugged or plugged-in programming learning: A comparative
experimental study. Computers & Education, 184, 1-14. https://doi.org/10.1016/j.compedu.2022.104505

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A
conceptual model based on a systematic literature Review. Computers & Education, 162, 104083.
https://doi.org/10.1016/j.compedu.2020.104083

Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-grade students know and
can do. Journal of Educational Computing Research, 57(1), 3-31. https://doi.org/10.1177/0735633117743918

Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training computational thinking through board games: The case
of Crabs & Turtles. International Journal of Serious Games, 5(2), 25-44.
https://doi.org/10.17083/ijsg.v5i2.248

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017, October). Training
computational thinking: Game-based unplugged and plugged-in activities in primary school. In European
conference on games based learning (pp. 687-695). Academic Conferences International Limited.

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V., & Ninaus, M. (2022). A
cognitive definition of computational thinking in primary education. Computers & Education, 179, 104425.
https://doi.org/10.1016/j.compedu.2021.104425

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Computer
science in K-12 school curricula of the 2lst century: Why, what and when?. Education and Information
Technologies, 22(2), 445-468. https://doi.org/10.1007/s10639-016-9493-x

https://doi.org/10.1007/s11528-013-0655-z
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.1007/s10639-022-10992-y
https://doi.org/10.1016/j.compedu.2018.10.005
http://www.p21.org/about-us/p21-framework
https://doi.org/10.1080/21532974.2019.1693942
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s40299-019-00478-w
http://eprints.soton.ac.uk/id/eprint/356481
https://doi.org/10.7763/IJCCE.2013.V2.181
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.compedu.2022.104505
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.17083/ijsg.v5i2.248
https://doi.org/10.1016/j.compedu.2021.104425
https://doi.org/10.1007/s10639-016-9493-x

International Journal of Computer Science Education in Schools, May 2024, Vol. 6, No. 2
ISSN 2513-8359

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science classrooms. Journal of science education and
technology, 25 (1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. (2017). Computational thinking’s influence on research and education for all. Italian Journal of
Educational Technology, 25(2), 7-14. https://www.learntechlib.org/p/183466/.

Wong, G. K. W. & Cheung, H.Y. (2020). Exploring children’s perceptions of developing twenty-first century
skills through computational thinking and programming, Interactive Learning Environments, 28(4), 438-450.
https://doi.org/10.1080/10494820.2018.1534245

Wong, G. K., Cheung, H. Y., Ching, E. C., & Huen, J. M. (2015, December). School perceptions of coding
education in K-12: A large scale quantitative study to inform innovative practices. In 2015 IEEE International
Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 5-10). IEEE.

Yıldız Durak, H. (2020). The effects of using different tools in programming teaching of secondary school students
on engagement, computational thinking and reflective thinking skills for problem solving. Technology,
Knowledge and Learning, 25(1), 179-195. https://doi.org/10.1007/s10758-018-9391-y

https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://www.learntechlib.org/p/183466/
https://doi.org/10.1080/10494820.2018.1534245
https://doi.org/10.1007/s10758-018-9391-y

