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ABSTRACT Over the last several years, nationally disseminated course-based under­
graduate research experiences (CUREs) have emerged as an alternative to developing a 
novel CURE from scratch, but objective assessment of these multi-institution (network) 
CUREs across institutions is challenging due to differences in student populations, 
instructors, and fidelity of implementation. The time, money, and skills required to 
develop and validate a CURE-specific assessment instrument can be prohibitive. Here, we 
describe a co-design process for assessing a network CURE [the Prevalence of Antibiotic 
Resistance in the Environment (PARE)] that did not require support through external 
funding, was a relatively low time commitment for participating instructors, and resulted 
in a validated instrument that is usable across diverse PARE network institution types 
and implementation styles. Data collection efforts have involved over two dozen unique 
institutions, 42 course offerings, and over 1,300 pre-/post-matched assessment record 
data points. We demonstrated significant student learning gains but with small effect 
size in both content and science process skills after participation in the two laboratory 
sessions associated with the core PARE module. These results show promise for the 
efficacy of short-duration CUREs, an educational research area ripe for further investiga­
tion, and may support efforts to lower barriers for instructor adoption by leveraging a 
CURE network for developing and validating assessment tools.
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E ngaging undergraduates in research has been identified as a high-impact educa­
tional practice (1). However, lack of access to research opportunities and lack 

of participation of underrepresented groups have been identified as barriers to the 
equitable implementation of this high-impact practice (2, 3). Engagement in authen­
tic research, exploring the scientific process, practicing collaboration, and integrating 
scientific discovery within a required course are a pedagogical opportunity to address 
this issue in the form of a course-based undergraduate research experience (CURE) 
(4–9). In 2012, the Course-Based Undergraduate Research Experiences Network was 
established to promote the integration of research experiences into undergraduate 
courses to enhance student learning as well as understand and identify the direction 
for CURE assessments and evaluations (10).

CURE assessment has evolved in the last several years from student self-reports 
of outcomes from individual CURE participation to more sophisticated modeling and 
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testing of how CURE-specific components (e.g., discovery, iteration) relate to anticipated 
student outcomes more generally (11–15). Understanding the relationship between 
anticipated long-term student outcomes and CURE elements specific to classroom 
research will drive CURE development to focus on those elements with the greatest 
long-term impact (6, 10, 12, 16–18). There remains a need, however, for CURE implement­
ers to assess short-term outcomes as affirmation for initiating or continuing use of a 
CURE. Evidence that students learn key concepts or science process skills associated 
with a specific CURE can impact the decision to implement or provide evidence for 
departmental adoption (19). A number of previously developed instruments may be 
appropriate for assessing general affective learning domain outcomes associated with 
research such as critical thinking, ownership, and understanding the process of science 
[see reference (19)] but are likely too general for assessment of CURE-specific concepts 
and science process skills.

Nationally disseminated or “network” CUREs are those designed and packaged 
for dissemination to other instructors, usually at a variety of institutions (6, 20, 21). 
Assessment of concepts or science process skills associated with a specific network CURE 
can be challenging because an instrument developed by one instructional team for 
a particular student population may not be broadly applicable across all participating 
institutions or classrooms. This issue is confounded further by widely adaptable modular 
CUREs in which the course context may vary as well. Modular network CUREs provide a 
suite of independent classroom modules that allow instructors to provide students with 
a taste of authentic research through a brief CURE over two to three laboratory sessions 
or through full semester-long projects [e.g., references (21–27)]. Short-duration CUREs 
with one or more modules may lower implementation barriers (28–31) and provide some 
of the gains associated with long-duration CUREs (13, 27, 32–34).

Some multi-institution CUREs have published results of perceived (e.g., self-repor­
ted) or objective student outcomes at a single institution [e.g., references (34–38)], 
while other network CUREs have reported student perception of outcomes across 
multiple institutions [e.g., references (13, 39–48)]. In a literature search, we were able 
to identify only five multi-institution CUREs that have measured objective outcomes of 
student learning across multiple institutions with a focus on semester-long implemen­
tation. These groups published student knowledge outcomes using surveys designed 
by participating faculty, but none provided specific details describing survey design, 
development, or validation (42, 44, 45, 49–53). Objective metrics other than learning 
have been reported across different implementation contexts at the same institution. 
For example, participation in the Freshman Research Initiative has been associated with 
increased student retention (54, 55).

The Prevalence of Antibiotic Resistance in the Environment (PARE) project is a library 
of modular CURE curricula organized around the theme of environmental surveillance 
of antibiotic resistance (24, 25, 32). The majority of instructors begin by implementing 
the “core” module but then go on to expand the duration of research in subsequent 
implementations through addition of other PARE modules (Genné-Bacon, submitted). 
A goal is to increase student understanding of how presence of antibiotics in the 
environment can lead to natural selection for resistant microbes. In the core module, 
designed around eight content and science process skills outcomes (see Results), 
students form a hypothesis about which local areas might harbor high resistance 
levels, and then they use standardized methods to collect soil, capture GPS location, 
perform serial dilutions, and plate onto media with or without a defined concentration of 
tetracycline. Colonies are counted to determine the number of colony-forming units on 
each plate type, followed by calculations to determine the percent resistance. The results 
are uploaded to an international database and results can be visualized in real time on 
a map (24, 25). The range of institution types participating in PARE, the varying course 
context, and the differences in total module numbers taught contribute to significant 
implementation differences across classrooms (25, 32). Because a programmatic goal 
is to obtain data comparable across a large geographic range during the core module 
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component, it is important that all students use the same methodology. Therefore, we 
opted to develop an instrument to exclusively measure learning outcomes associated 
with the core module, since it is the module common across all or most PARE classrooms 
and because the methodology and content should be executed nearly the same across 
classrooms.

The overarching goal of this study was to test a methodological framework for 
harnessing a CURE community to assist with developing and validating a knowledge 
and skills assessment instrument. The impetus for this effort stemmed from a major­
ity of PARE instructors indicating that they value knowledge- and skills-based assess­
ments over affective assessments. We polled the PARE instructor network, and 85% of 
respondents preferred a content- over an affective-based assessment (19). The resulting 
instrument provides a classroom tool for network instructors and may bolster adoption 
through access to published efficacy data. The resulting assessment tool and data 
set have value for those instructors considering adoption in the current education 
landscape (19), especially at community colleges with rigid curriculum requirements 
or in settings where administrative support may be a barrier (30, 56, 57). Having a 
validated CURE-specific instrument fills the void where generalized instruments that 
measure presumed short-term outcomes, such as developing hypotheses, designing 
experiments, or project ownership (11, 58–62), may not be suitable for a single module 
CURE experience. We recognize that focusing on assessing gains in skills or learning 
does not capture the holistic nature of CUREs as outlined by Brownell and Kloser (16); 
however, in certain contexts, it may be valuable (19). Thus, we aim to impact a larger 
scope of undergraduates through authentic classroom research by presenting PARE as a 
short-duration modular “gateway” CURE accompanied by instructor-valued assessment 
tools and efficacy data. Here, we outline a CURE network co-design process that can 
be adopted by other network CUREs to generate a knowledge and skills assessment 
instrument. We leveraged our faculty network to assess the efficacy of a short-duration 
CURE module without external funding or a sizable time commitment.

The first objective of the present study was to develop and establish a tool useful 
for capturing learning gains from a wide diversity of courses and student populations 
using a CURE network co-design process. The second objective was to measure gains in 
conceptual knowledge and the ability to analyze and interpret data using this assess­
ment instrument. The second objective was guided by the following research question: 
Can a network-based short-duration CURE module demonstrate measurable student 
learning gains in conceptual knowledge and an ability to analyze and interpret data?

METHODS

Faculty co-design collaborators

During the 2017 American Society for Microbiology Conference for Undergraduate 
Educators meeting, PARE attendees met and decided to establish an assessment group. 
The entire PARE instructor network was subsequently invited to join the assessment 
group, which ultimately resulted in the inclusion of seven PARE faculty instructors as part 
of the co-design process with survey-style feedback from an additional 20 instructors 
implementing in diverse contexts.

Student participants

Assessment data were obtained from student participants enrolled in courses taught 
by PARE instructors at varied institutional types and course types from the fall of 2016 
through the early spring of 2020 prior to face-to-face courses transitioning to online due 
to the COVID-19 pandemic. Broad representation of course types and institution types 
was deliberate to ensure a representative sample of the PARE network.
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Data collection procedure

Faculty co-design survey and student assessment data were collected by administer­
ing the instrument using the Qualtrics platform. Student participants completed the 
pre-assessment instrument within a window of up to 7 days prior to implementation of 
PARE. The post-assessment instrument was completed by student participants within 7 
days after completion of the PARE core module. All spring 2020 data were collected prior 
to COVID-19 social distancing measures taking effect. All protocols used to collect data 
from human subjects were approved by the Institutional Review Board at Tufts University 
(IRB# 1511001).

Instrument scoring, item analysis, and iterative design

For multiple-choice items on all versions, item analysis metrics included index of 
difficulty, item discrimination index, and point-biserial correlation. The index of difficulty 
was calculated by dividing the number of correct responses by the number of total 
responses. Item discrimination index was calculated by sorting records based on total 
assessment score and then subtracting the percent correct from the bottom 27% of 
all records from the percent correct of the top 27% of all records (63). Point-biserial 
correlation was calculated by using the “CORREL” array function in Microsoft Excel to 
determine the correlation coefficient between score on an item and total score on 
the instrument. Open-ended items on version 1 were scored by two evaluators, and 
points were assigned for each correct multiple-choice item. Pre-/post-records were 
combined and assigned a randomized code; two separate individuals scored each item 
independently using an established rubric. Scores were compared for a subset of items 
for scoring calibration and to avoid the introduction of scoring artifacts. For scoring 
of version 2, a portion of responses for each open-ended item was scored using an 
established rubric. Modifications were made to questions that were not performing 
well. Specifically, we used a combination of low item discrimination, poor point biserial 
correlation, and undetectable or negative pre- to post-score differential as criteria for 
removing or altering questions. In addition, version 1 questions for which a large 
proportion of instructors and/or students exhibited confusion or misinterpretation based 
on open-ended text were omitted or revised. In later versions, open-ended questions 
were converted to a format that could be easily scored (e.g., multiple choice). To convert 
open-ended questions into multiple-choice versions, we created distractor answers 
that were commonly observed in the open responses. Overall, a combination of the 
classroom data analysis, PARE instructor feedback, and instructor perceived difficulty 
ratings was used to revise the instrument and for establishing instrument validity (64).

Collectively, the evolution of the assessment items can be found in Table S1, and 
institutional demographics for each pilot can be found in Table S2.

Learning gain data analysis

Learning gains for versions 2–4 are reported for multiple-select, multiple-choice, or 
calculation items only. Filtering was performed to remove incomplete records and 
submissions without matching pre-/post-record identifiers. Duplicate entries were also 
removed. Multiple-choice scoring was automated within Microsoft Excel. Matched pre-/
post-item scores were totaled for each participant to compute individual learning gains. 
During analysis of the composite data set (instrument version 4), we noticed that a 
notable proportion of pre-/post-records were completed within a suspiciously short 
time duration. To explore if short-duration records influence detected learning gains, 
we removed records with a time duration of <400 seconds from pre-/post-assessment 
records and any associated unmatched records. This resulted in purging 77 records, 
yielding a total of 571 matched records with >400 seconds in time duration. Additionally, 
we noticed that a large portion of the version 4 records (~21%) were from multiple 
sections of a single community college course (Table S2). To investigate if this institution 
was driving the composite learning gains, we filtered these records and re-analyzed the 
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data. The resulting filtered data set exhibited a significant P value, indicating that this 
single institution was not driving learning gains (Fig. S1; P < 0.0001, two-tailed paired 
t-test, n = 448). In addition, a single institution in the version 4 data set was composed
of a majority fraction of students that self-identified as “Black or African American.” This
institution is located in Botswana, where Black Africans likely have a different cultural
experience than Black Americans. Considering that we were specifically interested in
the experience of historically underrepresented groups in the United States, we ran the
general linear mixed model analysis with and without this class for underrepresented
minority analysis, but we did not observe statistical significance in either case.

Statistical analysis for data associated with instrument versions 1–4 (paired two-tailed 
t-tests and Cohen’s d effect size) were completed using JASP (version 0.14.1; JASP,
2020(65)) . To compare test scores between various demographic groups, we used a
generalized linear mixed model with institution as the random factor, post-test score as
the dependent variable, demographic or course metadata category (e.g., race, institution
type) as the fixed factor, and pre-test score as the covariate. This analysis was performed
on instrument version 4 using Statistical Package for the Social Sciences (SPSS) (IBM SPSS
version 7 for Mac). This analysis detects differences in post-test score between groups
while controlling for pre-test score and institutional random effects (to account for the
nested structure of the data across multiple institutions). Partial η2 is used as a measure
of effect size. Because participating institutions do not vary in classification, no random
effects nesting was used for the analysis of institution-type differences in test scores.

RESULTS

Network co-design of an assessment instrument for diverse classroom 
contexts

The main objective of the assessment instrument development process was to produce 
an assessment that could be used across a wide diversity of courses and student 
populations within the PARE network. To attain this goal, we conceived a co-design 
methodological framework for instrument development and validation (Fig. 1). The final 
product of this structured validation process is an instrument that can be efficiently 
scored for scaled data collection in courses implementing PARE in diverse contexts. 
The process entailed generation of four iterations of the instrument and data collection 

FIG 1 Workflow of the co-design methodological framework for assessment instrument development and validation (see text 

for details). MC = multiple choice
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over the period of three academic years. Data collection efforts have involved over 
two dozen unique institutions (Table 1), 42 course offerings (Table 2), and over 1,300 
pre-/post-matched assessment record data points (Table S2). Due to the adaptability of 
the PARE Project as a short-duration CURE, participating classrooms included diverse 
environments such as non-biology majors, pre-allied health majors, comprehensive 
STEM majors, mixed majors, and biology majors. Items were targeted to reach across an 
item difficulty range to accommodate lower-level and upper-level PARE-implementing 
courses within the network (Table 2).

Phase 1: instrument development and initial validity testing

PARE learning objectives (Table 3) were used to develop a set of 14 questions (24) 
consisting of a combination of open-ended and multiple-choice style questions. This 
initial instrument was used to collect pilot data from four institutions and course 
offerings. Statistically significant learning gains from this version were previously 
reported (P < 0.0001; two-tailed paired t-test; n = 45) (24). To assess whether students 
were interpreting the questions as intended, we provided a field for students to explain 
their answer choice after each multiple-choice question. This was used as a metric to 
assess face validity and to identify poorly worded questions that were then flagged for 
revision. Commonly chosen wrong answers were flagged as potential misconceptions 
and were used in subsequent iterations as distractors.

Variation in performance based on institution prompted us to seek input from 
faculty who teach the PARE Project. Version 1 of the instrument was converted to a 
Qualtrics-based survey and distributed to PARE faculty to assess content validity as well 
as perceived difficulty, appropriateness for their student population, and general clarity. 
A total of 27 instructors (Fig. 2A) took the survey and offered feedback. The items on 
this version were identical to the student version but included an open-response space 
after each question for the instructor experts to offer general feedback and a Likert scale 
question to capture perceived difficulty level for their particular student audience.

Instructor survey respondents expressed a range of opinions regarding perceived 
difficulty level and opinions differed across the different items (Fig. 2B). For example, 
a single item requiring math analogous to what is required in the core module was 
perceived as being overly simplistic and not appropriate for collegiate level to being 
too difficult for students without context on antimicrobial resistance. This was our 

TABLE 1 Summarized assessment data for instrument versions 1–4a

Instrument 
version

Number of 
institutions

Matched pre-/post-assess­
ment records

Institution type

High school Associate’s 
colleges

Baccalaureate 
colleges

Master’s 
colleges

Doctoral 
universities

1 4 45 0 5 12 13 15
2A 11 253 0 100 78 28 47
2B 10 276 14 41 99 65 57
3 7 254 0 214 36 4 0
4 21 571 0 206 359 3 80
Total 53 1,370 14 566 584 113 180
aVersions 2A and 2B were used in different sections of the same course for some participating institutions. In a few circumstances, a single instructor has implemented PARE 
in two separate courses at the same institution.

TABLE 2 Courses participating in assessment data collection for versions 1–4a

Course focus

Course student composition Course level

STEM majors Mixed majors Allied health Non-majors Upper Lower

Microbiology 17 9 10 NA 10 26
Genetics 2 NA NA NA NA 2
Biology 8 2 1 3 NA 14
Total 27 11 11 3 10 42
aSTEM majors includes courses composed of strictly biology majors and courses that enroll a wide diversity of STEM majors. NA, not applicable.
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goal, considering the diverse target student population being assessed. Item analysis of 
instrument version 1 (Table S1), indicated that the index of difficulty mirrored the general 
trend of difficulty ratings provided by instructors. Overall, the participating instructor 
respondents holistically rated version 1 instrument items as being appropriate for their 
course context by a large majority (Fig. 2C).

Phase 2: expansion of difficulty range and conversion of open-ended to 
multiple-choice items

The goals of phase 2 were to (i) add additional questions to generate both a rela­
tively novice and challenging question for each learning objective and (ii) convert 

FIG 2 Faculty feedback survey data for version 1 of the assessment instrument. (A) Institution-type representation of faculty responses (n = 27). (B) Faculty 

responses regarding perceived item difficulty for their specific student population. (C) Faculty responses to survey question “would this assessment item be 

appropriate for your course content?”.

TABLE 3 PARE learning objectives for the core PARE module mapped to general student learning outcomes

Core PARE Project student learning objectives (students should be 

able to…)

General student outcomes from CURE 

participation

Alignment to vision and change core competen­

ciesa

1) Express and convert numerical values between fractional, decimal, 

and scientific notation.

Increased content knowledge LO 1–2: quantitative reasoning—numeracy

2) Calculate the number of colony-forming units per gram of soil.

3) Explain the rationale and process for performing serial dilutions on 

microbiological samples.

LO 3: process of science—study design

4) Explain how antibiotics can provide a selective pressure influencing 

natural selection of microbial populations.

LO 4–5: interdisciplinary nature of science—

connecting scientific knowledge

LO 5: science and society—science’s impact on 

society

5) Describe the potential implications for human health posed by the 

presence of antibiotics in the environment.

6) Represent or interpret a given set of authentic ("noisy") data in a 

table, graph, etc.

Ability to analyze and interpret data LO 6: quantitative reasoning—quantitative and 

computational data analysis

7) Reflect on unexpected experimental results and determine nature 

of error/troubleshoot. LO 7: process of science—study design

8) Describe the importance of experimental replication and the ability 

to be cautiously skeptical of data.

LO 8: process of science—data interpretation and 

evaluation

9) Demonstrate evidence of the ability to recognize how “scien­

tists think” by conceptualizing data that contradict experimental 

predictions in response to a situational prompt question concerning 

unexpected experimental results.

Conceptions of what it means to think like a 

scientist

LO 9:

(i) Modeling and simulation—model application

(ii) Process of science—scientific thinking

aVision and change core competencies as described by Clemmons et al. (2020) (66).
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open-ended questions to an easily scorable format for streamlined analysis. Instructor 
survey feedback on version 1, coupled with student pilot data, guided instrument 
refinement. Item analysis was used to identify learning objectives for which additional 
item(s) or modification was necessary to provide varying levels of difficulty and/or to 
improve clarity. To scale up administration to large cohorts, we converted open-ended 
items to multiple choice by using misconceptions articulated in open-ended responses 
to generate distractors for multiple-choice items. For example, an open-ended item and 
its multiple-select counterpart are shown below (see box) followed by some example 
incorrect student responses that informed development of the distractor choice ”c” in 
the multiple-select version.

Open ended

A biologist wants to investigate the bacteria living in a sample of pond water. She 
performs a serial dilution of the pond water then plates each dilution on appropri­
ate growth medium. What is the purpose of performing serial dilutions on the pond 
samples? Why can’t she just plate the pond sample directly on the medium?

Multiple select

A biologist wants to investigate the bacteria living in a sample of pond water. She 
performs a serial dilution of the pond water then plates each dilution on appropri­
ate growth medium. What is the purpose of performing serial dilutions on the pond 
samples? Why can’t she just plate the pond sample directly on the medium? Select 
ALL that apply.

a. The bacteria in the original sample are likely too concentrated, thus dilutions will 
reduce the number of cells per milliliter for counting distinguishable colonies.

b. Diluting lets you make an accurate plate count by creating space between viable 
cells.

c. This step removes contaminants and waste products from the lake water that 
inhibit bacterial growth.

d. Diluting helps concentrate the bacterial cells in samples to provide more 
accurate plate counts.

Examples of incorrect responses that led to generation of incorrect multiple 
select distractor choice “c”

• By performing the serial dilutions it separates the bacteria from the sample of 
pond water which will make the bacteria grow more effectively.

• Honestly I don't know, probably to remove unneeded chemicals and waste 
products.

• She wants to isolate the bacteria as much as possible in just pure water, but 
plating the water straight from the lake would mean that contaminates from the 
lake itself would also get plated.

• To search for contamination before she places it on the medium.

We compared performance on version 1 to the modified counterpart item on versions 
2A and 2B. Multiple-choice, multiple-select, and calculation items that exhibited a 
combination of low item discrimination, poor point-biserial correlation, and undetect­
able or negative post-/pre-score differential metrics were flagged for re-wording or 
removal from the instrument. Overall, we did not see a major difference in performance 
on open-ended items that were converted to one of the easily scorable formats.
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The resulting data set of responses from version 2 represented 15 unique institutions 
implementing PARE in diverse institution types, courses, student academic interests, and 
course levels and yielded 529 matched pre-/post-assessment records (Tables S1 to S3).

Analysis of the scored multiple-choice, multiple-select, and calculation items (10 total 
items) and the resulting total instrument mean for matched pre-/post records indicated 
significant learning gains for both forms “A” (n = 253) and “B” (n = 276) (Fig. 3; P < 0.0001; 
two-tailed paired t-test).

Phase 3: iterative instrument revision and refinement

The data set from version 2 pilots was skewed toward baccalaureate institutions with an 
undergraduate focus, so we embarked on an additional round of pilots with a revised 
version 3 assessment instrument, consisting of only multiple-choice, multiple-select, or 
calculation questions (15 items total) (Table S1 to S3).

Having multiple questions per learning outcome assisted with item optimization. 
For example, multiple-choice question (item 12.0) in version 2 form “A” lacked a mean 
difference between pre/post (Table S1); thus, it was dropped in favor of the alternative, 
better-performing item 13.0 addressing the same learning objective. Despite attempts 
to systematically improve items, this proved difficult in some cases. For example, efforts 
to improve student performance on item 5.2 were unsuccessful. Interestingly, some 
instructors indicated in the survey that their cohorts of students with remedial math 
skills would likely be more challenged with the question. This question tested basic 
understanding of scientific notation. It was still retained in the instrument, as it was 
deemed important to keep a question addressing this established learning outcome.

Versions 3 and 4 were both composed entirely of easily scorable items (multiple-
choice, multiple-select, and two calculation items) for scalability and balanced brevity 
with coverage of the aligned student learning outcomes. Item analysis metrics indicate 
that items in the final instrument (version 4) span a range of difficulty while providing 
good discrimination ability (Table 4). The pre/post mean differential was indicative of 
significant learning gains (Fig. 4; P < 0.02; two-tailed paired t-test).

FIG 3 Aggregate matched pre-/post-assessment PARE quiz scores (version 2) indicate significant participant learning gains on multiple-choice questions. Two 

versions of the MC/MS portion (10 items) of the assessment were administered pre- and post-implementation of the PARE curriculum during the fall 2018 

semester. (A) Nine cohorts of student participants (n = 253) at independent institutions. A two-tailed paired t-test indicated significant difference (P < 0.0001) 

between pre- (4.80) and post-quiz (5.49) means. (B) Nine cohorts of student participants (n = 276) at independent institutions. A two-tailed paired t-test indicated 

significant difference (P < 0.0001) between pre- (3.70) and post-quiz (4.65) means. + = mean; box notches = ±1.58*IQR/sqrt(n) and represent the 95% confidence 

interval for each median. Non-overlapping notches give roughly 95% confidence that two medians differ. * = statistical significance (P < 0.0001).
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Assessment of a short-duration CURE

Participating in the PARE core research module leads to learning gains

To determine if a network-based short-duration CURE module can demonstrate 
measurable student learning gains, data collection for version 4 of the assessment 
instrument was ramped up to collect data from a wider array of institutions, course 
types, and course levels, which included 21 unique institutions and yielded a total of 571 
matched pre-/post-records (Table 4; Table S1–S3). The aggregate data set from version 
4 of our assessment instrument showed significant learning gains (Fig. 5; P < 0.0001; 
two-tailed paired t-test). To measure the magnitude of this shift in pre-/post-assessment 
score we calculated Cohen’s d, which indicated a small effect size (d = 0.243). This result 

FIG 4 Matched pre-/post-assessment PARE quiz scores (Version 3) indicate significant participant learning gains on MC/MS/C 

questions. Seven cohorts of student participants (n = 254) at independent institutions completed the assessment instrument. 

A two-tailed paired t-test indicated significant difference (P < 0.02) between pre- (7.33) and post-quiz (7.64) means. + = mean; 

box notches = ±1.58*IQR/sqrt(n) and represent the 95% confidence interval for each median. Non-overlapping notches give 

roughly 95% confidence that two medians differ. The box plot visual was generated using BoxPlotR (Spitzer et al., 2014) (67). 

* = statistical significance (P = 0.02).

TABLE 4 Assessment instrument version 4 item analysis data

LO
Item ID Formata Version Status relative to

previous version
Item difficulty Item discrimination Point-biserial 

correlation
Mean post −
mean pre

1
1.1 C 4 Converted to calc. 0.61 0.58 0.49 −0.03
2.2 C 4 Converted back to calc. 0.52 0.69 0.58 0.03

2
3.2 MC 4 Same as v3 0.44 0.33 0.29 0.06
4.0 MC 4 Same as v1 0.31 0.42 0.38 0.08

3 5.2 MC 4 Same as v3 0.44 0.46 0.35 0.04
4 8.1 MC 4 Same as v2/3 0.56 0.57 0.45 −0.01
5 13.0 MC 4 Same as v2b/3 0.37 0.51 0.43 0.05

6
14.1 MC 4 Same as v3 0.23 0.27 0.27 0.01
18.0 MC 4 Same as v2b 0.3 0.35 0.32 0.04

7
19.0 MC 4 Same as v1 0.46 0.56 0.47 0.06
21.1 MC 4 Same as v3 0.38 0.58 0.48 0.1

8 22.1 MC 4 Same as v3 0.79 0.49 0.47 0.01
aMC = multiple choice; C = calculation; OE = open ended.
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is not surprising considering that the core PARE research module is implemented in 
two laboratory sessions within a range of course types with diverse classroom learning 
objectives.

Mode of administration’s influence on the data set

The pre- and post-assessment instruments were administered consistently within 7 days 
before and after completing the CURE module, respectively, but the mode of adminis­
tration varied as it was left to the instructor’s discretion. Some instructors chose to 
provide structured class time, while others directed student participants to complete 
the survey on their own time. We were interested if the mode of administration 
influenced pre-/post-assessment score differentials. Learning gains were significantly 
higher for assessments completed within a structured environment compared to outside 
of class (Fig. S2, p; P = 0.008, two-tailed t-test). Additionally, we noted that of the 
records that were previously filtered for taking <400 seconds to complete, >76% of 
these filtered records were from participants that took the assessment outside of 
the classroom environment. Asynchronously administered records included the same 
associate degree-granting college that dominated the version 4 data set.

Participation in the PARE core research module leads to conceptual and 
competency-based learning gains

We investigated whether students exhibited learning gains in content knowledge 
(items associated with LOs 1–5) independently of the ability to analyze and interpret 
data (items associated with LOs 6–8). Mean aggregate pre-/post-assessment scores 
for each category exhibited significant learning gains (Fig. 6; P  < 0.0001, small effect 
size, d  = 0.185, and P  < 0.0001 respectively; two-tailed paired t-test;  n  = 571; small 
effect size, d  = 0.216).

FIG 5 Matched aggregated data (version 4) indicate significant learning gains. The black cross bar indicates the aggregate mean. Filled gray boxes indicate 95% 

confidence intervals of the mean. Mean score (5.48 pre; 6.02 post), r = 0.5234, Cohen’s d = 0.243, n = 571. * = statistical significance (P < 0.0001).
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Learning gains are independent of demographic variables

Next, we sought to investigate if student learning gains were independent of contextual 
factors associated with implementation of PARE across diverse classrooms. Learning 
gains were independent of underrepresented minority status (Table 5; generalized linear 
mixed model, P = 0.911, η2 = 0) and first-generation college student status (Table 5; 
P = 0.891, η2 = 0.001). We did detect that learning gains were weakly associated with 
institution classification (Table 5; P = 0.007, η2 = 0.018) and gender identity (Table 5; 
generalized linear mixed model, P = 0.012, η2 = 0.009), although institutional classifica-
tion and gender identity both exhibited relatively small effect size.

DISCUSSION

Leveraging a network for iterative instrument co-design

Network CUREs have been documented for providing a centralized support system to 
bring together diverse intellectual capital across institutional types to drive scientific and 
curriculum structure [e.g., references (21, 22, 45, 46, 50, 52, 68–73)]. Among network 
CUREs, there are examples of specific institutional faculty members developing “in 
house” objective learning gain assessments for use within their own or a few institutions 
(37, 38, 51, 74). Some network CUREs have also used published instruments for objective 
measurement of critical thinking (38) and psychological outcomes associated with 
persistence (40). Furthermore, a few CURE networks have reported objective content 
learning gains across many institutions, although details on the instrument design were 
not reported (29, 44, 50, 52). Engagement of the wider network for collaborative design 
and validation of an assessment instrument has been underutilized. This unexplored 

FIG 6 Significant learning gains are observed with both (A) increased content knowledge and (B) ability to analyze and interpret data-categorized assessment 

questions (filtered for <3,000-second records). Mean score of content knowledge items (3.469 pre; 3.770 post); ability to analyze items (2.012 pre; 2.252 post). * = 

statistical significance (P < 0.0001).

TABLE 5 Generalized linear mixed model statistical analysis summary (n = 568)a

Demographic variableb P-value Bonferroni αc Effect size (η2)d

Institutional classification 0.007 0.0125 0.018 (small)
Gender identity 0.012 0.0125 0.009
Underrepresented minority 0.911 0.0125 0
First-generation college student 0.891 0.0125 0.001
aDependent variable: post-test score; co-variant: pre-test score; random effects: institution name; fixed effect: 
variable being tested.
bInstitutional classification: deleted three records from master’s colleges and compares associate’s colleges, 
baccalaureate colleges, and doctoral universities; gender identity: removed all entries with no gender or 
non-binary; underrepresented minority: excludes Asian; first-generation college student: compares the following 
three categories: both parents attended college, one parent attended college, and neither parent attended 
college.
cAdjusted α (α = 0.05) obtained by dividing α by the four generalized linear mixed model tests performed.
dPartial η2 metric was used for effect size.
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avenue of leveraging the collective CURE network for development and validation of 
an assessment instrument could be especially fruitful for networks with limited grant 
support and resources traditionally used to drive these important efforts. The iterative 
co-design process established here democratizes assessment item development and 
modification, with feedback from faculty representing all stakeholders within the broad 
network. This process provides the means for validation through collection of many data 
points iteratively over time with diverse faculty experts helping craft the assessment 
instrument without the need for external grant support. We are not aware of any other 
published, validated instruments to measure learning gains in a network CURE. The 
development of this instrument not only fills a need within the PARE network, but the 
documented process may also guide other CURE networks to leverage their support 
systems in developing validated knowledge- and skills-based assessments that meet 
their specific learning and program goals.

Challenges of developing an assessment instrument for a broadly implemen­
ted short-duration CURE

It is impractical for faculty running a CURE developed for sole use within their own class 
to validate a learning gains assessment, but for network CUREs, evidence of positive 
outcomes is valuable for other faculty considering adoption or to gain administrative 
support (19). In many cases, having limited resources to put toward developing the 
instrument can also create a barrier. Since student participants in lower-division CUREs 
are heterogeneous, especially in mixed majors courses, it can also be challenging to 
develop an assessment instrument for use across varied implementation contexts. We 
encountered three major obstacles when considering assessment of PARE learning 
gains. First, the core PARE module is short duration, implemented across one or two 
laboratory sessions. This limits the number and depth of assessment items that can be 
created. To address this challenge, we chose to keep the instrument focused on the 
core PARE module learning objectives and limited to a few questions, similar to the 
length of a quiz. Second, our assessment had to measure gains over a diversity of course 
types (e.g., introductory biology, microbiology, genetics) and for participants with varied 
vocational interests (e.g., majors, non-majors, allied health majors) and prior life science 
training (upper division, lower division). For example, in the first version, we observed 
a learning gain ceiling effect for students with a strong foundation in the concepts and 
competencies explored. To address this challenge, we gathered input from faculty on 
their perceived difficulty for the students they teach prior to scaled-up administration 
and used item analysis subsequently to reduce ceiling effects and to ensure a range 
of difficulty level of questions. Third, there is variability in implementation. PARE is 
intentionally flexible and expandable through addition of multiple additional modules, 
so students at different institutions may experience different durations of the PARE 
research experience. To mitigate these differences, we limited the assessment instru­
ment items to the stated learning objectives associated with the core module, and we 
gained feedback from a range of faculty who teach PARE in different contexts to gauge 
their assessment of concept coverage. We did capture information on the number of 
modules implemented for each cohort of respondents, but we did not see any significant 
differences attributable to the quantity of PARE modules completed.

Detection of learning gains in a short-duration CURE

Historically, CURE curricula have been prescribed as semester-long laboratory interven­
tions, and previous studies have pointed toward duration and intensity level of research 
experiences being paramount for such interventions to be impactful (49, 75). Expecta­
tions for student outcomes with such a short-duration CURE such as PARE were minimal, 
since the focus of PARE is on faculty change, not student outcomes. A short, yet 
expandable modular CURE is an attractive pedagogical approach for faculty consider­
ing the transition from a traditional set of teaching laboratory exercises to authentic 
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research (31, 76). Use of expandable CURE modules can facilitate moving past implemen­
tation barriers by providing the flexibility to progressively expand integration of CURE 
modules while optimizing module fit with course goals. However, potential implement­
ing faculty still want to know whether their students will learn concepts integral to 
their course. Aggregate data analyzed independently from the four different iterations 
of the assessment instrument exhibit marginal but statistically significant learning gains 
across diverse classroom contexts. Furthermore, our instrument was designed to assess 
general microbiological principles, not those exclusive to participation in PARE; therefore, 
we expect students may score higher on our pre-instrument than for a CURE-specific 
instrument. Given this, it is notable that students did exhibit learning gains. The diverse 
classroom contexts included implementation in a variety of life science courses (e.g., 
introductory biology, microbiology, genetics), students with varied vocational interests 
(e.g., STEM majors, allied health, non-majors), level of training within the biological 
sciences (lower-division, upper-division courses), and institution type (Table 2). Our 
results provide evidence for faculty interested in transitioning to classroom research that 
students will still learn skills associated with a traditional microbiology laboratory course.

Study limitations

It is worth noting that we observed some variance within the item analysis metrics 
associated with non-altered items (e.g., item discrimination) between versions of the 
instrument. It is plausible that differences in participating student classrooms and 
institutions for different rounds of data collection may have contributed to these results. 
For example, pilot data from instrument versions 3 and 4 had a considerable proportion 
of student participants from a single associate degree-granting college (Table S2). When 
possible, we sought to test assessment items across multiple versions to obtain multiple 
data points to assist with instrument validity and refinement.

Value of learning gain assessment

Faculty may require or desire evidence of particular learning or skills outcomes prior 
to adoption of a new CURE. For example, PARE network faculty value evidence of 
knowledge- and skills-based outcomes over attitudinal evidence. The reasons for this 
are varied, but a prominent reason is that they are useful for demonstrating that a 
CURE meets course requirements including community college transfer agreements 
(19). In addition, learning gain evidence from this study adds to current CURE logic 
models (10, 12) by providing evidence of the utility of a short-term CURE. Specifically, 
this study suggests that increased content knowledge and improved analytical skills 
may be short-term outcomes associated with CUREs. Current outcome models focus 
on semester-long CUREs in advanced majors courses (10, 12); here, we demonstrate 
that a short-duration CURE also supports this portion of the CURE logic model, inde­
pendent of student demographics. PARE represents a short-duration low-cost modular 
CURE, which is easily adaptable at all undergraduate divisional levels, while yielding 
effective knowledge gains. Effectiveness of CUREs, especially at institutions with limited 
resources such as community colleges, may depend on availability of an easily adoptable 
curriculum, use of common tools, and ability for expansion over time. In other words, 
PARE represents what can be a long-term pedagogical CURE project that does not 
require constant curricular change by instructors but still produces novel data and has 
value to the greater scientific community.
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