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Introduction

Mathematical proficiency is a gateway to academic and 
professional success. Mathematical proficiency predicts 
reading achievement more strongly than early reading per-
formance (Duncan et al., 2007; Farran et al., 2006; Lerkkanen 
et al., 2005; Pagani et al., 2010) and is a better predictor of 
later school success than many other academic indicators 
(Duncan et al., 2007; Wright et al., 2020). Relatedly, given 
the increasing relevance of science, technology, engineering, 
and mathematics (STEM) in the globalized economy 
(González Canché, 2017; Pearman, 2019; Rothwell, 2013), 
efforts to strengthen students’ mathematical proficiency lev-
els as early as possible would also affect students’ prospects 
for economic and professional success (Aber et  al., 2013; 
Pearman, 2019).

Mathematical proficiency levels, however, are not homo-
geneously distributed across student populations. Social-
class differences have been consistently documented to 
influence students’ prospects of mathematical performance 
as early as preschool and kindergarten (Case et al., 1999; 

Denton & West, 2002; Starkey et al., 2004). Early compe-
tence in mathematics has also been shown to lead to later 
competence in mathematics, when “children who start ahead 
in mathematics generally stay ahead” (Siegler et al., 2012, p. 
691). Notably, because the effects of mathematical profi-
ciency also lead to success in other academic, economic, and 
professional areas, early success in mathematics leads to 
positive spillovers, where success in mathematics begets 
success in mathematics and in other academic content, thus 
increasing the possibility of subsequent success in life (Aber 
et al., 2013). Spillover effects based on mathematical profi-
ciency (or the lack of thereof) can be negative as well, of 
course, and failure to reach mathematical proficiency in one 
grade may imply a negative vicious cycle in the learning 
process of subsequent mathematical topics (Duncan et  al., 
2007; Siegler et al., 2012; Stevenson & Newman, 1986).

The mechanisms behind the idea that students who start 
behind in mathematical proficiency tend to remain behind 
(Siegler et al., 2012) may be explained by the cumulative 
nature of mathematical knowledge—that is, knowledge 
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gaps in arithmetic foundations pose significant barriers to 
the learning of derivatives and integrals (Fogarty et  al., 
2018). In other words, considering this inherently cumula-
tive nature of mathematical knowledge, the negative spill-
overs of not reaching, or barely reaching, proficiency levels 
in one grade may impose greater challenges in mastering 
mathematical content in subsequent grades (Clotfelter et al., 
2009). From this point of view, the fact that grade-level pro-
ficiency levels may decrease as students advance through 
grades (e.g., see National Assessment of Educational 
Progress [NAEP], 2020, 2022) may in part be explained by 
this cumulative nature but may also be influenced by stu-
dents’ socioeconomic standing (Case et al., 1999; Denton & 
West, 2002; Siegler et al., 2012; Starkey et al., 2004). In this 
respect, although summary indicators of mathematical pro-
ficiency are useful in depicting how mathematical profi-
ciency may decrease across grades (Mervosh & Wu, 2022), 
it remains unclear how these gaps in proficiency levels are 
expected to vary when simultaneously considering the 
impact of poverty indicators of students, schools, and even 
the neighborhoods where those schools are nested or 
located—that is, it remains much less clear in the academic 
literature how students from economically disadvantaged 
backgrounds may fare when they attend schools located in 
high-poverty neighborhoods or how these same students 
may be affected when attending schools located in less eco-
nomically challenged neighborhoods.

Building from research on academic achievement gaps 
(see Clotfelter et  al., 2009; Hanushek & Rivkin, 2006; 
Phillips & Chin, 2004; Reardon & Galindo, 2009), it is clear 
that as early as kindergarten, children’s knowledge and skills 
differ in relation to their families’ socioeconomic indicators 
(Denton & West, 2002; Duncan et al., 2007; Siegler et al., 
2012; Starkey et al., 2004). Although less prevalent in this 
literature, research has also shown an important association 
between achievement gaps and place-based socioeconomic 
disadvantages in the form of neighborhood effects (Considine 
& Zappalà, 2002; Pearman, 2019). Although this literature 
has accounted for students’ nesting within schools by relying 
on multilevel models, so far, methodological constraints 
have not allowed researchers to formally account for multi-
level and spatial or place-based effects on students’ perfor-
mance while also accounting for these students’ own 
socioeconomic well-being. To address this gap in the litera-
ture, this study aims to offer more nuanced estimates of the 
magnitudes of expected proficiency changes in mathematics 
across grade levels by simultaneously considering students’ 
socioeconomic standing as well as their school-level con-
texts and place-based poverty levels.

Considering the impact of socioeconomic contexts in 
mathematical proficiency is relevant because, although the 
achievement-gap literature has consistently found that as 
indicators of poverty in a child’s life increase, their academic 
performance will tend to decline (Considine & Zappalà, 

2002; Pearman, 2019), it remains unclear how low-income 
students attending schools located in wealthier zones per-
form in mathematical proficiency and how these gaps vary 
across grades. Similarly, this study assesses how economi-
cally disadvantaged students’ performances compare to their 
non–economically disadvantaged peers attending low-
income schools. In sum, this study contributes to research on 
mathematical competence by modeling changes in mathe-
matical proficiency across grades while simultaneously con-
sidering students’ own socioeconomic standing and the 
impact of their nested school and neighborhood structures.

To meet the goal of this study, I relied on standardized 
performance records of more than two million test-takers 
(see Table 3) whose individual mathematical proficiency1 
was reported at the grade level (i.e., not individual records 
but records aggregated per grade within 3,484 public 
schools) in Grades 3–8 in the state of New York in the aca-
demic years 2017–2018 (3,335 public schools) and 2018–
2019 (3,372 public schools), for a total of 3,484 public 
schools. This administrative data set was complemented 
with American Community Survey (ACS) indicators and 
TIGER/Line Shapefiles from the U.S. Census Bureau to 
build a completely open-access data set (access to replica-
tion code and data for all models are available at https://
cutt.ly/N4zRstL and in González Canché (2023a)). That 
accounts for students’, schools’, and neighborhoods’ eco-
nomic standing to address the following questions, which 
are captured in the conceptual map in Figure 1:

1.	 What is the expected change in mathematical profi-
ciency levels observed among students in Grades 
3–8? (addressed with Model “Aggregate” in Table 4)

2.	 How do these proficiency levels vary when consider-
ing students’ own levels of economic disadvantage 
(i.e., receiving at least one form of public assistance2) 
while simultaneously considering their school-level 
sociodemographic and economic nesting structures? 
(addressed with Models 2–7 in Table 4)

This differentiation in mathematical performance by eco-
nomically disadvantaged status was possible because the 
administrative records reported by the New York State 
Education Department (NYSED, 2020b) offered disaggre-
gated proficiency levels in mathematics across schools and 
within grades by an indicator capturing whether students 
belonged to the “economically disadvantaged” class—that 
is, by whether students’ families participated in any form of 
public assistance (see Table 1).

3.	 How do performance gaps in mathematical profi-
ciency vary for economically disadvantaged students 
attending schools located in high-poverty neighbor-
hoods, and how do these gaps compare to those real-
ized by their non–economically disadvantaged peers 
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attending schools located in the least economically 
challenged neighborhoods? (addressed with Table 3 
and Models 2–7 in Table 4)

4.	 How do other place-based sociodemographic and 
economic indicators influence the variation of math-
ematical proficiency? (addressed with Models 1–7 in 
Table 4)

To address these questions, this study relied on method-
ological advancements that are yet to be widely implemented 
in education research (see Dong & Harris, 2015; Dong et al., 
2015). The main method of analysis was MSAR models that 
accounted for the nested structure of the data (i.e., grades 
nested within schools, schools nested within regions) while 
also testing for whether spatial dependence was present at 

Figure 1.  Conceptual representation of modeling framework.
^Tests administered at public elementary and middle schools in the state of New York (NYSED, 2020a, 2020b).
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Table 1
Example of Data Structure

ENTITY_CD ASSESSMENT_NAME SUBGROUP_NAME* **PER_PROF

10100010014 MATH3 Economically_Disadvantaged 25
10100010014 MATH4 Economically_Disadvantaged 44
10100010014 MATH5 Economically_Disadvantaged 23
10100010014 MATH5 Not_Economically_Disadvantaged 83
10100010014 MATH3 Not_Economically_Disadvantaged 67
10100010016 MATH4 Not_Economically_Disadvantaged 72
10100010016 MATH5 Economically_Disadvantaged 15
10100010016 MATH3 Economically_Disadvantaged 38
10100010016 MATH4 Economically_Disadvantaged 9
10100010016 MATH3 Not_Economically_Disadvantaged 47
10100010016 MATH4 Not_Economically_Disadvantaged 54
10100010018 MATH5 Not_Economically_Disadvantaged 39
10100010018 MATH5 Economically_Disadvantaged 20
10100010018 MATH3 Economically_Disadvantaged 13
10100010018 MATH4 Economically_Disadvantaged 19
10100010018 MATH3 Not_Economically_Disadvantaged 25
10100010018 MATH4 Not_Economically_Disadvantaged 27
10100010019 MATH5 Not_Economically_Disadvantaged 25
10100010019 MATH5 Economically_Disadvantaged 3
10100010014 MATH3 Economically_Disadvantaged 21

*As reported by NYSED (2020b).
**Outcome of interest. Data retrieved from NYSED (2020b).

the school and region levels and, if so, controlling for those 
sources of variation. The results indicate that mathematical 
performance is spatially dependent across schools and 
neighborhoods. Accordingly, moving forward, applied 
researchers should consider relying on MSAR to account for 
sources of spatially driven bias that cannot be handled with 
multilevel models alone. From this perspective, the distribu-
tion of the replication code and data set with this submission 
is of particular importance for researchers who may want to 
have access to a fully reproducible example.

The remainder of the paper is organized as follows. It 
starts with a review of the literature, including the most 
prevalent strategies that researchers have employed to esti-
mate the variation of mathematical proficiency, considering 
individual-level attributes, such as ethnicity and socioeco-
nomic status, as well as school and neighborhood effects. It 
then discusses the conceptual lenses guiding the variable 
selection as well as indicating hypothetical relationships 
expected to be observed when considering the literature 
reviewed and the conceptual framework. Subsequently, the 
data and methods sections formally discuss MSAR and the 
relevance of relying on machine learning methods to select 
predictor and control indicators that remain relevant in the 
explanation of the main outcome of interest (i.e., mathemati-
cal proficiency). This feature or variable selection is particu-
larly important when dealing with place-based indicators 

that, as described in the conceptual framework section, may 
be highly correlated. Then, findings are presented, and the 
paper closes with implications, limitations, and further areas 
of inquiry that, although important, go beyond the scope of 
this study (for example, measuring the impact of the COVID-
19 pandemic on the academic performance of economically 
disadvantaged students).

Literature Review

Studies on academic achievement gaps in elementary and 
middle school education have followed two major trends. The 
first has focused on studying ethnic and racial gaps to see 
whether performance gaps have narrowed or expanded among 
students belonging to different racial/ethnic groups within 
grades, typically using White students’ academic performance 
as the reference or comparison group to measure achievement 
gaps (Clotfelter et al., 2009; Hanushek & Rivkin, 2006; Phillips 
& Chin, 2004; Reardon & Galindo, 2009). For example, 
Hanushek and Rivkin (2006) showed that the achievement gap 
in Grade 1 between Black and White students was 12.3 points, 
favoring the latter. They then indicated that by Grade 3, this 
performance gap between Black and White students had 
increased to 18 points (Hanushek and Rivkin, 2006, p. 10). 
Similarly, using departures from White students’ performance, 
Clotfelter et  al. (2009) showed that Black-White disparities 
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were the largest among all racial group comparisons in their 
analytic sample (i.e., comparing White students’ performance 
with Hispanic, Asian, and American Indian students’ perfor-
mance). They also showed that in Grade 3, “more than a quar-
ter of [B]lack [students] tested below the 10th percentile of the 
White distribution” (Clotfelter et al., 2009, p. 408). This result 
was also observed when using eighth graders’ scores. A consis-
tent modeling strategy employed in these studies is that perfor-
mance gaps have been measured within grades and between 
groups.

The second major trend in the achievement gap literature 
consists of analyzing the association between achievement 
and socioeconomic disadvantage (Considine & Zappalà, 
2002; Pearman, 2019). Indicators of economic distress have 
been measured at individual students’ family levels as well 
as at school and neighborhood levels, with results consis-
tently corroborating the negative association between eco-
nomic disadvantage and academic achievement (Carlson & 
Cowen, 2015; Pearman, 2019). More to the point, studies 
have consistently shown that achievement gaps have been 
present as early as kindergarten (Case et al., 1999; Denton & 
West, 2002; Starkey et al., 2004), wherein children who start 
behind remain behind (Duncan et  al., 2007; Siegler et  al., 
2012; Stevenson & Newman, 1986).

With respect to neighborhood and school effects, authors 
have analyzed these effects on students by standardizing stu-
dents’ performance across grades—like our data set analyzed 
herein. For example, Carlson and Cowen (2015) used data 
from all students attending the Milwaukee Public Schools 
between 2006–2007 and 2010–2011 who participated in the 
Wisconsin Knowledge and Concepts Examination. Then 
they estimated school and neighborhood contributions to 
1-year gains in student test scores for elementary and middle 
school without considering performances within students’ 
grades, as described above. More recently, Pearman (2019) 
estimated the effects of neighborhood poverty across chil-
dren up to age 12. Specifically, Pearman tested the hypothesis 
that exposure to high-poverty neighborhoods influenced stu-
dents’ mathematical proficiency over and above their indi-
vidual and school characteristics. Although Pearman did not 
formally rely on spatial econometric models, this author did 
present sensitivity tests that were robust to unobserved resid-
ual confounding. This remarkable contribution informed this 
study’s goal of formally measuring and controlling for spatial 
dependence while also measuring how heightened poverty 
indicators may interact with students’ and schools’ sociode-
mographic and socioeconomic indicators. Having said this, 
note that in this neighborhood and school effects line of 
research, the goal has been to measure the overarching effect 
of poverty on academic performance rather than to measure 
the effect of poverty on mathematical proficiency changes 
across groups and grade levels, as conducted in this study.

Together, the literature review indicates that studies have yet 
to estimate the effect of poverty on mathematical performance 

across grades by moving beyond purely descriptive estimates, 
as provided by the NAEP (2020, 2022), where, as of 2018–
2019, the gaps between Grades 4–8 reached 7 percentage points 
nationwide. In the case of New York State, this observed gap 
was 3 percentage points (NAEP, 2020). Moreover, studies have 
not yet formally tested for spatial dependence or an autocorrela-
tion effect that may affect the outcome of interest while simul-
taneously modeling the socioeconomic circumstances of 
students who attend schools nested within neighborhoods with 
differing poverty levels—a modeling approach implemented in 
this study.

School Context and Place-Based Lenses

The literature on school and neighborhood effects clearly 
states that school context influences students’ academic per-
formance (Carlson & Cowen, 2015; Goldstein, 1997; 
González Canché, 2019, 2022, 2023b; Konstantopoulos & 
Borman, 2011) and that living in high-poverty neighbor-
hoods is negatively associated with mathematical achieve-
ment (Anderson et al., 2014; Pearman, 2019), both of which 
pose significant barriers for children’s upward social mobil-
ity (Chetty et al., 2016, 2020). Carlson and Cowen further 
noted that “analyses of neighborhood contributions to aca-
demic achievement that do not account for a student’s 
schooling context may result in biased estimates of neigh-
borhood contributions” (2015, p. 49). Heeding their caution-
ary note, and as indicated in the conceptual map shown in 
Figure 1, this study accounts for school-context indicators 
(e.g., percentages of English language learners, students 
with disabilities, and students receiving free and reduced-
price lunch3), schools’ neighborhood socioeconomic and 
demographic characteristics (e.g., poverty and crime, aca-
demic attainment levels) employed in previous studies (see 
Carlson & Cowen, 2015; González Canché, 2022, 2023b; 
Jargowsky & El Komi, 2011; Pearman, 2019), and measure-
ment of mathematics proficiency levels conditional on test-
takers’ economic disadvantage standing.

More specifically, the analytic framework implemented 
in this study pays close attention to measuring how schools’ 
neighborhood poverty levels may affect students’ mathemat-
ical proficiency rates across grades, after considering stu-
dents’ own socioeconomic standing and the nesting structures 
at the school and neighborhood levels (see Figure 1). This 
emphasis on neighborhood poverty is important because, as 
Pearman (2019) stated, regardless of whether children them-
selves live in low-income families, when these students live 
in high-poverty neighbors or attend schools located in high-
poverty zones, they may increasingly find themselves sur-
rounded by poverty. That is, students walking in those streets 
may observe homelessness, crime, and unemployment first-
hand, even if in their homes poverty is not necessarily pres-
ent (González Canché, 2022, 2023b). Pearman validated this 
statement by showing that 30% of all children, regardless of 
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their own poverty status, live in neighborhoods with poverty 
rates greater than 20%. In the state of New York, the pan-
orama depicted by Pearman is grimmer: Internal Revenue 
Service (IRS, 2020) data show that 77% of all students 
included in this study attended schools where 20% of the 
households lived at least $7,500 below the state’s poverty 
line.4 Students attending schools located in high-poverty 
areas, however, are not randomly distributed; instead, their 
attendance is explained by their families’ socioeconomic 
standing (González Canché, 2023b). That is, whereas 89% 
of students classified as economically disadvantaged5 attend 
schools within neighborhoods that have poverty levels of at 
least 20%, their non–economically disadvantaged peers are 
about 30 percentage points less likely to attend these types of 
schools (61.6%). Considering these statistics, I was com-
pelled to rely on spatially driven conceptual frameworks to 
inform this study’s variable selection and methods.

Conceptual Lenses: Neighborhood Effects and the 
Geography of Disadvantage

Given the relevance of place and space for this study, let 
us formally describe the notions of concentrated disadvan-
tage (Elijah, 1990; González Canché, 2022, 2023b; Jargowsky 
& Tursi, 2015) and geography of opportunity (Pastor, 2001; 
Tate, 2008) or disadvantage (Pacione, 1997). Attending 
schools located in high-poverty areas may influence students’ 
academic achievement not only because of the systematic 
heightened exposure to crime, housing instability, and vul-
nerable family composition typically associated with poverty 
levels (Carlson & Cowen, 2015; Jargowsky & El Komi, 
2011; Pearman, 2019) but also because of academic achieve-
ment’s relationship with school contextual indicators, such as 
teacher retention and overall school socioeconomic and 
demographic composition.

The notions of concentrated disadvantage and geography of 
disopportunity or disadvantage indicate that students’ common 
exposure to spatially contextualized situations shapes their 
opportunities for upward social mobility (Chetty et al., 2016, 
2020; González Canché, 2022, 2023b) by comprehensively 
affecting their cultural, racial, and socioeconomic identities 
(Rosen, 1985). Growing up in lower income neighborhoods 
where the vast majority of individuals do not finish high school 
or enter college translates into reduced opportunities to learn 
about careers that require college education, which may not 
only shape students’ aspirations but also affect their employ-
ment prospects, salary levels, and exposure to crime and incar-
ceration rates (Chetty et  al., 2020; González Canché, 2022, 
2023b; Iriti et  al., 2018). Furthermore, even when students 
growing up in these types of neighborhoods observe a few 
individuals with some college or college degrees, they may 
form a belief that exposure to college does not help overcome 
difficulties in finding employment or increasing earnings 
(Rosen, 1985; Weicher, 1979), which may reinforce their 

negative views about the long-term benefits associated with a 
college education (Iriti et al., 2018). On the other hand, grow-
ing up in more affluent neighborhoods, either since birth or 
after living in high-poverty housing at younger ages, has been 
found to causally affect individuals’ prospects of upward 
income mobility (Chetty et al., 2016, 2020). For individuals 
experiencing life in more affluent neighborhoods, obtaining 
college degrees and securing employment are typically nor-
malized, which translates into greater certainty about rates of 
return associated with investing in education and the expecta-
tion of success derived from college attendance (González 
Canché, 2022, 2023b). This certainty is obtained not only at 
home but also through community networks and resources 
(Iriti et al., 2018).

These social and cultural dynamics help explain why stu-
dents in wealthier neighborhoods tend to realize higher profi-
ciency rates (Pearman, 2019). These dynamics also highlight 
the need to control for these differences in observed and unob-
served factors that may influence mathematical performance 
over and above student and school-based indicators. From this 
perspective, the nesting of schools within neighborhoods and 
grades within schools, along with the inclusion of indicators 
measured at all these levels, is an important requirement to 
offer estimates that, as comprehensively as possible, may cap-
ture the influence of multilevel and spatially contextualized 
factors affecting changes in mathematical proficiency across 
grades. Moreover, and to obtain a more comprehensive depic-
tion of outcome variation, the models used in this study pur-
posefully highlighted students’ economic disadvantaged 
status in addition to their schools’ contextual indicators and 
place-based poverty levels.

Hypothesized Relationships

As seen in the research questions and the conceptual 
model in Figure 1, neither offers a clear directionality of the 
signs of the relationships to be estimated. Nonetheless, based 
on the literature review (see Clotfelter et al., 2009; Hanushek 
& Rivkin, 2006; NAEP, 2020; Phillips & Chin, 2004; 
Reardon & Galindo, 2009) and conceptual frameworks on 
the association between achievement and socioeconomic 
disadvantage, including neighborhood and school effects 
(Considine & Zappalà, 2002; Pearman, 2019), I am better 
positioned to hypothesize expected variations of the esti-
mates of interest.

First, considering that mathematical proficiency is highly 
dependent on previous knowledge and skills, I hypothesize 
that as students advance throughout their elementary school 
years, these proficiency rates may decrease. Although this 
direction has been shown in aggregated reports, such as those 
offered by the NAEP (2020), such reports have not accounted 
for students’ or schools’ and neighborhoods’ exposures to dif-
fering poverty levels. Similarly, considering the persistent gaps 
in proficiency by socioeconomic status, students experiencing 
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economic disadvantages may be less proficient in mathematics 
at earlier grades than their non–economically disadvantaged 
peers, and these proficiency gaps across advantaged and disad-
vantaged groups may grow over time at disparate levels, with 
economically disadvantaged students likely experiencing 
greater losses in mathematical proficiency levels compared to 
their non–economically disadvantaged peers. Finally, based on 
nesting effects from multilevel and spatial frameworks, school-
level sociodemographic and economic indicators as well as the 
poverty level of the location where a school resides may fur-
ther influence the observed mathematics proficiency rates. 
Highest poverty areas may experience the greatest proficiency 
drops, but non–economically disadvantaged students may be 
somehow protected from experiencing these drops at similar 
rates as their economically disadvantaged peers. The multi-
level and spatial nature of the data sources to be modeled 
required the implementation of an analytic approach designed 
to account for these nesting structures, as discussed next.

Data and Methods6

The literature on students, schools, and neighborhood 
effects (Chetty et al., 2014, 2016, 2020; González Canché, 
2022, 2023b) and the application of the concentrated disad-
vantage and geography of disadvantage frameworks (Elijah, 
1990; Jargowsky & Tursi, 2015; Pastor, 2001; Tate, 2008; 
Weicher, 1979) informed the data selection process and the 
methodological approach employed in this study. All indica-
tors shown in Table 2 were retrieved from data officially 
released by the NYSED, the IRS, the ACS, the Federal 
Bureau of Investigation (FBI), and the U.S. Department of 
Agriculture Economic Research Service (USDA ERS), as 
described next.

As shown in Figure 1, a contribution of this study con-
sists of simultaneously accounting for the impact of schools 
and schools’ locations on the variation of mathematical pro-
ficiency at the grade level, after accounting for schools’ and 
neighborhoods’ nesting and spatial interactions at both lev-
els while considering grade performances being nested 
within schools—that is, the analyses controlled for schools’ 
outcome dependence with other nearby schools (see Moran’s 
I School estimate in Table 3) and neighborhoods’ outcome 
dependence with other neighborhoods (see Moran’s I Region 
estimate in Table 4) in addition to measuring grade perfor-
mance dependence given grades’ within schools nesting. 
These different levels required that the feature or variable 
selection captured sociodemographic and economic indica-
tors measured at grade, school, and place levels—that is, 
resulting in a data set configured by indicators measured at 
different levels and nesting structures. With respect to the 
influence of location, to account for immediate as well as 
more contextual place-based indicators, the data set included 
zip code (more immediate) and county-level (more contex-
tual) indicators. In both cases, these indicators were matched 
to schools’ zip codes via crosswalking feature engineered 

procedures (see González Canché, 2023b). This crosswalk-
ing was based on data made available by the U.S. Department 
of Housing and Urban Development (HUD)7 in its U.S. 
Postal Service ZIP Code Crosswalk Files.

For clarity, the next description presents these indicators 
as measured at these different grade, school, and place-based 
levels.

Outcome

All grades’ (N = 38,101) and schools’ (N = 3,484) data 
across 2 academic years (2017–2018, 2018–2019), repre-
senting 2.09 million test-takers,8 were retrieved from the 
NYSED (2020b). The main outcome, mathematical profi-
ciency,9 was measured as the proportion of tested students 
scoring at levels 3 and 4 (on a 4-level scale) in the P–12 
Common Core Learning Standards tests administered at 
public elementary and middle schools in the state of New 
York (NYSED, 2020b). Following the Definitions of 
Performance Levels (NYSED, 2020a), students in levels 1 
and 2 were below proficient standards for their grade. 
Students in level 1 demonstrated limited knowledge, skills, 
and practices. Although their peers in level 2 were partially 
proficient in standards for their grade, this proficiency level 
was insufficient for the expectations at this grade (NYSED, 
2020a). Students in level 3 were proficient in standards for 
their grade and met the expectations for this grade. Finally, 
students in level 4 exceled in standards, and their proficiency 
level was considered more than sufficient for the expecta-
tions for their grade level.

Table 1 shows an example of the data structure provided 
by the NYSED (2020b). This table shows 20 instances of 
proficiency rates reported by students’ socioeconomic disad-
vantage statuses and across grade levels within schools. 
These data were added to school and place-level indicators, 
as described next.

School-Level Indicators

Similar to previous literature (i.e., Case et al., 1999; 
Denton & West, 2002; Pearman, 2019; Starkey et al., 2004), 
the models accounted for sociodemographic indicators that 
may have been associated with the variation of mathematical 
performance, such as the percentage of students at the school 
level participating in free and reduced-price lunch programs 
and annual attendance rates (the school’s total actual atten-
dance divided by the sum of the number of students in atten-
dance on each day) for a school year. The models also 
controlled for the percentage of students classified as English 
language learners who required support to become profi-
cient in English. In addition, the models included gender 
(female and male [reference or comparison group]), ethnic-
ity of students (American Indian or Alaska native, Asian, 
Black, Hispanic, White [reference or comparison group], 
and multiracial), percentage of students with disabilities,10 
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Table 3
Summary Statistics Data Years 2017–2018 and 2018–2019

Total (3,484 
schools)

Lowest pov. tertile 
(1,200 schools)

Mid pov. tertile (1,070 
schools)

Highest pov. tertile 
(1,214 schools) p value

Outcomes: Mean (SD)
math proficiency all grades 46.91 (24.61) 53.68 (23.51) 43.94 (23.08) 43.22 (25.72) <0.001
math3 g Not Econ Dis_g 66.17 (19.92) 72.27 (15.95) 64.42 (18.30) 60.96 (23.56) <0.001
math3 g Econ Dis_g 46.53 (21.05) 48.95 (20.57) 43.91 (19.77) 46.62 (22.47) <0.001
Continuous or numeric features: Mean (SD)
pct students not tested g 16.79 (20.33) 26.37 (23.66) 17.02 (18.75) 7.27 (12.31) <0.001
pct Economically Disadvantaged 

s*
57.91 (24.77) 35.01 (19.98) 58.63 (16.44) 79.41 (13.54) <0.001

attendance rate s 94.53 (2.27) 95.42 (1.54) 94.59 (1.78) 93.62 (2.87) <0.001
pct teacher turnover s 2.59 (9.62) 0.69 (5.26) 1.66 (8.10) 5.34 (13.02) <0.001
pct teacher turnover 5 years s 2.58 (9.84) 0.66 (5.00) 1.60 (8.00) 5.42 (13.65) <0.001
pct ELL s 7.83 (10.07) 4.79 (5.85) 4.92 (8.05) 13.59 (12.32) <0.001
pct Native American s 0.69 (3.03) 0.22 (1.43) 0.63 (2.07) 1.21 (4.52) <0.001
pct Black s 17.03 (23.60) 8.42 (12.97) 14.62 (24.46) 27.71 (26.51) <0.001
pct Hispanic s 24.01 (23.83) 18.53 (15.92) 14.98 (18.88) 38.10 (27.77) <0.001
pct Asian s 7.83 (13.40) 8.52 (11.50) 4.97 (10.62) 9.95 (16.67) <0.001
pct White s 47.53 (36.13) 60.83 (26.06) 61.61 (35.59) 20.97 (29.68) <0.001
pct Multi Ethnicity s 2.84 (2.97) 3.42 (2.36) 3.13 (3.09) 2.00 (3.19) <0.001
pct Women s 49.07 (4.90) 48.88 (3.37) 48.97 (3.53) 49.34 (6.88) <0.001
pct with Disabilities s 17.50 (6.47) 16.08 (6.30) 16.87 (5.66) 19.50 (6.88) <0.001
pct free-reduced lunch s 54.57 (24.91) 31.79 (20.07) 55.32 (16.60) 75.93 (14.38) <0.001
pct suspensions s 2.91 (4.71) 1.58 (2.86) 3.31 (4.61) 3.82 (5.83) <0.001
Gini z 0.45 (0.06) 0.43 (0.06) 0.43 (0.05) 0.47 (0.05) <0.001
pct EITC recipients z 34.94 (12.59) 22.82 (6.99) 33.65 (6.91) 47.95 (7.68) <0.001
pct mother only household z 28.25 (16.88) 15.99 (7.74) 26.33 (12.09) 42.01 (17.31) <0.001
pct crime z 3.27 (1.50) 2.91 (1.34) 3.72 (1.13) 3.18 (1.82) <0.001
pct children in poverty 5–17 c 17.84 (7.61) 13.85 (5.99) 17.27 (5.78) 22.25 (8.23) <0.001
death rate c 8.50 (1.53) 8.41 (1.13) 9.11 (1.64) 7.99 (1.56) <0.001
net migration rate c –5.95 (5.85) –3.49 (4.34) –5.28 (5.87) –8.98 (5.80) <0.001
pct High school or less c 40.53 (8.02) 35.71 (5.84) 42.86 (6.56) 42.95 (8.99) <0.001
pct unemployment c 4.27 (0.67) 3.92 (0.38) 4.43 (0.65) 4.46 (0.77) <0.001
Median household income c 1.33 (29.70) 20.71 (30.00) –7.91 (22.97) –8.49 (25.78) <0.001
pct taxpayers below poverty line z 0.36 (0.09) 0.26 (0.04) 0.35 (0.02) 0.46 (0.06) <0.001
mean number of students grade g 54.87 (56.86) 62.16 (62.12) 47.49 (43.71) 54.96 (61.70) <0.001
Categorical features: n (%)
math3 g** 8,019 (21%) 2,825 (22%) 2,647 (21%) 2,547 (20%) <0.001
math4 g** 7,864 (21%) 2,745 (22%) 2,618 (21%) 2,501 (19%) <0.001
math5 g** 7,589 (20%) 2,599 (21%) 2,443 (19%) 2,547 (20%) 0.027
math6 g** 5,504 (14%) 1,730 (14%) 1,800 (14%) 1,974 (15%) 0.003
math7 g** 4,928 (13%) 1,483 (12%) 1,619 (13%) 1,826 (14%) <0.001
math8 g** 4,197 (11%) 1,181 (9.4%) 1,454 (12%) 1,562 (12%) <0.001
Not Econ Disadvantaged*** 904,451 (43%) 521,139 (67%) 241,209 (40%) 142,103 (20%) 0.035
Large cities s 1,579 (4.1%) 303 (2.4%) 271 (2.2%) 1,005 (7.8%) <0.001
High-Need Urban or Suburban s 2,866 (7.5%) 278 (2.2%) 1,155 (9.2%) 1,433 (11%) <0.001
NYC public s 11,289 (30%) 2,330 (19%) 2,381 (19%) 6,578 (51%) <0.001
High-Need Rural s 3,630 (9.5%) 89 (0.7%) 2,250 (18%) 1,291 (10.0%) <0.001
Average Need s 11,832 (31%) 5,749 (46%) 5,600 (45%) 483 (3.7%) <0.001

 (continued)
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Total (3,484 
schools)

Lowest pov. tertile 
(1,200 schools)

Mid pov. tertile (1,070 
schools)

Highest pov. tertile 
(1,214 schools) p value

Low Need s 3,843 (10%) 3,544 (28%) 299 (2.4%) 0 (0%) <0.001
Charter School s 3,054 (8.0%) 270 (2.1%) 625 (5.0%) 2,159 (17%) <0.001
Academic year 2018–2019_s**** 18,832 (49%) 6,231 (50%) 6,255 (50%) 6,346 (49%) 0.4
N of grades (g) 38,101 12,563 (33%) 12,581 (33%) 12,957 (34%)  
Total no. of students 2,090,513 780,953 597,501 712,059  

Note. EITC = Earned Income Tax Credit; ELL = English language learner; SD = standard deviation.
*In addition to this school-level indicator, each grade contained proficiency levels disaggregated by students’ economically disadvantaged status.
**Number of grades that were classified in 3, 4, 5, 6, 7, or 8 grades in the analytic sample
***Number of analytic units that were classified as not being economically disadvantaged
****Number of analytic units represented in the academic year 2018–2019

Table 3.  (continued)

and percentage of students suspended (suspensions of 1 full 
day or longer during the school year).

The models also included the average number of students 
per grade, as reported by the NYSED. These mean estimates 
were computed as “number of students registered in a given 
grade in math classes divided by the number of those classes” 
in each of the schools observed in the analytic samples. 
Additionally, an indicator of the percentage of students who 
opted out of testing was included, given its potential impact 
on outcome variation: The lowest poverty schools had the 
highest test opt-out rates (see Table 1). Each school was clas-
sified following the NYSED needs index, which separates 
schools in New York City (NYC) Public Schools (reference 
or comparison group), schools located in Large Cities, 
schools located in High-Need/Resource Urban-Suburban 
Districts, schools located in High-Need/Resource Rural 
Districts, schools belonging to Average-Need Districts, 
schools ascribed to Low-Need Districts, and Charter 
Schools. Finally, the models captured teacher turnover (i.e., 
the percentage of teachers in the prior school year as well as 
in the previous 5 years who did not return to a teaching posi-
tion). In the tables presented, school-level indicators con-
tained the subindexes g if measured at the grade level or s if 
measured at the school level.

Place-Based Indicators

Poverty rates and Earned Income Tax Credit (EITC) indica-
tors were retrieved from the IRS (2020) data measured at the 
zip code tabulated area (ZCTA) level. EITC captures the prev-
alence of low-income taxpayers with children in a given ZCTA 
and has been found to increase college enrollment (Manoli & 
Turner, 2018). This indicator is conceptually relevant for 
parental education and social class and has been shown to 
influence mathematical proficiency (Case, et al., 1999; Denton 
& West, 2002; Starkey et  al., 2004). Other ZCTA-level 

indicators were retrieved from the ACS 5-year (2015–2019) 
data estimates. They included the Gini coefficient of income 
inequality and percentage of single-mother households in a zip 
code as a measure of family composition. Proportion of single-
mother households has been considered an important indicator 
of geography of disopportunity or concentration of disadvan-
tages (Elijah, 1990; González Canché, 2022, 2023b; Jargowsky 
& Tursi, 2015; Pastor, 2001; Tate, 2008). Crime rates were 
gathered from the FBI’s Uniform Crime Reporting Program 
(FBI, 2019), and although they were reported at the county 
level, these measures were crosswalked to the ZCTA level to 
obtain a more localized impact of crimes on schools. All these 
indicators contained the subindex z to represent their ZCTA 
level of measurement.

To expand the place-based contextual scope, the analyses 
also included variables measured at the county level. These 
variables included the percentage of inhabitants ages 5–17 
living in poverty, death rates, and net migration (including 
in- and outmigration). These migration-related indicators 
aimed to account for the potential compositional change of 
students based on their parents’ decisions to move to other 
schools in the pursuit of better academic opportunities; these 
mobility decisions’ potential impact on the study’s estimates 
are discussed in the section titled “Limitations: How Would 
Student Composition and Parents’ Wealth Affect the 
Findings?” within the limitations section. Guided by the 
tenets of geography of opportunity (Pastor, 2001; Tate, 
2008) and neighborhood effects (Chetty et al., 2014, 2020), 
the models included unemployment rates, median household 
income, and percentage of adult inhabitants (25 years and 
older) with up to a high school or equivalent degree. These 
indicators contained the subindex c to ease their identifica-
tion in the models. Finally, given that the data accounted for 
the academic years 2017–2018 and 2018–2019, a binary 
indicator was added to account for time fixed effects, similar 
to the approach used by Dong et al. (2015).
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Table 4
Multilevel SAR Models for Posterior Means of Mathematical Proficiency Rates—Academic Years 2017–2018 and 2018–2019

Not economically disadvantaged Economically disadvantaged

  Aggregate Low pov Mid pov High pov Low pov Mid pov High pov

Intercept –107.190***
(6.007)

–25.097***
(8.954)

–31.888***
(8.815)

–28.646***
(9.217)

–20.739**
(9.263)

–51.300***
(8.706)

–34.542***
(8.558)

math4 g –4.999***
(0.266)

–3.441***
(0.519)

–5.459***
(0.627)

–5.390***
(0.800)

–4.374***
(0.619)

–5.844***
(0.541)

–5.773***
(0.624)

math5 g –9.483***
(0.271)

–6.576***
(0.527)

–10.911***
(0.639)

–11.411***
(0.790)

–7.597***
(0.636)

–10.599***
(0.560)

–10.665***
(0.621)

math6 g –8.735***
(0.307)

–4.212***
(0.669)

–8.101***
(0.710)

–13.050***
(0.877)

–4.838***
(0.787)

–7.790***
(0.639)

–10.992***
(0.682)

math7 g –12.795***
(0.328)

–7.922***
(0.742)

–13.096***
(0.779)

–17.785***
(0.905)

–7.655***
(0.864)

–12.716***
(0.692)

–13.745***
(0.718)

math8 g –20.869***
(0.372)

–26.038***
(0.912)

–26.001***
(0.908)

–21.180***
(1.001)

–18.504***
(0.995)

–18.575***
(0.752)

–15.307***
(0.768)

not Economically Disadvantaged g 17.789***
(0.174)

NA
(NA)

NA
(NA)

NA
(NA)

NA
(NA)

NA
(NA)

NA
(NA)

Academic year 2018–2019_s 1.580***
(0.174)

1.219***
(0.353)

0.778
(0.404)

1.537***
(0.505)

2.156***
(0.426)

1.673***
(0.357)

2.066***
(0.396)

attendance rate s 1.502***
(0.057)

0.763***
(0.106)

0.837***
(0.099)

1.648***
(0.113)

0.572***
(0.114)

0.952***
(0.093)

1.392***
(0.091)

pct teacher turnover s 0.084***
(0.040)

–0.122
(0.156)

–0.076
(0.142)

0.219***
(0.084)

–0.155
(0.180)

0.323***
(0.122)

0.145***
(0.064)

pct teacher turnover 5 years s 0.065
(0.035)

0.345**
(0.163)

0.17
(0.128)

–0.022
(0.068)

0.519***
(0.188)

–0.05
(0.112)

0.031
(0.052)

pct ELL s –0.362***
(0.018)

–0.263***
(0.053)

–0.272***
(0.050)

–0.445***
(0.040)

–0.305***
(0.061)

–0.289***
(0.045)

–0.356***
(0.030)

pct Native American s^ –0.03
(0.038)

–0.011
(0.140)

0.091
(0.114)

–0.1
(0.070)

0.022
(0.164)

0.219**
(0.105)

–0.038
(0.056)

pct Black s^ –0.137***
(0.011)

–0.145***
(0.029)

–0.145***
(0.022)

–0.236***
(0.035)

–0.131***
(0.033)

–0.082***
(0.020)

–0.093***
(0.027)

pct Hispanic s^ –0.042***
(0.012)

–0.006
(0.029)

–0.058*
(0.029)

–0.083***
(0.035)

–0.037
(0.035)

–0.009
(0.025)

0.005
(0.028)

pct Asian s^ 0.219***
(0.014)

0.162***
(0.025)

0.192***
(0.036)

0.153***
(0.042)

0.302***
(0.032)

0.278***
(0.034)

0.319***
(0.033)

pct Multi Ethnicity s^ –0.022
(0.048)

0.123
(0.103)

0.167
(0.090)

–0.097
(0.145)

–0.143
(0.127)

0.01
(0.082)

–0.298***
(0.117)

pct Women s 0.108***
(0.019)

0.009
(0.058)

0.176***
(0.064)

0.061
(0.038)

0.191***
(0.065)

0.154***
(0.053)

0.021
(0.031)

pct Economically Disadvantaged s –0.244***
(0.022)

–0.138***
(0.053)

–0.158***
(0.054)

–0.427***
(0.058)

–0.083
(0.065)

–0.088
(0.048)

–0.434***
(0.048)

pct with Disabilities s –0.376***
(0.020)

–0.331***
(0.042)

–0.425***
(0.049)

–0.389***
(0.055)

–0.303***
(0.049)

–0.450***
(0.040)

–0.501***
(0.043)

Large cities s^^ 5.248***
(0.894)

–2.01
(2.096)

–1.279
(2.174)

11.061***
(1.896)

–5.055***
(2.499)

–0.529
(1.983)

10.366***
(1.577)

High-Need Urban/Suburban s^^ –1.026
(0.828)

–5.781***
(2.101)

–5.600***
(1.728)

4.910***
(1.832)

–4.095
(2.462)

–5.655***
(1.607)

4.328***
(1.577)

High-Need Rural s^^ –4.829***
(0.878)

–2.732
(3.062)

–7.376***
(1.734)

–3.66
(2.418)

–6.171
(3.500)

–7.924***
(1.586)

–2.891
(1.979)

Average Need s^^ –4.440***
(0.761)

–4.404***
(1.409)

–6.086***
(1.705)

–3.871
(2.460)

–10.057***
(1.686)

–7.425***
(1.558)

–4.608***
(2.007)

Low Need s^^ –6.101***
(0.857)

–6.120***
(1.399)

–5.160***
(2.254)

0.004
(9.933)

–11.138***
(1.660)

–7.338***
(2.073)

–0.096
(9.956)

Charter School s^^ 9.106***
(0.902)

1.839
(3.048)

10.040***
(2.469)

8.737***
(1.916)

5.197
(3.360)

6.001***
(2.073)

10.548***
(1.556)

pct free-reduced lunch s 0.146***
(0.021)

–0.001
(0.053)

0.025
(0.053)

0.233***
(0.047)

–0.034***
(0.063)

0.026
(0.047)

0.221***
(0.039)

pct suspensions s –0.136***
(0.026)

–0.394***
(0.118)

–0.07
(0.065)

–0.240***
(0.064)

0.031
(0.092)

–0.009
(0.051)

–0.189***
(0.050)

mean number of students grade g 0.028***
(0.001)

0.016***
(0.003)

0.019***
(0.007)

0.017
(0.014)

–0.012
(0.007)

–0.013***
(0.004)

–0.004
(0.003)

Gini z –0.189
(3.264)

11.829***
(4.868)

7.107
(4.968)

–14.414
(7.985)

–1.619***
(5.230)

–6.648
(4.599)

–12.941
(7.469)

 (continued)
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Not economically disadvantaged Economically disadvantaged

  Aggregate Low pov Mid pov High pov Low pov Mid pov High pov

pct EITC recipients z 0.013
(0.027)

–0.019
(0.058)

–0.045
(0.057)

–0.191**
(0.088)

–0.095
(0.071)

–0.023
(0.051)

–0.195***
(0.078)

pct mother only household z –0.011
(0.016)

0.009
(0.041)

–0.009
(0.026)

–0.009
(0.039)

–0.08
(0.052)

–0.045
(0.023)

–0.01
(0.035)

pct crime z –0.086
(0.173)

0.187
(0.374)

0.294
(0.308)

–0.09
(0.335)

0.211
(0.429)

0.001
(0.287)

–0.185
(0.306)

pct children in poverty 5–17 c 0.407***
(0.051)

0.198**
(0.096)

0.366***
(0.096)

0.742***
(0.146)

0.076
(0.109)

0.251***
(0.087)

0.552***
(0.137)

death rate c –0.523***
(0.199)

0.363
(0.444)

0.012
(0.277)

–4.157***
(0.691)

–0.113
(0.521)

–0.168
(0.259)

–3.344***
(0.618)

net migration rate c –0.033
(0.051)

–0.197
(0.108)

–0.046
(0.071)

0.397***
(0.166)

–0.044
(0.125)

–0.06
(0.067)

0.294
(0.151)

pct High school or less c 0.022
(0.040)

–0.102
(0.086)

–0.108
(0.063)

0.012
(0.118)

–0.097
(0.101)

0.013
(0.057)

0.015
(0.106)

pct unemployment c 0.053
(0.495)

1.671
(1.234)

1.415
(0.720)

–3.161***
(1.325)

3.303***
(1.437)

0.382
(0.657)

–0.627
(1.215)

Median household income c 0.114***
(0.014)

0.108***
(0.026)

0.168***
(0.029)

0.036
(0.052)

0.092***
(0.028)

0.089***
(0.025)

0.035
(0.048)

pct students not tested g –0.142***
(0.007)

–0.165***
(0.013)

–0.157***
(0.015)

–0.209***
(0.025)

–0.069***
(0.015)

–0.051***
(0.013)

–0.121***
(0.021)

Pseudo R2 0.535 0.504 0.435 0.459 0.388 0.453 0.568

Lambda M 16.492***
(1.288)

11.558***
(1.878)

7.887***
(1.981)

22.405***
(5.002)

14.997***
(2.820)

7.548***
(1.675)

22.353***
(3.723

Rho W 274.441***
(2.390)

190.652***
(4.0411)

254.348***
(5.138)

395.242***
(9.114)

271.452***
(6.035)

198.199***
(4.125)

248.513***
(6.381)

Moran’s I Regions^^^
Expectation

0.401***
(–0.0009)

0.313***
(–0.002)

0.092*
(0.002)

0.412***
(–0.005)

0.297***
(–0.002)

0.239***
(–0.002)

0.571***
(–0.005)

Moran’s I Schools^^^
Expectation

0.268***
(–0.00002)

0.3626***
(–0.0001)

0.329***
(–0.0001)

0.217***
(–0.0001)

0.371***
(–0.0001)

0.396***
(–0.0001)

0.295***
(–0.0001)

N of schools and grades 38,101 6,357 6,278 6,334 6,206 6,327 6,599

No. of students 2,090,513 521,139 241,587 141,725 259,814 356,828 569,420

  ∆ [38101, 1028] [6357, 396] [6278, 421] [6334, 215] [6206, 386] [6327, 420] [6599, 215]

  M [1028, 1028] [396, 396] [421, 421] [215, 215] [386, 386] [420, 420] [215, 215]

  W [38101, 38101] [6357, 6357] [6278, 6278] [6334, 6334] [6206, 6206] [6327, 6327] [6599, 6599]

Note. EITC = Earned Income Tax Credit; ELL = English language learner; MSAR = multilevel simultaneous autoregressive; NYC = New York City; SAR = simultaneous 
autoregressive.
^ Comparison group was White students.
^^ Comparison was NYC schools.
^^^ The parameter space for these variables was to be (–1,1), and these tests were conducted independently from MSAR, as can be seen in the replication code.
*p < .05. **p < .01. ***p < .0001.

Table 4.  (continued)

Multilevel Modeling With Spatial Interaction Effects

The data analyzed were multilevel and geographical in 
nature (González Canché, 2022, 2023b). They were multi-
level because students’ outcomes were nested within schools, 
and they were geographical because these schools were 
nested within zip codes and counties. In traditional multi-
level approaches, nested units are assumed to have more 
similar (correlated) outcomes, based on their group depen-
dence (Dong et al., 2015). However, these approaches ignore 
that schools themselves are also located in areas that have 
sociodemographic and economic indicators that may further 
influence the grade- and school-level outcomes—that is, in 
addition to grade- and school-level group dependence, 
schools’ location and/or distance from other schools may 
lead to another form of dependence. This latter dependence 

form is termed place, contextual, or neighborhood effects 
(Dong et al., 2015) and is typically modeled with geospatial 
or geostatistical techniques (Bivand et al., 2013). However, 
before addressing potential spatial dependence, consider a 
typical multilevel model specification, as expressed in equa-
tion (1):

y x x ug s z g s

T

z

T

z g s z→ → →= + + + +, ,β β γ ε0 	 (1),

where the index g s→  is a composite identifier of grade 
IDs ascribed to schools’ IDs, which in this study led to iden-
tifying 38,101 unique combinations of grades and schools 
(see Tables 2 and 3). Further, following Dong et al. (2015), 
g s→  identifies lower level units, and z  identifies higher 
level entities (or zip codes, totaling 1,028 in this study). 
yg s z→ ,  are grade-level outcomes as identified within schools, 
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which can also be conceptualized as being nested in z  zip 
codes. From this perspective, the residuals uz  are captured 
at the zip code level, the residuals εg s z→ ,  correspond to 
lower level residuals, and both are assumed to follow inde-
pendent normal distributions, or N u( , )0 2σ  and N e( , )0 2σ , 
respectively (Dong et al., 2015).

The covariates represented in equation (1) are measured 
at the zip code level11 ( xz ) and at the grade and school levels 
( xg s→ ), and each level has its corresponding coefficient 
estimates. However, this standard multilevel specification 
has not yet incorporated any spatial information, even 
though the outcome at a particular location may be influ-
enced by its surrounding locations, and the intensity of this 
influence is expected to be higher the closer the units are to 
one another (Dong et al., 2015; Tobler, 1970). Whenever this 
dependence was observed, Dong et al. (2015) demonstrated 
that the multilevel models alone rendered estimates that 
were biased due to ignoring the spatial processes influencing 
the outcomes of interest. However, it is possible that spatial 
dependence was not present in the data analyzed, which 
would have nullified the need to rely on spatial analyses to 
obtain unbiased estimates. From this perspective, before 
relying on multilevel spatial models, the presence of spatial 
dependence at the school and the region nesting units should 
be tested. Accordingly, the following presents the steps fol-
lowed to assess the presence of spatial dependence, which 
was corroborated at the g s→  and z  levels (see results in 
Moran’s I School and Moran’s I Region in Table 4).

Assessing Spatial Dependence.  The assessment of spatial 
dependence required the identification of units that were 
located in close spatial proximity (neighboring units). The 
result of this identification process was stored in matrices of 
influence, which captured units based on geographic conti-
guity (i.e., among higher level nesting units that in this study 
were captured by ZCTAs) and proximity (i.e., identified 
among lower level units [schools] that met a given distance-
based threshold, even if they were located in different 
ZCTAs), as shown in Figure 3.

Polygon-Based Neighbors.  Specifically, matrices of 
influence or weight matrices are square matrices where the 
intersection between rows and columns captures the presence 
(typically expressed as 1 when the rows are unstandardized 

or 1

n
, where n is the number of neighbors in row-standard-

ized matrices) or absence (expressed as 0) of vicinity or a 
source of influence. An absence indicates that row y  and 
column z  are not neighbors or do not meet a decision rule 
to be potentially influencing one another. When the units 
of interest are polygons (e.g., states, counties, ZCTAs), the 
decision rule to establish neighbors can be sharing a border, 
touching a point, or both (Bivand et al., 2013). Because the 
higher level units in this case were polygons, ZCTAs that 

surrounded another ZCTA by sharing a border or touching a 
point were defined as neighbors in the matrix M  depicted 
in equation (2), below. This decision rule is referred to as 
the queen’s approach (Bivand et al., 2013), and although it 
requires more computing power, it also enables the identi-
fication and modeling of more information (Lloyd, 2010). 
As shown in Figure 3, all contiguous ZCTAs were neigh-
bors whose influence could be modeled via Moran’s I, as 
described below.

Radius-Based Neighbors.  A second type of neighbor 
identification rule is based on a radius-based distance thresh-
old. Here, units located within such a threshold, regardless 
of their nesting units of ascription (or ZCTA, in this case), 
are defined as neighbors in their corresponding matrix of 
influence. This matrix, referred to as W  in equation (2), 
captured lower level vicinity, wherein schools nested in the 
same or in different ZCTAs were neighbors as long as they 
were located within the previously defined radius-based dis-
tance threshold. Relying on variograms, simulations, and 
related literature (see Dong & Harris, 2015), Dong et  al. 
(2015) proposed different distance thresholds—1.5, 2, and 
2.5 kilometers—consistently showing that 1.5 kilometers 
outperformed the latter two in all their findings. Following 
their recommendation, lower level units (schools) located 
within 1.5 kilometers from one another were considered 
neighbors in this study.12

Figure 3 shows the result of the identification strategies 
employed herein. In those figures, all surrounding ZCTAs 
were neighbors (matrix M ), whereas schools that met the 
distance threshold within and across ZCTAs were identified 
as neighbors as well (see the white lines in the figure), repre-
senting matrix W .

The use of matrices M  and W  is further discussed 
below, in addition to a matrix ∆ that combined M and W to 
capture place fixed effects. The way matrices M and W were 
used to test for spatial dependence is described as follows.

Moran’s I. Mathematically, spatial dependence or auto-
correlation measures the extent to which the outcomes or 
attributes of units located in close physical proximity are 
correlated (Bivand et  al., 2013). Here, spatial dependence 
captured the correlation of an indicator with the average 
neighbor performance in this same indicator (Bivand et al., 
2013). Taking the matrix of ZCTAs M  as an example, the 
measure of spatial dependence can be identified as follows:

I
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	 (2),

where yz  is the zth indicator of interest for a ZCTA z , y−  
is the mean of this same indicator across all units in the sam-
ple, and Mzz ’  is the matrix of influence that identifies units

z
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in close proximity from unitz. As described above, the rule to 
identify the neighbors in the ZCTA data structure was sharing 
a border or touching a given point. With this information, one 
can obtain yz’  or the mean value of neighboring units on the 
indicator of interest. This latter indicator is measured to 
assess the extent to yz  and yz’  are systematically over or 
below the mean. If a unit and its neighbors are below the 
mean, the multiplication of their differences from the overall 

mean [ y y y yz z−


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

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’ ] will be positive. The same is true 

if these differences are consistently above the mean. 
Accordingly, positive Moran’s I values indicate consistent 
neighboring under- or overperformance, therefore capturing 
negative or positive geographical dependence of the out-
comes. Negative values indicate greater performance dispari-
ties than expected under random spatial distribution, and 
values of zero indicate no outcome association or dispersion. 
Finally, Moran’s I is normalized to range from –1 to +1, with 
+1 indicating a perfect spatial autocorrelation, suggesting a 
1-to-1 increase in a given outcome and the average outcomes 
of a unit’s neighbors. Finally, although equation (2) relied on 
the matrix M , the same rationale applies to the matrix W  
discussed above, with the main difference being that the out-
comes account for school mathematical performance to be 
compared to the performance of their neighboring schools 
(i.e., those identified to be located within the distance thresh-
old of 1.5 kilometers, in this case).

To test whether spatial autocorrelation was present in the 
data analyzed, two sets of Moran’s I tests were implemented. 
The first set tested whether nearby schools had more similar 
outcomes (this was achieved by using matrix W ). The sec-
ond set tested whether neighboring ZCTAs had more similar 
outcomes (using matrix M ). The results (contained in Table 
4) consistently corroborated the presence of both forms of 
spatial dependence in mathematical proficiency (Moran’s I 
= 0.401 and 0.268 at the ZCTA and school levels, respec-
tively). Because both cases reached statistical significance 
(p < .001), multilevel models should not only consider nest-
ing but also the spatial context where the nesting occurred 
(Dong et  al., 2015), as nesting and spatial context effects 
may have affected the outcome of interest.

Based on the multilevel and geographical structure of the 
data analyzed, the models presented in this study accounted 
for within and between group correlation (Dong & Harris, 
2015; Dong et al., 2015). These models accounted for resid-
ual dependence in the outcome variable measured within 
schools and among neighboring zip codes through spatial 
simultaneous autoregressive processes. Conceptually, this 
modeling approach represented an important analytic 
advancement for schools, and geographical contexts may 
have simultaneously affected the outcomes of interest even 
after conditioning on higher and lower level covariates. This 
result implies that, in the presence of spatial dependence or 
when autocorrelation is corroborated, in addition to 

controlling for observed indicators measured at the school 
and location levels, spatial analytic techniques should be 
used to account for neighborhood effects. Formally account-
ing for these latter effects is relevant given that the effect of 
location has been found to affect individuals’ outcomes even 
among those with nearly identical personal attributes and 
socioeconomic characteristics but living in different areas 
(Jones & Duncan, 1995).

Multilevel Simultaneous Autoregressive Models.  In the 
multilevel modeling with spatial interaction effects frame-
work, the observed value of a given location is allowed to 
be potentially influenced by the values of surrounding or 
nearby locations at two levels, as captured by the matrices 
of influence W  or M . This simultaneity issue is modeled 
in simultaneous autoregressive (SAR) processes (Dong 
et al., 2015), which enable the modeling of spatial spillovers 
across higher and lower level units.

As discussed, the matrices of influence M  and W  cap-
tured spatial dependence among ZCTAs and among schools 
that met the distance threshold. This MSAR framework also 
required the identification of the unit nesting grade-level out-
comes to account for fixed group effects at the two levels of 
nesting as ( g s z→ , ),  as defined in equation (1). This matrix 
is identified as ∆ in equation (3) and is a block diagonal 
design matrix that is traditionally referred to as an ascription 
matrix in the network analysis literature (Breiger, 1974; 
González Canché, 2019, 2023b). Therefore, ∆  accounted for 
grade ( g ), school ( s ), and neighborhood ( z ) fixed effects 
to capture place-based unobserved heterogeneity within 
ZCTAs and within schools where grade-level outcomes were 
realized.13

These three matrices (M , W , and ∆) had the following 
dimensions: M  was Z Zby , with Z being the number of 
ZCTAs to be included in the models; W  was S Sby , with 
S  referring to the total number of units included in the entire 
network that, in this case, accounted for the number of 
grades g  and schools s  (in the form g s→ ) represented in 
the data set. Finally, ∆ had dimensions S Zby , which 
allowed identification of all grade-level outcomes observed 
within schools (captured by S  or, more formally, g s→ ), 
both of which were located within a given ZCTA. As indi-
cated above, M  and W  were row standardized (i.e., the 
sum of rows added to 1), thus assuming similar simultaneous 
levels of influence or competition among neighbors (Bivand 
et al., 2013). In the case of the block diagonal design matrix 
∆, the intersection between each unit in the rows ( or g s→ ) 
and its corresponding ZCTA of ascription ( z ) captured in 
the columns had a value of 1 when g s→  was located in 
ZCTA z , or a value of 0 otherwise.

With this information, the MSAR model with spatial 
interaction effects is specified as

y Wy X Z M u= + + + + = +ρ β γ θ ε θ λ θ∆ , 	 (3),
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where y  is the indicator of mathematical proficiency 
measured at the grade level, with the main parameter of 
interest being the expected changes in proficiency levels 
across Grades 3–8, after controlling for grade, school, and 
location indicators (see Figure 1). X  is an N  by K  matrix 
denoting covariates measured at the grade and school levels, 
and Z  is a Z  by P  matrix consisting of variables measured 
at the ZCTA level.14 The strength of spatial dependence of 
the outcome of interest at the lower level is captured by ρ  
via W ; ε  captures the lower level residuals (after account-
ing for or modeling spatial dependence at this level). 
Residuals at the ZCTA level that also include lower level 
units’ information are captured by θ  by relying on the block 
diagonal design matrix ∆, representing random contextual 
effects. Following the multilevel framework, θ  is modeled 
with λ  capturing spatial interactions at the ZCTA level, 
given the matrix of influence M  that identifies zip code 
contiguity. The residuals u  are distributed as N u( , )0 2σ ; sim-
ilarly, ε  is also distributed N( , )0 2σe , so that neither the 
higher level nor the lower level units have residuals that are 
spatially dependent. Moreover, u  and ε  are independent.

According to Dong and Harris (2015), if the variances 
associated with u  and ε  reached statistically significant 
levels, these findings further corroborated the need to model 
the variation captured by the matrices M  and W ,  as identi-
fied in equation (3). They went on to state that ignoring these 
forms of dependence could result in underestimated stan-
dard errors for covariance effects. Table 4 corroborates the 
significance levels of u  and ε  across all model identifica-
tions (see Grade school [ g s→ ] variance [ ρW ] and zip 
code variance [z ] [λM ] in Table 4). The data (available at 
González Canché, 2023b) and R code required to replicate 
these models are available at https://cutt.ly/N4zRstL; note 
that the code also allows users to load the data directly when 
executing the procedures.

MSAR was implemented via a Bayesian Markov Chain 
Monte Carlo (BMCMC). This modeling framework draws 
samples sequentially from the conditional posterior distribu-
tions of each model unknown parameter. The inferences are 
based on the posterior distributions of model parameters 
based on three MCMC chains with 10,000 iterations each 
and a burn-in period of 5,000 (Dong & Harris, 2015).15 The 
prior distribution for ρ  in equation (2) is obtained from the 
minimum and maximum eigenvalues of the spatial connec-
tivity matrix W . The model also assumes a uniform prior 
distribution for λ  over 1/(minimum eigenvalue of M ), also 
shown in equation (3). For more details about this imple-
mentation, please see Dong and Harris (2015).

Feature Selection: A Machine Learning Strategy to Deal 
With Place-Based Multicollinearity.  The tenets of geogra-
phy of advantage/disadvantage suggest that the geographical 
indicators selected may be highly correlated—for example, 
zones with high crime are likely to have high poverty levels. 

This correlation, which is typically observed in studies mod-
eling environmental factors (Li et al., 2016), may affect the 
observed variable importance of the predictors. Following 
Li et al. (2016), before model estimation, variable inclusion 
criteria relied on a feature selection algorithm (Kursa & Rud-
nicki, 2010) to detect all nonredundant variables to predict 
mathematical proficiency variation via machine learning. 
This process effectively addressed multicollinearity issues 
by identifying and easing the exclusion of redundant features 
(González Canché, 2022, 2023b). This nonredundant feature 
selection was implemented by using the Boruta function, 
a random forest regression procedure. Boruta is a wrapper 
algorithm that subsets features—the X  s and Z  s depicted 
in equation (3)—and trains a model using them to try to cap-
ture all the relevant indicators with respect to an outcome 
variable.

As depicted by Kursa and Rudnicki (2010), relevance is 
identified when there is a subset of attributes in the data set 
among which a given indicator is not redundant when pre-
dicting the outcome of interest. Procedurally, Boruta dupli-
cates the data set and shuffles the values in each column, 
referring to these shuffled indicators as shadow features. 
Then, a random forest algorithm is used to learn whether the 
actual feature performs better than its randomly generated 
shadow. The Boruta implementation relied on 1,000 itera-
tions; however, the optimal result was consistently found in 
less than 50 iterations, indicating that each attribute had pre-
dictive relevance levels higher than its shadow attributes.16 
The results of this process, shown in Figure 2 (see an inter-
active version at https://cutt.ly/M4WNq7W), indicate that 
all the features discussed in the data section were selected as 
relevant predictors of the percentage of students reaching 
mathematical proficiency. Accordingly, these features were 
included in the multilevel models with spatial interaction 
effects discussed above.17

Findings

Table 3 contains aggregated descriptions of outcomes and 
attributes (under the column labeled “Total”) and disaggre-
gated results by ZCTA poverty-level tertiles.18 The column p 
value tests whether at least one of these tertile distributions 
is significantly different from the other two. Finally, given 
that the main comparison group of interest is Grade 3 out-
comes, the table also shows summary statistics for Grade 3 
students by economically disadvantaged status—that is, it 
presents mathematical proficiency by Grade 3 students clas-
sified as economically disadvantaged and by those not clas-
sified as economically disadvantaged, and, as indicated, all 
these estimates are disaggregated by the poverty tertile of 
the schools these students attended.

For context, before describing mathematical performance 
levels, the prevalence of economic disadvantage in the sam-
ple needs to be discussed. Overall, the indicator called “pct 

https://cutt.ly/N4zRstL
https://cutt.ly/M4WNq7W
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Economically Disadvantaged s” shows that 57.91% of the 
2.09 million test-takers represented in the data were classi-
fied as economically disadvantaged and that 79.41% of these 
economically challenged students also attended schools 
located in the highest poverty zones. More to the point, the 
lower concentration of economically disadvantaged students 
attended schools also located in the lowest poverty areas. 
Both of these findings agree with the notions of geography 
of disopportunity or disadvantage, which state that advan-
tage begets advantage and disadvantage begets disadvantage 
(Elijah, 1990; Jargowsky & Tursi, 2015; Pastor, 2001; Tate, 
2008).

Regarding mathematical proficiency, the average profi-
ciency level across all grades (math proficiency all grades) 
was 46.91% (SD = 24.61); students attending schools in the 
lowest poverty areas attained the highest proficiency levels 
in mathematics (53.68%, SD = 23.51), around 10 percent-
age points higher than those of their peers located in the 
highest and the second-highest tertile classes for poverty 
zones (73.22%, SD = 23.56, and 43.99%, SD = 18.30, 
respectively).

When considering only Grade 3 outcomes, which is use-
ful for baseline comparisons in the MSAR model interpreta-
tions below, non–economically disadvantaged Grade 3 
students attending the lowest poverty zone schools reached 
mean of proficiency rates (72.27%, SD = 15.95) 23.32 per-
centage points above their economically disadvantaged 
peers attending these same schools located in the lowest 
poverty zones (48.95%, SD = 20.57). The performance of 
non–economically disadvantaged Grade 3 students attend-
ing schools located in low poverty areas could be also com-
pared to those of their non–economically disadvantaged 

peers attending schools located in higher poverty zones. In 
this case, non–economically disadvantaged Grade 3 students 
attending schools in mid- and high-poverty areas performed 
about 8 and 12 percentage points below their non–economi-
cally disadvantaged peers.

These same comparisons among economically disadvan-
taged Grade 3 students had lower magnitudes but did not fol-
low the same pattern. Economically disadvantaged Grade 3 
students attending schools in the highest poverty zones per-
formed more similarly than their Grade 3 peers attending 
schools located in the lowest poverty area (46.62%, SD = 
22.47, compared to 48.95%, SD = 20.57). In this case, the 
worst performance was observed among Grade 3 students 
attending schools located in mid-poverty neighborhoods 
(43.91%, SD = 19.77). Although purely descriptive, mathe-
matical performance seems to have been more greatly affected 
by poverty location differences among non–economically dis-
advantaged Grade 3 students (in terms of performance reduc-
tions) compared to the mathematical performance of their 
economically disadvantaged Grade 3 peers.

With respect to other indicators, it should be noted that 
schools located in the highest poverty areas had the lowest 
attendance rates (93.62, SD = 2.87), highest teacher turn-
over rates (5.34%, SD = 13.02), and highest concentration 
of English language learners (13.59%, SD = 12.32) and 
African American (27.7%, SD = 26.51) and Hispanic 
(38.1%, SD = 27.77) students. At least 60% of students 
attending schools located in the lowest and mid-poverty 
zones were White; these students represented about 21% of 
the students attending schools located in the highest poverty 
zones. For comparison, note that although Black and 
Hispanic students only accounted for 17% and 24% of the 

Figure 2.  Feature selection results based on random forest classification. See interactive version here https://cutt.ly/M4WNq7W

https://cutt.ly/M4WNq7W
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Figure 3.  Example of identification of matrices of influence M and W to capture spatial dependence among zip codes and among 
schools that met the distance threshold (1.5 km), respectively. All dots represent a school. In this area of the state (Albany, New York), 
there are some schools without neighbors (dark blue dots) based on the radius-based threshold. Similarly, there are other schools with 
neighbors only within their ZCTA and other schools have neighbors both within and outside their ZCTAs. Interactive map available at 
https://cutt.ly/54Odkyh.

student population, these students accounted for about 28% 
and 38% of all students attending schools in the highest pov-
erty areas, whereas their highest represented White peers 
(accounting for 47.53% of all students) were less represented 
than Black and Hispanic students in these same highest pov-
erty zones (with about 21%).

Also in alignment with geography of disadvantage tenets, 
students participating in free and reduced-price lunch pro-
grams were concentrated in the highest poverty areas 
(75.93%, SD = 14.38). These schools also had the highest 
suspension rates, double those of the lowest poverty schools 
(3.82% vs. 1.58%).

When observing the categorical school-level features 
included in the models, also in Table 3, the needs index 
reported by the NYSED (2020b) shows that 51% of all 
schools located in NYC are also located in the highest pov-
erty areas. The second most represented school type in the 
highest poverty areas is charter schools. Notably, although 
these schools represented only 8% of the analytic sample, 
71% of these charter schools (2,159/3,054) were located in 
the highest poverty zones in our analytic sample. To put 
these descriptive findings into perspective, Figure 3 shows a 
visualization of these structures. This figure shows a charter 
school named Henry Johnson, located in a highest poverty 
zone in Albany, New York, and with 92% of the student 
body classified as economically disadvantaged. Despite this, 

the mathematical proficiency observed in this school was 
53% (i.e., over the average mean performance rate of 
46.91%, SD = 24.61, discussed above). For comparison, the 
figure shows a neighboring school named Pine Hills 
Elementary, located in the lowest poverty tertile and with a 
lower proportion of its student body classified as economi-
cally disadvantaged (72%). In this latter school, only 15% of 
test-takers reached proficiency. In addition to validating the 
accuracy of this study’s identification strategy for MSAR, 
this representation aids with the identification of individual 
cases that may eventually help yield global statements about 
the expected performances when accounting for place-
based, school-level, and students’ economically disadvan-
taged indicators. An interactive version of this visualization 
that includes all schools represented in the analytic sample 
can be accessed at https://cutt.ly/54Odkyh.

This brief discussion now transitions to a description of 
place-based indicators. Congruent with the geography of disad-
vantaged tenets, the Gini coefficient reflected the highest 
income inequality in schools located in the highest poverty 
zones; these schools also reflected the highest participation 
rates in the EITC program, with 48% (SD = 7.68) of inhabit-
ants in these zip codes participating. Additionally, 42% (SD = 
17.3) of households in these zones were classified as led by 
single mothers, which was almost triple this classification in 
zones with the lowest poverty rates (16%, SD = 7.7). Schools 

https://cutt.ly/54Odkyh
https://cutt.ly/54Odkyh
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in the highest poverty zones had the highest concentration of 
inhabitants ages 5–17 living in poverty (22.25%, SD = 8.23) 
and the highest percentage of inhabitants with a high school 
diploma as their highest education level (42.95%, SD = 8.99). 
Similarly, whereas the lowest poverty zones had median income 
levels that were 21% over the state’s median income, the high-
est poverty zones were 8.5% below the median state income.

With this brief description of the features that were found 
to be relevant predictors of outcome variation, it is time to 
discuss the main results of the MSAR models, presented in 
Table 4.

Multilevel Simultaneous Autoregressive Findings

Table 4 contains the results from the MSAR procedures. 
The posterior variances identified with the matrices of influ-
ence M  and W  discussed in equation (1) reached statistical 
significance across all models, corroborating the presence of 
significant variation at the zip code, school, and grade levels 
that needed to be modeled to avoid standard errors that were 
underestimated across the covariates included in the models 
(Dong & Harris, 2015). Moreover, as part of this analysis of 
spatial autocorrelation or dependence at different levels of 
nesting, Table 4 also presents the Moran’s I estimates at the 
ZCTA and at the school levels. All these Moran’s Is consis-
tently reached statistical significance, indicating the pres-
ence of positive autocorrelation of the outcome of interest 
that needed to be modeled via MSAR. Once more, Figure 3 
illustrates all these neighboring matrices of influence, where 
schools located in close proximity, regardless of whether 
they were within the same ZCTA, were considered neigh-
bors (W  matrix), and all contiguous ZCTAs (M  matrix) 
were also considered sources of influence, as discussed in 
the methods section above.

To address the study’s research questions and to provide as 
comprehensive an analysis as possible, in addition to providing 
a model containing all schools and all students (“Aggregate” 
model in Table 4), six more models were estimated conditional 
on the intersection between students’ economic standing (i.e., 
economically disadvantaged and not economically disadvan-
taged) and their schools’ location poverty rates (i.e., low, mid-
dle, and high poverty rates of the ZCTAs where schools were 
physically located), as represented in Figure 1.

In accordance with the hypothetical relations and congru-
ent with previous descriptive results, such as those presented 
by the NAEP (2020), the results corroborate that students 
from higher grades reached lower proficiency rates, with the 
largest gaps found in Grade 8. However, different from pre-
vious analyses on this topic, the results also test for and cor-
roborate disparities by schools’ location poverty levels. That 
is, compared to the mathematical proficiency rates achieved 
in Grade 3, proficiency rates in Grade 4 decreased across all 
groups, yet the smallest magnitude of this decrease hap-
pened among students attending schools located in the low-
est poverty zones. Specifically, Grade 4 students who attend 

schools located in the lowest poverty areas had proficiency 
rates 3.44% (not economically disadvantaged) and 4.37% 
(economically disadvantaged) lower than the proficiency 
rates reached by their Grade 3 counterparts also attending 
schools located in the lowest poverty zones. Proficiency 
gaps in Grade 5 reached magnitudes over 10.6% in the high-
est poverty zones, with 11.41 and 10.67 percentage-point 
decreases among non–economically disadvantaged and eco-
nomically disadvantaged Grade 5 students, respectively. 
These gaps continued to increase among Grade 6 students 
also in the highest poverty schools, reaching gaps of 13.05% 
and 10.99%.

The largest proficiency gaps so far were observed among 
non–economically disadvantaged Grade 7 students attend-
ing schools located in the highest poverty zones. These stu-
dents were 17.79% less proficient than their non–economically 
disadvantaged Grade 3 counterparts attending schools 
located in high-poverty ZCTAs. For economically disadvan-
taged Grade 7 students also attending schools in high-pov-
erty zones, this gap was 13.75%. Nonetheless, note that 
across Grades 4–7, students located in the lowest poverty 
zones realized the smallest proficiency drops. This trend was 
not true for Grade 8 students; in this case, the lowest gaps 
were found among economically disadvantaged and non–
economically disadvantaged students attending the highest 
poverty zone schools, with 15.31% (economically disadvan-
taged) and 21.18% (not economically disadvantaged) reduc-
tions in proficiency rates compared to their Grade 3 
counterparts. Overall, these findings suggest that, after 
accounting for two forms of spatial dependence, school-
level indicators, and students’ own economic disadvantage 
status, there is a geography of mathematical disadvantage, 
wherein students attending lowest poverty areas tend to per-
form better than their peers attending schools in poorer 
zones, even though, as discussed below, these gaps represent 
different mathematical performance gains or drops (i.e., a 
gap of 5 percentage points is only meaningful when consid-
ering baselines of that group; hence the relevance of show-
ing third performance rates by economic disadvantage status 
in Table 3).

In moving to the analyses of school-level indicators, the 
coefficients associated with percentage of ELLs consistently 
showed negative relationships across all models, with greater 
magnitudes realized in schools located in high poverty areas, 
reaching performance drops of at least 0.36 percentage 
points per each percentage point increase in ELL representa-
tion. Another consistently negative indicator was the per-
centage of students with disabilities attending a given school 
s. In this case, the highest coefficient magnitudes were found 
in schools located in the mid-poverty zones for non–eco-
nomically disadvantaged students. In the case of economi-
cally disadvantaged students, this performance drop reached 
a magnitude of 0.5% for each increase in the percentage of 
students with disabilities in a given school.
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With respect to the percentage of students who were not 
tested, results consistently indicated a negative relationship 
with mathematical proficiency. Regarding the racial/ethnic 
composition of the schools, Black students reached lower 
proficiency rates than their White counterparts. In the case 
of Asian students, the coefficients had positive signs, indi-
cating that Asian students consistently reached higher profi-
ciency rates than White students.

The indicator percentage of free and reduced-price lunch 
showed that students attending schools located in the highest 
poverty areas (economically disadvantaged and not economi-
cally disadvantaged) had higher performance rates to the 
extent that a higher proportion of the student body partici-
pated in this program. For example, if all students in these 
highest poverty area schools benefited from this program, the 
mathematical proficiency rates would have been expected to 
increase by at least 22 percentage points, which may serve to 
justify the current nationwide emphasis of making free lunch 
available to all students, regardless of need.19 Another consis-
tently positive indicator was attendance rates, with greater 
magnitudes observed in high-poverty zones for economically 
disadvantaged and non–economically disadvantaged stu-
dents (1.39% and 1.65%).

The school-level indicator of economic disadvantage was 
negative for the outcomes of all non–economically disad-
vantaged students. Notably, this indicator only affected eco-
nomically disadvantaged students attending the schools in 
the highest poverty areas (0.46%)—that is, economically 
disadvantaged peers attending schools in the lowest and sec-
ond lowest poverty zones were not affected by the presence 
of other economically disadvantaged peers attending those 
same schools.

The needs index classification considered schools located 
in NYC as the comparison group. These analyses revealed 
that schools located in other large cities and in high-poverty 
areas performed at least 10 percentage points higher in math-
ematical proficiency than their comparable NYC counter-
parts. Schools classified as average need performed 
statistically significantly worse than NYC schools in all but 
one instance. Non–economically disadvantaged test-takers 
attending average-need schools located in high-poverty areas 
performed statistically similarly to test-takers enrolled in 
these same types of schools but located in NYC. Finally, note 
that test-takers attending charter schools located in middle- 
and high-poverty areas performed better than those in similar 
schools in NYC. Charter school students in low-poverty areas 
performed similarly to their NYC peers, whether economi-
cally disadvantaged or not economically disadvantaged.

With respect to place-based features and despite Moran’s 
I and Boruta feature relevance analyses, note that after this 
comprehensive level of analysis, after accounting for spatial 
interaction effects, few place-based indicators reached sig-
nificant levels. For example, the Gini coefficient was statis-
tically significant only among economically disadvantaged 

and non–economically disadvantaged students enrolled in 
schools located in the lowest poverty zones but with differ-
ent signs. Non–economically disadvantaged test-takers 
attending schools located in low-poverty areas showed 
increases in mathematical performance to the extent that 
more economic disparities were observed in those locations. 
For economically disadvantaged test-takers attending 
schools located in low-poverty areas, this index of economic 
disparities was negatively associated with their mathemati-
cal performance. The EITC indicator reached statistical sig-
nificance levels only in the highest poverty areas for 
economically disadvantaged and non–economically  
disadvantaged students, and this coefficient was consistently 
negatively associated with mathematical proficiency.

At the county level, the estimate of median household 
income was positively associated with mathematical profi-
ciency in all but the models accounting for schools located in 
high-poverty areas, and these findings were consistent for 
economically disadvantaged and non–economically disad-
vantaged test-takers. The death rate indicator, also measured 
at the county level, was negative and significant only for 
economically disadvantaged and non–economically disad-
vantaged students attending schools located in the highest 
poverty zones. Note that death rates are not necessarily 
crime- or violence-related but may capture systematic expo-
sure to lower levels of access to health care services, infra-
structure, and use (Baltrus et  al., 2019) in different zones 
within the state. A counterintuitive finding was that the per-
centage of inhabitants ages 5–17 living in poverty in a given 
county had positive mathematical proficiency coefficients 
that reached statistically significant levels in five of the dis-
aggregated models. In looking at these impacts, note that the 
highest positive effects were observed among test-takers 
attending schools located in the highest poverty areas. This 
result may indicate that such schools may potentially be (a) 
receiving more services; (b) more likely to be charter 
schools, which, as shown in the descriptive statistics, tended 
to be located in high-poverty zones; or (c) a combination of 
points (a) and (b).

Robustness and Sensitivity Checks

As indicated above, the data set analyzed accounts for the 
2017–2018 and 2018–2019 academic years. However, all mod-
els and summary statistics described so far were reestimated by 
academic year, corroborating the findings just described. For 
transparency, in addition to these disaggregated tables for the 
2017–2018 and 2018–2019 analyses in Tables 5–8, with Tables 
5 and 7 showing summary statistics and Tables 6 and 8 contain-
ing MSAR models, three sets of replication codes are available 
(see “Replication_data_code_math_2018.R” at https://cutt.ly/
H4jsMe4, “Replication_data_code_math_2019.R” at https://
cutt.ly/U4js6pk, and “Replication_data_code_math_2018-
2019.R” at https://cutt.ly/l4jdptY).

https://cutt.ly/H4jsMe4
https://cutt.ly/H4jsMe4
https://cutt.ly/U4js6pk
https://cutt.ly/U4js6pk
https://cutt.ly/l4jdptY
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Table 5
Summary Statistics 2017–2018 Analytic Sample

Total (3,335 
schools)

Lowest pov. tertile 
(1,152 schools)

Mid pov. tertile 
(1,048 schools)

Highest pov. tertile 
(1,135 schools) p value

Outcomes: Mean (SD)

math proficiency all grades 45.87 (24.78) 52.69 (23.76) 43.28 (23.16) 41.77 (25.88) <0.001

math3 g Not Econ Dis g 65.88 (20.41) 72.09 (16.48) 64.59 (18.59) 60.13 (24.09) <0.001

math3 g Econ Dis g 46.03 (21.13) 48.25 (20.45) 43.97 (19.92) 45.78 (22.79) <0.001

Continuous or numeric features: Mean (SD)

pct students not tested g 18.01 (20.94) 27.46 (23.85) 18.66 (19.65) 8.20 (13.42) <0.001

pct Economically Disadvantaged s* 58.16 (24.98) 35.21 (20.42) 58.79 (16.61) 79.83 (13.54) <0.001

attendance rate s 94.52 (2.29) 95.42 (1.55) 94.58 (1.78) 93.59 (2.91) <0.001

pct teacher turnover s 2.55 (9.60) 0.72 (5.45) 1.66 (8.18) 5.19 (12.91) <0.001

pct teacher turnover 5 years s 2.55 (9.86) 0.68 (5.18) 1.61 (8.08) 5.29 (13.59) <0.001

pct Native American s 0.67 (2.83) 0.21 (0.98) 0.61 (2.03) 1.18 (4.27) <0.001

pct Black s 16.96 (23.54) 8.50 (13.02) 14.68 (24.57) 27.39 (26.38) <0.001

pct Hispanic s 23.80 (23.75) 18.34 (15.85) 14.99 (18.93) 37.69 (27.76) <0.001

pct Asian s 7.77 (13.34) 8.35 (11.26) 4.98 (10.61) 9.91 (16.71) <0.001

pct White s 47.99 (36.19) 61.22 (26.10) 61.67 (35.61) 21.80 (30.35) <0.001

pct Multi Ethnicity s 2.75 (2.91) 3.30 (2.32) 3.02 (3.00) 1.95 (3.15) <0.001

pct Women s 49.06 (4.89) 48.87 (3.47) 48.95 (3.42) 49.36 (6.88) <0.001

pct with Disabilities s 17.33 (6.45) 15.97 (6.42) 16.77 (5.63) 19.21 (6.79) <0.001

pct free-reduced lunch s 54.43 (24.76) 31.91 (20.05) 55.20 (16.62) 75.55 (14.37) <0.001

pct suspensions s 2.90 (4.72) 1.60 (3.12) 3.28 (4.57) 3.78 (5.77) <0.001

Gini z 0.45 (0.06) 0.43 (0.06) 0.43 (0.05) 0.47 (0.05) <0.001

pct EITC recipients z 34.89 (12.59) 22.84 (6.99) 33.58 (6.96) 47.86 (7.80) <0.001

pct mother only household z 28.16 (16.85) 16.02 (7.76) 26.33 (12.07) 41.72 (17.48) <0.001

pct crime z 3.27 (1.49) 2.90 (1.33) 3.71 (1.13) 3.19 (1.81) <0.001

pct children in poverty 5 to 17 c 17.83 (7.61) 13.87 (5.99) 17.23 (5.80) 22.27 (8.23) <0.001

death rate c 8.50 (1.53) 8.40 (1.13) 9.10 (1.63) 8.03 (1.58) <0.001

net migration rate c –5.93 (5.85) –3.50 (4.35) –5.26 (5.87) –8.93 (5.81) <0.001

pct High school or less c 40.54 (8.03) 35.69 (5.85) 42.76 (6.58) 43.07 (8.98) <0.001

pct unemployment c 4.27 (0.67) 3.92 (0.38) 4.43 (0.65) 4.47 (0.77) <0.001

Median household income c 1.30 (29.72) 20.60 (29.93) –7.60 (23.24) –8.77 (25.80) <0.001

pct taxpayers below poverty line z 0.36 (0.09) 0.26 (0.04) 0.35 (0.02) 0.46 (0.06) <0.001

mean number of students grade g 55.36 (57.61) 62.55 (62.94) 47.86 (43.92) 55.67 (62.80) <0.001

Categorical features: n (%)

math3 g** 3,969.00 (21.08%) 1,389.00 (22.38%) 1,318.00 (21.15%) 1,262.00 (19.74%) 0.001

math4 g** 3,893.00 (20.67%) 1,365.00 (21.99%) 1,307.00 (20.98%) 1,221.00 (19.10%) <0.001

math5 g** 3,747.00 (19.90%) 1,284.00 (20.69%) 1,203.00 (19.31%) 1,260.00 (19.71%) 0.14

math6 g** 2,680.00 (14.23%) 846.00 (13.63%) 889.00 (14.27%) 945.00 (14.78%) 0.2

math7 g** 2,432.00 (12.91%) 730.00 (11.76%) 795.00 (12.76%) 907.00 (14.19%) <0.001

math8 g** 2,111.00 (11.21%) 593.00 (9.55%) 719.00 (11.54%) 799.00 (12.50%) <0.001

Not Econ Disadvantaged*** 9,372.00 (49.77%) 3,139.00 (50.57%) 3,105.00 (49.83%) 3,128.00 (48.92%) 0.2

Large cities s 771 (4.09%) 149 (2.40%) 139.00 (2.23%) 483.00 (7.55%) <0.001

High Need Urban or Suburban s 1,416 (7.52%) 136 (2.19%) 576.00 (9.24%) 704.00 (11.01%) <0.001

NYC public s 5,588 (29.67%) 1,160 (18.69%) 1,180.00 (18.94%) 3,248.00 (50.80%) <0.001

High Need Rural s 1,803 (9.57%) 43 (0.69%) 1,072.00 (17.20%) 688.00 (10.76%) <0.001

Average Need s 5,902 (31.34%) 2,846 (45.85%) 2,814.00 (45.16%) 242.00 (3.78%) <0.001

Low Need s 1,883 (10.00%) 1,738 (28.00%) 145.00 (2.33%) 0.00 (0.00%) <0.001

Charter School s 1,469 (7.80%) 135 (2.17%) 305.00 (4.89%) 1,029.00 (16.09%) <0.001

N of grades (g) 18,832 6,207 (32.96%) 6,231 (33.09%) 6,394 (33.95%) Not applicable

Total no. of students 1,042,452 388,242 298,233 355,977 Not applicable

Note. SD = standard deviation.
*In addition to this school level indicator, each grade contains proficiency levels disaggregated by students economically disadvantaged status.
**number of grades that are classified in 3, 4, 5, 6, 7, or 8 grades in the analytic sample
***number of analytic units that are classified as not being economically disadvantaged
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Table 7
Summary Statistics 2018–2019 Analytic Sample

Total (3,372 schools)
Lowest pov. tertile 

(1,168 schools)
Mid pov. tertile 
(1,068 schools)

Highest pov. tertile 
(1,136 schools) p value

Outcomes: Mean (SD)

math proficiency all grades 47.92 (24.39) 54.65 (23.21) 44.83 (22.96) 44.40 (25.52) <0.001

math3 g Not Econ Dis g 66.45 (19.44) 72.44 (15.44) 64.47 (18.07) 61.52 (22.99) <0.001

math3 g Econ Dis g 47.03 (20.95) 49.62 (20.67) 44.21 (19.54) 47.15 (22.31) <0.001

Continuous or Numeric Features: Mean (SD)

pct students not tested g 15.59 (19.64) 25.29 (23.44) 15.22 (17.58) 6.50 (11.28) <0.001

pct Economically Disadvantaged s* 57.66 (24.55) 34.83 (19.56) 58.62 (16.38) 79.00 (13.53) <0.001

attendance rate s 94.54 (2.26) 95.43 (1.53) 94.58 (1.77) 93.64 (2.85) <0.001

pct teacher turnover s 2.63 (9.63) 0.67 (5.07) 1.64 (7.99) 5.53 (13.17) <0.001

pct teacher turnover 5 years s 2.61 (9.83) 0.63 (4.82) 1.57 (7.89) 5.57 (13.73) <0.001

pct ELL s 7.81 (9.95) 4.81 (5.80) 5.00 (8.08) 13.50 (12.12) <0.001

pct Native American s 0.71 (3.21) 0.24 (1.76) 0.65 (2.10) 1.24 (4.76) <0.001

pct Black s 17.10 (23.66) 8.35 (12.93) 14.45 (24.25) 28.25 (26.64) <0.001

pct Hispanic s 24.22 (23.90) 18.66 (16.00) 15.61 (19.48) 38.14 (27.77) <0.001

pct Asian s 7.90 (13.46) 8.67 (11.73) 5.05 (10.62) 9.94 (16.69) <0.001

pct White s 47.08 (36.07) 60.49 (26.08) 60.97 (35.58) 20.31 (29.34) <0.001

pct Multi Ethnicity s 2.93 (3.03) 3.54 (2.40) 3.21 (3.16) 2.05 (3.24) <0.001

pct Women s 49.07 (4.90) 48.88 (3.26) 48.99 (3.62) 49.33 (6.90) <0.001

pct with Disabilities s 17.67 (6.49) 16.19 (6.19) 17.01 (5.71) 19.76 (6.95) <0.001

pct free-reduced lunch s 54.70 (25.06) 31.68 (20.10) 55.63 (16.70) 76.25 (14.43) <0.001

pct suspensions s 2.93 (4.70) 1.56 (2.58) 3.29 (4.64) 3.91 (5.89) <0.001

Gini z 0.45 (0.06) 0.43 (0.06) 0.43 (0.05) 0.48 (0.05) <0.001

pct EITC recipients z 34.99 (12.59) 22.81 (6.99) 33.78 (6.85) 48.08 (7.59) <0.001

pct mother only household z 28.35 (16.92) 15.94 (7.72) 26.43 (12.00) 42.36 (17.24) <0.001

pct crime z 3.27 (1.50) 2.91 (1.34) 3.71 (1.13) 3.19 (1.83) <0.001

pct children in poverty 5 to 17 c 17.84 (7.60) 13.83 (5.98) 17.25 (5.73) 22.33 (8.23) <0.001

death rate c 8.49 (1.53) 8.41 (1.13) 9.09 (1.65) 7.99 (1.56) <0.001

net migration rate c –5.97 (5.86) –3.48 (4.33) –5.43 (5.93) –8.95 (5.78) <0.001

pct High school or less c 40.53 (8.01) 35.74 (5.84) 42.92 (6.52) 42.84 (9.04) <0.001

pct unemployment c 4.27 (0.67) 3.92 (0.39) 4.41 (0.65) 4.47 (0.76) <0.001

Median household income c 1.36 (29.67) 20.70 (30.05) –7.81 (22.80) –8.47 (25.88) <0.001

pct taxpayers below poverty line z 0.36 (0.09) 0.26 (0.04) 0.35 (0.02) 0.46 (0.06) <0.001

mean number of students grade g 54.39 (56.12) 61.87 (61.34) 47.39 (43.95) 53.99 (60.43) <0.001

Categorical features: n (%)

math3 g** 4,050.00 (21.02%) 1,434.00 (22.59%) 1,347.00 (20.99%) 1,269.00 (19.51%) <0.001

math4 g** 3,971.00 (20.61%) 1,378.00 (21.71%) 1,329.00 (20.71%) 1,264.00 (19.43%) 0.006

math5 g** 3,842.00 (19.94%) 1,311.00 (20.65%) 1,260.00 (19.64%) 1,271.00 (19.54%) 0.2

math6 g** 2,824.00 (14.66%) 882.00 (13.89%) 917.00 (14.29%) 1,025.00 (15.76%) 0.007

math7 g** 2,496.00 (12.95%) 753.00 (11.86%) 828.00 (12.91%) 915.00 (14.07%) <0.001

math8 g** 2,086.00 (10.83%) 590.00 (9.29%) 735.00 (11.46%) 761.00 (11.70%) <0.001

Not Econ Disadvantaged*** 9,597.00 (49.81%) 3,214.00 (50.63%) 3,194.00 (49.78%) 3,189.00 (49.02%) 0.2

Large cities s 808.00 (4.19%) 154.00 (2.43%) 132.00 (2.06%) 522.00 (8.02%) <0.001

High-Need Urban or Suburban s 1,450.00 (7.53%) 142.00 (2.24%) 579.00 (9.02%) 729.00 (11.21%) <0.001

NYC public s 5,701.00 (29.59%) 1,170.00 (18.43%) 1,283.00 (20.00%) 3,248.00 (49.93%) <0.001

High-Need Rural s 1,827.00 (9.48%) 46.00 (0.72%) 1,154.00 (17.99%) 627.00 (9.64%) <0.001

Average Need s 5,930.00 (30.77%) 2,895.00 (45.60%) 2,794.00 (43.55%) 241.00 (3.70%) <0.001

Low Need s 1,960.00 (10.17%) 1,806.00 (28.45%) 154.00 (2.40%) 0.00 (0.00%) <0.001

Charter School s 1,585.00 (8.23%) 135.00 (2.13%) 320.00 (4.99%) 1,130.00 (17.37%) <0.001

N of grades (g) 19,269 6,348 (32.94%) 6,416 (33.30%) 6,505 (33.76%) Not Applicable

Total no. of students 1,048,061 392,760 304,075 351,226 Not Applicable

Note. EITC = Earned Income Tax Credit; ELL = English language learner; MSAR = multilevel simultaneous autoregressive; NYC = New York City;  
SD = standard deviation.
*In addition to this school-level indicator, each grade contains proficiency levels disaggregated by students’ economically disadvantaged status.
**Number of grades that are classified in 3, 4, 5, 6, 7, or 8 grades in the analytic sample
***Number of analytic units that are classified as not being economically disadvantaged
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González Canché

Having said this, although all these results are included as 
robustness checks, my preferred specifications still remain 
those of the models that include both years of data. 
Conceptually and econometrically speaking, these time 
fixed-effects models allow the incorporation of time into the 
MSAR specification, an approach that the developers of 
MSAR recommended and implemented (see Dong et  al., 
2015). This methodological decision is important, for MSAR 
models are primarily cross-sectional, but I have demon-
strated how researchers may include these temporal ele-
ments into their specification strategies. Having said that, in 
this case, it should be highlighted that the cross-sectional 
and time-effects models were consistent, but consistent with 
complex systems tenets that model life itself (see Gonzalez 
Canche, 2021), this may not necessarily be the case in mod-
els estimated with other data sources and that address differ-
ent research questions.

Limitations: How Would Student Composition and Parents’ 
Wealth Affect the Findings?

The analytic sample accounted for all public schools at 
the state level, including charter schools, which are public 
schools yet also different from public schools (see Fischler, 
2021). Although the models included all available data from 
public schools, it is possible that families who could afford 
to move, looking for better public schooling options, may 
have done so for the betterment of their students’ academic 
prospects or may have simply placed them in private schools. 
It could also be true that families with kids would have pre-
emptively selected to live in “good public-school districts” 
rather than move to them, given the high costs associated 
with moving (Lindenfeld Hall, 2022; Pogol, 2019; Sahadi, 
2015). Nonetheless, it is also possible that these parents may 
not have needed to move; instead, if they were located in 
high-poverty zones, they could have potentially enrolled 
their students at charter schools, which, as described above, 
tended to be overwhelmingly located in the highest poverty 
areas (with 71% of them located in such zones, as described 
in the findings section—see Table 3). Finally, another argu-
ably less expensive strategy may have consisted of relying 
on private tutoring (online or in person) and/or on after-
school programs.

If mobility is assumed to be the primarily driver that may 
ultimately influence students’ performance as a source of 
unobserved heterogeneity, note that moving, attending a pri-
vate school, and/or buying a house in “good” public-school 
districts is expensive, which may not reflect the decisions 
that the vast majority of parents in our analytic samples may 
have made—as has been widely reported (Lindenfeld Hall, 
2022; Pogol, 2019; Sahadi, 2015). Nonetheless, following 
the rationale of compositional changes based on parents’ 
decisions to move their students, given such parents’ socio-
economic standing, the worst-case scenario that may have 

translated into heightened compositional changes was sup-
posed to affect grades and schools located in more affluent 
regions. This implies, then, that the set of models that should 
be “distrusted” the most are those measuring mathematical 
performance in the wealthiest neighborhoods in the analytic 
samples—after all, the types of students attending those 
areas would, in theory, have been coming from households 
that may have been able to afford to move into those areas 
and schools, precisely based on their known higher level of 
school quality. Alternatively, the mathematical performance 
in these wealthier zones may have been influenced by par-
ents’ decisions to send their students to private schools, 
which means that the models would not have captured these 
students’ mathematical performance—that is, these wealthi-
est kids would likely not have been part of the analytic 
sample.

Despite these possibilities, the results of the models of 
students attending wealthier school districts are consistent 
with the results found among students attending schools 
located in less economically privileged neighborhoods. 
These models’ agreements alleviate concerns that student 
compositional changes may have resulted in misleading 
findings or grossly erroneous conclusions. Nonetheless, 
unfortunately, I do not have access to data that would have 
captured the specific movement of students from poor areas 
to enroll at schools located in wealthier zones (or movement 
from public non-charter to charter schools or participation in 
after-school programs or private tutoring). Indeed, I am not 
familiar with any available data set that is detailed enough to 
capture such a movement (or such parental strategies to 
improve their students’ mathematical ability). Having said 
this, although this movement analysis was not a goal in this 
study, it motivated me to account for net outmigration as part 
of the control indicators included in the models. Moreover, 
despite those idiosyncratic decisions made by families, I am 
confident that because moving and attending private school 
are expensive, the models shown in this study captured most 
of the experiences of typical students rather than those expe-
riences of privileged families who were embarking in this 
strategic movement and school choice. As with any statisti-
cal model, outlier cases may be present, and the experiences 
of these atypical and privileged cases may surely have 
diverged from the overwhelming majority reflected in the 
analytic samples, which should not disqualify this paper or 
my inferences. Having said this, despite the fact that I tested 
and accounted for two different forms of spatial dependence 
present in the analytic samples, which, if left unmodeled, 
may have been sources of bias I am not claiming causality or 
absolute lack of bias. As a matter of fact, given the untest-
able set of assumptions required to claim causality, I strongly 
refrain from making causal claims in education and in social 
science research.

Before listing another limitation of the study, it should be 
noted that researchers interested in mapping and estimating 
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the impact of this student mobility (and/or participation in 
private tutoring or after-school programs) could do so with 
individual-level panel data access. However, I do not have 
such data sources, despite having requested such access. 
Nonetheless, reliance on publicly available administrative 
data has allowed me to showcase how applied researchers 
may leverage these data to offer innovative and nuanced 
estimates of factors affecting mathematical proficiency that 
are fully reproducible; all data and code can be accessed at 
https://cutt.ly/N4zRstL.

Another limitation of this study is that although economic 
disadvantage encompasses a wide array of factors that may 
capture students’ economic challenges, and although stu-
dents may experience more than one of these indicators, the 
NYSED data do not provide levels of economic disadvan-
tage. From this view, rather than having a single dichotomic 
indicator, when possible, future studies should provide more 
nuanced measurements (perhaps categorical or even 
numeric) of the economic conditions that may influence stu-
dents’ prospects of remaining mathematically proficient. As 
depicted in this study, even though the analyses and findings 
are informative in capturing performance gaps based on this 
binary indicator, to the extent that the geography of mathe-
matical disopportunity is prevalent—that is, to the extent 
that students experience a concentration of these economic 
challenges at the individual, school, and geographical lev-
els—their opportunities for upward mobility will surely 
decline.

Methodological Discussion and Implications: How 
Specific Should Nesting Structures Be When Not 

Relying on Multilevel Simultaneous Autoregressive to 
Address Residual Autocorrelation?

As discussed in the methods section, multilevel models are 
the standard to address nesting structures that may affect out-
come variation over and above individual-level attributes. 
From this perspective, González Canché (2014, 2021, 2023b) 
and Wolf et  al. (2021) demonstrated that when the nesting 
structure is specific enough, model residuals obtained from 
multilevel models (i.e., not spatial multilevel models) will 
successfully address outcome dependence that may then result 
in spatial outcome dependence or autocorrelation (see 
González Canché, 2023b). However, as these nesting struc-
tures become less specific (i.e., moving from nesting at the 
classroom, to nesting at the school, to nesting at the school 
district, to nesting at the county or state level), spatial outcome 
dependence or autocorrelation may result in the presence of 
residual dependence—that is, in not identically and indepen-
dently distributed (iid) residuals.

With this understanding, one of the study’s reviewers 
encouraged me to demonstrate whether these patterns were 
realized when analyzing the public administrative data 
employed in this study, with an emphasis on comparing not 

only whether model residuals became iid but also on how 
model coefficients differed or remained congruent with the 
model coefficients found with MSAR. Table 9 addresses this 
recommendation, including the aggregate model shown in 
Table 4 as well as two nonspatial multilevel models: one 
nesting classrooms at the school level and another where the 
nesting structure was conducted at the ZCTA level, hence 
matching the two levels used in every MSAR specification 
employed in this study.

Table 9 shows that if the nesting of grade levels was iden-
tified or operationalized at the school level, residual depen-
dence became iid. On the other hand, when this nesting 
structure was specified at the ZCTA level, the models once 
again suffered from residual dependence—that is, the result-
ing model residuals were not iid. These findings and patterns 
were then congruent with past research (González Canché, 
2014, 2021, 2023b; Wolf et  al., 2021): When the nesting 
structures were less specific, model residuals would remain 
an issue in nonspatial multilevel models.

With respect to model coefficients, although the less spe-
cific nesting structure suffered from residual dependence 
(nested ZCTA model in Table 9—see also Gonzalez Canche, 
2014), some of its coefficients were closer in magnitude to 
the coefficients found via MSAR. For example, gaps 
between Grades 3 and 8 math had a magnitude of 20.87 and 
20.83 percentage points in the MSAR and the nested ZCTA 
models, respectively, but this magnitude in the Nested 
School model indicated a gap between students in Grades 3 
and 8 of only 17.31 percentage points. Other coefficients, 
however, resulted in notable differences. For example, the 
percentage of single-mother households was statistically 
significant in both multilevel models, but not in the MSAR 
specification, which may have been a function of the former 
not incorporating any spatial information as part of the 
model estimation. From this perspective, when considering 
that MSAR models were capable of (a) accounting for two 
forms of nesting structures, (b) accounting for fixed effects 
via the matrix ∆ that captured schools’ ascription to ZCTAs, 
and (c) rendering residuals that were iid, I consider the 
MSAR estimates to have been more robust to multiple 
sources of bias.

Based on this brief discussion, multilevel-alone models (i.e., 
not spatial multilevel models) may have either suffered from 
residual dependence (like the ZCTA nesting structure model) or 
rendered coefficients that were arguably downwardly biased 
(i.e., like the school nesting structure model). Having said this, 
it should be noted that despite the statistical benefits associated 
with MSAR, these models remained cumbersome to be opera-
tionalized and executed. This complexity was based on the 
need to create three matrices of influence (∆, M, and W), which 
required advanced feature engineering. Although all code for 
the complete model replication is provided (see https://cutt.ly/
N4zRstL), note also that González Canché (2023b) developed 
low-code functions20 that automatically created all matrices 

https://cutt.ly/N4zRstL
https://cutt.ly/N4zRstL
https://cutt.ly/N4zRstL
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required for these models and offered Moran’s I tests. The goal 
of developing these low-code functions was to remove the 
inherent complexity of estimating MSAR models. Moreover, in 
addition to MSAR, González Canché (2023b) offered access to 
other low-code functions capable of testing for nongeographi-
cal stationarity in coefficient estimates. That is, it may be pos-
sible that some areas were more prone to being affected by local 
attributes than others, which could be empirically tested via 
geographically weighted regressions. This test, however, is 
beyond what can be accommodated in single study; accord-
ingly, future research may address whether mathematical profi-
ciency is prone to spatial heterogeneity or whether a single 
global estimate may suffice to capture the relationships 
observed in this study. Another possibility is to estimate spatio-
temporal studies in the form of difference-in-differences that 
may compare how mathematical proficiency may have changed 
before and after the pandemic across low-income and non-low-
income participants. In this respect, González Canché (2023b) 
also offered low-code functions to estimate these models, an 
example of which may also be found at González Canché 
(2018).

Discussion: The Geography of Mathematical (Dis)
Advantage

The study’s purpose was to offer nuanced estimates of 
proficiency rates in mathematics across grades while simul-
taneously considering test-takers’ own economic standing 
and schools’ contextual and place-based observed poverty 
levels. The results consistently indicate that proficiency 
rates decreased as cohorts of students advanced through ele-
mentary and middle schools, with the highest decreases 
observed in Grade 8. Note that although these drops in pro-
ficiency rates were congruent with the gaps reported by the 
NAEP (2020), this study’s estimates show a grimmer picture 
and also provide evidence of a geography of mathematical 
disopportunity, wherein the interaction of economic disad-
vantage and place-based poverty results in the lowest change 
of remaining mathematical proficiency across grades, but 
with interesting and more nuanced patterns. For example, 
Grade 8 students who were economically disadvantaged and 
attended schools located in the highest poverty zones real-
ized the lowest gaps among all students, with changes in 
proficiency rates of –15.31% with respect to their Grade 3 
test-taker counterparts.

These findings convey mixed results. On the one hand, 
students who arguably were the most vulnerable (Pearman, 
2019) had the lowest gaps with respect to their Grade 3 
peers. On the other hand, these findings are not positive 
when observing that the mean mathematical proficiency 
rates of Grade 3 students attending schools in the highest 
poverty zones (see Table 3) were the second lowest among 
all Grade 3 students (46.62%, SD = 22.47). When consider-
ing these starting points, the 26.38 percentage-point decrease 

in mathematical proficiency (standard error 0.912) observed 
among non–economically disadvantaged Grade 8 students 
attending schools in the lowest poverty zones (see Table 4), 
when compared to the 15.31 percentage-point decrease real-
ized by Grade 8 students in high-poverty schools (standard 
error 0.768), implied that the former test-takers had profi-
ciency rates that still remained 14.92 percentage points 
higher than those of economically disadvantaged Grade 8 
students attending schools located in high-poverty zones. 
For the sake of clarity, let us elaborate on this 14.92 percent-
age-point gap among Grade 8 test-takers. Note that non–
economically disadvantaged Grade 3 test-takers had 
mathematical proficiency levels of 72.27%, whereas eco-
nomically disadvantaged Grade 3 test-takers reached math-
ematical proficiency levels of 46.62%. Considering this, the 
26.38 percentage-point decrease observed among Grade 8 
test-takers attending schools located in low-poverty areas 
led to a performance of 46.23% for these non–economically 
disadvantaged students (or 72.27 – 26.038 = 46.232). In the 
case of their economically disadvantaged peers attending 
schools located in high-poverty areas, when considering that 
the Grade 3 performance was 46.62%, the lower magnitude 
observed in the Grade 8 coefficient (–15.31%, as shown in 
Table 4) indicates that these Grade 8 students reached math-
ematical performance rates of 31.31% (or 46.62 – 15.307 = 
31.313). Taking the differences of these two differences 
yields a performance gap among Grade 8 students of 14.92 
percentage points (or 46.23 – 31.31). That is, although the 
magnitude of the coefficients shown in Table 4 seemed to be 
worse for non–economically disadvantaged Grade 8 test-
takers attending schools located in low-poverty zones, the 
ultimate mathematical performance of their economically 
disadvantaged Grade 8 peers attending schools located in 
high-poverty areas was still much more dire.

In sum, although proficiency gaps between economically 
disadvantaged students in Grades 3 and 8 attending schools 
located in high-poverty zones were the smallest across all 
groups, performance gaps between economically disadvan-
taged and non–economically disadvantaged Grade 8 stu-
dents favored the latter. In going back to the hypothetical 
relationships, these findings partially corroborated the 
hypothesis that “economically disadvantaged students 
would likely experience greater losses in mathematical pro-
ficiency levels compared to their non–economically disad-
vantaged peers.” As just depicted, although these losses 
were greater in magnitude for non–economically disadvan-
taged Grade 8 test-takers, the end result was the same: 
Economically disadvantaged students remained less profi-
cient than their non–economically disadvantaged peers.

The consistent finding across model specifications 
between opting out from testing and mathematical profi-
ciency reflected no evidence of purposeful exclusion of stu-
dents from testing. That is, had these results reflected a 
positive association between percentage of students who 
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were not tested and performance in math, this could have 
been perceived as students who may not have been identi-
fied/self-identified as nonproficient deciding not to partici-
pate or as school administrators preferring that they not 
participate in this standardized testing process. Also aligned 
with the notion of the geography of mathematical disoppor-
tunity, overall, schools located in the lowest poverty zones 
(see Table 3) had many advantages: They had the lowest 
turnover rates, lowest suspension levels, lowest percentage 
of students classified as economically disadvantaged, and 
the highest median income at the county level, which may 
have translated into higher levels of funding based on prop-
erty taxes. Their students also performed the best.

Considering the positive spillover effects of mathematical 
proficiency, programs and policies should strive for all schools, 
but particularly the most socioeconomically vulnerable schools 
and at younger ages, to increase or maintain their students’ pro-
ficiency rates. In this respect, note that participation in free and 
reduced-price lunch programs was consistently associated 
with increases in mathematical proficiency levels in these 
poorest areas; as indicated above, current national movements 
are pushing for the adoption of healthy school lunches at pub-
lic and not-for-profit public schools. Recent in-person class 
interruptions due to COVID-19 highlighted that these pro-
grams often represented the main source of food for students 
living in the highest poverty zones. Accordingly, this study 
offers evidence to reinforce the positive impact that these pro-
grams may have in mathematical proficiency prospects, 
regardless of students’ economic health.

The comparison of NYC schools and charter schools 
reflected that proficiency rates in the latter were at least 8.7 
percentage points higher in high-poverty areas for economi-
cally disadvantaged and non–economically disadvantaged 
students, with the highest gains observed among economi-
cally disadvantaged test-takers attending schools in high-
poverty areas. Although charter schools are public schools, 
they are also different from public schools (Fischler, 2021). 
In this respect, it should be noted that non-charter public 
schools could potentially benefit from collaborating with or 
implementing programs similar to those implemented by 
their charter counterparts, particularly because 71% of these 
charter schools were located in the highest poverty areas and 
were succeeding at higher rates.

To close, because 80% of students attending the highest 
poverty level zones were also classified as economically dis-
advantaged, positive spillovers of mathematical proficiency 
indicate that actions geared toward increasing their mathe-
matical competence may lead to increasing their perfor-
mance in other academic areas (Duncan et al., 2007; Farran 
et al., 2006; Lerkkanen et al., 2005; Pagani et al., 2010). The 
intrinsic relationship between mathematics and STEM, 
along with the relevance of these fields in the present and 
future economies, suggests that to the extent that more stu-
dents, particularly those from economically disadvantaged 

backgrounds, become and remain proficient in mathematics, 
their prospects of success in life will increase (González 
Canché, 2017). Mathematical proficiency is a worthwhile 
pursuit with equitizing, gap-closing implications.

In terms of areas for future research, researchers may 
build from the concepts and data set provided in this study 
to assess the impact of the COVID-19 pandemic on math-
ematical proficiency for economically disadvantaged and 
non–economically disadvantaged students. This endeavor 
is worthwhile, for the NAEP (2022) reported that although 
mathematical proficiency rates nationwide between stu-
dents in Grades 4 and 8 had widened by 10 percentage 
points, favoring the former, in New York State, there was 
no gap, with a 28% proficiency score in 2022 in Grades 4 
and 8. However, these depictions may be misleading by 
failing to account for test-takers’ economically disadvan-
taged statuses along with the poverty rates and locations of 
their schools. Accordingly, future studies may leverage 
MSAR difference-in-differences by incorporating data on 
performance observed after the pandemic and compare 
these performance rates between economically disadvan-
taged and non–economically disadvantaged test-takers. In 
addition to being beyond the scope of this study, due to 
data availability constraints—there has been no post-pan-
demic data release by the NYSED—I am unable to offer 
these estimates but such analyses can be implemented fol-
lowing the code provided with this study. Finally, consider-
ing that charter students in high-poverty areas are doing 
better than their district peers, future research may study 
whether certain families in high-poverty areas are seeking 
better educational alternatives for their children and docu-
ment who these families are to more clearly explain the 
mechanism behind this outstanding performance in the 
highest poverty zones.
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Notes

1. Based on the New York State Education Department 
(NYSED, 2020a), students scoring 3 or 4 in a 1–4 Common Core 
Learning Standardized test administered at public elementary and 
middle schools in the state of New York were considered proficient 
in mathematics.

2. Students classified as “economically disadvantaged” par-
ticipate in assistance programs, such as free or reduced-price 
lunch, Social Security Insurance, food stamps, foster care, refu-
gee assistance, EITC, Home Energy Assistance Program, Safety 
Net Assistance, Bureau of Indian Affairs, or Family Assistance: 
Temporary Assistance for Needy Families (NYSED, 2020a).

3. Please note that lunch eligibility as a proxy for poverty mea-
sure is becoming less useful, as there has been a recent trend in dis-
trict-level participation in the national lunch program (see National 
School Lunch Program by the U.S. Department of Agriculture at 
https://www.fns.usda.gov/nslp). I am thankful for this comment, 
which was raised by one of this study’s reviewers. However, the 
summary statistics in the analytic samples still showed a high 
degree of variation at the aggregated levels and when disaggre-
gating the analytic samples by poverty levels of the zones where 
schools were located. Specifically, these disaggregated estimates 
ranged from 31.76% in the least poor areas to 75.93% in the highest 
poverty zones. These variation levels, along with the identification 
of this indicator as a relevant feature via Boruta (see Figure 2), 
as described in the methods section, justified its inclusion in the 
models.

4. This estimate was obtained as the ratio of taxpayers in a given 
zip code with adjusted income levels up to $25,000 over the total 
number of taxpayers in that same zip code. Considering that the 
state of New York indicated that the poverty line was $32,402 as 
of 2016 (Chatterjee et al., 2019), inhabitants with incomes up to 
$25,000 were considered to be at least $7,500 below this poverty 
line.

5. Hence, participation in assistance programs, such as free or 
reduced-price lunch, Social Security Insurance, food stamps, foster 
care, refugee assistance, EITC, Home Energy Assistance Program, 
Safety Net Assistance, Bureau of Indian Affairs, or Family 
Assistance: Temporary Assistance for Needy Families (NYSED, 
2020a).

6. All data and R codes required to fully replicate all models are 
available at https://cutt.ly/N4zRstL.

7. See https://www.huduser.gov/portal/datasets/usps_cross-
walk.html.

8. The NYSED counted the number of students per grade who 
took these Common Core Learning Standardized tests.

9. All definitions of grade- and school-level indicators were 
retrieved from the NYSED and can be accessed at https://data.
nysed.gov/glossary.php?report=reportcards.

10. Including students with intellectual disability, hearing 
impairment, speech or language impairment, visual impairment, 
serious emotional disturbance, orthopedic impairment, autism, trau-
matic brain injury, developmental delay, other health impairment, 

specific learning disability, deaf-blindness, or multiple disabilities 
and who, by reason thereof, receive special education and related 
services.

11. Higher level covariates captured at the county level could be 
added, but the main nesting structure was zip code. Spatial depen-
dence at the county level indicated no spatial clustering, relying on 
Moran’s I, discussed below.

12. To test for sensitivity of this 1.5-kilometer specification, the 
models were replicated with matrices W with distance thresholds of 
2 and 2.5 kilometers rendering similar estimates. Another specifi-
cation relied on a 0.6-mile threshold, as discussed by Chetty et al. 
(2020), who did not rely on matrices of influence, as in the case 
of Dong et  al. (2015). Similarly, no differences in the estimates 
were found (because this specification represented a distance of .33 
mile, because 1.5 kilometers = 0.93 mile), accordingly, the find-
ings were assumed to not be sensitive to the variations discussed 
herein. All these specifications can be tested with the replication 
code provided at https://cutt.ly/N4zRstL.

13. The replication code identified g→s,z, relying on net-
work principles by creating a composite key identifier of grades 
in schools that then were ascribed to ZCTAs to extract the block 
diagonal design matrix Δ.

14. County-level indicators could be identified and would 
remain the same across zip codes that were located in a given 
county.

15. Note that Raftery and Lewis (1991) found that after 500 
burn-in samples, models were stable. In this study, following Dong 
and Harris (2015), I increased the burn-in samples to 5,000, or 
10 times the recommended value in Raftery and Lewis’s seminal 
paper.

16. This feature selection was implemented with the Boruta 
package in R (see Kursa & Rudnicki, 2010).

17. Robustness checks conducted with data disaggregated for 
the 2017–2018 and 2018–2019 academic years corroborated the 
relevance of all these indicators. These HTML Boruta figures 
may be accessed at https://cutt.ly/l4DSvLT and at https://cutt.
ly/r4DSUjy for the 2017–2018 and 2018–2019 academic years, 
respectively.

18. Highest: 66% lived below poverty levels. Lowest: 33% 
lived below poverty levels.

19. See National School Lunch Program by the U.S. Department 
of Agriculture at https://www.fns.usda.gov/nslp.

20. Minimal or low-code tools ascribe to data science democ-
ratizing efforts by removing vast amounts of statistical and com-
puter programming proficiency requirements (or barriers) to apply 
sophisticated and rigorous state-of-the-art analytic and data inter-
active data visualization techniques (Gonzalez Canche, 2023b).
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