
https://doi.org/10.1177/00222194221102644

Journal of Learning Disabilities
2023, Vol. 56(4) 243–256
© Hammill Institute on Disabilities 2022
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/00222194221102644
journaloflearningdisabilities.sagepub.com

Research Article

One of the most significant shifts in school-based assess-
ment and intervention efforts over the past two decades has 
been the introduction and widespread adoption of multi-
tiered systems of support (MTSS). MTSS models are 
designed to support the learning of all students through a 
continuum of supports that increase in intensity based on 
student need. Such models are frequently depicted as a tri-
angle or pyramid, with core (i.e., Tier 1) instruction as the 
“foundation” that is designed to meet the needs of roughly 
80% of students in a school building (Balu et  al., 2015; 
Gersten et al., 2009). Schools identify students at risk for 
academic or behavioral difficulties through universal 
screening and provide interventions matched to the inten-
sity of student needs (i.e., Tiers 2 and 3), with the goal of 
reducing or eliminating achievement gaps (Gersten et  al., 
2009). Throughout the school year, screening and progress 
monitoring data are used to determine whether students are 
making adequate progress toward instructional goals and 
whether the intensity of supports should be adjusted.

MTSS models have become increasingly prevalent in 
U.S. schools. A recent review conducted by Berkeley and 
colleagues (2020) revealed that 47 states endorse MTSS 
implementation guidelines, representing a vast increase in 
state-level adoption of multitiered models since 2007 
(Berkeley et al., 2009). Despite their widespread use, there 
is substantial variation in the implementation of MTSS in 
schools, including differences in the number of tiers in a 
given model, whether models address academics and 
behavior together or separately, and communication and 
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support for implementation (Berkeley et al., 2020; Lam & 
McMaster, 2014). Furthermore, successful adoption of 
multitier models is unlikely without organized and cohe-
sive efforts spanning special and general education, allo-
cation of resources to support effective assessment 
practices and intervention implementation, and buy-in 
from multiple stakeholders at the building and district 
level (Fuchs & Fuchs, 2017; Kratchowill et  al., 2007; 
Nellis, 2012).

A national evaluation of MTSS, conducted by Balu and 
colleagues, illustrates many of these complexities. Balu 
et  al. (2015) examined reading outcomes for “veteran” 
schools implementing MTSS across 13 states and 146 
schools. A regression discontinuity design was used to com-
pare reading outcomes of students identified to receive Tier 
2 or 3 intervention and those just above the cut point who 
were not identified for additional intervention supports. 
Results indicated that overall, there were no statistically 
significant benefits for second- and third-grade students 
attending MTSS schools, and negative effects were found 
for students assigned to Tier 2 or Tier 3 interventions.

Since publication, several critiques regarding the study 
design, limitations of the analyses used, and the lack of 
implementation fidelity in Balu et al.’s (2015) study have 
been discussed in the literature (e.g., Fuchs & Fuchs, 2017; 
Gersten et al., 2017). Many of these limitations centered on 
the quality and consistency of Tier 1 instruction. For exam-
ple, Gersten et al. (2017) pointed out that in 60% of class-
rooms, Tier 2 intervention supplanted, rather than 
supplemented, Tier 1 instruction, a practice that does not 
adhere to MTSS guidelines. In addition, information about 
the specific Tier 1 programs MTSS schools were using, and 
the degree of alignment between core and intervention pro-
grams, was not provided. Balu et  al. (2015) suggest that 
poor alignment between interventions and core instruction 
may provide a plausible explanation for the negative impact 
of assignment to intervention in MTSS schools. These find-
ings illustrate the complexities of implementing multitier 
systems in schools and highlight an underemphasized and 
under-researched component of MTSS across both research 
and practice: high-quality core instruction.

Tier 1 Mathematics Programs: The Importance 
of the Core

Kindergarten core mathematics instruction represents the 
first exposure to mathematical concepts and skills for 
many students. In the early elementary grades, students 
must develop conceptual understanding of and procedural 
fluency with foundational whole number content, includ-
ing number identification and counting, addition and sub-
traction, and understanding numbers as quantities that can 
be composed (i.e., put together) and decomposed (i.e., 
taken apart; National Governors Association Center for 

Best Practices & Council of Chief State School Officers, 
2010). One central goal of core instruction is to remediate 
early mathematics difficulty (MD) by developing a strong 
foundation of math knowledge, potentially decreasing the 
need for more intensive intervention later on. The impor-
tance of core mathematics instruction in the early grades 
(e.g., K-2) cannot be understated, given the different lev-
els of background knowledge that students bring to formal 
schooling (Jordan et  al., 2010). With core instruction 
designed to serve all students in a classroom, general edu-
cation teachers must teach to a wide variety of learners, 
including those at risk for MD. As a result, the research on 
core mathematics instruction has typically focused on at-
risk populations of learners as well as the general student 
population.

Only a handful of studies have rigorously examined the 
effectiveness of Tier 1 mathematics programs. In perhaps 
the largest-scale evaluation of core mathematics programs 
to date, Agodini and colleagues (2010) randomly assigned 
110 elementary schools across the United States to imple-
ment one of four widely used first- and second-grade math-
ematics curricula—Investigations in Number, Data, and 
Space (Investigations); Math Expressions; Saxon Math; 
and Scott Foresman-Addison Wesley Mathematics (SFAW). 
The authors found evidence of differential mathematics 
achievement gains across these programs, with Hedges’ g 
effect sizes ranging from 0.11 to 0.17 depending on the cur-
riculum differential and grade level examined. Importantly, 
curriculum differentials tended to favor curricula that used 
teacher-directed or blended approaches (e.g., Math 
Expressions and Saxon Math) over student-centered or non-
explicit approaches.

In another large-scale efficacy trial, Clarke et al. (2015, 
2011) randomly assigned 129 kindergarten classrooms to 
implement Early Learning in Mathematics (ELM), a core 
program intentionally designed to support students at risk 
for MD, or business-as-usual (BAU) core math instruction. 
The authors found no overall differences in mathematics 
achievement gains across the kindergarten year between 
ELM and BAU classrooms. However, among students at 
risk for developing MD, those in ELM classrooms made 
significantly greater gains across the kindergarten year, 
resulting in decreased achievement gaps between at-risk 
students and their typically achieving peers.

In a smaller-scale study, Sood and Jitendra (2011) evalu-
ated a supplement to core instruction designed to support 
students at risk for MD. The authors randomly assigned five 
kindergarten classrooms in a high-poverty area to a 4-week 
number sense program that replaced part of the core cur-
riculum, or a BAU control condition, while holding instruc-
tional time constant. The number sense program yielded 
medium to large effects at posttest (Hedges’ g = 0.55–0.87) 
and 3-week follow-up (Hedges’ g = 0.68–1.20), with com-
parable gains regardless of students’ mathematics risk 
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status at pretest. This suggests that even small changes to 
core instruction may have immediate and lasting benefits 
for students. Taken together, these findings suggest that 
effective core instruction can boost student mathematics 
achievement, even for the most vulnerable learners, and 
may therefore lessen the need for intensive interventions.

Tier 2 Interventions Within the Context of Core 
Instruction

Even with an effective Tier 1 program designed to support a 
range of learners in place, some students will need more 
intensive and targeted support to progress at a comparable 
rate to their typically achieving peers. Within MTSS, Tier 2 
should be delivered in addition to Tier 1. In grades K-2, Tier 
1 and 2 mathematics instruction is typically situated within 
the general education classroom setting. Thus, Tier 2 should 
be a natural extension of Tier 1 designed to provide addi-
tional support to the students that require it.

An increased national focus on supporting students at 
risk for MD has led to a growing literature base on math-
ematics interventions, particularly in the area of whole 
number (e.g., Jitendra et  al., 2021). Unfortunately, few 
mathematics intervention studies have attempted to 
account for variation in the quality of Tier 1 instruction. 
More often than not, intervention studies in both mathe-
matics and reading are conducted without regard to con-
textual factors associated with core instruction, likely due 
to the difficulty of measuring and controlling for variabil-
ity in Tier 1 practices across multiple schools and districts. 
Several researchers have noted the importance of captur-
ing Tier 1 variability in the context of Tier 2 intervention, 
given that supports students receive across tiers likely 
interact to influence outcomes (e.g., Bailey et  al., 2020; 
Coyne et al., 2018). Measuring the quality of core instruc-
tion and assessing its alignment with the intervention may 
yield important insights about intervention effectiveness 
across contexts (Hill et al., 2012).

Against that backdrop, a few researchers have attempted 
to control for the quality of Tier 1 in the context of Tier 2 
intervention. In an efficacy study of a small-group mathe-
matics problem-solving intervention, Fuchs et  al. (2008) 
randomly assigned 119 third-grade classrooms to one of 
two core (i.e., Tier 1) mathematics programs: conventional 
problem-solving instruction, or a validated, schema-broad-
ening problem-solving program. Students at-risk for MD 
were then randomly assigned to receive a schema-broaden-
ing tutoring program, Hot Math, or BAU math intervention 
supports. This design allowed the researchers to determine 
whether there was a differential positive impact for students 
who received aligned, schema-broadening problem-solving 
instruction across core and intervention supports. Findings 
indicated that Hot Math tutoring was significantly more 
effective for students who were also provided with aligned, 

validated core instruction, compared to those who received 
the intervention in the context of BAU core instruction. The 
authors concluded that two tiers of validated, highly aligned 
instruction were more effective than one. While researchers 
have begun to explore how Tier 1 practices may impact Tier 
2 and 3 intervention effectiveness (Al Otaiba et al., 2014), 
more research is needed to better understand how variabil-
ity in the quality of core instruction may differentially 
impact intervention outcomes.

Digging Deeper to Explore Tier 1 Predictors of 
Tier 2 Intervention Outcomes

One method to explore for whom and under what condi-
tions an intervention is likely to be effective is evaluating 
potential moderators of intervention outcomes (Fuchs & 
Fuchs, 2019). Despite significant advances in the knowl-
edge base supporting early mathematics intervention, 
many questions concerning predictors of intervention 
impact remain unanswered. Our purpose in this study 
was to examine associations among key Tier 1 variables 
and kindergarten students’ responsiveness to an aligned 
Tier 2 mathematics intervention targeting whole number 
knowledge. To investigate this question, we analyzed 
data collected during an efficacy trial of a Tier 2 kinder-
garten mathematics intervention program (ROOTS) that 
was implemented in the context of a research-based core 
mathematics program (ELM; Clarke et  al., 2016). That 
is, all participating classrooms used the core program 
ELM, and a subset of at-risk students were identified to 
receive the Tier 2 ROOTS program in addition to ELM 
core instruction.

In the original ROOTS efficacy trial conducted in 
Oregon schools, the researchers found significant positive 
effects for students at risk in mathematics (Hedges’ g values 
ranged from .30 to .38; Clarke et al., 2016). However, in a 
conceptual replication of the original ROOTS study, con-
ducted in Texas schools, the researchers did not find overall 
or differential impacts of ROOTS (Clarke et al., 2022). To 
explain this finding, the researchers pointed to several Tier 
1 variables that differed between participating classrooms 
in the original ROOTS study and the replication study, 
though they did not specifically test Tier 1 variables as pre-
dictors of intervention effectiveness.

In this study, we proposed to further unpack Tier 1 vari-
ables that may have led to students’ differential responsive-
ness to ROOTS, using combined data from the original 
efficacy study and the replication study. We refer to these 
Tier 1 variables as “quality indicators” throughout this 
paper. The term “quality indicator” originally stems from 
the medical field as a set of standards to measure and com-
pare the quality of health care across settings (e.g., Stelfox 
& Straus, 2013) but has been broadly used to describe 
expectations for high-quality features and practices across 
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disciplines. For our purposes, the term “quality indicator” is 
used to describe Tier 1 variables that are associated with 
increased student mathematics achievement, as summa-
rized in the sections below. Note that these are distinct from 
the quality indicators described in other areas of education 
such as the quality indicators for group design research 
(e.g., Gersten et al., 2005).

Classroom-level mathematics gains.  While they did not spe-
cifically test for Tier 1 differences, Clarke et  al. (2022) 
hypothesized that the outcomes of the ROOTS conceptual 
replication study were nonsignificant due to differences in 
core instruction at the replication site. As described above, 
Fuchs et  al. (2008) found that a third-grade mathematics 
tutoring intervention was significantly more effective when 
implemented in the context of validated core instruction. 
Thus, the role of core instruction and the gains that students 
make across the school year may affect their response to 
Tier 2 intervention. In this study, we conceptualized class-
room-level mathematics gains as a proxy for general effec-
tiveness of core instruction and hypothesized that ROOTS 
students participating in classrooms that made larger gains 
across the kindergarten year would experience smaller 
gains as a result of the intervention.

Tier 1 fidelity of implementation.  Implementation fidelity is 
often conceptualized as adherence—or the degree to which 
an intervention or curricular program is delivered as planned 
(Harn et  al., 2013; Moncher & Prinz, 1991). Researchers 
have advocated for the importance of high implementation 
fidelity within and across tiers of MTSS (Keller-Margulis, 
2012; Scott et al., 2019). While measuring implementation 
fidelity has become increasingly recognized as an essential 
component of efficacy and effectiveness studies (DeFouw 
et al., 2019; O’Donnell, 2008), it is less commonly exam-
ined as a predictor of student outcomes. For example, 
O’Donnell (2008) conducted a systematic literature review 
of studies that investigated core K-12 programs and 
included a measure of implementation fidelity. Less than a 
quarter of studies included in the review examined associa-
tions between fidelity of implementation and student out-
comes, though the few studies that did found positive 
associations (O’Donnell, 2008). In this study, we hypothe-
sized that ROOTS students participating in classrooms of 
teachers with greater adherence fidelity to ELM would 
experience smaller gains from the intervention.

Tier 1 classroom management and instructional support.  While 
implementation fidelity measures in the math literature 
most commonly target adherence (O’Donnell, 2008), 
fidelity can also be conceptualized as a measure of 
instructional quality (Nelson et  al., 2019), including 
teaching behaviors such as classroom management and 

instructional skills. In mathematics, these constructs have 
been investigated primarily through direct observation 
using low-, moderate-, and high-inference measures to 
examine associations with student mathematics outcomes 
(Doabler et al., 2015, 2019; Pianta & Hamre, 2009). Some 
examinations of instructional quality have centered on 
direct observations of teaching behaviors, such as teacher 
models and individual and group student practice oppor-
tunities. For example, Doabler et  al. (2019) found that 
teacher-facilitated individual practice opportunities mod-
erated the relationship between students’ initial skill and 
mathematics outcomes in the context of a Tier 2 mathe-
matics intervention. Other investigations of implementa-
tion fidelity have demonstrated positive associations 
between observation instruments that rely on observer 
impressions and student mathematics achievement (Jimé-
nez et al., 2021; Pianta & Hamre, 2009). While classroom 
management and instructional support are demonstrated 
predictors of student mathematics outcomes within Tier 1 
and Tier 2 settings (Doabler et al., 2019; Pianta & Hamre, 
2009), to our knowledge, Tier 1 instructional quality has 
not been examined as a predictor of student responsive-
ness to Tier 2 intervention. We hypothesized that ROOTS 
students participating in classrooms with greater instruc-
tional quality would experience a smaller benefit from the 
supplemental intervention.

Class size.  Several studies demonstrate that increased class 
size is negatively associated with student mathematics 
achievement in the United States (Nye et al., 2000; Pong & 
Pallas, 2001). Of note is the large-scale Tennessee Class 
Size Experiment, which demonstrated that smaller classes 
were beneficial for a wide range of students across schools 
and districts (Nye et al., 2000). Researchers posit that the 
mechanism underlying the beneficial impact of smaller 
class sizes could be more frequent teacher–student interac-
tions or the teacher’s ability to devote more individual 
attention to differentiate instruction for students with 
diverse learning needs (Nye et al., 2000). We hypothesized 
that ROOTS students participating in classrooms with a 
smaller number of students would experience a smaller 
benefit from ROOTS.

Research Question

Our research question was as follows: Do Tier 1 quality 
indicators predict at-risk students’ responsiveness to a 
Tier 2 (ROOTS) intervention? As described above, the 
Tier 1 quality indicators we examined included: (a) class-
room-level gains on a broad mathematics achievement 
measure, (b) Tier 1 fidelity of implementation, (c) Tier 1 
classroom management and instructional support, and (d) 
class size.
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Method

Research Design

This study analyzed data from Years 2 (Oregon – 2009–
2010) and 3 (Texas – 2010–2011) of a 4-year efficacy trial 
of ROOTS. Kindergarten teachers were randomly assigned 
to teach ELM or ELM + ROOTS (i.e., all students received 
ELM core instruction). Blocking, also known as stratifica-
tion, was used to control for biases that might stem from 
systemic differences between conditions. For example, 
because some teachers had taught ELM the previous year, 
we blocked on teachers’ prior experience teaching ELM. In 
schools with multiple kindergarten classrooms, we blocked 
on classrooms by assigning classrooms to condition within 
schools. Across Oregon and Texas, a total of 91 classrooms 
were included in the current analyses: 46 in the treatment 
condition (ELM + ROOTS) and 45 in the control condition 
(ELM only). All teachers were asked to nominate the five 
lowest-performing students or students who would most 
benefit from small-group mathematics instruction. 
Processes differed slightly in Texas, where teachers were 
provided with a list of students who scored below the 40th 
percentile on a pretest measure and a number sense screen-
ing measure to inform their decision (for additional details, 
see Method section of Clarke et al., 2016, 2022). These pro-
cesses resulted in 141 identified ROOTS-eligible students 
in Oregon and 308 students in Texas. In both conditions, 
kindergarten teachers taught ELM throughout the academic 
year. Students who participated in ROOTS received the 
supplemental intervention as well as whole-class ELM 
instruction. To control for instructional time, ROOTS 
groups took place 3 days per week at the end of the ELM 
lesson during independent math practice worksheets. 
Nominated students in ELM-only (i.e., BAU) classrooms 
participated in the independent math practice worksheet 
component of ELM rather than the more intensive ROOTS 
intervention. In both sites, ROOTS instruction began in 
January and lasted through the end of May. ROOTS was 
delivered by trained instructional assistants (IAs) who were 
already employed by the participating school districts.

Participants

Kindergarten teachers.  Across sites, 91 kindergarten teach-
ers participated in the ELM only or ELM + ROOTS condi-
tions. Of the 66 teachers who provided demographic 
information (72%), 96% identified as female, 62% White, 
26% Hispanic, 11% African American, and 2% Asian 
American. Regarding teacher-reported credentials, 35% 
held a master’s degree, 25% completed three or more col-
lege math courses, 53% completed college algebra, and 
60% had taught kindergarten for 4 or more years. In the 
core math block, 38% of teachers reported spending 21 to 

40 min per day and 62% of teachers reported spending 41 to 
60 min per day.

Instructional assistants.  Across sites, a total of 28 IAs already 
employed in participating schools taught ROOTS; 86% 
were female, 83% identified themselves as White, 11% 
identified themselves as Hispanic, and 18% identified 
themselves as African American. In total, 46% of the IAs 
had college degrees, of whom 25% held current teacher cer-
tifications in elementary education. Of the remaining 15 
IAs, 14% held an Associate’s degree, and 39% were high 
school graduates. Fourteen (50%) of the IAs had completed 
college-level coursework in mathematics. IAs had varying 
degrees of teaching experience; 18% had 10 or more years 
of experience, 18% had between 4 and 6 years of teaching 
experience, 25% had 1 to 3 years of experience, and 39% 
had less than 1 year of experience.

Students.  Data from 448 students were analyzed in this 
study. Students were drawn from two districts in Oregon, 
and one district in Texas. Across sites, ROOTS-eligible stu-
dents were 48% female, and 31% of students were English 
learners. Their average age was 66.6 months old (SD = 
3.9). In Oregon, 16% of students were eligible for special 
education services overall, and 44% and 50% of students 
were eligible for free or reduced lunch (Districts A and B, 
respectively). In Texas, 87% of students were eligible for 
free or reduced lunch in the participating district. In addi-
tion, while special education eligibility information was 
unavailable in Texas, 53% of the 283 students with a Test of 
Early Mathematics Achievement–Third Edition (TEMA-3) 
score at pretest scored at or below the 10th percentile. Other 
student-reported demographic information was gathered at 
the school or district level and is reported in detail by Clarke 
et al. (2016, 2022).

Measures

ELM fidelity of implementation instrument.  To measure 
teachers’ implementation fidelity to ELM, we used the 
ELM Fidelity of Implementation Instrument. This stan-
dardized, researcher-developed instrument was designed to 
measure adherence to the ELM curriculum. For each ELM 
activity within a lesson, observers rated fidelity using a 
3-point scale (0 = did not implement, 0.5 = partial imple-
mentation, 1 = full implementation). Each ELM classroom 
underwent three rounds of observations, scheduled in the 
fall, winter, and spring. In this study, ELM Fidelity of 
Implementation scores for each classroom are reported as 
the average score across observation points. On average, 
teachers implemented ELM with high levels of fidelity: 
fall (M = 0.93; SD = 0.14), winter (M = 0.96; SD = 0.09), 
and spring (M = 0.95; SD = 0.12).
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Ratings of Classroom Management and Instructional Support.  We 
used the Ratings of Classroom Management and Instruc-
tional Support (RCMIS; Doabler & Nelson-Walker, 2009) 
in this study as a broad measure of instructional quality. The 
RCMIS includes 11 items that address general features of 
effective mathematics instruction, including classroom 
management strategies, instructional delivery, and the 
learning environment. For each item, observers used a 
4-point rating scale to indicate whether components of 
effective mathematics instruction were present (1 = not 
present, 4 = highly present). Observers used a detailed 
scoring rubric to differentiate between ratings. Observers 
completed the RCMIS at the end of each classroom obser-
vation. Internal consistency of the RCMIS was high, with 
Cronbach’s alpha equal to .92. The authors report fairly 
stable ratings of instructional quality (intraclass correlation 
coefficient or ICC = .33), indicating that the three observa-
tions provided reasonable estimates. For each classroom, 
RCMIS scores are reported as the average item score across 
the three observation time points.

Test of Early Mathematics Ability–Third Edition.  The Test of 
Early Mathematics Ability–Third Edition (TEMA-3; Gins-
burg & Baroody, 2003) is a norm-referenced assessment 
designed to measure informal and formal mathematics skills, 
intended for use with children ages 3 to 8 years 11 months. 
The TEMA-3 includes a range of items, sampling across 
skills in the domains of numbering, comparing numbers, 
number facts, calculation skills, and related mathematical 
concepts. The TEMA-3 has high internal reliability (coeffi-
cient alphas range from .94 to .96) and moderate criterion-
related validity with other measures of early mathematics 
skills (.54 to .91). The TEMA-3 was selected as a mathemat-
ics outcome measure in this study, given its sensitivity to 
students scoring at the lower end of the distribution. Test of 
Early Mathematics Ability–Third Edition scores are reported 
as standard scores.

Procedures

Data collection.  The TEMA-3 was individually adminis-
tered to students pre- and post-ROOTS implementation. 
Trained staff with extensive experience in administering 
educational assessments for research projects administered 
all student measures. Data collectors were required to obtain 
interrater reliability coefficients of .90 prior to collecting 
data. Follow-up trainings were conducted prior to each data 
collection period to ensure continued reliable data collec-
tion. Student assessment protocols were processed using 
Teleform, a form-processing program.

Observations.  Classroom observations were conducted in 
the fall, winter, and spring. Observations were scheduled in 
advance but were not scheduled according to a particular 

lesson or specific content planned for instruction. The ELM 
fidelity of implementation instrument, as well as the 
RCMIS, were administered in addition to several other 
measures that were not the focus of this study. Trained 
observers conducted the observations, receiving approxi-
mately 14 hours of training from the project observation 
coordinator. Refresher trainings were conducted prior to 
each subsequent round of observations to minimize observer 
drift. Two reliability checkout were implemented. First, in 
the training observers coded a 5-min video of kindergarten 
math instruction and compared their coding to codes prede-
termined by the observation coordinator. Second, the obser-
vation coordinator conducted in-field reliability checks 
where the coordinator “shadow coded” an observation 
alongside the observer. All observers met minimum reli-
ability criteria of 0.85 percent agreement across checkouts. 
Interobserver reliability data were collected on 61 occa-
sions within ELM classrooms. For the RCMIS and ELM 
fidelity of implementation instrument, moderate to high 
interobserver reliability was found with ICCs of .86 and 
.63, respectively.

Early Learning in Mathematics curriculum.  ELM is a 120-les-
son, core kindergarten curriculum designed for whole-class 
instruction and focused on building early foundational 
mathematical skills (see Clarke et  al., 2015 for more 
details). Lessons consist of a 15-min daily calendar routine 
and a 45-min mathematics lesson comprised of 4 to 5 activ-
ities. In addition, each lesson includes a student Math Prac-
tice worksheet and a “Note Home” in English and Spanish 
to encourage parental involvement. ELM covers critical 
content across three mathematical strands: number and 
operations, geometry, and measurement. Greater emphasis 
is placed on the development of whole number skills in 
comparison to the other two strands (National Council of 
Teachers of Mathematics (NCTM), 2006). Every fifth les-
son focuses on problem-solving, incorporating content 
across the previous four lessons within that context. ELM 
content aligns with the Common Core State Standards in 
Mathematics (2010) and was selected based on the NCTM 
Focal Points for kindergarten (NCTM, 2006). ELM uses an 
explicit and systematic instructional design (Gersten et al., 
2009), including curricular supports, such as teacher script-
ing to assist teachers in using precise mathematical lan-
guage and representations.

ROOTS intervention.  ROOTS is a scripted, 50-lesson, Tier 2 
kindergarten mathematics intervention program that was 
designed to be delivered during the second half of the kin-
dergarten year (see Clarke et al., 2016 for more details). In 
comparison to ELM which covers a wider scope of mathe-
matical content, ROOTS is designed to build students’ con-
ceptual understanding and procedural fluency within whole 
number operations specifically. The focus on whole number 
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understanding is aligned with the Common Core State Stan-
dards in Mathematics (2010) and calls from expert panels 
for meeting the needs of students with MD (Gersten et al., 
2009). ROOTS lessons are designed to last for 20 min and 
include 4 to 5 brief math activities that center on three 
domains of mathematical understanding: (a) counting and 
cardinality, (b) number and operations, and (c) base 10 
understanding/place value. ROOTS uses the concrete-repre-
sentational-abstract sequence (Agrawal & Morin, 2016) and 
frequently incorporates mathematical representations, such 
as linking cubes, base 10 blocks, place value charts, finger 
representations of numbers, and 10 frames to build students’ 
conceptual understanding. When introducing students to 
novel mathematics concepts and skills, the program includes 
clear teacher models and a gradual and systematic decrease 
in teacher supports across lessons to promote learner 
independence.

Professional development and coaching support.  ELM teach-
ers participated in four 6-hr days of professional develop-
ment (PD) related to program implementation and 
research-based principles of kindergarten math instruction. 
The first workshop took place before the start of the school 
year, and the other three were distributed evenly throughout 
the year. During the workshops, teachers had opportunities 
to practice lessons and receive feedback on their instruction 
from members of the PD team. ROOTS interventionists 
participated in three 4-hr PD workshops organized around 
active participation and critical math content. The first 
workshop covered Lessons 1 to 25, and the subsequent two 
covered content in the second half of ROOTS. Intervention-
ists received three coaching visits conducted by an expert 
teacher to increase fidelity to the program. Coaching visits 
consisted of direct observation and post-lesson feedback 
focused on instructional delivery and implementation fidel-
ity. More PD and coaching support details can be found in 
Clarke et al.’s studies (2015, 2016).

Statistical Analysis

We explored Tier 1 quality indicators as predictors of differ-
ential response to ROOTS using an expanded version of the 
main effects statistical model presented by Clarke et  al. 
(2016, 2022). In the previous studies, the authors examined 
main effects of ROOTS with mixed-model (multilevel) Time 
× Condition analyses (Murray, 1998) designed to account 
for the intraclass correlation associated with students nested 
within classrooms, the level of assignment to study condi-
tion. The models estimated differences between conditions 
(ELM versus ELM + ROOTS) on change in outcomes from 
pretest (T1) to posttest (T2), with gains for individual students 
clustered within classrooms. The model included time, con-
dition, and the Time × Condition interaction, with time 
coded 0 at T1 and 1 at T2 and condition coded 0 for ELM and 

1 for ELM + ROOTS. In this study, we examined whether 
Tier 1 quality indicators predicted differential response to the 
ROOTS intervention. Therefore, we expanded the original 
statistical model to include each Tier 1 quality indicator, sep-
arately, and its interaction with the condition, time, and the 
Time × Condition terms.

Differential response to intervention implies that the con-
dition difference in student outcomes depends on student- or 
group-level predictor variables (e.g., Tier 1 quality). We 
hypothesized larger differences between conditions (favoring 
ROOTS) at lower levels of Tier 1 quality. To explore these 
differences, we estimated the ROOTS intervention effect and 
its 95% confidence interval (CI) at multiple points along the 
distribution of the predictor variables (Jaccard & Turrisi, 
2003). We used these estimates to graph the results with the 
method recommended by Preacher et al. (2006) for interpre-
tation. The graphs depict the condition effect size (Hedges’ g) 
and its 95% CIs across the range of predictor variables.

Model estimation.  We fit the statistical models to our data 
using SAS PROC MIXED version 9.4 (SAS Institute, 2016) 
with maximum likelihood estimation. Maximum likelihood 
estimation with all available data produces potentially unbi-
ased results even in the face of substantial missing data, 
provided the missing data were missing at random (Gra-
ham, 2009). In this study, missing data did not likely repre-
sent a meaningful departure from the missing at random 
assumption, meaning that missing data did not likely depend 
on unobserved determinants of the outcomes of interest 
(Little & Rubin, 2002). Student-level attrition explains 
missing data (10%), which did not significantly differ by 
condition and the effect of attrition on outcomes did not 
vary by condition (Clarke et al., 2016, 2022).

The models assume independent and normally distrib-
uted dependent variables. We addressed the first, more 
important assumption (van Belle, 2008) by explicitly mod-
eling the multilevel nature of the data. The data in this study 
also did not markedly deviate from univariate normality; 
skewness was 0.1 and kurtosis was −0.6 for the TEMA-3 
outcome measure.

Interpretation of results.  To interpret results, we focus on 
Hedges’ g effect sizes, their 95% CIs, and model probabili-
ties for hypothesis tests. As recommended by the American 
Statistical Association (Wasserstein & Lazar, 2016), we 
abstained from using bright-line rules such as claims of 
“statistical significance” when p < .05. P values measure 
the incompatibility between the observed data and all 
assumptions of the statistical model, including the null 
hypothesis, H0 (Greenland et al., 2016). This awkward defi-
nition determines neither which assumptions are incorrect 
nor the importance of the association. To complement p val-
ues, we report effect sizes, g, and model probabilities, w. 
The model probabilities indicate the strength of evidence 
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for one model when compared with others, given the data at 
hand. Based on the Akaike Information Criterion, Burnham 
et al. (2011) describe w as the probability of selecting the 
same model with a “replicate data set from the same sys-
tem” (p. 30) and allow statements such as “the probability 
of [HA] is 0.78” (p. 26). Model probabilities better charac-
terize the chance of a replicated result than p values. In this 
study, we compared models for two hypotheses: a model 
with the three-way Tier 1 Quality × Time × Condition 
interaction term (HA) and one without the three-way inter-
action (H0). We reported the model probability for the 
model with the three-way interaction effect (HA), and with 
only two models, the model probability for H0 is 1 − w.

Results

Attrition analyses and main effects for the ROOTS inter-
vention in the present sample were presented by Clarke 
et al. (2016, 2022).

Tier 1 Quality Predictors of Differential 
Response to ROOTS

Table 1 displays descriptive statistics for students receiving 
ROOTS + ELM (Intervention), and ELM only (Control), 
as well as descriptive statistics of Tier 1 quality indicators 
in their respective classrooms. Table 2 presents tests of dif-
ferential response to ROOTS as a function of the Tier 1 
quality indicators. Results suggested that response to the 
ROOTS intervention was not statistically significantly pre-
dicted by class-level gains in TEMA-3 percentile scores 
(t89 = 0.50, p = .6197, w = .29), fidelity of Tier 1 

Table 1.  Descriptive Statistics for Student-Level Math Achievement and Classroom-Level Tier 1 Quality Indicators by Condition and 
Time.

Measure

Intervention Control

Statistic Pretest Posttest Pretest Posttest

Student-level TEMA-3 
percentile score

M 77.3 94.8 76.2 93.7
(SD) (16.7) (13.2) (15.4) (14.5)
n 206 206 199 196

Class-level TEMA-3 gains M 14.5 15.1
(SD) (6.3) (6.4)
n 46 45

Fidelity of Tier 1 M 0.9 0.9
(SD) (0.1) (0.1)
n 46 45

RCMIS score M 3.1 3.1
(SD) (0.4) (0.4)
n 46 45

Class size M 21.6 21.4
(SD) (3.7) (4.2)
n 46 45

Note. TEMA-3 = Test of Early Mathematics Achievement–Third Edition; RCMIS = ratings of classroom management and instructional support.

implementation (t89 = −1.18, p = .2417, w = .42), Tier 1 
classroom management and instructional support (t89 = 
−1.53, p = .1302, w = .53), or class size (t89 = 1.46, p = 
.1484, w = .50). In these models, w describes the probabil-
ity for the model with the test of differential response com-
pared to an equivalent model without the Tier 1 Quality × 
Time × Condition interaction. Models with the three-way 
interaction for differential response were nearly equally as 
likely (w’s ≥ .42) as models without the interaction for 
three of the four Tier 1 quality indicators: fidelity of Tier 1 
implementation, Tier 1 classroom management and instruc-
tional support, and class size (see Table 2). As demon-
strated in Figure 1, the pattern of results indicated that 
students in classrooms with lower Tier 1 quality may have 
benefited more from the ROOTS intervention.

Figures 1 to 3 present the ROOTS intervention effect on 
student outcomes (dark line) and its 95% CI (light lines) 
across the range of Tier 1 quality indicator variables, plotted 
separately. Zero on the vertical axis represents no difference 
between conditions. Within the confidence bounds, vertical 
lines represent the 5th, 25th, 50th, 75th, and 95th sample 
percentiles, similar to a boxplot.

Figure 1 shows the ROOTS intervention effect across 
the range of Tier 1 fidelity of implementation scores. The 
vertical lines show that about 25% of classrooms had 
fidelity scores below 0.90, 50% below 0.96, and 75% 
below 1.0. The decreasing dark line suggests that the esti-
mated ROOTS effect decreased as fidelity of Tier 1 imple-
mentation increased. To assist with interpretation, we 
estimated effect sizes of 0.08 at the 25th percentile, −0.02 
at the median, and −0.09 at the 75th percentile of Tier 1 
fidelity scores.
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Figure 2 shows the ROOTS intervention effect across 
the range of Tier 1 classroom management and instructional 
support (RCMIS) scores. The vertical lines show that about 
25% of classrooms had classroom management and instruc-
tional support scores below 2.8, 50% below 3.2, and 75% 
below 3.4. The decreasing dark line suggests that the esti-
mated ROOTS effect decreased as Tier 1 classroom man-
agement and instructional support scores increased. We 
estimated effect sizes of 0.18 at the 25th percentile, 0.00 at 
the median, and −0.12 at the 75th percentile of classroom 
management and instructional support scores.

Table 2.  Differential Response Results from Mixed Time × Condition Analysis of Student Outcomes.

Effect or statistic

Tier 1 quality indicator (predictor)

Class-level 
TEMA-3 gains

Fidelity of 
Tier 1 RCMIS score Class size

Model probability (w) 0.29 0.42 0.53 0.50
Fixed effects Intercept 75.7 (1.6) 75.8 (1.7) 75.7 (1.6) 75.6 (1.6)
  Time 17.5 (1.0) 17.7 (1.3) 17.6 (1.3) 17.5 (1.3)
  Condition 0.8 (2.2) 1.0 (2.3) 0.9 (2.2) 1.5 (2.2)
  Time × condition 0.9 (1.4) 0.3 (1.8) 0.5 (1.8) 0.5 (1.8)
  Predictor −0.4 (0.2) 26.3 (23.5) 7.0 (3.7) −1.1 (0.4)
  Predictor × condition −0.9 (0.4) 14.9 (30.5) 9.6 (5.6) −0.5 (0.6)
  Predictor × time 0.9 (0.2) 24.4 (18.3) 4.3 (3.1) −0.1 (0.3)
  Predictor × time × condition 0.1 (0.2) −28.2 (23.9) −7.1 (4.7) 0.7 (0.5)
Variances Classroom-level intercept 81.5 (15.1) 77.6 (15.9) 64.1 (13.8) 65.0 (14.0)
  Classroom-level gain 3.5 (3.4) 19.6 (5.8) 19.1 (5.7) 18.8 (5.7)
  Student-level intercept 40.5 (7.3) 39.8 (7.3) 39.5 (7.3) 39.7 (7.3)
  Student-level gain 76.7 (6.4) 77.1 (6.5) 77.4 (6.5) 77.3 (6.5)
Predictor × time × 

condition effects
p value 0.6197 0.2417 0.1302 0.1484

  Degrees of freedom 89 89 89 89

Note. Table entries show parameter estimates with standard errors in parentheses except for model probabilities, p values, and degrees of freedom. 
Tier 1 quality indicators were centered at the mean. TEMA-3 = Test of Early Mathematics Achievement–Third Edition; RCMIS = ratings of classroom 
management and instructional support.

Figure 1.  Differential effects of ROOTS on student outcomes 
across fidelity of Tier 1 implementation scores.
Note. Figures 1–3 depict differential effects of ROOTS on student math 
achievement as a function of (a) fidelity of Tier 1 implementation (see 
Figure 1), (B) RCMIS = ratings of classroom and instructional support 
(see Figure 2), and (C) class size (see Figure 3). The vertical axis shows 
Hedges’ g effect sizes for the ROOTS intervention—zero on the vertical 
axis represents no difference between conditions—and the horizontal 
axis represents the range of each Tier 1 quality indicator. The heavy 
line depicts the mean difference between conditions at each level of the 
Tier 1 quality indicators. The two thinner, outer lines show the 95% 
confidence bounds around the effect estimate. To show the location of 
the sample on the graphs, the vertical lines within the confidence bounds 
depict the median (heavier vertical line), 25th and 75th percentiles 
(thinner long lines), and the 5th and 95th percentiles (short outer lines). 
For example, in Figure 1, an x-axis value of about 91% represents the 
lower 25th sample percentile in Tier 1 fidelity scores.

Figure 2.  Differential effects of ROOTS on student outcomes 
across Tier 1 classroom management and instructional support 
(RCMIS) scores.
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Figure 3 shows the ROOTS intervention effect across 
the range of class size (i.e., number of students per class-
room). The vertical lines show that about 25% of class-
rooms had a class size below 19.0, 50% below 21.0, and 
75% below 25.0. The increasing dark line suggests that the 
estimated ROOTS effect increased as class size increased. 
We estimated effect sizes of −0.09 at the 25th percentile, 
0.01 at the median, and 0.20 at the 75th percentile of class 
size.

Discussion

The purpose of this study was to investigate whether the 
quality of Tier 1 instruction (i.e., ELM; as measured by four 
quality indicators) resulted in differential response to a Tier 
2 mathematics intervention (ROOTS). We combined data 
from Years 2 (Oregon) and 3 (Texas) of the ROOTS effi-
cacy trial to examine the following Tier 1 predictors of at-
risk students’ responsiveness to ROOTS: (a) classroom-level 
mathematics gains, (b) Tier 1 fidelity of implementation, (c) 
Tier 1 classroom management and instructional support, 
and (d) class size. Given the relative dearth of research 
investigating student responsiveness to research-based 
interventions in the context of Tier 1 instruction, this study 
builds on the extant literature by examining the interaction 
between two tiers of support.

Overall, we found that response to the ROOTS interven-
tion was not significantly predicted by any of the Tier 1 vari-
ables that we examined. While our results were not 
statistically significant, the pattern of results and Hedges’ g 
effect sizes indicated that students with higher quality of Tier 
1 instruction tended to benefit less from the ROOTS inter-
vention. Specifically, we found that the effect of ROOTS 
decreased as both Tier 1 fidelity and classroom management 
and instructional support increased. This pattern was most 
pronounced when examining classroom management and 
instructional support, where the effect of ROOTS was 0.18 
for students in classrooms at 25th percentile of management 

and instructional support, and −0.12 in classrooms at the 75th 
percentile. As hypothesized, the opposite pattern emerged 
when examining class size, where the effect of ROOTS was 
−0.09 for students in classrooms at the 25th percentile, and 
0.20 for classrooms at the 75th percentile. This pattern of 
findings was in line with our hypotheses and supports previ-
ous research on the role of fidelity (DeFouw et  al., 2019; 
O’Donnell, 2008), classroom management and instructional 
support (Doabler et al., 2015; Jiménez et al., 2021; Pianta & 
Hamre, 2009), and class size (Nye et al., 2000).

While these findings are compelling, we must acknowl-
edge several limitations that should be taken into consider-
ation when interpreting our results. First, the ROOTS 
efficacy study was not sufficiently powered to detect the 
smaller interaction effects that were of interest in this study, 
given its design to test the overall efficacy of ROOTS. 
Future research should investigate the interaction between 
Tier 1 variables and Tier 2 response as a primary research 
question, where the number of participants allows for  
sufficient power to detect more nuanced effects. Second,  
a ceiling effect occurred on the ELM Fidelity of 
Implementation Instrument which may have interfered with 
our ability to detect differences across the continuum of 
implementation fidelity. The average score on the fidelity 
measure across both ELM and ELM + ROOTS classrooms 
was 0.90 (SD = 0.1). Teachers’ high fidelity to ELM may 
be a product of the four PD sessions across the school year, 
the teacher supports built into the program, or the ongoing 
involvement of the research team across participating sites. 
We would not expect such high levels of implementation 
fidelity in typical school practice. In addition, while we 
conceptualized fidelity as the extent to which ELM was 
delivered as planned (i.e., adherence to ELM), definitions 
of fidelity vary, and best practices represent a more multi-
faceted approach to examining this construct (Harn et al., 
2013). Future research should investigate Tier 1 fidelity 
more comprehensively to allow for a deeper understanding 
of the role of fidelity in core instruction and its effect on 
intervention response. Third, while we conceptualized the 
Tier 1 variables of interest in this study as Tier 1 “quality 
indicators,” other variables may also play an interacting 
role between Tier 1 instruction and Tier 2 interventions. For 
example, PD, teacher content knowledge, and student–
teacher interactions have all been identified as important 
contributors to the quality of Tier 1 instruction (Doabler 
et al., 2015; Garet et al., 2011; Hill et al., 2005; Pianta & 
Hamre, 2009; Sutherland et al., in press).

Implications and Future Research Directions

Findings of this study highlight the critical importance of 
implementing high-quality core mathematics instruction in 
the early grades. Patterns of effects consistently indicated 
that students who received higher-quality core instruction 

Figure 3.  Differential effects of ROOTS on student outcomes 
across class size.
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made smaller gains from the ROOTS intervention. Thus, 
ensuring high-quality Tier 1 mathematics instruction is cen-
tral to improving outcomes for students at risk for MD. This 
may be particularly relevant for students who are on the 
“cusp” of needing intensive intervention, where remedia-
tion may be accomplished through modifications to core 
instruction. Given the role of Tier 1 and the findings from 
this study, an important direction for future research is fol-
lowing at-risk students to determine if developing key foun-
dational skills in kindergarten leads to a decrease in the 
need for Tier 2 supports as well as intensive intervention.

In addition, the instructional context of this study is 
important when considering these results in the context of 
typical school practice. Reviews of core mathematics cur-
ricula have reported that widely used Tier 1 programs rarely 
incorporate instructional supports and design features 
aligned with the needs of at-risk learners (Bryant et  al., 
2008; Doabler et al., 2012). In contrast, ELM was specifi-
cally designed to support at-risk learners (Clarke et  al., 
2011), and includes evidence-based design features linked 
to improved outcomes for students with MD (e.g., Gersten 
et al., 2009; NMAP, 2008). It is therefore possible that our 
findings would have differed if a more typical core program 
less tailored to the needs of at-risk learners was in place.

Of equal importance is the consideration of alignment 
between the ELM core program and ROOTS intervention 
(Hill et al., 2012). Alignment may be conceptualized as proce-
dural (e.g., intervention corresponds to what is taught in Tier 
1 on a given day), instructional (e.g., specific teaching strate-
gies and materials are aligned), and philosophical (e.g., gen-
eral instructional approaches are aligned; Walp & Walmsley, 
1989). While ELM and ROOTS are strongly aligned in their 
use of mathematical representations, mathematical content, 
and instructional approaches (i.e., instructional and philo-
sophical alignment), they are not procedurally aligned. 
Research indicates that the level of alignment between the 
core and intervention program may impact student response 
to the Tier 2 intervention (Fuchs et al., 2008). Future research 
should further unpack the relations between program align-
ment and Tier 2 intervention effectiveness within the context 
of other Tier 1 quality indicators.

Conclusion

While results from this study were not statistically signifi-
cant, findings point to the potential of high-quality Tier 1 
instruction to mitigate the need for more intensive interven-
tions. In addition, while class size is largely an unalterable 
variable, our findings suggest that smaller class sizes may 
decrease the need for Tier 2 intervention. Teachers may 
combat larger class sizes by intensifying aspects of Tier 1 or 
strategically differentiating supports to better meet the 
needs of students with MD. With time, personnel, and 

financial resources in short supply, schools face difficult 
decisions about how to allocate resources effectively to 
remediate MDs (Ochsendorf, 2016). Questions regarding 
what content should be prioritized, when, and with what 
degree of alignment with core instructional content and 
delivery are essential for efforts to match services to student 
needs, a central component of MTSS. Research that evalu-
ates math intervention within a multitier context may ulti-
mately provide guidance to help schools use resources more 
effectively. As much as possible, we recommend that inter-
vention researchers capture what is occurring in Tier 1 to 
allow for more nuanced investigations into the role of core 
instruction and whether it may enhance or eliminate the 
need for more intensive interventions. This may lead to 
insights regarding situations in which less-intensive alterna-
tives to intervention, such as a supplemental class-wide 
“intervention” for all students, are a better fit given avail-
able school resources. Continued research in this vein is 
needed to better understand the conditions under which 
intensive interventions are likely to be effective.
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