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ABSTRACT 
 
The aim of this study was to investigate the extent to which pre-service teachers' belief in academic 
engagement, student burnout, and proactive strategies predicts academic self-efficacy through machine 
learning approach. The study group consisted of 446 pre-service teachers at Sivas Cumhuriyet University, 
Faculty of Education. The Academic Self-Efficacy Scale, Academic Involvement Scale, Maslach Burnout 
Inventory-Student Scale, and Proactive Strategy Scale were used for data collection. In data analysis, two 
different machine learning approaches were used; linear regression and artificial neural networks (ANNs). 
As a result of the regression analysis, a positive, and significant relationship was found between the 
academic self-efficacy of pre-service teachers, their academic engagement, and proactive strategy. Also, 
there was a negative and significant relationship between pre-service teachers' academic self-efficacy and 
academic burnout. Considering the results of the regression analysis, academic engagement, academic 
burnout, and proactive strategy together explained 38% of academic self-efficacy. When the ANNs results 
were examined, it was seen that these three variables explained 77% of academic self-efficacy. Therefore, 
it was understood that ANNs perform better than multiple regression in predicting academic self-efficacy. 
 
Keywords: Academic self-efficacy, academic engagement, student burnout, proactive strategies, multiple 
regression, artificial neural networks. 
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INTRODUCTION 
 
The expeditious development in data analysis in the last 
years has made it important how to extract valuable 
information from huge volumes of data (Xu et al., 2021). 
Artificial intelligence (AI) applications that imitate human 
characteristics such as learning, perception, problem-
solving, and reasoning have been rapidly applied in many 
areas in recent years (Abdallah et al., 2020). Artificial 
neural networks (ANNs), an important AI technique, have 
attracted great attention due to their features such as 
processing big data, mapping relationships, and 
predicting outcomes (Wang et al., 2018). ANNs use 
probabilities of all interactions between predictor 
variables to better predict the outcome variable 
(Cascallar et al., 2015) and offer us the opportunity to 
obtain a prediction even when there is a nonlinear 
relationship between independent, and dependent 
variables (Somers and Casal, 2009). ANNs also enable 

“the analysis of vast volumes of information, and the 
construction of predictive models regardless of the 
statistical distribution of the data” (Garson, 2014).  
However, since more familiar analyses such as multiple 
linear regression are used in educational research, the 
use of ANNs has not yet become widespread 
(Bonsaksen, 2016).  
 
 
Theoretical framework  
 
Academic self-efficacy 
 
Self-efficacy means to one’s views about the ability to 
deal with certain academic tasks (Owen and Froman, 
1988; Sharma and Nasa, 2014). This definition has two 
important  aspects. First, self-efficacy is one's belief in his 
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ability and therefore may differ from one's actual ability in 
a particular subject. The second important aspect is the 
idea that individuals use these judgments while trying to 
reach some goals (Artino Jr, 2012).  

According to Bandura (1977), personal efficacy 
expectations are based on four sources: Performance 
achievements, vicarious experience, verbal persuasion, 
and emotional arousal. Performance achievements are 
specifically based on personal experience. Achievements 
raise mastery expectations; repeated failures bring them 
down, especially at the beginning of the performance. 
People are not affected by their experience as the only 
source of information about their level of self-efficacy. 
Many expectations are derived from indirect experiences. 
By observing the performance of others, the individual 
believes that if others can do it, he or she can do it. 
Bandura (1977) called this vicarious experience. Indirect 
experience is less reliable information about one's 
abilities as it is based on inferences from social 
comparison. Verbal persuasion is based on suggestions. 
People may believe that, through suggestions, they can 
successfully deal with things that have circumvented 
them in the past. Since the efficacy expectations 
promoted in this way are not empirically grounded, they 
are weaker than self-efficacy perceptions from one's 
achievements. Emotional arousal is another resource that 
can affect perceived self-efficacy in dealing with problems 
encountered. Because high arousal often leads to failure, 
people do better when there are no aversive stimuli 
around. 

People with a strong sense of competence overcome 
difficult tasks, set challenging goals for themselves, and 
do not give up on these goals. When faced with failure, 
they refocus on the task. On the contrary, people with low 
proficiency levels avoid difficult tasks, are easily affected 
by all kinds of negative situations when faced with difficult 
tasks, and give up quickly. When faced with failure, they 
lose faith in their abilities (Bandura, 1994; Schunk, 1991). 
Students with a high sense of self-efficacy use more 
cognitive strategies that enable them to learn effectively, 
and use their time and learning environments more 
consciously in organizing and evaluating their work 
(Chemers et al., 2001). Therefore, it is understood that 
one of the most important factors affecting the success of 
students in academic life is self-efficacy (Hayat et al., 
2020). 

General self-efficacy is broadly divided into two 
categories: academic self-efficacy and cognitive ability 
(Musa, 2020). Academic self-efficacy is defined as 
students' belief in their ability to complete a given 
academic task (Chemers et al., 2001; Khan, 2013; 
Solberg et al., 1993; Tsai and Tsai, 2010), shown to be a 
considerable factor in academic achievement (Khan, 
2013), student success (Elias and Loomis, 2002), and 
engagement in schools (Sharma and Nasa, 2014). 
Academic expectation beliefs have two dimensions. 

Academic outcome expectations are one's belief about 
what results of certain behavior will lead to, and 
academic efficacy expectations are a student's opinions 
about his capacity to demonstrate the required behaviors 
to achieve a certain goal (Sharma and Nasa, 2014).  
 
 
Academic engagement 
 
Engagement refers to the level of a person's behavioral, 
and emotional involvement in a task or activity (Reeve et 
al., 2004). Finn and Voelkl (1993) expressed involvement 
as "the youngster's attending school, and class, paying 
attention to the teacher, and taking part in curricular 
activities by responding appropriately to directions, 
questions, and assignments". 

Astin (1999) defined academic engagement as the 
physical and spiritual energy that the student expends in 
school life. And he described a highly engaged student 
as someone who spends a much time on campus, 
communicates frequently with academics and faculty 
staff, and their friends on campus, and attends student 
organizations. In contrast, he defined an uninvolved 
student as an individual who spends little time on 
campus, does not establish frequent relationships with 
others, and does not participate in extra-curricular 
activities. 

Astin (1999) was influenced by the research on the 
effect of student involvement on dropping out and 
researched to examine the participation phenomenon 
more deeply. As a result of his study, he identified 
several forms of student involvement: “place of 
residence, honors programs, undergraduate research 
participation, social fraternities, and sororities, academic 
involvement, student-faculty interaction, athletic 
involvement, and involvement in student government”. He 
defined academic engagement as the complex of time 
students spend studying, how hard they study their 
studies, their degree of interest in work areas, and good 
work habits. 

Studies on academic involvement (Appleton et al., 
2008; Fredricks et al., 2004; Linnenbrink and Pintrich, 
2003; Sakurai and Pyhältö, 2018) divided academic 
involvement into three categories: behavioral, cognitive, 
and affective-emotional. Behavioral engagement is about 
school related-activities such as classroom learning and 
academic (Fredricks et al., 2004). Linnenbrink and 
Pintrich (2003) described behavioral involvement as 
students' hard work on a given task, persistence when 
faced with difficulties, and asking for help from peers or 
teachers. Behavioral engagement consists of students' 
participation in various educational activities by 
interacting with friends and academics (Sakurai and 
Pyhältö, 2018). Cognitive involvement, which refers to 
taking responsibility for learning, includes being “willing to 
exert   the   effort   necessary  for  the  comprehension  of 
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cognitively complex ideas, and the acquisition of difficult 
skills” (Fredricks, 2011, p. 328). The fact that students 
are physically active, and participate in learning activities 
does not always guarantee that real learning has 
occurred. Even if some students are listening to the 
teacher, they may not be mentally thinking about the 
material being taught. Or, learning may not occur even if 
some students make the behavioral, and cognitive effort. 
For this reason, Linnenbrink and Pintrich (2003) stated 
that real cognitive involvement can provide a window into 
the nature of students' questions, students' replies to 
teacher questions, and students' sharings to discussions 
in class. Emotional involvement refers to the good, and 
bad feelings of the student towards school, teacher, and 
activities. While students may experience good feelings 
such as happiness, enthusiasm, and interest in the 
educational environment, they may also develop bad 
emotions such as boredom, and anxiety (Fredricks, 
2011). 

Astin (1984, p. 298) stated that "the quality, and 
quantity of student involvement" directly affects the level 
of learning and development of the student. Students 
who are highly engaged in academic activities have good 
academic marks (Heikkilä and Lonka, 2006). High 
academic involvement ensures a high internalized sense 
of identification (Finn and Voelkl, 1993). In addition, low 
academic involvement can have negative effects such as 
disruptive behavior in the classroom, truancy, 
absenteeism, dropping out of school, and juvenile 
delinquency (Finn, 1989). 

Various researches have explained that higher 
involvement is related to higher academic success (Astin, 
1993; Henrie et al., 2015; Ogbu, 2003; Smerdon, 1999), 
an increase in factual knowledge, and a range of general 
cognitive and intellectual skills (Pascarella and Terenzini, 
2005), a reduced likelihood of dropout (Henrie et al., 
2015; Ogbu, 2003; Smerdon, 1999). 

The more a student is involved in the learning process, 
the more he learns and the better his performance, the 
higher his self-efficacy will be (Linnenbrink and Pintrich, 
2003). Individuals with strong efficacy beliefs are more 
likely to be persistent while performing a task, and to 
work without giving up when faced with difficulties. 
Rather, individuals with a weak perception of efficacy 
may not complete their studies successfully by giving up 
easily when faced with difficulties, even if they have the 
knowledge, and skills to perform the task (Linnenbrink 
and Pintrich, 2003).  
 
 
Burnout  
 
College students may experience stress about the 
deficiency of quality time they spend with their families, 
and peers, their future career expectations, and the 
effectiveness of their work (Campos et al., 2011), and this 

stress can create a sense of burnout over time. Burnout 
syndrome has been defined as the reaction to the stress 
encountered in the profession in certain occupational 
groups (Morales-Rodríguez et al., 2019). Various authors 
agree in pointing to Herbert Freudenberger, as the first to 
speak of burnout, (“being burned out”, “consumed”, “off”), 
and to Cristina Maslach, as the one who established a 
line of research on burnout (Caballero et al., 2010). 
Burnout is a psychological syndrome that occurs in the 
areas of emotional exhaustion, depersonalization, and a 
decrease in personal achievement in persons who work 
by interacting with others (Maslach et al., 1996). 
Emotional exhaustion that makes the individual feel 
psychologically intolerant is an important sight of burnout 
syndrome and refers to the individual's negative, cynical 
attitude toward others. Another sight of burnout syndrome 
is depersonalization. The development of 
depersonalization seems to be associated with emotional 
exhaustion. The third sight of burnout syndrome, the 
decrease in personal achievement, means the disposition 
of the person to evaluate himself negatively about his 
work (Maslach et al., 1996). 

Like those working in any profession, students work 
long hours, prepare assignments, and have to submit 
these assignments on a certain date. Therefore, 
university students are exposed to burnout, and its 
negative effects (Law, 2007). In addition, students can 
experience work stress due to overcrowded classrooms, 
exams, subtasks, extracurricular activities, excessive 
academic demand, perceived workload, time, and 
resource constraints (Pala, 2012). Academic burnout is 
the attitude that negatively affects the educational 
process, and is affected by anxiety, which reduces the 
energy and attention required for cognitive tasks 
(Pamungkas and Nurlaili, 2021). Academic burnout, like 
occupational burnout, can be divided into three 
dimensions: exhaustion, cynicism, and academic 
inefficacy (Schaufeli et al., 2002). 

While some students are sufficient and successful in 
their academic studies, some students cannot produce a 
solution when they encounter a problem in their 
academic studies or think that they will not succeed and 
begin to show avoidance behaviors (Caballero et al., 
2010). Students who experience burnout lose their 
motivation, which causes them not to attend classes, and 
not to do their homework, and also negatively affects 
their academic success (Sugara et al., 2020). To cope 
with this, students can use reactive or proactive 
strategies. 
 
 
Proactive strategies 
 
People often recognize the clues that suggest a problem, 
and take steps to deal with it before it arises. Proactive 
behaviour  can be defined as people anticipating potential 
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problems and stressors and taking action to prevent them 
(Aspinwall and Taylor, 1997). Proactive coping differs 
from traditional coping approaches in terms of features 
such as being future-oriented rather than compensating 
for past losses, and losses, having goal management and 
having more positive motivation (Greenglass and 
Fiksenbaum, 2009).  

Aspinwall and Taylor (1997) defined the proactive 
coping process as five stages: The first stage of proactive 
coping is the creation of resources, and skills before any 
stressor (resource accumulation). At this stage, stressors 
are identified, and the person is prepared to manage the 
chronic burden as much as possible. The second stage is 
attention recognition. Recognition refers to the ability to 
foresee the problem situation. In the third stage, initial 
appraisal, evaluations are made about the current state 
of the problem situation. The fourth stage is preliminary 
coping. Successful proactive coping includes both 
cognitive and behavioral activities such as planning or 
taking action. The final stage in the proactive coping 
process is eliciting and using feedback. It refers to the 
use of feedback on the development of the stressful 
problem situation, the effects of the person's interventions 
on the stressful event, and whether additional coping 
efforts are required. 

In recent years, interest in the role of students' beliefs 
in the learning process has increased in studies 
conducted in educational settings, and the concept of 
student self-efficacy, one of these issues, has attracted 
the attention of many researchers. In these researches, 
academic self-efficacy has also been found to be an 
important predictor of academic performance and 
achievement (Basith et al., 2020; Elias and Loomis, 2002; 
Ferla et al., 2009; Kırmızı, 2015; Verešová and Foglová, 
2017).  Academic self-efficacy has also been related to 
some non-academic variables, one of which is prosocial 
behavior (Bandura et al., 1996), academic self-esteem 
(Ahmadi, 2020), academic motivation (Akomolafe et al., 
2013; Malkoç and Kesen Mutlu, 2018), academic 
procrastination (Malkoç and Kesen Mutlu, 2018), 
academic self-concept (Akomolafe et al., 2013; Ferla et 
al., 2009), participation in the study, academic burnout 
(Akter,  2021;  Charkhabi  et  al.,  2013;  Jenaabadi  et 
al., 2017; Naderi et al., 2018; Özhan, 2021; Rahmati, 
2015; Sabharwal et al., 2021), the quality of learning 
experience (Charkhabi et al., 2013). This study has tried 
to contribute to the literature by trying to determine the 
relationship between the concept of academic self-
efficacy and academic participation, burnout, and 
proactive strategy. 
 
 
Aim of the study 
 
The main purpose of this study is to investigate the 
relationship between pre-service teachers' academic 

engagement, student burnout, proactive strategies, and 
their academic self-efficacy through different machine-
learning approaches (multiple linear regression and 
ANNs). In addition, the sub-problem of the research is to 
what extent these variables predict academic self-
efficacy. 
 
 
METHODOLOGY 
 
Sampling  
 
The research group consisted of 446 pre-service 
teachers attending Sivas Cumhuriyet University Faculty 
of Education, Department of Mathematics Teaching (46 
students, 10.3%), Guidance, and Psychological 
Counseling (79 students, 17.7%), Science Education (24 
students, 5.4%), Social Studies Teaching (55 students, 
12.3%), Classroom Teaching (87 students, 19.5%), 
Preschool Education (39 students, 8.7%), Turkish 
Language Teaching (80 students, 17.9%), and English 
Language Teaching (36 students, 8.1%) in the 2020–
2021 academic year. 322 (72.2%) were female, and 124 
(27.8%) male. 102 (22.9%) of the students were seniors, 
118 (26.5%) were in the second grade, 130 (29.1%) were 
in the third grade, and 96 (21.5%) were in the fourth 
grade. 
 
 
Instruments  
 
The Academic Self-Efficacy Scale, Academic 
Involvement Scale, Maslach Burnout Inventory–Student 
Scale (MBI-SS), and The Proactive Strategy Scale were 
used for data collection. 
 
 
Academic self-efficacy scale 
 
The Academic Self-Efficacy Scale prepared by Owen and 
Froman (1988) was adapted into Turkish by Ekici (2012). 
The authors conducted a validity and reliability study of 
the scale on 683 university students. The scale consists 
of three sub-dimensions, namely social status, cognitive 
practices, and technical skills, and 33 items. The results 
of the validity and reliability studies carried out by the 
researchers showed that the scale can be used in 
Turkish conditions. 

The construct validity and reliability calculations of the 
scale were made again with the data of this research. 
CFA results from this research were: (χ2/df = 3.45; 
RMSEA = 0.082; CFI = 0.80; GFI = 0.78; AGFI = 0.75; 
NFI = 0.78; SRMR = 0.082; RMR = 0.088). The Cronbach 
Alpha reliability coefficient for the overall scale was found 
to be 0.82. These results show that the validity and 
reliability values of the scale are high. 
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Academic involvement scale 
 
The scale originally developed by Huang (2007) was 
adapted into Turkish by Buluş (2015). For the reliability 
and validity study, the researcher applied the scale to 336 
undergraduate students. Results showed that the factor 
structure of the Turkish version of the AIS was consistent 
with the original, and therefore suitable for use by Turkish 
candidates.  

The construct validity and reliability calculations of the 
scale were made again with the data of this research. 
CFA results from this research were: (χ2/df = 2.60; 
RMSEA = 0.060; CFI = 0.98; GFI = 0.99; AGFI = 0.97; 
NFI = 0.96; SRMR = 0.033; RMR = 0.025). The Cronbach 
alpha reliability coefficient for the overall scale was found 
to be 0.72. These results show that the validity and 
reliability values of the scale are high. 
 
 
Maslach burnout inventory–student scale (MBI-SS) 
 
The MBI-SS, developed by Schaufeli et al. (2002), was 
adapted into Turkish by Çapri et al. (2011). The authors 
conducted a validity and reliability study of the scale on 
782 university students. As a result of confirmatory factor 
analysis (CFA), a three-factor structure consisting of 13 
items was obtained (χ2/df = 2.87-5.94; RMSEA, .049-
.080; TLI = .97-.93; CFI = .98-.95; GFI = .97-.93; AGFI = 
.95-.90; SRMR=.037-.048). Item-total test correlations 
were calculated, and correlation values of sub-factors 
were found to vary between .32, and .69. While the 
Cronbach Alpha internal consistency coefficients 
calculated to determine the reliability of the scale were 
found as .76, .82, and .61, respectively, and the test-
retest reliability results were found as .76, .74, and .73. 
As a result, it was understood that the scale had a 
sufficient level of the item-total test correlation coefficient, 
internal consistency, correlation coefficient with similar 
scales, score stability, and construct validity obtained as 
a result of the test-retest reliability coefficient.  

The construct validity and reliability calculations of the 
scale were made again with the data of this research. 
CFA results from this research were: (χ2/df = 3.61; 
RMSEA = 0.077; CFI = 0.96; GFI = 0.93; AGFI = 0.89; 
NFI = 0.95; SRMR = 0.056; RMR = 0.090). The Cronbach 
Alpha reliability coefficient for the overall scale was found 
to be 0.84. These results show that the validity and 
reliability values of the scale are high. 
 
 
Proactive strategy scale 
 
The Proactive Strategy Scale was developed by 
Pietarinen et al. (2013). The scale consists of 7 items and 
two sub-dimensions (self-regulation and co-regulation). 
Items  are  scored  on  a 7-point Likert-type scale ranging  

from totally disagree (1) to totally agree (7). 
The scale was adapted to Turkish by the researcher. 

The researcher translated the scale into Turkish and 
then, two linguists checked it. After, it was evaluated by 
experts in terms of conformity to Turkish, content, 
assessment, and evaluation. The scale, which made 
some minor adjustments in line with the opinions 
received, was applied to 230 university students to 
construct validity, and reliability studies. CFA was 
performed to verify the constructed structure. The results 
of the CFA showed that the scale is one-dimensional like 
its original version. The scale consists of 7 items. The 
CFA results for the models were: (χ2/df = 3.65; RMSEA = 
0.078; CFI = 0.98; GFI = 0.97; AGFI = 0.94; NFI = 0.97; 
SRMR = 0.044; RMR: 0.081). These fit indexes showed 
that the model provided a good fit to the data. The 
Cronbach Alpha reliability coefficient for the overall scale 
was found to be 0.81. The results obtained showed that 
the scale can be used in Turkish conditions. 
 
 
Data analyses 
 
The data obtained from the scales were analyzed using 
SPSS version 26 when doing regression analysis. First, 
correlation analysis was performed to determine the 
relationship between the variables. Then, a multiple 
regression analysis was performed. To perform multiple 
linear regression analysis, first of all, the necessary 
assumptions for the regression analysis were checked 
and met. As seen in the Pearson correlation analysis in 
Table 1, normality, and linearity were met, and there was 
no homoscedasticity. Since the Mahalanobis distance of 
6 data exceeded the limit (greater than 16.27), these data 
were determined as outliers and were excluded from the 
data set. Multiple regression analysis was performed with 
440 data. Multicollinearity was checked by variance 
inflation factor values (lower than 10), tolerance (lower 
than 1), and condition index (lower than 24). These 
indicate no strong correlation between academic self-
efficacy, academic engagement, student burnout, and 
proactive strategies. Finally, the Durbin-Watson statistic 
was 1.12, indicating no residual error. 

The computer-aided software program MATLAB R2013 
(demo) was used for the ANNs calculations.  
 
 
Artificial neural network (ANNs) modeling 
 
ANNs were used to model the relationship between the 
variables in the study, and accordingly the estimation of 
the dependent variable (academic self-efficacy). A simple 
ANNs architecture is presented in Figure 1. Accordingly, 
inputs are x1, x2,… xn, and the weight coefficients of each 
input are Wk1, Wk2,… Wkn. “Here, xn represents the 
input  signals, and Wkn represents the weight coefficients 
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Figure 1. ANNs cell model. 

 
 
 
of these signals. The core gives the weighted sum of all 
input signals. The results obtained from the thresholding 
function of the network are shown with Y” (Yildiz, 2017). 

Neuron layers are classified as input, hidden, and 
output. The input system, which receives external 
information such as sensory receptors, is formed from 
neurons in the input layer. To transmit information, 
neurons in the hidden layer simulate a biological neural 
network. The neurons in the output layer determine the 
decision output (Xu et al., 2021).   

According to Adamovic et al. (2017), “independent 
input parameters are generally selected for ANNs 
modeling to establish their nonlinear relationship with 
output parameters. However, the potential correlations 

among the input parameters can significantly affect the 
modeling performance”. In this study, academic 
engagement, academic burnout, and prosocial behavior 
were determined as inputs and academic self-efficacy as 
output. The simple architecture of the back propagation 
algorithm of the ANNs is given in Figure 2. 

In ANNs model establishment, it is necessary to 
optimize the number of hidden layer nodes. In the 
reviewed studies, hidden layer nodes were assigned at 
different ranges (Xu et al., 2021). Models 3-3-1-1, 3-4-1-
1, and 3-5-1-1 were established in this study. The most 
suitable model was selected by statistical analysis for 
each model. The ANNs structure used in the study is 
given in Figure 3. 

 
 
 

 
 
Figure 2. Simple architecture of ANNs. 

 
 
 

 
 
 Figure 3. ANNs structure. 
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Optimization of input parameters is important in modeling 
ANNs. Removing some of the interrelated input 
parameters does not have a negative effect on the 
performance of ANNs (Walczak and Cerpa, 1999). It can 
even improve the performance of ANNs (Antanasijevic et 
al., 2013). 
 
 
FINDINGS 
 
Preliminary analysis of the relationship between 
academic self-efficacy, academic engagement, 
student burnout, and proactive strategies 
 
Participants obtained a mean level of academic self-
efficacy located at 100.62 (SD = 17.118); as for academic 
engagement, the mean score was 12.36 (SD = 2.800); in  

the case of student burnout, the mean score was 38.69 
(SD = 9.405), and for proactive strategies, the mean 
score was 36.11 (SD = 6.434).  

Table 1 shows the relationship between academic self-
efficacy, academic engagement, student burnout, and 
proactive strategies. It is seen that there is a significant, 
and linear relationship between academic self-efficacy, 
academic engagement, and proactive strategies, and 
there is a significant, and inverse relationship between 
academic self-efficacy and student burnout. 
 
 
Multiple linear regression analysis results 
 
The regression analysis result of predicting academic 
self-efficacy which is related to academic engagement, 
student burnout, and proactive strategies is given in Table 2. 

 
 
 

Table 1. Pearson correlations between the variables. 
 

  Academic self-
efficacy 

Academic 
engagement 

Student 
burnout 

Proactive 
strategies 

Academic self-efficacy Pearson correlation 1.000 .543 -.422 .352 
Sig. (1-tailed)  .000 .000 .000 

      

Academic engagement 
Pearson correlation .543 1.000 -.401 .253 
Sig. (1-tailed) .000  .000 .000 

      

Student burnout 
Pearson correlation -.422 -.401 1.000 -.305 
Sig. (1-tailed) .000 .000  .000 

      

Proactive strategies 
Pearson correlation .352 .253 -.305 1.000 
Sig. (1-tailed) .000 .000 .000  

 
 
 

Table 2. Multiple regression analysis of variables predicting academic self-efficacy. 
 

Variable B Std. Error β T p Bilateral r Partial r 
Constant 65.243 6.517 - 10.011 .000 - - 
Academic engagement 2.546 .255 .417 9.975 .000 .431 .377 
Student burnout -.362 .077 -.199 -4.684 .000 -.219 -.177 
Proactive strategies .496 .107 .186 4.637 .000 .217 .175 
        
R = 0.613     
F(3-436) = 87.552 

R2 = 0.376, *p < .01     

 
 
 
As a result of multiple regression analyses, it was 
determined that there was a significant relationship 
between academic engagement, student burnout, 
proactive strategies, and academic self-efficacy (R = 
.613; R2 = 0.376; F(3-436) = 87.552; p < 0.01). 

These variables together explain 38% of the variance in  

academic self-efficacy. According to the standardized 
coefficients (β), the order of importance of the predictor 
variables on academic self-efficacy is academic 
engagement (β = 0.417), student burnout (β = -0.199), 
and proactive strategies (β = 0.186). Considering the 
significance  tests  of the regression coefficients it is seen  
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that all of the predictive variables (academic 
engagement, student burnout, and proactive strategies) 
are significant predictors of academic self-efficacy (p < 
.01). 

The regression equation that predicts academic self-
efficacy is as follows: 
 
Ŷacademic self-efficacy= 65.243 + (2.546)Xacademic 
engagement - (0.362)Xstudent burnout + 
(0.496)Xproactive strategies. 
 
 
Results of ANNs 
 
The training, validation, and test data of the ANNs model, 
which gave the best prediction in the study, are given in 
Figure 4. The statistical performance of the models was 
evaluated using the Mean (µ). Standard Deviation (σ), 
and R2 parameters. In addition. RMSE and MAPE values 
were calculated to evaluate the fit of the models 

developed between ANNs’ estimated data, and the real 
data. RMSE is a measure of goodness of fit. It most 
appropriately defines a mean error measure to estimate 
the dependent variable (Singh et al., 2009). The 
statistical performance of the study is given in Table 3. 
Conjoint neural network studies usually use RMSE, 
MAPE, and R2 criteria to evaluate the performance of a 
network by comparing error, and measured data. (Alves 
et al., 2018). RMSE and MAPE are calculated according 
to Equations 1 and 2: 
 

ܧܵܯܴ  = ටଵ
௡ 
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௡                                           (1) 
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                              (2) 

 
 
Where "ti", and "zi" are the estimated, and actual output, 
and "n" is the number of points in the data set. 

 
 
 

 
 
Figure 4. The training, validation, and testing data. 
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 Table 3. Statistical performance of the ANNs models. 
 

Model  Structure R2 σ µ RMSE MAPE 
I 3-3-1-1 0.65 0.194 1.020 0.0071 16.22 
II 3-4-1-1 0.60 0.266 1.071 0.0083 19.03 
III 3-5-1-1 0.77 0.121 1.003 0.0071 9.52 

 
 
 
As seen in Figure 4, ANNs proved to be an effective 
estimation method for academic self-efficacy with high R2 
values [R2 = training (0.60). testing (0.67). validation (0.65)]. 

There is a significant relationship between the values 
obtained in the different models created (Table 3). 
However, the 3-5-1-1 model has the highest R2 value 
(R2=0.77), and this model was chosen as the most 
suitable model. RMSE value was calculated as 0.0071 for 
the I and III models and 0.0083 for the II model. The 
MAPE value is used to measure the predictive ability of a 
model. A lower MAPE value indicates the best model 
performance (Olyaie et al., 2015). The lowest MAPE was 
obtained  in  the  3-5-1-1  model  selected  in the study. In  

order to evaluate the success of ANNs modeling. which is 
used as an effective tool. the relationship between the 
prediction results provided by the ANNs model and the 
obtained data was compared. The results are given in 
Figure 5. 

There is a good consistency between the estimated 
results of the ANNs model, and the calculated data (R2 
0.77) (Figure 5). The efficiency of the ANNs model was 
determined based on maximizing R2 and lowering the 
Mean Squares Error (MSE) value of the test set (1–13 
neurons correspond to the hidden layer). According to 
MSE, there was no significant change in the number of 
epochs for optimal ANN models after 7 stages (Figure 6). 

 
 
 

 
 
Figure 5. Calculated, and estimated academic self-efficacy. 
 

 
 
Figure 6. Number of epochs for optimal ANNs models according to 
MSE. 

 
 
DISCUSSION 
 
As a result of the regression analysis, a positive, 
moderate and significant relationship was found between 
the academic self-efficacy perceptions of pre-service 
teachers and their academic engagement (r = .543, p < 
.01). Consistent with this finding, previous researches 
have found a positive and significant relationship 
between academic self-efficacy and student engagement 
(Anggraini et al., 2014; Azila-Gbettor et al., 2021; Blas-
Atencia et al., 2018; Helsa and  Lidiawati, 2021; Hong et 
al., 2021; Momeni and Radmehi, 2018; Mozammel et al., 

2018; Noreen vd., 2018; Olivier et al., 2019; Ozkal, 2019; 
Papa, 2015; Siu et al., 2014; Sotoodeh, 2017). Academic 
self-efficacy is a more detailed aspect of self-efficacy that 
reflects a student's views on their own proficiency in 
academic subjects (Noreen et al., 2018). Individuals with 
high self-efficacy are more willing to put in additional 
energy and effort to complete a task or assignment and 
thus become more engaged in studying with a high level 
of assimilation (Siu et al., 2014). On the contrary, as the 
individual's sense of self-efficacy decreases, the desire to 
participate in academic tasks and the effort and time 
spent  on  a  task  or assignment also decrease. Previous  



 

 

Yildiz           41 
 
 
 
researchers have suggested that students with a low 
level of academic self-efficacy show more indifference in 
class (Bassi et al., 2007). According to the Expectancy 
Value theory, self-efficacy leads to both emotional and 
behavioral engagement. Engagement forms such as 
interest, effort, attention, and harmony are the elements 
that increase the student's desire to learn and proficiency 
in class assignments (Olivier et al., 2019). Student 
engagement seems to be related to academic self-
efficacy as it reflects the ability of students to engage in 
their classes, such as attending, taking notes, doing 
homework, having the desire to learn, participating in 
class, asking questions and getting good grades, and 
being successful (Papa, 2015). 

The findings showed that there was a positive, 
significant, and low correlation between pre-service 
teachers' perceptions of academic self-efficacy and 
proactive strategy (r = .352, p < .01). Consistent with this 
result, self-efficacy has a strong impact on proactive 
behavior in the study by Avsec and Jerman (2020). 
Burton and Nelson (2010) found a positive relationship 
between general self-efficacy and proactive coping 
strategies. Verešová and Malá (2012) found in their study 
that there is a significant positive relationship between 
proactive coping and self-efficacy. Proactive learners use 
all available resources, such as setting arduous goals 
and seeking new information, and new methods to 
achieve their goals. Individuals with high self-efficacy are 
superior in proactive goal formation (Lin et al., 2014). 

The results also showed that there was a negative, 
significant and moderate relationship between pre-
service teachers' perceptions of academic self-efficacy 
and academic burnout (r = -.422, p < .01). Other studies 
in the literature support this finding (Adams et al., 2020; 
Arlinkasari and Akmal, 2017; Bulfone et al., 2020; 
Fariborz et al., 2019; Jenaabadi et al., 2017; Khansa and 
Djamhoer, 2020; Kong et al., 2021; Korani, 2021; 
Kordzanganeh et al., 2021; Orpina and Praha, 2019; 
Özhan, 2021; Permatasari et al., 2021; Rahmati, 2015; 
Rohmani and Andriani, 2021). This result shows that as 
academic self-efficacy increases, academic burnout 
decreases and vice versa. A high self-efficacy belief 
increases one's motivation and emotional well-being in 
the face of difficulties, and also makes the person less 
exposed to stress, burnout, and depression (Kaiser, 
2011). Individuals with low academic self-efficacy are 
prone to stress and depression because their problem-
solving skills are low. Excessive and constant stress 
causes individuals to experience academic burnout 
(Rahmati, 2015 cited in Khansa and Djamhoer, 2020). 

Another finding of the study is related to the power of 
the independent variables to explain the dependent 
variable. According to the results of the regression 
analysis, academic engagement, academic burnout, and 
proactive strategy together explain 38% of academic self-
efficacy. When the ANNs results were examined, it was 

seen that these three variables explained 77% of 
academic self-efficacy. Therefore, it is understood that 
ANNs perform better than multiple regression in 
predicting academic self-efficacy. It is understood that 
ANNs give higher results than traditional statistical 
methods in studies conducted with student variables in 
the literature. In many studies conducted to predict 
student achievement, it is reported that ANNs work better 
than classical statistical methods. Turhan et al. (2013) 
used ANNs to predict the performance of university 
students and according to the results, ANNs showed 
higher estimation success than regression analysis on 
the same data set. Similarly, in the study conducted by 
Bahadır (2015), ANNs' results to predict student 
achievement were higher than logistic regression. It has 
been stated that artificial neural networks can be 
preferred in cases where the multiple regression analysis 
estimations and assumptions are not met and the 
analysis cannot be performed. Apart from this, it has 
been proven in studies (Ahangar et al., 2010; Alqahtani 
and Whyte, 2016; Çalışkan and Sevim, 2019; Ilaboya and 
Igbinedion, 2019) conducted in different fields that ANNs 
models have a better fit and prediction than regression 
models. In these studies, it was revealed that ANNs have 
a larger estimation and fewer erroneous results 
compared to multiple regression analyses. 
 
 
Conclusion 
 
In this study, it was tried to determine to what extent pre-
service teachers' academic engagement, student burnout 
and proactive coping strategies predict academic self-
efficacy with machine learning approach. Two different 
machine learning approaches, linear regression and 
artificial neural networks (ANNs) were used in data 
analysis. As a result of regression analysis, a positive 
and significant relationship was found between pre-
service teachers' academic self-efficacy, academic 
engagement and proactive coping strategies. In addition, 
a negative and significant relationship was found 
between pre-service teachers' academic self-efficacy and 
academic burnout. According to the results of the 
regression analysis, academic engagement, academic 
burnout and proactive strategy together explain 38% of 
academic self-efficacy. According to the ANNs, these 
three variables explained 77% of academic self-efficacy. 
This proves that ANNs perform better than multiple 
regression in predicting academic self-efficacy. 
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