
INTRODUCTION
Across many disciplines and institutions of higher learning, educa-
tors are occasionally faced with the undesirable scenario wherein 
many students perform poorly on an exam. There are a variety 
of reasons for such an outcome: for example, the test might not 
have been constructed properly, the students were not instructed 
on relevant material, or the students did not prepare themselves 
adequately. There are perhaps an equal variety of responses and 
remedies from educators, aligning with a diverse set of teaching 
philosophies (Brookhart et al., 2016). Some allow the results to 
stand, perhaps making adjustments to future iterations of the test 
or other assignments in that semester. Yet others apply some form 
of an active remedy: either scaling grades upwards, removing diffi-
cult questions from calculation of the total, or matching the class 
performance to a predetermined distribution. The latter is typi-
cally referred to as ‘curving’ the grade, and is usually done based 
on the exam average (Kulick, 2008). Traditionally, the grades are 
fit to a normal bell curve distribution, although other approaches 
with logistic curves and bimodal distributions have been tried (See 
Fig S2 for an illustration of a normal distribution).

Determining if a test was improperly constructed is almost 
always a useful exercise, for this can help inform the design of 
a better assessment in the future (Bibler Zaidi et al., 2018). This 
determination is usually carried out using item analysis, looking 
at each question on the test individually against different metrics. 
This analysis, derived from Item Response Theory, usually involves 
determining the difficulty and the discriminatory power of a 
given question (Adroher, Prodinger, Fellinghauer, & Tennant, 2018; 
Benedetto, 2020; Himelfarb, 2019; Towns, 2014). Question diffi-
culty is often assessed as the average score achieved across the 
entire class. The discriminatory power or discrimination index 
is a measure of how well the question separates high perform-
ing students from low performing students. If a question was 
answered correctly more often by students that performed well 
on the test overall, it will have a positive discrimination index. 
Questions in which low performing students did equally well or 
even better than high performing students may have a low or 
negative discrimination index. This situation may arise for very 
difficult questions in which all students resorted to guessing, or 
ones in which there was a ‘trap’ answer or distractor. 

Since the overarching goal of higher education institutions is 
for students to learn, tests and exams should act as assessments 
for their mastery of the material. Moreover, students are the 
immediate beneficiaries of this knowledge. An improper assess-
ment, with exceedingly difficult questions, will not give students 
appropriate feedback on the progress of their own learning. It 
may also result in a lower overall grade than is warranted based 
on their command of the material. Attempts to correct for this 
unwanted result, however, may create additional problems. Curves 
or scaling that operates on the test average may give a student a 
skewed perspective on their own progress, and may affect their 
motivation for future coursework. Curving an exam may also 
result in grade inflation, grade compression, or the perception 
of an unfair learning environment, as suggested both by empiri-
cal observations and simulation (Bailey & Steed, 2012; Dubey & 
Geanakoplos, 2010; Grant, 2016; Kulick, 2008).  A more surgical 
approach, such as the removal of questions that are deemed to 
be poor by item analysis, may be better but can suffer from arbi-
trary cutoffs.

As the preceding paragraphs suggest, the issues surrounding 
grading and problematic assessments have not escaped the atten-
tion of experts in the scholarship of teaching and learning (SoTL). 
On the contrary, there are a variety of perspectives on this topic 
and considerable debate regarding solutions which have been 
summarized elsewhere (Anderson, 2018). This is not surprising, 
given the importance these practices to teaching and student 
outcomes. Indeed, students and faculty often form different opin-
ions as to whether grade inflation exists, if a curve is appropriate, 
or if a test is administered fairly (Baglione & Smith, 2022; Chow-
dhury, 2018). The reliability of individual grades, the impact they 
have on student self-esteem, and their overall meaning have all 
been systematically explored in the SoTL field without definitive 
conclusions or the emergence of a single best practice (Gold-
haber & Ozek, 2019). In addition, there is considerable interest 
in the larger implications that grades and assessments have on 
institutions of higher education and equity (Jephcote, Medland, 
& Lygo-Baker 2021). It is against this backdrop that an educator 
must decide how to proceed when the class underperforms on 
a given assignment. 

Rather than curving or scaling total exam grades, this paper 
argues for the use of functions to be applied to each question, to 
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provide students a proportional bonus for questions that are too 
difficult and/or are poor discriminators. These functions can be 
easily applied after carrying out a typical item analysis, and they do 
not feature any arbitrary cutoff values but are instead continuous. 
By applying a significant bonus only for very difficult questions, it 
will address problems of an improperly constructed test, while 
allowing for a wide grade distribution if students had not prepared 
well for the exam. Herein are described two such functions – a 
simple model that only takes into account item difficulty, and a 
logistic model that also incorporates the discrimination index.

USING A POWER FUNCTION TO 
CORRECT FOR OVERLY DIFFICULT 
QUESTIONS
Item analysis can help reveal the difficulty of a given question. 
While most educators purposefully vary the difficulty of the 
questions on their exams, sometimes the apparent difficulty 
of a question is greater than was intended. Anecdotal evidence, 
from interactions with colleagues online and in person, show a 
preference to deal with questions beyond a particular difficulty 
threshold by removing them from the calculation of total score, 
effectively awarding their full credit to all students. However, this 
does not deal effectively with borderline cases, in which a ques-
tion was just slightly less difficult than the threshold. Since this 
arbitrary threshold cannot perfectly distinguish between a chal-
lenging and unfair question, it indicates the need for a continuous 
function that can be applied to each question to determine an 
aggregate bonus to apply to every students test (Fig. 1A). Such an 
approach can be based upon a power function, raising a measure 
of student performance on a question to a set exponent (See Fig. 
S1 for a general illustration of a power function). It was designed 
to produce an increasingly large bonus for questions more diffi-
cult than the threshold, and an exceedingly small bonus for ques-
tions that were easier. The threshold (St) should be set to a level 
that is the lowest score you would expect for a question on your 
exam. It is common and reasonable to include several difficult 
questions on an exam, for which you might expect only a third 
of the students to get it correct – hence, in the examples shown, 
the threshold was set near this level. The degree to which this 
function is switch like depends on the value or factor in the expo-
nent, (“F”) and can be easily modulated for a more or less grad-
ual application of the bonus. The bonus for each question can be 
calculated in this way, summated across the entire test, and then 
applied to the total grade of everyone in the class. 

USING LOGISTIC FUNCTIONS THAT 
INCORPORATE BOTH DIFFICULTY AND 
DISCRIMINATION
The classic three parameter model of Item Response Theory 
utilizes a logistic function which incorporates item difficulty, 
discrimination index, and some measure of intrinsic student abil-
ity (Adroher et al., 2018; Benedetto, 2020; Himelfarb, 2019; Lim, 
Lee, Ahn, Lee, & Im, 2016). This model served as inspiration for 
modifications to the function described in the preceding section. 
The new function will apply bonus points based on two of these 
values as a pair of logistic functions (Fig. 2A). A logistic function 
features a switch-like response to a changing variable (See Fig. S1 
for a general illustration of a logistic function). There are two key 
features to this approach. First, questions in which the students 

did well can receive only an infinitesimal bonus, since the maxi-
mum value will be governed by the nominator of 1 – S, where S 
is the score ranging from 0 to 1. If the entire class got the ques-
tion correct, the value of S is 1 and the nominator, and hence the 
bonus, is 0. Most scores well above the desired threshold will 
likewise be very small. Questions for which the class scored at 
the threshold will receive half of the maximum bonus for that 
question. Like the simple model, if the question was more difficult 
than was intended, and the score was below this threshold, this 
bonus will be even greater.

The other key feature is that the bonus is modulated by the 
discrimination index, using another logistic function. This index can 
help distinguish between difficult questions that are merely chal-
lenging from those that are unfair. Using a threshold score of 0.35 
and a threshold discrimination index of 0.15, which is a moderate 
to poor performing value, we can see the effect of different values 
for a range of questions (Fig 2.) For a question in which only 20% 
of the class gets the correct answer, if this 20% was mostly high 
performing students, then this represents a challenging yet fair 
question. Accordingly, the bonus applied only raises the class aver-
age for this question to about 30%. However, if the question was 
unfair or otherwise improper, featuring a negative discrimination 
index, the class average for this question may be raised to about 
50%. Like the simple model, this can also be made more sensitive 
by changing a constant value in the exponent (Fig 2B).

SIMULATION OF BOTH MODELS
Previous studies have analyzed the impact of a traditional curve 
on student grades through simulation (Kulick, 2008). These stud-
ies approximated student performance by assigning each student 
a value from a normal distribution that represented their level 
of preparation for the exam – this then determined if they 
succeeded on questions from a uniform distribution of difficulty. 
However, subsequent analysis showed that this simulation doesn’t 
align with some real world examples, and relies on the unrealistic 
assumption of uniform difficulty across an exam (Bailey & Steed, 
2012). Nevertheless, the simulation is a useful tool and starting 
point for investigating the impact of the models suggested above.

Here, this simulation was repeated with two important 
alterations. First, instead of curving the grades of the class, the 
bonus specified by either the simple or logistic model was applied. 
Second, question difficulty was not uniform. Indeed, the bonus 
models presented here are designed specifically to deal with 
exams that feature questions that were more difficult than antic-
ipated or intended. Here, question difficulty was generated the 
same way that student preparation was simulated: by selecting 
values from a normal distribution with a specified mean and stan-
dard deviation. This way, the amount of challenging, unfair, prob-
lematic, or trivial questions could be varied. The results of this 
simulation can be found in Table 1.

One clear, yet unsurprising trend emerges from this simu-
lation: the more unfair questions there are on the exam, the 
greater the bonus applied to the student’s grade. A striking exam-
ple is when the distribution of difficulty matches that of student 
preparation exactly, meaning most questions are near the limit of 
most student’s abilities. In this case, the results do not fit well to 
a normal distribution, yet the low class average may suggest that 
some curve or remedy is required. However, when the variance in 
difficulty is low (Table 1, row B), item analysis of this exam would 
reveal that a majority of exam questions were neither problematic 
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Figure 1. The final score of each question, after bonus points are applied using the simple model (A), or the modified simple model (B), under a 
range of different conditions. The student performance on a question (S) is shown on the x-axis, and the final score after the bonus is shown on 
the y-axis. Bonus points are applied for the three colored, solid lines, using the score threshold (St) of 0.35, as indicated by the dashed purple line. 
The value, nominator, or ‘factor’ (F) in the exponent is different among the three colored lines – the purple solid line matches the header equa-
tions, which calculates the bonus as follows: for each question, the fraction of available points awarded is calculated based upon the score of the 
class (S), ranging from 0 to 1, and a threshold score (St), representing the intended maximum difficulty of all the questions. By way of contrast, the 
performance a commonly employed method, the ‘square root curve’, is shown as an inset in the graph. This method takes the square root of the 
student’s raw score, multiplies it by 10, and uses this as the new score. In (B), the simple model using a factor of 2 is modified by multiplying it with 
a logistic function that incorporates the discrimination (D) for a question item. For a given threshold value (Dt, here 0.15), the bonus for questions 
with a discrimination ranging from 0.35 (good) to -0.25 (poor) are shown as different colored lines. The simple model is based upon a power 
function, while the modified one is based upon a logistic function. The general principles and behaviors of these types of functions are illustrated in 
Fig S1.

Figure 2. Example of the score obtained for a question after bonus points are applied using the logistic function (y-axis) for questions with a range 
of initial scores (x-axis) and discrimination index values. This was calculated using the equations shown above each graph. Using these equations, 
for each question, fractions of the available points are awarded based on the product of two logistic functions, shown above. The left function 
features the item difficulty or score (S) as a fraction between 0 and 1. This is compared to a target or threshold score (St). The right function 
similarly features the discrimination index (D) or the threshold for the desired discrimination index (Dt). A crude discrimination index value was 
obtained by first splitting students into two smaller groups – those that were in the top 50% of the class with respect to performance on the test, 
and those in the bottom 50%. The difference between the number in the former group getting the question correct from the number in the latter 
group that answered the question correctly is multiplied by two and then divided by the size of the entire class. Negative values result when more 
poor-performing students answered the question correctly than did the higher achieving students. Bonus points were calculated for a series of 20 
different questions, each with 6 possible discrimination index values. The difficulty threshold (St) was 0.35, as indicated by the purple dotted line, 
and the discrimination threshold (Dt) was 0.15, which matches the purple series line. The discrimination index for a question is represented by 
different colored lines and the inset legend. As a comparison, the points that are obtained with no bonus applied is shown as a gray dotted line.

3

IJ-SoTL, Vol. 16 [2022], No. 3, Art. 4

https://doi.org/10.20429/ijsotl.2022.160304



nor unfair. Accordingly, the simple and logistic models only afford 
a small bonus to such a performance.

This can be contrasted with an exam that has the same aver-
age level of difficulty of questions, and nearly the same class aver-
age, but a wider distribution of question difficulty (Table 1, row 
C). In this case, student performance suffered due to a greater 
amount of problematic or unfair questions. This is not the result 
of some students focusing on the wrong material or being unlucky 
– if it was, more of their peers would have done better. These 
types of questions, especially those in which less than 20% of 
the class answer correctly, are more likely due to problems with 
question construction or delivery of the instructional content. In 
these cases, a larger bonus is warranted, and granted by both the 
simple and logistic models. Thus, it is possible to have two exams 
with nearly identical class averages, but different levels of student 
preparation and different remedies applied.

CONCLUSIONS AND 
FUTURE DIRECTIONS
While the goal of enrolling in a college class is ostensibly to learn 
the material, many students are also highly focused on making sure 
they perform well on the assessments, mostly in service of earning 
a particular grade for the course and their transcript. Thus, how 
these assessments are constructed, graded, and adjusted can have 
serious impacts on a student’s perspective of the class and their 
ability to learn (Marini, Shaw, Young, & Ewing, 2018). Exams and 
tests that are exceedingly difficult can be discouraging, especially 
if only a select set of students performed well (Hernández-Ju-
lián, Peters, Hernández-Julián, & Peters, 2022). Low class averages 
correlate with poor student evaluations of faculty, thus creating 
pressure on faculty to remedy these situations. Some methods of 
curving or scaling grades are likewise considered unfair by some 
students, such as those that are in a homogenous class of high 
achievers (Kulick, 2008; Tan Yuen Ling, Yuen Pui Lam, Loo, Prinsloo, 
& Gan, 2020). It can create a hyper-competitive environment that 
adds stress, inhibiting learning and incentivizing cheating, and can 
exacerbate inequality of outcomes between different groups of 
students (Johnson et al., 2006; Kashyap, 2019; Kaustubh, 2020).

These problems demand a solution; methods to provide 
students with a systematic, fair, and informative way to assess 
their own learning, and the ability to adjust these metrics in like-
wise fashion. It should include approaches that help to ameliorate 
low class averages when necessary, while avoiding the specter of 
grade inflation and grade compression. This is important not only 
for student perception of their course, but for helping to bolster 
the eroding public perceptions of higher education (Babcock, 
2010; Caruth, Author, & Caruth, 2013). The models for bonus 
points presented here are designed as tools for instructors in 
the event that one or more of the questions on their exam were 
problematic, while avoiding pitfalls such as potentially unfair and 
arbitrary cutoffs. By joining the pantheon of other tools and reme-
dies for a problematic exam, they expand the practice of teaching 
and the possibilities an instructor has at their disposal. They also 
offer fertile ground for SoTL inquiry as to their effectiveness in 
enhancing the student experience, compared with more conven-
tional curves.

These functions were chosen because they should be rela-
tively easy to implement for faculty that already routinely carry 
out item analysis (An example of its application is provided in 
tables S1 and S2). More sophisticated approaches, such as using 
the three-parameter model from Item Response Theory, may be 
even better but more difficult to calculate. For example, equipped 
with the item difficulty and discrimination index across all ques-
tions, one could estimate the ‘ability’ or ‘preparation’ parameter 
for each student individually. Then for problematic items, this ‘abil-
ity’ can be used in the model together with a desired difficulty 
and discrimination index threshold to determine if the student 
would have gotten the item correct if it was properly constructed. 
Another possible, and easier improvement would be to combine 
the simple model with the logistic equation for the discrimination 
index value. This hybrid function provides the desired switch like 
response of the simple model, but one that is modulated by item 
discrimination index (Fig. 1B). Finally, these methods can be used 
in a variety of ways, such as determining the number of points 
available on an extra credit assignment following a difficult exam.

In addition to being easy for faculty to calculate, the 
presented methods can be easily communicated to students. 

Table 1. Simulation of student performance and the utility of the simple and logistic bonus models. Following previous studies(Kulick, 2008), 400 students 
were simulated answering 60 dichotomously scored questions across 3 exams. Student performance was modelled primarily by two factors: preparation, 
and item difficulty. In all simulations, preparation for each student was randomly selected from a normal distribution with a mean (u) of 0.75 and a stan-
dard deviation (d) of 0.083. Difficulty varied across simulations as indicated in the first column: (A) item difficulty was randomly generated as a number 
between 0 and 1. (B-F) item difficulty was randomly selected from a normal distribution with the indicated means (u) and deviations (d): B = 0.75u, 0.083d; 
C = 0.75u, 0.166d; D = 0.65u, 0.083d; E = 0.85u, 0.083d; F = 0.5u, 0.25d (See Fig S2 for an illustration of the distribution of questions). All other columns 
show the average of 5 separate simulations with those conditions, and the standard deviation shown in parentheses. Class averages are reported as raw 
score (R), plus either the bonus from the simple model (R+S) or the logistic model (R+L). Questions were categorized as either trivial (T), moderate (M), 
challenging (C), unfair (U), or problematic (P) when <100%, <80%, <60%, <40%, or <20% of students answered them correctly, respectively. The actual 
bonus amounts for the simple model (B-S) or logistic model (B-L) are also reported. 

Class Averages Question Categories Bonus Amounts

Simulation R R+S R+L P U C M T B-S B-L

(A) Random Difficulty 74.96 
(3.6) 83.62 (1.1) 78  

(2.8)
11 

(3.5)
2  

(1.6)
3.6 

(1.5)
2.6 

(1.1)
40.8 
(1.3)

8.66 
(3.1)

3.04 
(0.9)

(B) Difficult, Uniform 49.48 
(4.3)

57.62 
(3.3)

52.94 
(3.9)

12.8 
(5.1)

11.8 
(4.3)

12.6 
(3.6)

10.6 
(2.1)

11.6 
(4.5)

8.14 
(2.3)

3.46 
(0.9)

(C) Difficult, Varied 51.14 
(3.4)

66.92 
(2.1)

56.8 
(2.8)

19  
(2.2)

7.6  
(3)

6.4 
(1.5)

6.8 
(2.4)

20.2 
(2.9)

15.78 
(2.6)

5.66 
(0.7)

(D) Moderate, Uniform 69.88 
(3.5)

78.16 
(2.3)

72.82 
(3.1)

10.2  
(2)

4  
(1.2)

5.4 
(1.9)

6.2 
(3.1)

33.8 
(4.1)

8.28 
(1.4)

2.94 
(0.5)

(E) Very Difficult, Uniform 18.68 
18.68)

48.56 
(48.56)

29.46 
(29.46)

38.8 
(38.8)

13  
(13)

3.2 
(3.2)

3.4 
(3.4)

1  
(1)

29.88 
(29.88)

10.78 
(10.78)

(F) Easy, Highly Varied 83.48 
(1.3)

88.22 
(1.5)

85.16 
(1.4)

5.2 
(0.4)

1.8 
(1.1)

4  
(2.8)

2.8 
(1.1)

46 
(1.9)

4.74 
(0.8)

1.68 
(0.2)

4

Better Remedies For Bad Exams

https://doi.org/10.20429/ijsotl.2022.160304



Doing so may be a step towards reducing student anxiety regard-
ing difficult exam questions, competitive grading curves, and their 
final grade. Giving students this additional peace of mind may help 
them focus on what really matters in the course: mastering the 
content (Chassay, Kenney, & Brase 2019; Connell, Donovan, & 
Chambers, 2016; Gilbert, 2021).
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Supplemental Information

Calculating Difficulty. Difficulty for a question, or Score (S), is calculated simply by taking a sum of the classes points obtained for that 
question and dividing it by the product of class size and question value. 

Calculating Discrimination Index. A crude discrimination index value was obtained by first splitting students into two smaller groups – 
those that were in the top 50% of the class with respect to performance on the test, and those in the bottom 50%. The difference 
between the number in the former group getting the question correct from the number in the latter group that answered the ques-
tion correctly is multiplied by two and then divided by the size of the entire class. Negative values result when more poor-performing 
students answered the question correctly than did the higher achieving students. Other formulas and approaches to getting this index 
value are possible, and this is sometimes reported without additional calculation. Here excel was used in the following way: first, by 
finding the class average, and then setting up two columns using an =IF formula. In one column, a 1 was recorded if the student was in 
the top 50%, and a 0 if they were not. The second column had the inverse pattern. To find the number of students in the top 50% that 
got the question correct, a =SUMPRODUCT formula was used, multiplying the first column array by the column containing student 
answers or scores for a given question. A similar approach and formula was repeated for the second column to find the number of 
students in the bottom 50% that got the question correct.

Simulation The simulation study by Kulick and White, 2008, was used as a basis for the simulation of student performance. For simplicity 
and greater distribution, the calculations were carried out in Excel. The model depends primarily on simulating two factors: student 
‘preparedness’ and item ‘difficulty’. Following the Kulick and White study, I simulated 400 students taking 60 multiple choice questions 
across 3 exams. The scoring of these questions was dichotomous. Student preparation was randomly selected from a normal distri-
bution centered around a mean of 0.75, with a standard deviation of 0.083, using the =NORM.INV function in Excel (See Figure S2 
for an illustration of the output and this distribution). Item difficulty was generated in two different ways. For the ‘random’ difficulty, 
a number between 0 and 1 was generated via the =RAND function in Excel. If the question had a difficulty rating above that of the 
student’s preparation, the question was answered incorrectly; otherwise, the student got the answer correct. For the ‘normal’ diffi-
culty questions, the difficulty factor was generated by randomly selecting from a normal distribution, using the same function used 
for student preparation. The mean and deviation were varied and were used as specified in Table 1. Questions were categorized as 
either trivial, moderate, challenging, unfair, or problematic when <100%, <80%, <60%, <40%, or <20% of students answered them 
correctly, respectively. 

Figure S1. The generalized behavior of power and logistic functions. Power functions (left) take an x-value and raise it to a set 
exponent. The larger the exponent, the more drastic the difference in output (y-value) for a given input (x-value). Logistic func-
tions (right) are more complex, and provide a switch-like behavior around a given mean (x0, purple dotted line here set to 1). 
They accomplish this by raising euler’s number (i.e. a natural logarithm) to the difference between the x-value and the mean. The 
constant k determines how steep or switch-like the curve is, as shown by the variety of values in the graph; the higher k value gives 
a steeper curve. These functions form the basis of the functions presented in the paper, with relevant values replacing the constants.
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Figure S2. Behavior of a normal distribution for varying question difficulty. A normal distribution features a concentration of items 
around a mean, with the width of the distribution being described by the standard deviation. It can be used as the basis for curv-
ing a class grade, or for simulating student preparation or question difficulty. Here, two overlapping distributions are shown, both 
generated by using the NORM.INV function in Excel to create 1000 questions with an average difficulty of 0.75 (the mean). The 
graph shows how many of these questions falls within a certain difficulty rating, either less than 0.3, to each 0.05 interval (For 
example, the “0.35” category shows all questions that falls between 0.3 and 0.35). The narrow distribution (yellow) was generated 
using a standard deviation of 0.083, which is the same used for the questions in Table 1, row B. The wide distribution (green) was 
generated using a standard deviation of 0.166, which is the same used for the questions in Table 1, row C. The distributions are 
shown overlapping to facilitate the comparison between wide and narrow. Note that the right edge of the distribution has been 
compressed, showing all values greater than 1 in a single column.
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Table S1. Example data for 33 students taking a 20 question quiz. For some questions, there is one correct answer, worth 1 point. 
Other questions allow for partial credit, awarding a fraction of the point. The average score for all students across the test was a 
13.54 (67.7%). Students that scored above this average are bold and shaded in green.

Question

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 0.67 1 1 1 0 0.5 0 1 1 1 1 0.33 0 1 0.75 0 0.5

2 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0.25

3 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0.33 1 1 0.5 0 0.75

4 1 1 1 1 1 0 0 1 0.5 1 0 1 0 0 1 1 1 0.25 1 0

5 1 1 1 0.67 1 1 1 1 0.5 1 1 0 0 0 0 0 0 0.25 0 0.25

6 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1

7 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0.75

8 0 1 0 0.67 1 1 1 1 1 1 1 1 1 1 0.33 1 1 0.5 0 0.5

9 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0.75

10 1 0 0 0.67 0 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 0.75

11 1 0 0 0.67 1 1 1 0 0 1 1 0 1 1 0 0.67 1 0.5 1 0.75

12 1 1 1 0.67 1 1 1 1 1 1 0 1 1 1 0.33 1 1 0.25 0 0.5

13 1 0 1 0.67 0 1 0 1 0 1 0 1 1 1 1 0.67 1 0.75 0 0.75

14 1 0 1 0.67 1 1 0 1 0 1 0 1 1 1 0.33 0.67 1 0.25 0 0.75

15 0 0 1 0.33 0 1 0 0 1 1 0 0 0 0 0.33 1 1 0 0 0.5

16 0 0 1 1 1 1 0 1 0.5 0 1 1 0 1 0 1 1 1 1 0.5

17 1 0 1 1 1 1 1 1 0.5 1 0 1 1 0 0 1 1 0.5 0 0.75

18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0.33 1 1 0.75 0 0.25

19 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0.5 0 0.75

20 1 0 0 0.67 0 1 0 1 0 0 0 0 1 0 0 0.67 0 0 0 0.75

21 1 0 0 1 1 1 1 1 0.5 1 1 1 1 1 0.33 1 1 0.75 1 0.75

22 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0.33 1 1 0.75 0 0.5

23 1 1 1 0.33 1 1 1 1 1 1 1 1 1 1 0.33 1 1 0.75 1 1

24 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0.33 1 1 0.5 0 0.5

25 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0.33 0 1 0.5 0 0

26 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0.75

27 1 0 1 0.67 1 0 1 1 0 1 1 1 0 1 0.33 0 1 0.75 0 0.75

28 1 1 1 0.67 1 1 0 1 0 1 1 1 0 0 0 0.33 0 0 1 0.25

29 0 0 0 0.67 0 0 1 0 1 1 1 1 1 0 0.33 1 0 0.5 0 1

30 1 0 1 0.33 1 1 0 1 1 1 0 1 1 1 0 0 1 0.5 0 0.75

31 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0.75

32 1 0 1 0.67 1 1 0 1 1 1 0 1 0 1 0.67 1 1 0.75 1 0.75

33 1 0 1 0.67 1 1 1 1 1 1 0 1 1 1 0 1 1 0.75 0 0.75
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Table S2. Calculations for class performance on the first 10 questions from the example quiz. For each question, the average 
score (S) was found by totaling all of the points obtained by the class and dividing it by the class size. This is usually reported 
as the difficulty metric in item analysis. The power function uses the exponent F/St; here, F was 2 and St was set at 0.35. These 
values are displayed in scientific notation due to their small size; 6.E-05 indicates 6 x 10-5, or 0.00006. Note that the bonus 
obtained for most questions is small, since class performance was good. However, the class collectively struggled with question 2, 
which yields a relatively higher bonus of 0.1. Discrimination is calculated as described elsewhere in the supplementary text. The 
discrimination logistic function here used a threshold value (Dt) of 0.15. The hybrid bonus is a multiplication of the power func-
tion by the discrimination logistic function, as shown in Figure 1, panel B. Only the first 10 questions are shown here for clarity. 
However, if the entire dataset is processed, a total hybrid bonus of 0.33 should be obtained, raising the class average to 13.88 
out of 20 (69.4%).

Question

 1 2 3 4 5 6 7 8 9 10

Total Points; T 27 10 24 26.33 24 29 20 29 21.5 29

Average Score;  S = T/33 0.82 0.3 0.73 0.8 0.73 0.88 0.61 0.88 0.65 0.88

Power Function Bonus; = (1-S)F/St 6.E-05 1.E-01 6.E-04 1.E-04 6.E-04 6.E-06 5.E-03 6.E-06 2.E-03 6.E-06

Top Performing Student Total Score 14 7 12 13.67 12 15 14 16 14 15

Bottom Performing Student Score 13 3 12 12.67 12 14 6 13 7.5 14

Discrimination 0.06 0.24 0 0.06 0 0.06 0.48 0.18 0.39 0.06

Discrimination Logistic Function 1.01 0.84 1.07 1.01 1.07 1.01 0.63 0.89 0.71 1.01

Hybrid Bonus 6.E-05 1.E-01 6.E-04 1.E-04 6.E-04 6.E-06 3.E-03 5.E-06 2.E-03 6.E-06

9

IJ-SoTL, Vol. 16 [2022], No. 3, Art. 4

https://doi.org/10.20429/ijsotl.2022.160304


	Better Remedies For Bad Exams: correcting for difficult questions in a fair and systematic way

