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A tree model for diagnostic educational testing is described along with Monte Carlo

simulations designed to evaluate measurement accuracy based on the model. The

model is implemented in an assessment of inferential reading comprehension, the

Multiple-Choice Online Causal Comprehension Assessment (MOCCA), through a

sequential, multidimensional, computerized adaptive testing (CAT) strategy.

Assessment of the first dimension, reading comprehension (RC), is based on the

three-parameter logistic model. For diagnostic and intervention purposes, the

second dimension, called process propensity (PP), is used to classify struggling

students based on their pattern of incorrect responses. In the simulation studies,

CAT item selection rules and stopping rules were varied to evaluate their effect on

measurement accuracy along dimension RC and classification accuracy along

dimension PP. For dimension RC, methods that improved accuracy tended to

increase test length. For dimension PP, however, item selection and stopping rules

increased classification accuracy without materially increasing test length. A small

live-testing pilot study confirmed some of the findings of the simulation studies.

Development of the assessment has been guided by psychometric theory, Monte

Carlo simulation results, and a theory of instruction and diagnosis.
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As stated in the call for papers, “The purpose of this issue is to highlight statistical

methods for providing decision makers and users with fine-grained information to

improve educational and behavioral outcomes.” The goal is to “advance methods

that are consistent with an assessment framework of ‘diagnose and intervene’ rather

than the paradigm of ‘rank and sort.’” To achieve these goals, an assessment frame-

work must go well beyond a theory of latent variables embedded in a statistical

model. It must include a theory of intervention and real items, both of which are

linked to the latent variables in a statistical model. This article describes the devel-

opment of a reading comprehension (RC) test, MOCCA. MOCCA adopts a diag-

nostic item response theory (IRT) approach for the adaptive measurement of

molecular cognitive processes that are not readily decomposed into separate skills.

It is based on intervention research, unique items and multiple-choice response types,

and a statistical tree model of those responses. Employing a computerized adaptive

testing (CAT) strategy, it provides overall inferential comprehension scores along a

latent dimension and a diagnostic classification for struggling readers. This classi-

fication provides information to assist teachers in individualizing additional instruc-

tion for struggling readers. MOCCA is more than just an idealized, statistical method

for the future. It is a method that has already led to a real, online assessment. For a

demonstration, see https://blogs.uoregon.edu/mocca/.

Introduction

In the sections that follow, we first describe the intervention research on

which the assessment is based. Next, we describe the assessment itself: its pur-

poses, items, multiple-choice response structure, statistical model, and CAT

administration strategy. Finally, we present the results from Monte Carlo simula-

tions that guided the design of the new CAT administration strategy. Readers

interested in more information about earlier versions of the assessment, their

reliability, and their validity should consult Biancarosa et al. (2019), Carlson

et al. (2014), Davison et al. (2019), Liu et al. (2019), and Su and Davison (2019).

Theory of Intervention

According to prior research, there are two types of struggling readers: those

who struggle with prereading skills (e.g., phonemic awareness, word identifica-

tion) and those who struggle with comprehension (Cain & Oakhill, 2006;

Perfetti, 2007). Although readers who struggle specifically with comprehension,

conservatively about 7% to 10% of all readers (Catts et al., 2012), may do so for a

variety of reasons, one of the primary distinguishing characteristics of readers

with specific poor comprehension is difficulty with generating inferences that

establish global coherence (e.g., Currie & Cain, 2015; Pimperton & Nation,

2010; Spencer et al., 2019). That is, where a text requires readers to make a

specific inference for coherent understanding, readers with specific poor com-

prehension tend not to make these inferences.

Davison et al.

915

https://blogs.uoregon.edu/mocca/


Think-aloud research has shown that readers with specific poor comprehen-

sion instead tend to rely on one of two cognitive processes during reading (e.g.,

Carlson et al., 2014; McMaster et al., 2012; Rapp et al., 2007). The first is

a tendency to paraphrase information in the text rather than make an inference.

The second is a tendency to make an elaborative inference based on information

in the text or background knowledge which, although it may lead to a more

enriched mental model of what is being read, does not establish global coherence.

Whereas global coherence inferences are necessary for comprehension, these

elaborative inferences are unnecessary. Moreover, McMaster et al. (2012) found

in a randomized experiment that paraphrasing poor comprehenders benefited

more than elaborators from a general questioning condition to encourage readers

to make general connections during reading. In contrast, elaborating comprehen-

ders benefited more than paraphrasers from a causal questioning strategy to

encourage readers to make globally coherent inferences during reading. These

results suggest the efficacy of focusing instruction for elaborating and paraphras-

ing poor comprehenders on questioning strategies matched to their cognitive

process propensity (PP).

MOCCA

In response to the research described above, a new assessment called MOCCA

was developed and validated as a means of providing teachers with information on

their students’ RC processes (Carlson et al., 2014; Davison et al., 2018). Specifically,

MOCCA can be used (a) as a general outcome measure for inferential RC, (b) to

track students’ progress within and across the Grade 3 to 6 years, and (c) as a

formative reading assessment that both identifies poor comprehenders and diagnoses

their propensity to rely on a paraphrasing or elaborating approach. MOCCA has been

revised into a CAT to facilitate and enhance its suitability for all three of these

purposes by improving the precision of scores while decreasing test length.

MOCCA’s diagnostic classifications can be used by teachers to individualize

instruction for poor comprehenders. Specifically, MOCCA interpretive guidance

provides teachers with different questioning strategies aligned to McMaster

et al.’s (2014) approaches, depending on whether a student has a paraphrasing

or elaborating propensity. Moreover, MOCCA flags students who do not have a

clear propensity for either paraphrasing or elaborating, and the interpretive guide

directs teachers to triangulate MOCCA results with data from other reading

measures to identify potential problems in component reading skills (e.g., word

reading, fluency, literal comprehension) and vocabulary. That is, MOCCA is

designed to diagnose problems in comprehension. When students do not show

clear diagnosable patterns, the assessment suggests further diagnostic assessment

to determine alternative root causes of poor comprehension skills.
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MOCCA Item Tasks and Responses

Each MOCCA item consists of a short story followed by three types of

responses. The story contains between 5 and 10 sentences with the second to

last sentence missing. From the three to five response alternatives, students must

identify the sentence that best completes the story. Whereas most multiple-

choice tests contain two types of answers (i.e., correct and incorrect), each

MOCCA item has three types of responses: the correct response and two different

types of incorrect. The correct answer (i.e., the causal coherent response) requires

an inference from the information in the passage that leads to identification of the

response sentence that best completes the passage. The first type of incorrect

response (i.e., the paraphrase response) simply repeats or paraphrases informa-

tion in the passage. It does not involve an inference, and it does not advance the

story in a way that would complete the story. The second type of incorrect

response (i.e., the elaboration response) does involve an inference that elaborates

the story, but it does not complete the story line and may even somewhat contra-

dict the story line. Each item has a correct response and either one paraphrase and

one elaboration response or two of each incorrect response type.

Figure 1 shows a sample MOCCA item entitled “Janie and the Trip to the

Store.” Note that the sixth sentence is missing, and that there are three sentences

at the bottom, representing three possible responses for the missing sentence. The

first alternative “Janie’s Dad was upset with her choice.” is the elaboration

response. It states information not explicitly stated in the passage, and therefore

involves an inference, but it does not complete the story, because it is incon-

sistent with the last sentence. The second sentence “Janie wanted to go to the

store.” is the paraphrase response because it merely reiterates information expli-

citly stated earlier in the story. The third alternative is the correct, causal coher-

ent, response: “Janie picked out her favorite candy bar.” It is an inference in that

it states information not stated earlier, and it completes the story in that it

explains why Janie is happy in the last sentence and identifies whether she

accomplished her goal of getting a treat.

In addition to containing three types of response alternatives for every item,

MOCCA items differ from those usually seen in RC tests in one other important

respect. Many reading tests contain passages with several items related to each

passage. Because the several items for a single passage all refer to the same

passage, they form testlets that might violate the local independence assumption

of IRT. In MOCCA, there is only one item for each story, so the structure of the

item does not violate the local independence assumption. The independence of

items means that MOCCA items satisfy the IRT assumptions of independence

and makes MOCCA highly suitable for a CAT format, particularly compared to

other reading tests.

According to the cognitive theory underlying MOCCA, respondents can apply

one of the three processes to arrive at a response, one of which will result in the
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correct answer and two of which will result in an incorrect answer. The prob-

ability of choosing a particular response to an item corresponds to the probability

of applying the corresponding cognitive process. As described in the following,

the approach utilizes CAT and IRT-based classification to minimize testing time

(Weiss, 1982). In agreement with the recent suggestion of Sireci (2022), this

approach is less about grading and more about learning and instruction.

The MOCCA Model Versus Cognitive Diagnostic Models

Diagnostic testing often uses cognitive diagnostic test models (CDMs), such

as the deterministic inputs, noisy “and” gate (DINA; Junker & Sitsma, 2001)

model or the deterministic inputs, noisy “or” gate (DINO; Templin & Henson,

2006) model. In general, CDM models the probability of a correct answer as a

function of latent categorical variables, usually associated with mastery or

nonmastery of certain skills. The DINA model is an example of a noncompen-

satory model, meaning mastery of all skills related to the item are required to

increase the probability of a correct response. In contrast, the DINO model is a

compensatory model, where mastery of one skill can compensate for nonmas-

tery of other skills.

The most familiar of these models has four features that distinguish it from the

approach discussed here. First, the model assumes that the underlying cognitive

process readily decomposes into several discrete subskills (Junker & Sijtsma,

FIGURE 1. Sample MOCCA item.
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2001). Second, most of the models (but not Chen & de la Torre, 2013 or von

Davier, 2008) assume that skills are dichotomous; the student either does or does

not possess each skill. CDMs coarsely classify respondents into two or a few

categories, such as masters or nonmasters, relative to skill dimensions. Third,

CDMs assume multidimensionality at the item level, rather than at the item

response level, such that each item (rather than each response option) is associ-

ated with one or more of the dichotomous dimensions. Fourth, the CDM models

describe students in terms of probabilities of belonging to response classes that

are only indirectly related to the probability of subskill mastery or probability of

correctly answering an item. Although there have been recent developments in

CAT based on CDMs, research on actual implementation is in an early stage (Yu

et al., 2019). Such models do not readily apply to complex cognitive processes

that map onto response options, rather than items, and that are not readily decom-

posed into separate dichotomous (or polytomous) subskills. The CDM literature

focuses on statistical models of responses to items rather than response option

content.

A Focus on Response Options

In statistics and the sciences, researchers have focused on response option

content as a way to make tests more about learning and less about grading (e.g.,

Delmas et al., 2007; Hermann-Abell & DeBoear, 2011; Hestenes et al., 1992;

Sadler, 1998). In this literature, alternatives are written to represent common

misconceptions, and the tests include scores that report the occurrences of var-

ious misconceptions in a student’s responses. When distractors correspond to

misconceptions, Hestenes et al. (1992) use the term “distractor-driven

assessment” and Sadler uses the term “concept assessment.” In practice, how-

ever, each misconception appears in only a small number of items. If a particular

type of distractor seldom appears—say it appears only twice—evaluating the

student’s tendency to commit the misconception is a bit like judging the student’s

free-throw shooting ability based on two free-throw attempts. The information

available is not very reliable.

Distractor-driven or concept assessment requires a rethinking of psychometric

theory in terms of nesting. Response options are nested within items that are

nested within a test. To complicate matters, response options constitute a set of

mutually exclusive and exhaustive categories, so there is a linear dependence of

any one option on all the others. Originally, psychometric theory focused on the

test level: classical test theory. IRT focuses on the item level. Distractor-driven

and concept assessments require more focus on the lowest level of the hierarchy,

the response option.

At least two models have been proposed for modeling response options within

items. When focusing on response options, each item has a response vector xj

(rather than a response variable xjÞ, and the overall model includes a model for
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each item response variable within the item vector xj. Johnson and Bolt (2010)

described a response vector for each item with each variable in the vector corre-

sponding to a response category along a polytomous item. They then proposed a

highly parameterized multinomial multifactor model to account for individual

differences in traits and response style. Their model includes the multidimen-

sional random coefficients multinomial logit model of Adams et al. (1997) as a

special case. Their model applies to a very different application (polytomous

items) rather than the present model for multiple-choice items.

Bradshaw and Templin (2014) proposed a model for distractor-driven items

with a continuous dimension for the composite ability and dichotomous dimen-

sions corresponding to misconceptions, in which a misconception is present or

absent. It is a hybrid of an item response model and a cognitive diagnostic model.

It appears to require large sample sizes, as the simulation study included sample

sizes of 3,000 and 10,000, and the real data example included a sample of 10,039.

CAT based on the model remains a question for future research.

Early in our research on adapting MOCCA to a CAT approach, we researched

nominal and ordered category unidimensional IRT models assuming three poly-

tomous response categories: causal coherent, paraphrase, and elaboration. In

research on the nominal model, two trends emerged suggesting an ordered cate-

gory model. First, when we plotted empirical category response functions, the

paraphrase function was monotonically decreasing, the elaboration function was

a nonmonotone, single-peaked function, and the causal coherent was monotone

increasing (see Figure 2 in Liu et al., 2019). Second, in the nominal model, for

most items (but not all), the discrimination parameters for the categories were

ordered paraphrase < elaboration < causal coherent. These two findings led us to

reject the unidimensional nominal model in favor of a unidimensional ordered

category model, at least if one limits comparisons to unidimensional models. We

also compared fit measures for unidimensional models and a two-dimensional

tree model (Davison et al., 2017). Both fit reasonably well and fit measures were

not decisive. In thinking about dimensionality, we also studied whether incorrect

answers added information over and above that provided by correct answers in

the identification of students at-risk of not reaching proficiency on a statewide

exam (Biancarosa et al., 2019). In this earlier research, we decided on a two-

dimensional tree model partly based on fit measures but also because the tree

model provided a way to isolate and report the extra information provided by

incorrect answers in the second dimension, here called the PP dimension.

There are a number of possibly plausible CDM models for our data, including

hybrid CDM/IRT (e.g., Hong et al., 2015) and polytomous (e.g., Chen & de la

Torre, 2013; von Davier, 2008) models. However, they were designed as models

for items, not item response options, and may not perform well with the large

amount of missing data for some response options, as observed in response

vectors of MOCCA items.

Diagnostic Tree Model

920



We thus elected to implement and evaluate a tree model (De Boeck et al.,

2017; De Boeck & Partchev, 2012; Kim, 2022; Kim & Bolt, 2021; Partchev & De

Boeck, 2012). By adding or subtracting branches, tree models can be adapted to a

great many applications. De Boeck and colleagues (De Boeck et al., 2017; De

Boeck & Partchev, 2012; Partchev & De Boeck, 2012) have used tree models to

study item responses differing in their response times. However, a tree model can

also be used to study differences among correct answer response types or dif-

ferences among incorrect answer response types, as described in the following.

The Adaptive Diagnostic Tree Model

IRT trees are decision trees with a node for each decision and a latent dimen-

sion for each node that accounts for the probability of the decision at that node.

Figure 2 shows the tree diagram for a MOCCA item with a node for the choice

between the correct and incorrect alternatives and a second node for the choice

between incorrect alternatives if the correct choice is not made. The model for

each item posits two decision nodes with a dimension to account for the correct

decision and a second dimension to account for the choice of incorrect response

given an incorrect choice.

IRT decision trees share a common missing data problem. For decisions

beyond the first node, an item will provide information about that decision only

if some condition is satisfied. For instance, for our second node, the item will

provide information about a student’s probability of choosing a paraphrase over

an elaboration response only for items where the student selects an incorrect

response. Because of this missingness, a person can be located along the second

FIGURE 2. MOCCA two-level tree model.
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dimension with less precision. Given the loss of precision, a coarser level of

feedback is often used regarding that second dimension. That is, rather than

report a score, a classification is implemented. Adaptive classification (Wang

et al., 2021) is used to classify each person into one of the three categories along

the PP dimension based on their predominant incorrect response type (para-

phrase, elaboration, and indeterminate). Here, the PP dimension is viewed as

bipolar with students who only choose paraphrase incorrect responses at the

positive end, students who only choose elaboration at the negative end, and

students equally likely to choose either one in the middle (y ¼ 0Þ. That is, y ¼
0 is a cut-score that divides students with a probability greater than .5 of choosing

paraphrase for an item of average difficulty from students with a probability

greater than .5 of choosing elaboration for that same item. Given the missing

data (correct responses) with respect to the PP dimension, it was appropriate to

adopt a coarse classification, more commonly associated with CDMs, rather than

a refined score.

The simulation studies reported in the following examined the accuracy of

scores along the RC dimension, the accuracy of classification along the PP

dimension, and a trade-off between the two in adaptively selecting items for the

purposes of accurately locating the student along the RC dimension versus accu-

rately classifying the student along the PP dimension. To date, we have prior-

itized study of person parameter estimation to the neglect of item calibration, a

limit of our work thus far. The approach involved adaptive measurement along

the RC dimension followed by adaptive classification along the PP dimension.

A small live-testing pilot study was implemented to confirm some of the con-

clusions from the simulation studies.

Models

In tree models, an item response generates a small vector of response vari-

ables, not a single response variable. In the present case, there are two response

variables for each item j, Xij ¼ (X1ij, X2ijÞ: In Phase 1 of the adaptive testing,

items are selected because their first response variable X1ij will maximize Fisher

information along dimension RC. Once Phase 1 is completed, then in Phase 2,

items are chosen because their second response variable X2ij maximizes Fisher

information along dimension PP. The first response variable is the familiar

correct and incorrect response variable X1ij for person i (i ¼ 1, . . . , I) and item

j ( j ¼ 1, . . . , J):

X1ij ¼ 1 if the response of person i to item j is correct;

¼ 0 if the response of person i to item j is incorrect:
ð1Þ

For the first response variable of Equation 1, a three-parameter logistic (3PL)

model was assumed in which yRC:i is the person parameter locating person i

along the RC dimension. Let aRC:j; bRC:j; and c be the discrimination, difficulty,
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and guessing parameters (constrained to be equal across items), respectively, for

the RC dimension and item j. We constrained the guessing parameter because

when the guessing parameters were allowed to vary, in this and other data, the

parameters were tightly clustered around .24, there were some large standard

errors, and fit did not improve materially. The model for the RC dimension is the

familiar 3PL model:

p1ijðX1ij ¼ 1Þ ¼ cþ ð1� cÞ
exp½aRC:jðyRC:i � bRC:jÞ�

1þ exp½aRC:jðyRC:i � bRC:jÞ

" #
: ð2Þ

The second response variable for each item is X2ij:

X2ij ¼ 1 if person i chose the paraphrase incorrect response for item j;

¼ 0 if person i chose the elaboration incorrect response for item j;

¼ missing if person i chose the correct answer:

ð3Þ

X2ij was modeled using a unidimensional two-parameter logistic (2PL) model.

Because X2ij is defined only if X1ij ¼ 0, the probability on the left side of this

model is conditional on X1ij ¼ 0:

p2ijðX2ij ¼ 1jX1ij ¼ 0Þ ¼
exp½aPP:jðyPP:i � bPP:jÞ�

1þ exp½aPP:jðyPP:i � bPP:jÞ�
; ð4Þ

where yPP:i is the location of person i along dimension PP, and ðaPP:j, bPP:j) is the

vector of item parameters (discrimination and difficulty) for the PP dimension

and item j.

Formulation of the likelihood function requires an assumption of local inde-

pendence. For this likelihood function, it was assumed that, for any two items j

and j0, the variables X2ij and X2ij0 were independent after conditioning on yPP and

X1ij ¼ 0. This leads to the following likelihood function for the variable 2

response vector of person i, x2i ¼ ½X2i1; X2i2; . . . :; X2iJ �:

L2:i ¼
Yj¼J

j¼1

ðp2ijÞð1�X1ijÞX2ijð1� p2ijÞð1� X1ijÞð1�X2ijÞ: ð5Þ

Equation 5 has the form of the familiar likelihood function except that each

exponent is a product of ð1� X1ijÞ: The likelihood function can be maximized

by standard software that can properly handle the missing data of Equation 3.

Methods

Item Banks

The item parameters for the simulation study were those of the 360 items in

the computerized, but nonadaptive, edition of MOCCA (see Table A.6 in Online

Supplementary Material).1 A 3PL model (Equation 2) was specified for the RC
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dimension responses. For the RC dimension, the mean and standard deviation of

the discrimination (aRC:jÞ parameters were 1.899 and 0.394, and for the diffi-

culty (bRC:jÞ parameters, they were�0.217 and 0.440. Guessing parameters (cjÞ
were fixed at 0.24 for all items based on pilot analyses, in which most items had

lower asymptotes near that value.

The 2PL model in Equation 4 was specified for the PP dimension response

variable. For the PP dimension, the mean and standard deviation of the discrim-

ination parameters were 1.171 and 0.173, while those for the difficulty para-

meters were �0.351 and 0.558.

The distributions of the b parameters for both dimensions were centered just

below zero (see Figures A.1 and A.2 in the Online Supplementary Material),

while the majority of the b parameters fell within the range of �1 to 1. This

narrow distribution of b parameters led to highly peaked bank information func-

tions. The bank was more informative at the peak for the RC dimension than the

PP dimension due to higher a values for the former. However, the lower a values

for the PP dimension gave its bank information function a broader shape, leading

to more information at the extremes when compared to the RC dimension.

Person y Parameters

For the person parameters, y was simulated at 15 discrete values from �2.8 to

þ2.8 in increments of 0.4, separately for both dimensions; 500 simulated exam-

inees were specified at each y value for a total of 7,500 simulees. Although this

discrete and uniform distribution of y is not likely to occur in practice, y values

were simulated in this fashion to examine how the dependent variables varied

conditional on y. Because maximum likelihood estimates can be undefined for

some response vectors, yRC (and yPP ) was estimated with weighted maximum

likelihood (Guyer & Thompson, 2014; Warm, 1989).

Phase 1: RC Dimension

Independent variables. CAT requires two decision rules—an item selection rule

to decide which item to administer next and a stopping rule to decide when to

stop testing. There were two independent variables related to Phase 1: the max-

imum test length of Phase 1 and the cutoff value of the standard error of mea-

surement (SEM) stopping rule.

Maximum Phase 1 length. The maximum number of items that a student could

take in Phase 1 was varied. Three levels of this factor were studied: (1) 40 items,

(2) 30 items, and (3) 25 items. In all three conditions, testing in Phase 1 stopped

when the estimated SEM reached a specified value or when the number of items

reached the specified upper limit.
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Stopping rule: SEM. This stopping rule had two levels: 0.35 and 0.30. In the

first condition, testing in Phase 1 ended when the SEM reached 0.35 or below or

when the number of items reached the maximum Phase 1 length of 25, whichever

came first. In the second level of the factor, testing in Phase 1 ended when the

SEM reached 0.30 or below or when the number of items reached a maximum

Phase 1 length of 25, whichever came first. The estimated SEM was the observed

SEM from the simulee’s likelihood function.

Dependent variables. Three major dependent variables were examined for Phase 1.

Bias. The first was the average bias in the estimates of y along dimension RC:

BiasðyÞ ¼ 1

N

Xi¼N

i¼1

ŷRC:i � yRC:i

� �
; ð6Þ

that represents the average difference between estimated and generated locations

along dimension RC, ŷRC:i and yRC:i; for simulee i. Bias conditional on yRC was

also examined.

RMSE. The second dependent variable was the root mean square error:

RMSEðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xi¼N

i¼1

ŷRC:i � yRC:i

� �2

vuut : ð7Þ

RMSE was also examined conditional on yRC . Since there was only one RMSE

for each level of yRC , in the analyses of variance (ANOVAs) described in the

following, the analysis was based on the squared differences ŷRC:i � yRC:i

� �2

for each replication within each level of yRC .

Phase 1 Length. Finally, the mean number of items administered to the simulees

during Phase 1, that is, average Phase 1 length, was examined.

Results are reported in plots conditional on the RC dimension. Furthermore, a

mixed-design ANOVA framework was used to examine differences between the

independent variables for the repeated measures. In the design, for Phase 1, the

between-subjects variable was true (generated) RC dimension ability (yRC:i), and

the within-subjects variable was the manipulated independent variable (e.g.,

SEM). All ANOVAs were run as a two-way mixed design with yRC:i as a

between-subjects blocking factor and the independent variable (i.e., maximum

Phase 1 length or SEM stopping rule) as a within-subjects factor.

Because the sample size can be specified to be arbitrarily large in simulation

studies, significance test results are not reported. An unbiased estimate of effect

size, omega-squared (o2), was computed and reported. Effect sizes (o2) 0.01,
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0.06, and 0.14 reflect small, medium, and large effect sizes, respectively (Cohen,

1988, pp. 280–288).

Phase 2: PP Dimension

Independent variables. For Phase 2, there were three independent variables: item

selection rule, stopping rule, and upper limit on number of items.

Item selection rule: Fisher information versus weighted Fisher information. Two

item selection rule options were investigated. The first option involved choosing

the item with the largest Fisher information along dimension PP conditional on

the student’s current y estimate: Ij ŷPP:i

� �
. The second option evaluated a

weighted Fisher information. Because an item yields information about yPP only

if the student incorrectly answered the item, the second option involved weight-

ing the Fisher information along dimension PP by the probability that the student

would incorrectly answer the item:

I �j ŷPP

� �
¼ ½1� p1ijðX1ij ¼ 1Þ� � Ij ŷPP

� �
; ð8Þ

where I�j ŷPP

� �
refers to the weighed Fisher information for item j at the current

estimate on the PP dimension, ŷPP, for person i, p1ijðX1ij ¼ 1Þ refers to the

probability that person i with RC dimension estimate ŷRC will correctly answer

item j; and Ij ŷPP

� �
is the Fisher information for item j along the PP dimension at

ŷPP. This independent variable was a factor with two conditions, Fisher infor-

mation and weighted Fisher information.

Stopping rule: Confidence interval (CI) versus sequential probability ratio test

(SPRT) versus generalized likelihood ratio (GLR). Three stopping rules were

compared: a CI rule, the sequential probability ratio test, and the GLR test. As

this dimension was conceived, the zero point along the dimension divides per-

sons with a paraphrase PP from those with an elaboration PP.

For the CI rule, after each item, the algorithm computes the weighted max-

imum likelihood estimate of the person’s dimension PP location, ŷPP, and the

corresponding standard error, ŝðŷPPÞ, from the weighted likelihood function

(Warm, 1989). From these quantities, a 90% CI was computed: CI ¼
ŷPP+1:65 ŝ ŷPP

� �
. If the CI included 0, then the algorithm proceeded to select

and administer the next item. If the CI did not include 0, the testing stopped. If the

CI was below 0, the person was classified as having an elaboration PP. If the CI

was above 0, the person was classified as having a paraphrase PP.

The second stopping rule investigated was the SPRT (Thompson et al., 2012;

Wang et al., 2021). The SPRT begins by establishing an indifference region
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along the PP dimension (�.5, .5) about the cutoff separating paraphrase from

elaboration, 0 in the present case. Let UB be the upper bound for the indifference

region and let LB be the lower bound: LB < 0 < UB. Let Xi¼ (x2i1; x2i2; . . . ; x2ijÞ
be the person’s response vector after the jth item is administered. Two likeli-

hoods are computed: The first is the likelihood of Xi at ŷPP ¼ UB, and the second

is the likelihood at ŷPP ¼ LB. Let these two likelihoods be designated as

L(UBjXiÞ and L(LBjXiÞ. After the administration of each item, their ratio is

LR ¼ LðUBjXiÞ
LðLBjXiÞ

: ð9Þ

Two cutoffs, A and B, are then selected, such that 0 < A < B. If LR < A, testing

stops, and the person is classified as having an elaboration propensity process. If

LR > B, then testing stops and the person is classified as having a paraphrase

propensity process. If A < LR < B, then testing proceeds to the next item. For this

study, A ¼ 1/9 and B ¼ 9. In the present application, the SPRT will classify a

person as having a paraphrase propensity if the response vector is nine times

more likely at the upper bound than at the lower bound. It will classify a person as

having an elaboration propensity if the response vector is nine times more likely

at the lower bound than at the upper bound.

The third classification rule, the GLR test (Thompson et al., 2012; Wang et al.,

2021), employs three likelihoods, L(UBjXiÞ, L(LBjXiÞ, and L ŷPP:ijXi

� �
, where

ŷPP:i is the current maximum likelihood estimate of yPP. Once an item is admi-

nistered, a new estimate of ŷPP:i is obtained. The GLR equals the ratio in Equa-

tion 9 if LB < ŷPP:i < UB. If ŷPP:i � UB; then the algorithm computes

GLR ¼ LðŷPP:i jXiÞ
LðLBjXiÞ

: ð10Þ

The numerator of the ratio is the likelihood for yPP:i with the maximum likelihood in

the interval yPP:i � UB. If ŷPP:i � LB, the algorithm computes the ratio

GLR ¼ LðUBjXiÞ
L ŷPP:i jXi

� � : ð11Þ

The quantity in the denominator of the ratio L ŷPP:ijXi

� �
is the likelihood for the

yPP:i value with the maximum likelihood in the interval yPP;i � LB. Testing will

stop, and the person will be classified as having an elaboration PP, if GLR < A.

Testing will stop and the person will be classified as having a paraphrase PP if

GLR > B. Again, A ¼ 1/9 and B ¼ 9, the same values used for the SPRT. As we

have implemented the GLR (and the SPRT), those for whom the GLR never goes

outside the range 1/9 � GLR � 9 are left unclassified. In short, the classification

stopping rule factor was a factor with three levels: CI, SPRT, and GLR test.
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Stopping rule: Upper limit on number of items. Two different stopping rules for

the number of items were studied: an upper limit of 25 items for Phase 1 and an

upper limit of 15 items for Phase 2 (25 þ 15), versus an upper limit of 25 items

for Phase 1 and a total of 40 items for the whole test (25/40). These two stopping

rules differ in that, with the first rule, a person can never have more than 15 items

in Phase 2, whereas with the second, they could have more than 15 items in Phase

2 if they had fewer than 25 items in Phase 1. This independent variable was a

factor with two levels, here called 25 þ 15 and 25/40.

Dependent variables. For Phase 2, there were two dependent variables: classifi-

cation accuracy and Phase 2 length.

Classification accuracy. One of the major dependent variables in Phase 2 was

classification accuracy. For measuring classification accuracy, simulees with yPP:i

> 0 were classified as having a true paraphrase propensity, and simulees with yPP:i <

0 were classified as having a true elaboration propensity. Simulees with yPP:i ¼ 0

were classified as being members of neither type; therefore, they were not included

in calculations of classification accuracy. The proportion of simulees who were

correctly classified conditional on true yRC and yPP was computed.

Phase 2 length. This dependent variable was operationalized as the mean number

of items administered in Phase 2.

Results

Phase 1

Maximum Phase 1 length. The first test termination criterion was the upper bound

on the number of items administered (maximum Phase 1 length). The nonadaptive

computerized version of MOCCA included 40 items; therefore, with a goal of

decreasing the test length of the CAT, upper bounds of 40, 30, and 25 items were

compared. There was little effect of the maximum Phase 1 length on bias and RMSE

(o2 < 0:01 for both), but there was a moderate effect on average test length o2 ¼
0.06 (Figure 3a and b). (Results of the ANOVAs are in Appendix Table A.1 in

Online Supplementary Material.) Figure 3c shows that a maximum Phase 1 length of

25 items produced lower average Phase 1 length when compared to maximum Phase

1 lengths of 30 and 40 items for yRC levels between y¼�2.8 and y¼�1.2, as well

as between y ¼ 0.8 and y ¼ 2.8, with no effect for y between these values.

Stopping rule: Estimated SEM. The main and interaction effects for the stopping

rule resulted in o2 < :001 (results of the ANOVAs are in Online Supplementary

Appendix Table A.2). As shown in Figure 4a and b, a SEM of 0.30 did not result

in markedly more accurate results relative to a SEM of 0.35, despite slightly

Diagnostic Tree Model

928



increasing the average Phase 1 length at all but the highest true yRC levels

(Figure 4c).

Phase 2

Item selection rule: Fisher information versus weighted Fisher information.

When considering item selection rules, it was hypothesized that weighting the

Fisher information on yPP by the probability of an incorrect response (as deter-

mined by yRC) would increase the proportion of incorrect responses during Phase 2

and therefore improve the classification accuracy and average Phase 2 length of the

CAT. The magnitude of this effect would be dependent upon the underlying yRC

trait value. There were negligible effect sizes for item selection rule and its inter-

action with yRC and with yPP (o2 < 0:01; see Online Appendix Table A.3).

Figure 5a shows that weighted Fisher information item selection increased the

classification accuracy for yRC > 0, while also decreasing Phase 2 length for

FIGURE 4. Variation in dependent variables as a function of two standard error of

measurement stopping criteria (.30 and .35) conditional on yRC and maximum Phase 1

length of 25 items.

FIGURE 3. Variation in dependent variables as a function of maximum Phase 1 length

(25, 30, and 40 items) conditional on yRC and standard error of measurement ¼ 0.35.
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yRC > �0:4 (Figure 5b). This effect manifests as relatively uniform increases in

accuracy and decreases in Phase 2 length conditional on yPP (Figure 5c and d). In

Figure 5c, there is no data point for classification accuracy at yPP ¼ 0, because

classification accuracy was not defined when yPP ¼ 0—the true classification at

yPP ¼ 0 was neither paraphrase nor elaboration.

Stopping rule: CI versus sequential probability ratio versus GLR. For classifi-

cation accuracy, the effect sizes for stopping rule and its interactions were gen-

erally small (see Online Appendix Table A.4). Stopping rule had a moderate

effect on average Phase 2 length (o2 ¼ 0:06), and the interaction between

stopping rule and yRC had a small effect (o2 ¼ 0:02); the remaining effects

were <0.01.

FIGURE 5. Classification accuracy and average phase 2 length as a function of Fisher

information versus weighted Fisher information conditional on yRC (top) and yPP (bottom).
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Figure 6 presents the comparison of the three classification rules. The GLR

and SPRT had near identical accuracy for low yRC , but GLR had higher accuracy

for high yRC values (Figure 6a). Average Phase 2 length conditional on yRC

(Figure 6b) shows a similar pattern. At all yPP values, GLR had the best accuracy

(Figure 6c) and lowest average Phase 2 length (Figure 6d).

Stopping rule: Maximum Phase 2 length. Two options were considered for the

upper limit on Phase 2 length. The first, labeled 25þ 15, was a hard maximum of

15 items in Phase 2; the second, labeled 25/40, allowed more than 15 items in

Phase 2 if fewer than 25 items were administered in Phase 1, as long as the

combined number of items administered was 40 or less. All maximum length

effects resulted in o2 < 0.01 (see Online Appendix Table A.5).

Figure 7 shows that because the 25/40 rule allowed for the possible adminis-

tration of more than 15 items in Phase 2, it led to slightly increased Phase 2

FIGURE 6. Classification accuracy and average Phase 2 length as a function of classi-

fication stopping rule conditional on yRC ðtopÞ and yPP ðbottomÞ.
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lengths (Figure 7b and d), especially for yRC and yPP around zero, and slightly

better classification accuracy (Figure 7a and c).

Real Data Example

Following the simulation studies, a pilot version of the MOCCA CAT was

administered to 123 third-grade students. There were a few key differences

between the pilot administration and the simulation conditions due to (a) devel-

opments that occurred between the two studies and (b) various practical con-

siderations for the particular application. First, the pilot administration employed

an updated item bank totaling 591 items. The added items were on average more

difficult along Dimension RC (Mnew ¼ 0:14 vs. Morginal ¼ �0:22) and more

discriminating along dimension PP (Mnew ¼ 1:51 vs. Morginal ¼ 1:17) than the

original items, both of which were goals during the development of the new

FIGURE 7. Classification accuracy and average Phase 2 length as a function of maximum

Phase 2 length conditional on yRC (top) and yPP (bottom).
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items. Second, because MOCCA is primarily intended to assist teachers with

providing individualized instruction, for struggling readers in particular, only stu-

dents with ŷRC < 0 were administered Phase 2 of the MOCCA CAT and given a

classification along dimension PP.2 The pilot sample turned out to be relatively

high-performing, and so only 20 students were administered Phase 2. Third, the

starting yRC value for the CAT was set to yRC ¼ �0:20 based on the average value

for third graders from a previous sample who were administered a nonadaptive

MOCCA. Finally, the very first item was randomly selected out of the five most

informative items at yRC ¼ �0:20 to minimize overexposure of the first item.

To compare the precision of the real-data and simulation-data yRC estimates,

Figure 8 shows the observed SEMs from the real data and the average SEMs at

each yRC level in the simulation data. A smoothed line was fit to the real-data

SEM data points by locally estimated scatterplot smoothing (LOESS) to facilitate

comparison with the average SEMs of the simulated data. The real-data SEMs

are consistent with the simulation results in the center of the yRC continuum. The

results appear to differ toward the extremes of the yRC range, but because there

were only three students with ŷRC < �0:7 and only five with ŷRC > 1:6, the

typical observed SEMs in these ranged are not well estimated.

Figure 9 displays a comparison in the real-data phase lengths and simulation-

data average phase lengths, for both Phase 1 (Figure 9a) and Phase 2 (Figure 9b).

FIGURE 8. Real-data standard error of measurements (SEMs) and average simulation-

data SEMs, conditional on yRC.
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The Phase 1 lengths are shown as a function of yRC , while the Phase 2 lengths are

shown as a function of yPP. Smoothed lines are again fit to the real data by

LOESS. The real-data Phase 1 lengths are shorter than the simulation-data aver-

age Phase 1 lengths below yRC ¼ �2 and above yRC ¼ 2. Because there were

only 20 students who were administered Phase 2, the typical Phase 2 lengths are

not well estimated. However, it appears that the real-data Phase 2 lengths are

shorter than the simulation-data average Phase 2 lengths for yPP not near zero.

Both of these results were expected due to the addition of items with higher yRC

difficulties and larger yPP discriminations to the item bank used in the real-data

pilot study.

It is more difficult to compare the simulation-data and real-data classifica-

tion results because the primary outcome, classification accuracy, relies on

knowledge of the true classification, which is not known in real data. Further-

more, only 20 students were administered Phase 2, which is too small a sample

size to make meaningful inferences about the classification performance. Of

the 20 students, 11 were classified as paraphrase, nine as elaboration, and zero

as indeterminate. The addition of informative items for dimension PP to the

bank likely facilitated these high classification rates in the pilot study. Further

investigation is needed to determine whether all students who are classified as

paraphrase or elaboration have a practically meaningful propensity toward that

particular response processes.

Overall, the real-data results are consistent with the simulation results, while

also reflecting improvements in the item bank. The pilot version of MOCCA

CAT appears to measure students with the required precision on dimension RC,

achieve desirable test lengths for the majority of students, and successfully

classify struggling readers along dimension PP.

FIGURE 9. Real-data Phase 1 and 2 lengths and average simulation-data phase lengths,

conditional on yRC (for Phase 1) or yPP (for Phase 2).
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Discussion

The properties of the item bank can have a material effect on the results of

CAT simulation studies, so they are frequently based on real item banks. The real

items forming the basis for our simulation studies have a notable feature: On both

dimensions, item difficulty parameters are concentrated around the center of the

dimension, y ¼ 0, with relatively few items toward the extremes of the distri-

bution, an item bank configuration that is not optimal for the implementation of

CATs. This limited variation in item difficulties likely resulted from tight item

writing rules constraining item features. The results of this study might not

generalize to item banks with more variation in item difficulty. Rather, they are

most applicable to item banks composed of items with information functions

similar that that used in this study.

A second major feature involves the items on dimension PP. The average item

discrimination along dimension PP was lower than that for dimension RC.

Furthermore, an item provides information about the PP dimension only when

the item is answered incorrectly. For people with very high scores, there are very

few incorrect answers from which to infer their location along dimension PP.

This led to an interaction whereby classification along dimension PP was more

accurate for persons low on dimension RC. This feature, limited information for

dimensions beyond the first, is likely a characteristic of tree models. In our

application, the classifications are more likely to be used for students low on

RC, because they are the ones most in need of supplemental intervention. Con-

sequently, the low end of RC is where classification accuracy is most needed.

Our initial simulation studies did include a simulated item bank with a wider,

less peaked distribution of item difficulties and a less peaked information func-

tion. This less peaked, simulated item bank improved both measurement and

classification accuracy. Because our item writers were able to improve the real

item bank but not by as much as we had hoped, we have only reported the results

for the narrower item bank more nearly representative of our real item bank.

In Phase 1, two independent variables were examined: maximum number of

items (40, 30, and 25) and stopping criterion (.35 vs. 30). Both variables were

examined independently rather than in a fully crossed design, with yRC function-

ing as a blocking factor. For the maximum-number-of-items independent vari-

able, the effect size for maximum number of items and its interaction with the

blocking factor were both small to moderate after controlling for yRC . The effect

of increasing the maximum number of items grew smaller and smaller as the

number of items increased. There was little main effect or interaction of maxi-

mum test length on bias or RMSE beyond 25 items, controlling for yRC . Not

surprisingly, increasing the maximum number of items had a larger effect on the

actual number of items taken, particularly at the extremes of dimension PP, but

even that main effect was only of moderate size. These results do not suggest that

test length is unimportant but increasing maximum test length beyond
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25 increased test length at the extremes with little improvement in bias or RMSE.

In a complex, multiphase test, beyond some number of first phase items (25 in the

present case), testing time might be better spent on the second phase due to

diminishing returns of accuracy with additional items.

In examining the effect of the SEM stopping rule, the total number of items

was limited to 25. Results were similar for the stopping rules (.30 vs. .35) as for

the maximum number of items. There was little effect of stopping rule or its

interaction on bias or RMSE after controlling for yRC . There was a somewhat

larger effect on actual number of items taken, particularly at the extremes of yRC :
Once the SEM reached .35, it improved only very slowly with additional items.

At the extremes, it took more items to reach a SEM of .30 with little improvement

in bias or RMSE, due (in part) to the nature of the item bank.

Phase 2 focused on two independent variables, item selection rule and clas-

sification rule. Classification accuracy and test length were compared after vary-

ing the decision rule for item selection, Fisher information and weighted Fisher

information. The weighted Fisher information effect was in the predicted direc-

tion—higher classification accuracy and shorter test length—but the effects were

small after controlling for yRC or yPP. Although the effects were small, weighted

Fisher information increased classification accuracy while slightly decreasing

average test length for those with yRC > 0.

For the second independent variable, the GLR performed best with the CI

performing least well. Effect sizes were not large. GLR both increased classifi-

cation accuracy and shortened test length. What is notable about the PP dimen-

sion results is that there was no trade-off between classification accuracy and test

length—the independent variable conditions that maximized classification accu-

racy (weighted Fisher information and GLR) also decreased test length.

In tree-based sequential multidimensional assessment, CAT offers a way to

minimize testing time at the first stage to maximize testing time at later stages.

That is, there comes a point where adding additional items improves accuracy

along dimension RC only marginally, making additional testing time along

dimension RC of limited value. Similarly, with a SEM stopping rule, there will

likely be a value of SEM after which accuracy improves too slowly to warrant

administering additional items in the first phase. In other applications of similar

tree models, simulation research will likely be needed to identify the trade-offs

between these test length limits and SEM stopping rules beyond which improve-

ments in accuracy come too slowly. These points will vary depending on the

information functions of the item bank.

The results for dimension PP identified a classification rule (GLR) and an item

selection function (weighted Fisher information) that both improved classifica-

tion accuracy and decreased test length, although not by a large amount and not

by the same amount at every value of yRC and yPP. In tree models, the informa-

tion function of the testing phases may often be lower for later phases than in

Phase 1, either because items have lower discriminations or because not all items
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administered provide information about dimensions underlying later nodes.

Therefore, classification, rather than measurement, may be a more realistic goal.

As compared to the alternatives considered here, the GLR classification rule and

weighted Fisher information were superior in terms of both classification accu-

racy and test length.

Psychometrics tends to rely heavily on simulated data research. Seldom is

there an attempt to confirm the findings in simulation research with real data.

This study provided a limited opportunity to do so. The real data mirrored the

major trends of the simulation with some exceptions that can largely be explained

by improvements to the item bank that were completed only after the simulation

study was completed. The similarities between the trends in the real and simu-

lated data serve to increase confidence in decisions based on the simulated data.

Testing for instruction and diagnosis, rather than rank and sort, requires a

major rethinking of testing. It must start with a theory of instruction and diag-

nosis. Our theory has guided development in several ways. First, because the

theory involves identifying struggling readers, the instrument includes a dimen-

sion for identifying struggling readers. Second, answer alternatives are designed

to facilitate the identification of different types of struggling readers. Third,

multiple forms and a large item pool have been developed for progress monitor-

ing, so that a student can take the test multiple times without encountering any

item more than once. This, in turn, has led to a statistical model that includes a

dimension of overall RC to identify struggling readers and a second dimension to

classify struggling readers for the purposes of individualizing additional services.

Development of items, response options, and scores have all been guided by a

theory of instruction and diagnosis, psychometric theory, statistical simulation

results, and real data from several pilot studies. The result is an RC assessment

that will, hopefully, prove useful as an outcome measure, as a screening tool, as a

progress monitoring instrument, and as an aid for individualizing additional

services to struggling readers.
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