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Multisite field experiments using the (generalized) randomized block design

that assign treatments to individuals within sites are common in education and

the social sciences. Under this design, there are two possible estimands of

interest and they differ based on whether sites or blocks have fixed or random

effects. When the average treatment effect is assumed to be identical across

sites, it is common to omit site by treatment interactions and “pool” them into

the error term in classical experimental design. However, prior work has not

addressed the consequences of pooling when site by treatment interactions are

not zero. This study assesses the impact of pooling on inference in the presence

of nonzero site by treatment interactions. We derive the small sample dis-

tributions of the test statistics for treatment effects under pooling and illus-

trate the impacts on rejection rates when interactions are not zero. We use the

results to offer recommendations to researchers conducting studies based on

the multisite design.

Keywords: multisite experiments; randomized block designs; pooling; ANOVA;

interactions

Introduction

Large-scale evaluation studies often involve many different sites (such as

schools, clinics, or locations). In education, most of these studies are carried out

using variants of two designs, the hierarchical or cluster randomized design and

the multisite or (generalized) randomized block design (Spybrook and Rauden-

bush, 2009). In the cluster randomized design, randomization takes place at the

cluster level, so that all the individuals within the same site receive the same

treatment. In the language of classical experimental design, clusters are nested

within treatments. With multisite designs, treatments are randomly assigned to

individuals within sites, so that all sites include some individuals who receive
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each treatment. In the language of classical experimental design, treatments are

crossed with sites. The multisite design is widely used in education and other

fields because it can often obtain higher statistical power for lower cost than the

hierarchical (cluster randomized) design (Hedges and Rhoads, 2009). The multi-

site design was found to be the most frequently used design in one survey of

randomized trials supported by the U.S. Institute of Education Sciences (IES;

Spybrook and Raudenbush, 2009). In recent work, Weiss et al. (2017) cite 16

large multisite designs spanning a range of levels of education. This article

focuses on the analysis of the multisite design.

A consequential choice for both analysis and interpretation (which also has

implications for details of the design, such as sample sizes) is the inference model

or choice of estimand (i.e., the treatment effect to be estimated). One possible

estimand is the average treatment effect among the sites observed in the experi-

ment. In classical experimental design, this situation is described as saying that

the sites have fixed effects. An alternative estimand is the average treatment

effect in some (super)population of sites, a sample of which are observed in the

experiment. In classical experimental design, this situation is described as saying

that the sites have random effects. In general, the treatment effect estimate has a

different distribution when the sites have fixed effects than when the sites have

random effects and different test statistics are appropriate for testing the signifi-

cance of (or creating confidence intervals for) treatment effects.

Regardless of which estimand is of interest, the most general analytic model

would include parameters representing the differences of average treatment

effects across sites (site–treatment interactions). If the average treatment effect

(parameters) is identical across sites, then a more sensitive test for treatment

effects can be obtained by omitting site–treatment interactions from the analytic

model. This is called “pooling site–treatment interactions into the error term” in

classical experimental design (see, e.g., Hines, 1996). Pooling has not been

universally embraced in the statistical literature on experimental design. Scheffé

(1959) advises against it, while Kendall and Stuart (1968) argue that the issues

are complex and need further research, and Hines (1996) argues that power

improvements obtained from pooling are generally small. Much of the literature

on pooling has addressed conditional pooling strategies based on preliminary

tests for interactions (see, e.g., Bancroft and Han, 1983; Bozivich et al., 1956;

Han and Bancroft, 1968; Mead et al., 1973; Paull, 1950; Wolde-Tsadi and Afifi,

1980). Yet none of this work seems to address the consequences for inference of

pooling when interactions are not exactly zero.

The purpose of this article is to assess the impact of pooling (i.e., omitting

site–treatment interactions from the analytic model) when treatment by site

interactions are not exactly zero—that is, when average treatment effect para-

meters are not identical across sites. First, we briefly review relevant literature on

classical experimental design, from which recent work on social experiments

developed. Then, we derive approximate small sample distributions of the test
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statistics for treatment effects for both fixed and random effects inference models

and show by simulation that the analytic results are quite accurate. Throughout,

we focus on the balanced multisite design, in which each site contains the same

number of individuals. Focusing on the balanced design removes the ambiguity

of whether the site-average treatment effect or the person-average treatment

effect is the estimand (because the estimates are identical in this case). Then,

we use the small sample distributions to study the impact of pooling nonnull

interactions on tests for treatment effects. We assess the impact of pooling by

computing the rejection rates of the test statistics based on pooling. We then use

the analytic results to derive post hoc adjustments to test statistics computed

using pooling. Finally, we discuss other considerations that affect the interpreta-

tion of the results presented in this study and offer recommendations for

researchers conducting studies based on the multisite design.

Classical Experimental Design

Although large-scale funding for randomized field trials in education became

more frequent with the creation of IES in 2002, statistical work on experimental

design began 80 years before that time (see, e.g., Fisher and MacKenzie, 1922).

Many of the issues that arise in contemporary discussion of educational experi-

ments have their historical antecedents in the classical experimental design lit-

erature. The cluster randomized, randomized block designs, and many others

were well known and widely used by the 1930s. More subtle issues of the target

of estimation (the estimand) were also understood by the first half of the

20th century. Consider the question of whether the purpose of the experiment

was to make inferences about the mean treatment effect in the observed blocks

(sometimes called a finite sample or fixed effects estimand) or in a population of

blocks from which the observed blocks are a sample (sometimes called a super-

population or random effects estimand). This distinction was explicitly made by

Eisenhart (1947) who described the estimands and may have been the first to use

the names fixed, random, and mixed effect models. He also described the anal-

ysis of variance targeting each of these estimands and gave the sampling distri-

bution of the F-test statistics for each effect. However, the distinctions and the

appropriate analyses were clearly understood earlier. Daniels (1939) had previ-

ously described the analysis of fixed, random, and mixed model analyses

(although not using these names).

The earliest work on computing statistical power in the analysis of variance

appears to be that of Tang (1938), but there was much subsequent work on

computing the relevant noncentral sampling distributions for power calculations.

Scheffé (1959) provided a sophisticated explication of the analysis of variance

that unified and extended much of the previous literature on experimental design

and analysis. Early work focused on balanced designs where the same number of

individuals are randomized to each treatment in each site, but the analysis of
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unbalanced designs was addressed by Windsor and Clark (1940) and consider-

ably elaborated by Henderson (1953). The classical experimental design litera-

ture seems to have focused on the estimation and testing of mean and variance of

mean block-average treatment effects, rather than person average or precision

weighted treatment effects, although this distinction and its implications for

estimation and precision were well known in the survey literature (see, e.g., Kish,

1965).

The emergence of interest in large-scale randomized trials in education after

the formation of IES in 2002 led to a resurgence of interest in the design and

analysis of randomized experiments in education. Because the power function of

tests for treatment effects in both fixed and random effects models for balanced

designs was available and because these designs were most efficient, much of the

early work on power analysis focused on balanced designs. Raudenbush (1997)

used classical results on balanced nested designs to study power and optimal

design in cluster randomized trials. Raudenbush and Liu (2000) used classical

results on balanced mixed model designs to study power and optimal design in

multisite trials. Schochet (2008) applied the same theory to discuss power anal-

yses of randomized trials. More recently, there has been renewed interest in

estimating variance components characterizing cross-site variation in average

treatment effects. For example, Raudenbush and Bloom (2015) used classical

results to study the power of tests for treatment effect variance components.

The availability of software for multilevel analysis (the mixed general linear

model) has enabled broader use of analyses of unbalanced designs, for which

analytic results are difficult to obtain. For example, Bloom et al. (2017) studied

alternative models for studying cross-site variation in treatment effects in unba-

lanced designs. Miratrix et al. (2021) used simulation to study the properties of

various analyses in unbalanced designs.

While some authors appreciated and exploited classical results from experi-

mental design, classical results have not always been fully exploited to under-

stand the consequences of choices about design and analysis. The main focus of

classical experimental design has been on balanced designs, which often have

simpler analytic properties than unbalanced designs. Thus, they can provide

analytic results that give insight into what might happen in unbalanced designs.

For example, the sampling properties of finite and superpopulation estimators of

average treatment effects were studied using simulation by Miratrix et al. (2021).

Two of their findings were that (1) in designs with treatment effect heterogeneity,

analyses targeting finite sample treatment effect estimands generally have

smaller variance than those targeting superpopulation estimands (which puts

individuals into an infinite population framework) and (2) the variances of the

standard errors of treatment effect estimates are generally smaller for finite

population estimands. Both of these results can be obtained analytically for

balanced designs and they may be useful to help contextualize simulation results.
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The analytic results would show, for example, how results vary as a function of

parameters like sample size allocations and variance components.

The Analysis of Variance of the Multisite (Randomized Block) Design

In this article, we consider the analysis of the balanced multisite design, the

design in which each site (block) contains the same number of individuals. We

center our discussion on the balanced design because its optimal analysis (the

standard analysis of variance) is well-understood. Note that while this section

uses the analysis of variance framework, this approach and regression, or the

mixed linear model approach, are notational variants (i.e., they give identical

analyses).

Model and Notation

Suppose that the study design has m sites (blocks), and the n individuals in

each site are randomly assigned to each of the treatment and the control condi-

tions (a balanced design). Throughout, we use the terms sites and blocks inter-

changeably. The total number of individuals in the study is given by N ¼ 2mn.

Let Yijk denote the outcome measurement of the kth individual in the jth site and

the ith treatment. Using the conventional notation of the analysis of variance, the

model for Yijk in the multisite design is given by

Yijk ¼ mþ ai þ bj þ gij þ eijk ; i ¼ 1; 2; j ¼ 1; . . . ; m; k ¼ 1; . . . ; n; ð1Þ

where m is the grand mean, ai is the effect of the ith treatment, bj is the effect

of the jth site (block), gij is the interaction effect of the ith treatment and the

jth site, and eijk is a residual. The residual eijk is assumed to be independent of

other residuals and to have a normal distribution with variance se
2. The grand

mean m and the treatment effects ai are taken to be fixed, but unknown

constants.

Let �Y 1j � (j ¼ 1, . . . , m) and �Y 2j � (j ¼ 1, . . . , m) be the means of the jth site

in the treatment and control groups, respectively, let �Y 1�� and �Y 2�� be the

overall (group) means in the treatment and control groups, respectively, and

let �Y ��� be the grand mean. The analysis of variance for this design is

typically described in terms of MSA, MSB, MSG, and MSW, the mean

squares for treatment, sites, the site–treatment interaction, and within cells,

respectively, which are defined by

MSA ¼ SSA ¼ mnð �Y 1�� � �Y 2��Þ2

2
;

MSB ¼ SSB

m� 1
¼ 2n

Xm

j¼1

½ð �Y 1j � þ �Y 2j �Þ � ð �Y 1�� þ �Y 2��Þ�2

ðm� 1Þ ;
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MSG ¼ SSG

m� 1
¼ n

Xm

j¼1

½ð �Y 1j � � �Y 2j �Þ � ð �Y 1�� � �Y 2��Þ�2

ðm� 1Þ ;

and

MSW ¼ SSW

2mn� 2m
¼
X2

i¼1

Xm

j¼1

Xn

k¼1

ðYijk � �Y ��� Þ2

2mðn� 1Þ :

Here, the mean square for each source of variability is defined by the sum of

squares for the source divided by the degrees of freedom for that source. A

fundamental identity in the analysis of variance for balanced designs is that the

sums of squares SSA, SSB, SSG, and SSW are statistically independent.

Fixed Versus Random Block Effects

There are different possible models for the parameters bj (block or site effects)

and gij (interaction effects). In the blocks fixed or fixed effects model, bj and gij

are assumed to be fixed, but unknown constants. In the blocks random or mixed

effects model, bj and gij are assumed to be random and we define the variance of

gij to be s2
g=2. We define the interaction variance in this manner to simplify the

formulas for the distribution of the sums of squares. In mixed effects models, the

block and interaction effects are also often assumed to be normally distributed,

and we adopt that model here. Although the computations for the mean squares in

both models (fixed and mixed effects) are identical, the choice of model has

important implications for the distribution of the sums of squares, for the test

statistics used to test the treatment effect, for the precision (variance) of the

treatment effect estimate, and for the inferences that can be drawn.

Blocks Random Analysis

Using the model in Equation 1, the treatment effect is defined as a1 � a2 and

an estimate of the treatment effect is given by

�Y 1�� � �Y 2��

When the blocks are random, the variance of the treatment effect estimate is

2ðse
2 þ nsg

2Þ
mn

; ð2Þ

and the standard error of the treatment effect is the square root of this variance.

To test the null hypothesis of no treatment effects (a1 ¼ a2Þ; the test statistic is

given by

F ¼ MSA

MSG
¼ ðm� 1ÞSSA

SSG
: ð3Þ
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When the null hypothesis is true, this test statistic has an F-distribution with 1

degree of freedom in the numerator and m – 1 degrees of freedom in the denomi-

nator (see, e.g., Kirk, 1995). In this design, this test is the uniformly most

powerful unbiased test for the treatment effect. Note that MSG, the mean square

for the interaction, is sometimes called the “error term” in this analysis because it

is the denominator of the F-statistic.

Note that the F-test given in Equation 3 has approximately the same sampling

distribution as the square of the treatment effect estimate divided by the square of

its standard error in a two-level hierarchical model (individuals nested within

blocks) introducing treatment as a Level 1 (individual level) predictor, with

treatment and block effects random and normally distributed. The treatment

effect estimates are identical, but the standard errors will be slightly different

because here, maximum likelihood or restricted maximum likelihood will be

used to estimate the variance components in the error term. The advantage of

this analytic strategy (based on regression) is that it can easily be used with

unbalanced designs.

When blocks are random, the inference model refers to the average treatment

effect in the population of blocks from which the observed blocks are a (random)

sample. In other words, in this case, the estimand of interest is the “super pop-

ulation block” average treatment effect (Miratrix et al., 2021). In this design,

inferences about the treatment effect are about the mean in the (super)population

of blocks from which those observed are a sample. An advantage of the blocks

random design is that the statistical model incorporates some degree of uncer-

tainty associated with generalizations of the average treatment effect to a larger

population. However, while some uncertainty due to the sampling of blocks is

taken into account, the invocation of the sampling theory of generalization is not

entirely warranted if the blocks are not a true random sample of a well-defined

population.

Blocks Fixed Analysis

If blocks (and therefore block–treatment interactions) are fixed, the only ran-

dom term is the residual eijk . The test statistic for testing the null hypothesis of no

treatment effect (a1 ¼ a2Þ is

F ¼ MSA

MSW
¼ 2mðn� 1ÞSSA

SSW
; ð4Þ

which has the F-distribution with 1 degree of freedom in the numerator and

2mn – 2m degrees of freedom in the denominator when the null hypothesis is

true. In this design with fixed blocks, this test is the uniformly most powerful

unbiased test for the treatment effect. Note that unlike the blocks random case,

MSW is considered the “error term” in this analysis because it is the denominator

of the F-statistic. The F-statistic given in Equation 4 is exactly the same as would
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be obtained by fitting a regression model with dummy variables for treatment,

blocks, and the block–treatment interactions. The advantage of the regression

analysis is that it is easy to use when the design is unbalanced.

Like the blocks random case, the treatment effect is defined here as a1 � a2,

and an estimate of the treatment effect is

�Y 1�� � �Y 2��

When the blocks are fixed, the variance of the treatment effect estimate is

2se
2

mn
; ð5Þ

and the standard error of the treatment effect is the square root of the variance.

The inference model for treatment effects when blocks are fixed refers to the

average treatment effect in the set of blocks that happen to be included in

the experiment. Similarly, the precision of the treatment effect estimate is

based on the estimate of the average treatment effect in the specific set of

blocks in the study. In general, when blocks have fixed effects, the statistical

inference is only about the treatment effect in the blocks actually observed in

the experiment.

Unlike the blocks random case, in the blocks fixed case, there is no statistical

sampling theory warrant for generalizing about treatment effects to blocks

that are not included in the experiment. The uncertainty considered in the

statistical inference for the blocks fixed case is only the uncertainty associated

with obtaining samples of individuals within the blocks that are included in

the experiment. When scientists make generalizations beyond the blocks in

the experiment, the argument is extrastatistical (e.g., “I can generalize to

additional blocks because they are sufficiently similar to the blocks in the

experiment, so that treatment effects are likely to be the same”). However, if

treatment effects vary across blocks, generalizations will be unwarranted if the

sample of blocks included in the experiment is not a representative sample of

all blocks.

Pooling Sums of Squares

The analysis of variance above (or the corresponding regression analysis)

permits testing for average treatment effects in the presence of block or block–

treatment interaction effects. However, if there is no block–treatment interac-

tions, then a more powerful test and a smaller standard error of the treatment

effect estimate can be obtained by omitting the interaction effect from the ana-

lytic model. This is called “pooling the interaction sums of squares into the error

term” in classical experimental design because (in either the blocks fixed or

blocks random model) the error term of the test statistic becomes

MSPooled ¼ SSPooled=ðm� 1þ 2mn� 2mÞ ¼ ðSSG þ SSWÞ=ð2mn� m� 1Þ; ð6Þ
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the test statistic becomes

FP ¼ MSA=MSPooled; ð7Þ

and the denominator degrees of freedom of the test statistic become

½m� 1þ 2mðn� 1Þ� ¼ 2nm� m� 1 ¼ N � m� 1: ð8Þ

Let FP denote the F-statistic based on the pooled sums of squares. Note that

FP is the same test statistic for the treatment effect that we would obtain from

fitting a regression model for treatment and blocks (but omitting block–treatment

interactions), so that

FP ¼ ðbTreatment=SETreatmentÞ2;

where bTreatment is the regression coefficient estimate for the treatment effect and

SETreatment is its standard error.

The improvements in power and precision due to pooling arise because the

expectation of SE2 is the same with and without pooling, but the degrees of

freedom in the pooled error term (the denominator of the F-statistic) increase.

These improvements depend, of course, on the hypothesis that the interaction

effect parameters are exactly zero. If this is not true, then the null distribution of

the test statistic based on pooled error terms is not the nominal F-distribution.

A Note on Unbalanced Designs

The treatment effect estimate in the balanced design that we address in this

article could have been written as

�Y 1: � �Y 2: ¼ 1

m

Xm

j¼1

ð �Y 1j: � �Y 2j:Þ:

Thus, it is the unweighted average of the block-specific treatment effect

estimates. Because each block-specific treatment effect estimate �Y 1j: � �Y 2j: has

the same variance in the balanced design, the overall average treatment effect

could be described as either the unweighted average or (equivalently) as the

precision weighted average.

If the design was unbalanced and the block sizes (or cell sizes) were unequal,

then the variances of the �Y 1j: � �Y 2j: would not all be the same. Thus, the

unweighted and precision weighted averages of the �Y 1j: � �Y 2j: would be differ-

ent. For example, if blocks have fixed effects, the treatment effect estimate

computed in a regression analysis (fitting only a treatment dummy and block

dummies) would be the precision weighted mean. However, the precision

weighted mean need not be the estimand of interest, and if it is not, then the

analysis needs to be adjusted (e.g., by choosing an appropriate weighting

scheme). This distinction in survey sampling is known as that between the
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element mean versus the group mean, where its implications for estimation and

variance are well known (see, e.g., Kish, 1965).

The Small Sample Properties of Analyses That Omit Site

by Treatment Interactions

In this section, we provide the small sample distribution of the test for treat-

ment effects in the balanced multisite design when nonnull interactions are

present, but they are not included in the analytic model. We use it to compute

the actual significance level of tests for treatment effects that omit the interac-

tions from the analytic model. We also give the impact on the precision of (and

confidence intervals for) treatment effect estimates. Details of the derivations are

given in the Appendix.

Blocks Random

If blocks have random effects, then the sampling distribution of the regression

test statistic FP is a constant times an F-distribution with reduced degrees of

freedom. That is,

FPCR ¼ FP
ðN � m� 1Þse

2 þ nðm� 1Þsg
2

ðN � m� 1Þðse
2 þ nsg

2Þ

� �
ð9Þ

has an F-distribution with 1 degree of freedom in the numerator and

h ¼ ½ðN � m� 1Þse
2 þ nðm� 1Þsg

2�2

ðN � m� 1Þse
4 þ n2ðm� 1Þsg

4 þ 2nðm� 1Þse
2sg

2
ð10Þ

degrees of freedom in the denominator. The term FPCR refers to the corrected

pooled F statistic in the blocks random case. Note that if s2
g ¼ 0, FP has an

F-distribution with 1 and (N – m – 1) degrees of freedom, so that the test based on

pooling has exactly the expected distribution. However, if s2
g > 0, then the

corrected F-statistic FPCR < FP and h < N – m – 1. Therefore, the critical value

for FPCR is greater than the nominal critical value (based on N – m – 1 degrees of

freedom in the denominator). This means that using FP with its nominal critical

value will lead to a rejection rate that is higher than nominal.

Equation 9 (along with Equation 10) can be used to compute the actual

rejection rate of the test conducted using FP. Because FPCR ¼ cFP (the constant

c is the second factor on the right-hand side of Equation 9), it follows that

P FP > Fa
N�m�1

� �
¼ P cFP > cFa

N�m�1

� �
¼ PfFPCR > cFa

N�m�1g: ð11Þ

Because the distribution of FPCR is given by Equation 9, using Fa
N�m�1 as the

critical value of the F-distribution with 1 and N – m – 1 degrees of freedom in

Equation 11 gives the actual rejection rate of the nominal level a test.
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Note that Equation 9 implies that if we knew (or were willing to impute)

the values of se
2, sg

2, or just sg
2=se

2, we could adjust or “correct” the

results of a significance test performed that omitted the block by treatment

interactions from the analytic model. While the value of sg
2=se

2 is unlikely

to be known, the imputation of a range of plausible values might be useful as

a robustness check. This is similar to the procedure used by the What Works

Clearinghouse in imputing values of the intraclass correlation to adjust sig-

nificance tests for clustering when the original analysis omitted the clustering

effects (Hedges, 2007a).

To assess the impact of using the test statistic based on the pooled error term

in the blocks random case when sg
2 > 0, we use the distribution of FPCR to

evaluate the actual significance level (Type I error or rejection rate) of tests for

the treatment effect based on FP. Figure 1 gives the actual significance level for

nominal 0.05 level tests using FP for various values of m; n; and sg
2=se

2. The

figure shows the rejection rates obtained by the simulation of the test based on

the corrected test statistic FPCR using Equation 9 (sim corrected) and the

uncorrected test statistic FP (sim uncorrected). It also gives the theoretical

rejection rate for the uncorrected test statistic based on Equation 11 (theo

uncorrected). Each column of the figure has a different value of the ratio

sg
2=se

2 (where se
2 ¼ 1Þ and each row has a different block size n. Figure 1

shows that, when blocks are random, the test with no block–treatment interac-

tions fitted gives quite liberal results, even when the interaction variance is

small compared to the within cell variance (i.e., even when sg
2 is small com-

pared to se
2). For example, when sg

2 ¼ 0:05se
2, the actual significance level

of a nominal 0.05 level test is about 0.10, when the number of sites m ¼ 10 and

n ¼10. As sg
2=se

2 or the number of sites m becomes larger, the test becomes

more liberal. When m ¼ 50, n ¼ 20, and sg
2=se

2 ¼ 0.50, the rejection rate is

greater than 0.50. Note that the rejection rates for the corrected test statistic

FPCR obtained by simulation are essentially identical to those given by the

theory and are close to nominal, which implies that Equation 9 provides an

accurate correction to the significance test. Furthermore, the rejection rates

of the uncorrected test statistics obtained by theory and those obtained by

simulation are essentially identical to each other and they are both higher

than nominal.

In addition to the rejection rates, Figure i in the Supplemental Appendix

provides the degrees of freedom h in Equation 10 for the corrected test statistic

and the nominal degrees of freedom N – m � 1 for the uncorrected test statistic

for the blocks random case. The figure illustrates that while the differences in

degrees of freedom are small when the number of sites m is small, they are much

larger when the number of sites increases. The larger differences are also seen

when the ratio sg
2=se

2 increases.
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Blocks Fixed

If blocks have fixed effects, then the sampling distribution of the test statistic

FP ¼ MSA/MSPooled is also a constant times an F-distribution with altered

degrees of freedom. The distribution of FP when blocks are fixed depends on

the constants g11; g21; . . . ; g1m; g2m. To express the distribution succinctly, it is

useful to express the sum of squared interaction parameters as the realized

variances of the fixed interaction parameters. Using the identification that the

mean of the effects is zero, we can define the realized variance of the fixed

effects, sG
2 (note the Roman letter in the subscript), as

sG
2 ¼

Xm

j¼1

½g1j
2 þ g2j

2�
m� 1

: ð12Þ

Note that the concept of variance here is a descriptive, rather than a formal,

concept because sG
2 is not the variance of a random variable in this design.

Additionally, we use the symbol sG
2 in the blocks fixed case to distinguish this

parameter from the variance component sg
2 in the blocks random case.

The corrected test statistic FPCF in the blocks fixed case is given by

FPCF ¼ FP
ðN � m� 1Þse

2 þ 2nðm� 1ÞsG
2

ðN � m� 1Þse
2

¼ FP 1þ 2nðm� 1ÞsG
2

ðN � m� 1Þse
2

� �
; ð13Þ

which has an F-distribution with 1 degree of freedom in the numerator and

h ¼ ½ðN � m� 1Þse
2 þ 2nðm� 1ÞsG

2�2

ðN � m� 1Þse
4 þ 2nðm� 1Þse

2sG
2

ð14Þ

degrees of freedom in the denominator. The term FPCF refers to the corrected

pooled test statistic in the blocks fixed case. Note that if sG
2 ¼ 0, FPCF ¼ FP

has an F-distribution with 1 and (N – m – 1) degrees of freedom, so that the

nominal distribution of FP is exactly correct. However, if sG
2 > 0, then the

corrected F-statistic FPCF > FP and h > N – m – 1. Since both the value of FPCF

and its associated degrees of freedom h are larger than in the nominal analysis,

the true rejection rate of the test using FP is smaller than nominal. In fact, the

rejection rate tends to be only modestly smaller than nominal.

Like the blocks random case, we can adjust the results of the significance test

using (or imputing) the values of se
2; sG

2, or just sG
2=se

2. When the test

statistic is not adjusted and interaction effects are present, the distribution of

FPCF can be used to evaluate the actual significance level (Type I error or

rejection rate) of regression tests for the treatment effect based on FP in the

blocks fixed case. Figure 2 gives the actual significance level for nominal

0.05 level tests for various values of m; n; and sG
2=se

2. The figure is organized

similar to Figure 1 with the important exception that the columns refer to the

realized variance of the fixed effects sG
2. Figure 2 shows that when blocks have
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fixed effects, the test using a model with no block–treatment interactions fitted

gives somewhat conservative results, but the actual significance levels are not far

from nominal, particularly when the ratio sG
2=se

2 is small. For example, when

sG
2 ¼ 0:05se

2 and m ¼ n ¼ 10, the actual significance level of a nominal 0.05

level test is 0.048. As sG
2 becomes larger, the test becomes more conservative.

In the worst case when the ratio sG
2=se

2 ¼ 0.05 and m ¼ 50, the actual sig-

nificance level is less than 0.03. Figure 2 illustrates that the rejection rate of

the corrected test statistic has rejection rates that are close to, but slightly larger

than nominal, while the rejection rates of the uncorrected test statistic obtained

by theory and by simulation are comparable to each other, but conservative

overall. Note that the standard error of the rejection rates obtained by simulation

is about 0.001.

Figure ii in the Supplemental Appendix provides a comparison of the degrees

of freedom for the blocks fixed case. From the figure, the degrees of freedom h in

Equation 14 and the nominal degrees of freedom N – m – 1 are similar overall,

but the differences become more apparent when the number of sites m increases

and the ratio sG
2=se

2 is large. However, these differences in degrees of freedom

are less notable compared to those in the blocks random case.

Example

To illustrate the implications of the results, consider a balanced randomized

block experiment designed to detect an effect of size d ¼ 0.2 with 80% power

under the assumption that treatment effects were homogeneous across blocks. A

sample size of m ¼ 20 and n ¼ 20 (a total sample size of N ¼ 800) would have

power of over 80% to detect the treatment effect. Because the treatment effects

are expected to be homogeneous, the same analysis (e.g., a regression analysis

fitting a treatment effect and dummy variables for blocks, which pools the

interaction variance into the error term) would be appropriate regardless of

whether the blocks were considered to have fixed or random effects.

Thus far, the discussion has largely focused on hypothetical values of the

interaction variance and the effect of omitting interactions on statistical inference

when these variances are not zero. Here, we discuss some empirical evidence of

the magnitude of these variances and consider the range of treatment effect

variance component estimates found in 16 large studies by Weiss et al. (2017).

The studies were selected because they had randomized block designs, they were

large (and therefore likely to provide stable estimates of treatment effect variance

components), and they covered a broad range of educational levels. The number

of sites ranged from 9 to over 300 and each study reported several outcomes, so

that there was a total of 51 heterogeneity variance component estimates. Ten

(20%) of the 51 estimates were zero, but the other 80% of the estimates ranged

from sg
2=se

2 ¼ 0:02 to 0.35 with a mean of 0.13 and a median of 0.12. We will
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examine the impact of four heterogeneity values sg
2=se

2 ¼ 0.00, 0.05, 0.12, and

0.35 that span the range of Weiss et al.’s data.

Suppose that a superpopulation estimand was of interest, so that the blocks are

considered to have random effects. If the model and the assumption of homo-

geneity of treatment effects is correct (i.e., sg
2=se

2 ¼ 0.00), then the nominal

rejection rate for the test of treatment effect using the pooled analysis is exactly

correct. However, suppose that there is some heterogeneity and sg
2=se

2 ¼ 0.05

(low end of the range in Weiss et al. [2017]). Let the number of sites and site sizes

m ¼ n ¼ 20. Then, Equations 9 and 10 allow us to compute the actual signifi-

cance level of the a ¼ .05 level test. In this case, the actual significance level is

about .16 (over 300% of the nominal level of significance). If the heterogeneity

was the median of the nonzero values observed by Weiss et al. with sg
2=se

2 ¼
0.12, then the actual significance level of the a¼ .05 level test is about 0.27 (over

500% of the nominal level of significance). If the heterogeneity was at the high

end of the range observed by Weiss et al. with sg
2=se

2 ¼ 0.35, then the actual

significance level of the a¼ .05 level test is about .45 (over 900% of the nominal

level of significance—almost equivalent to the flip of a fair coin).

Now suppose instead that the estimand was the average treatment effect in the

blocks that were observed (the finite population estimand). In this case, the

effects on the significance level of pooling nonnull interactions into the error

term are less meaningful. If the assumption of homogeneity of treatment effects

is correct (i.e., sG
2=se

2 ¼ 0.00), then the nominal rejection rate for the test of

treatment effect using the pooled analysis is exactly correct. However, suppose

that there is some heterogeneity and sG
2=se

2 ¼ 0.05. Then, using Equations 13

and 14 to compute the actual significance level of the a ¼ .05 level test, we

obtain .047 (only slightly less than the nominal level of significance). If the

heterogeneity was a bit bigger and s2
G=s

2
e ¼ 0.12, then the actual significance

level of the a¼ .05 level test would be about .044, and if the heterogeneity was at

the high end of the range observed by Weiss et al. with sG
2=se

2 ¼ 0.35, then the

actual significance level of the a ¼ .05 level test would be about .034. Thus, for

blocks fixed, the test would be only slightly conservative in all cases.

Considerations in Using the Findings of This Article

The results of this article imply that failure to include interactions in the

analytic model (pooling the interactions into the error term) can distort signifi-

cance tests and the computed precision of treatment effects if interactions are

present. This is particularly the case in the blocks random framework. However,

before giving our recommendations, we call the reader’s attention to other things

that might be considered in interpreting the results of this study. First, while

the analytic results are correct (they were checked by simulations reported in

Figures 1 and 2), the levels of heterogeneity chosen for the presentation in this
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article could be much larger than are plausible, exaggerating the consequences in

practice. Alternatively, the results may well apply, but the obvious remedy,

inclusion of interactions in the analytic model, might result in so large of a

reduction of design sensitivity that it is untenable, leaving the researcher in a

quandary about what to do. Yet another possibility is that the use of robust

standard errors obviates any problems. We examine each of these possibilities

in the sections that follow.

Are the Levels of Heterogeneity Examined Implausibly Large?

To understand the implications of the analytic results in this article, it is

necessary to understand what amounts of heterogeneity (sg
2=se

2 or sG
2=se

2)

might plausibly occur. If the effects we demonstrate only occur with implausibly

large amounts of heterogeneity, they might have few practical implications. We

offer two lines of evidence that the amounts of heterogeneity reported here are

likely to occur in practice. One is empirical, and the other is theoretical.

The results from Weiss et al. (2017) provide empirical evidence of the mag-

nitude of interaction variances that were observed in a sample of multisite trials.

As mentioned, the range of between-blocks treatment effect variance compo-

nents spanned from 0.02 to 0.35 with an average of 0.13 and a median of 0.12.

This range overlaps with the values chosen in our simulation (given in Figures 1

and 2) and provides validation that the amounts of heterogeneity considered in

this study are plausible in practice.

From a theoretical perspective, much of the literature on pooling involves

evaluation of the plausibility that interactions are negligible via a preliminary

significance test for the interaction. Pooling is only done if the preliminary test is

not significant. From this perspective, an interaction that is too small to detect via

a significance test is negligible—as an empirical matter, it is undetectable (at

least in the particular study at hand).

Thus, we can obtain some perspective on how large the interactions that are

pooled might be by considering whether the interaction could be detected by a

significance test in a study that was adequately sensitive to detect treatment

effects of reasonable size. Assume that a study was planned with the expectation

that there were no site (block)–treatment interactions, with a significance level of

.05 and power of .8. One might choose an expected effect size of d¼ 0.2 – 0.3 as

reasonable values (the low end of the range of Cohen’s small to medium effect

sizes). For example, the median value of effect sizes in the What Works Clear-

inghouse is at the low end of this range. A study with m ¼ 20 and n ¼ 10 would

have a minimum detectable effect size (MDES) less than 0.3 (as would a study

with m ¼ 10 and n ¼ 20). Similarly, a study with m ¼ 20 and n ¼ 20 would have

an MDES less than 0.2 (as would a study with m¼ 40 and n¼ 10). Thus, a range

of m ¼ 10–50 and n ¼ 10�20 seems reasonable to expect of designs that might

be used in education trials.
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Consider the test statistic for testing the hypothesis that sg
2 ¼ 0 or sG

2 ¼ 0.

Note that the test is the same regardless of whether sites are fixed or random, but

the power function is different depending on whether sites are random or fixed.

The test statistic is defined in terms of the mean squares as

F ¼ MSG=MSW

and the results in the Appendix imply the power function of the test. While the

power function of tests for interactions has been well known for some time (it is

implied, e.g., by results in Searle [1971]), it has only recently been studied by

applied researchers (e.g., Bloom & Spybrook, 2017; Raudenbush and Bloom,

2015).

Table 1 shows the minimum value of sg
2=se

2 (and sG
2=se

2) for which the

test of site–treatment interaction achieves 80% power (for significance level .05)

as a function of m and n. One might say that Table 1 gives the MDES variance.

The values m ¼ 10–25 and n ¼ 5–20 correspond to total sample sizes ranging

from N ¼ 200–2,000. Table 1 shows that the minimum detectable values of

sg
2=se

2 (for sites random) or sG
2=se

2 (for sites fixed) are 0.05 or larger for

all but the largest design (with m¼ 50 and n¼ 20 and total N¼ 2,000). Thus, the

smallest values of the interaction variance considered (0.05 and 0.1) would have

been undetectable in experiments with a range of sample sizes that are plausible

for education experiments.

Does Adding Interaction Effects Drastically Decrease Design Sensitivity?

The major reason that interactions are omitted from analytic models (pooled

into the error term) is that including interaction effects reduces the sensitivity of

statistical tests and decreases the width of confidence intervals because it reduces

degrees of freedom in the error term. Thus, in deciding whether to include

interaction effects in the analytic model, the researcher must weigh this reduction

TABLE 1.

The Minimum Value of sg
2=se

2 (or sG
2=se

2Þ for Which a .05 Level Significance Test

for the Interaction Would Have 80% Power

Blocks Random Blocks Fixed

m n ¼ 10 n ¼ 15 n ¼ 20 n ¼ 10 n ¼ 15 n ¼ 20

10 .23 .15 .11 .19 .12 .09

15 .16 .11 .08 .14 .09 .07

20 .13 .09 .07 .12 .08 .06

25 .11 .07 .06 .10 .07 .05

50 .07 .05 .04 .07 .05 .04
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in sensitivity if interactions are included against the consequences for signifi-

cance testing if they are not.

To help understand this trade-off, we examined design sensitivity in two ways.

First, we examined the MDES, which is the smallest effect size that will achieve

a specified statistical power given a specified significance level. Given the spec-

ified power and significance level, the MDES is a function only of m and n.

Second, we computed the expected length of the confidence interval for the

average treatment effect size, which is a function of only m and n and the

confidence coefficient of the interval desired. In both cases, we examined

the situation in which there was no interaction in the correct model, so that the

analysis without interactions is a correct specification. However, because the

correct model has no interaction, the nominal sampling distribution of the test

statistic is correct both with and without interactions, albeit with different resi-

dual degrees of freedom.

We computed the MDES with and without interactions in the model, as a

function of m and n. The specified statistical power was 80% (as suggested, e.g.,

by Cohen, 1977) at a specified significance level (here 5%). The largest differ-

ence was 0.16 (MDES ¼ 2.50 without interactions versus MDES ¼ 2.66 with

interactions), when m ¼ 2 and n ¼ 2. For m ¼ 2 and n � 5, m ¼ 3 and n � 7, and

m� 4 and n� 5, the difference in MDES with and without interactions is always

less than 0.01. In other words, except for studies with very small numbers of

blocks (m < 4) and very small numbers of individuals within treatments within

blocks (n < 5), the difference between the MDES with and without interactions

was negligible. Also, in all situations where the difference exceeded 0.01, the

MDES was 0.74 or larger, much larger than effect sizes typically expected in

education field trials.

Second, we computed the ratio of the expected length of the 95% confidence

interval for the average treatment effect size without interactions in the model to

that with interactions as a function of m and n. The largest value of the ratio was

1.03 for m¼ 2 and n¼ 2. For m¼ 2 and n� 5 and m� 3 and n� 4, the ratio is 1

to two decimal places. In other words, with the exception of studies with very

small numbers of blocks (m < 3) and very small block sizes (n < 4), the ratio of

confidence interval lengths with and without interactions fitted in the model was

essentially the same. Thus, based on the calculations with the MDES and con-

fidence interval widths, there appears to be little loss of sensitivity due to includ-

ing interactions in the analytic model in most situations.

Do Robust Standard Errors Solve the Problem of Omitted Interactions?

Procedures for computing robust standard errors in linear regression models

(e.g., Eichler, 1967; Huber, 1967; White, 1980) provide large sample estimates of

standard errors of regression coefficients when residual variances are heterosce-

dastic. These methods have been incorporated into software packages and they
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are widely used in economics and the social sciences. It might seem reasonable to

expect that these robust standard errors would correct any problems associated

with the pooling of interactions that are not in the analytic model into the error

term. However, the situation is slightly more complex than it might seem.

Robust variance computations are defined in terms of matrix algebra, which

can obscure the actual computations involved. In a balanced design, the matrix

algebra simplifies considerably. There are several variants of robust variance

estimates that differ by various finite sample corrections, the details of which

are beyond the scope of this article. In a balanced randomized block design, the

robust variance (the square of the robust standard error) of the estimate of the

average treatment effect is

ðSSW þ SSGÞ=ðN � m� 1Þmn

when the finite sample correction formula proposed by MacKinnon and White

(1985; there called HC2), which is the default in STATA, is used. This is some-

times called the “unbiased” formula because it gives an unbiased estimate of the

variance of the regression coefficient under homoscedasticity. Note that this is

exactly the same (algebraically) as the variance estimate in the linear model that

does not fit interactions. Thus, in balanced designs, the use of robust standard

errors to account for heteroscedasticity yields exactly the same test as does

pooling the interaction variance into the error term or the (exactly equivalent)

regression analysis omitting interactions from the analytic model. Therefore, in a

balanced randomized block design, tests based on homoscedasticity robust stan-

dard errors have the same properties as the regression or pooled analysis of

variance tests.

Robust variance estimates can also be computed based on clusters and they

provide consistent estimators of the variance of the treatment effect estimate

when the number of clusters (the sites in this study) is large. The robust variance

of the treatment effect estimate in balanced designs reduces to

N � 1

N � m� 1

� �
MSG

mn
;

when the default finite sample correction in STATA is used. Note that this differs

by a factor of (N – 1)/(N – m – 1) from the variance obtained via the analysis of

variance test with blocks random. Thus, cluster robust standard errors would be

an appropriate analysis if the design were balanced, even if the number of

clusters (blocks/sites) is small. However, if the design is unbalanced and the

number of clusters (blocks/sites) is small, the exact distribution of the test sta-

tistic computed from the robust variance estimate is more complex. In particular,

it may not have close to a t-distribution with (m – 1) degrees of freedom. This

point is particularly relevant, because in many cases, the number of clusters

(blocks/sites) m will not be large.
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Recommendations

Because the properties of analyses depend on the estimand chosen, it is important

to specify an estimand before choosing the analysis for an experiment with a multi-

site design (a point emphasized by Miratrix et al. [2021]). If the estimand is the mean

effect in a superpopulation of sites, then the pooling of interactions into the error

term (or using fixed effects analyses that do not include site–treatment interactions)

should be used only if it is clear that interactions are very close to null. Even

interactions that are smaller than are likely to be detectable via preliminary signifi-

cance tests can seriously elevate actual significance levels. Alternatively, analyses

using mixed linear models with sites and site–treatment interactions having random

effects described by Raudenbush and Bryk (2002) or Bloom et al. (2017) are appro-

priate. Analyses using cluster robust standard errors may also be appropriate if the

number of blocks m is large enough.

If the estimand is the mean treatment effect in the sites observed, pooling has a

relatively small effect on actual significance levels, even if small site–treatment

interactions are present. Alternatively, design-based approaches (Schochet, 2018),

homoscedasticity consistent robust standard errors, or randomization approaches

(see, e.g., Calinski and Kageyama, 2000) could be used.

Clearly specifying the estimand is important for interpretation as well as for

choice of analysis. Presumably, researchers intend that their work will be inter-

preted as relevant to some actual educational setting or settings. Unless the

experiment is intended as a case study of the particular sites observed, general-

ization to other sites or settings is at least implicitly intended. It is useful for the

researcher to articulate the reason why the results of the study should apply to

those other sites or settings. Although the literature on generalization is beyond

the scope of this article, there has been research on making that logic more

explicit (see, e.g., Stuart et al., 2011 or Tipton, 2013) and endorsements for doing

so. For example, the American Educational Research Association’s (AERA,

2006) Standards for Reporting Empirical Social Science Research in AERA

Journals require that the studies should both “make clear the intended scope of

generalization of the findings” and “the logic by which the findings of the study

should apply within the intended scope of generalization” (p. 39). Explicit spe-

cification of the estimand and how it is linked to the intended scope of findings is

one way to satisfy the AERA’s standards for reporting.

Appendix

Derivations

Distribution of the sums of squares

Blocks random. If blocks are random (and therefore the block–treatment

interactions are also random), the distribution of the sums of squares is given by
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SSA

ðs2
e þ ng2Þ* w2

1

mnða1 � a2Þ2

2

� �
;

SSW

s2
e
* w2

2mn�2m;

SSB

ðs2
e þ 2ns2

bÞ
*w2

m�1;

and

SSG

ðs2
e þ ng2Þ* w2

m�1;

where the symbols s2
b and s2

g are the block and block–treatment interaction

variance components, w2
nðlÞ is the noncentral w2 distribution with n degrees of

freedom and noncentrality parameter l, and w2
n ¼ w2

nð0Þ is the central w2 distri-

bution with n degrees of freedom (see, e.g., Searle, 1971).

Blocks fixed. If blocks (and therefore block–treatment interactions) are fixed,

each sum of squares (divided by a constant) has a central or noncentral w2

distribution given by

SSA

s2
e
* w2

1

mnða1 � a2Þ2

2

� �
;

SSW

s2
e
* w2

2mn�2m;

SSB

s2
e
*w2

m�1 2n

Xm

j¼1

b2
j

s2
e

0
@

1
A ¼ w2

m�1

2nðm� 1Þs2
B

s2
e

� �
;

and

SSG

s2
e

* w2
m�1

 
n

Xm

j¼1

s2
e

!
¼ w2

m�1

�
nðm� 1Þs2

G=se2

�
;

where s2
e is the within cell residual variance, bj is the effect of block j, g1j is the

interaction effect of the treatment condition and block j, g2j is the interaction

effect of the control condition and block j, and w2
nðlÞ is the noncentral w2 distri-

bution with n degrees of freedom and noncentrality parameter l (Searle, 1971).

Distribution of the test statistics

We derive the small sample distributions of the tests for treatment effects based

on FPCR and FPCF in the blocks random and blocks fixed case, respectively.
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The derivations follow a theorem from the Appendix of Hedges (2007b), which

we restate here in a slightly modified form.

Theorem. Suppose that D * Nð d; as2Þ and S2 is a quadratic form in normal

variates independent of D and defined, so that EðS2Þ ¼ bs2 and VðS2Þ ¼ 2cs4,

where a, b, and c are constants, possibly involving parameters defined by the

design. Then, F ¼ bD2/aS has the noncentral F-distribution with one degree of

freedom in the numerator, b2/c degrees of freedom in the denominator, and

noncentrality parameter l ¼ d2/a.

Blocks random. To obtain the sampling distribution of FP given in (7), apply

the theorem using

D ¼ ð �Y 1�� � �Y 2��Þ; S2 ¼ ðSSG þ SSWÞ=ð2mn � m� 1Þ; s2 ¼ ðs2
e þ ns2

gÞ:

Derivation of a: Under this framework, a direct argument with

s2 ¼ ðs2
e þ ns2

gÞ
shows that

a ¼ VarðDÞ
s2

¼ Varð �Y 1�� � �Y 2��Þ
s2
e þ ns2

g
¼

2ðs2
eþns2

gÞ

mn

s2
e þ ns2

g
¼ 2

mn
:

Derivation of b: The constant b is given by EðS2Þ=s2. If X*cw2
f , then EðX Þ ¼ cf

and VarðX Þ ¼ 2c2f , so that we have

EðS2Þ ¼ E
SSW þ SSG

N � m� 1

� �
¼ EðSSW Þ þ EðSSGÞ

N � m� 1
¼
ð2mn� 2mÞs2

e þ ðm� 1Þðs2
e þ ns2

gÞ
N � m� 1

;

¼
ðN � m� 1Þs2

e þ nðm� 1Þs2
g

N � m� 1
;

Thus

b ¼
ðN � m� 1Þs2

e þ nðm� 1Þs2
g

ðN � m� 1Þðs2
e þ ns2

gÞ
;

where N ¼ 2mn:

Derivation of c: The constant c is given byVarðS2Þ=2s4.

We have

VarðS2Þ ¼ Var
SSW þ SSG

N � m� 1

� �
¼

2ð2mn� 2mÞs4
e þ 2ðm� 1Þðs2

e þ ns2
gÞ

2

ðN � m� 1Þ2
;

Thus
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c ¼
ðN � m� 1Þs4

e þ n2ðm� 1Þs4
g þ 2nðm� 1Þs2

gs
2
e

ðN � m� 1Þ2ðs2
e þ ns2

gÞ
2

:

Blocks fixed. To obtain the sampling distribution of FPCF given in (13), apply

the theorem using

D ¼ ð �Y 1�� � �Y 2��Þ; S2 ¼ ðSSG þ SSWÞ=ð2mn � m� 1Þ; and s2 � s2
e :

Derivation of a: When blocks have fixed effects, a direct argument gives

a ¼ VarðDÞ
s2

¼ Varð �Y 1�� � �Y 2��Þ
s2

e
¼ 2

mn
:

Derivation of b: The constant b is given by EðS2Þ=s2. In the blocks fixed case,

we use the fact that if X*cw2
f ðlÞ, then EðX Þ ¼ cðf þ lÞ and VarðX Þ ¼

c2ð2f þ 4lÞ. We have

EðS2Þ ¼ E
SSW þ SSG

N � m� 1

� �
¼ 1

N � m� 1
E

SSW þ SSG

s2
e

� �
¼ ðN � m� 1Þs2

e þ 2nðm� 1ÞsG
2

s2
eðN � m� 1Þ :

Thus

b ¼ ðN � m� 1Þs2
e þ 2nðm� 1ÞsG

2

ðN � m� 1Þs2
e

:

Derivation of c: The constant c is given by VarðS2Þ=2s4.

We have

VarðS2Þ ¼ Var
SSW þ SSG

N � m� 1

� �
¼ 1

ðN � m� 1Þ2
Var

SSW þ SSG

s2
e

� �
:

Since VarðSSWÞ=s2
e ¼ 2ð2mn� 2mÞ and VarðSSGÞ=s2

e ¼ 2ðm� 1Þþ
4nðm� 1ÞsG

2=s2
e , so that we have

Var
S2

s2
e

� �
¼ 2ð2mn� 2mþ m� 1Þs2

e þ 4nðm� 1ÞsG
2;

which gives

VarðS2Þ ¼ 2ðN � m� 1Þs2
e þ 4nðm� 1ÞsG

2;

which implies

c ¼ VarðS2Þ
2s4

e
¼ ðN � m� 1Þs4

e þ 2nðm� 1ÞsG
2s2

e

ðN � m� 1Þ2ðs2
eÞ

2
:
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