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Abstract
Algebraic thinking and strategy flexibility are essential to advanced mathematical thinking. Early algebra instruction uses ‘missing-
operand’ problems (e.g., x – 7 = 2) solvable via two typical strategies: 1) direct retrieval of arithmetic facts (e.g., 9 – 7 = 2) and 2) 
performance of the inverse operation (e.g., 2 + 7 = 9). The current study investigated the strategies people choose when solving these 
problems, and whether some people are more flexible in their choices than others. U.S. undergraduates (n = 59) solved missing-
operand problems and made speeded verifications of arithmetic sentences corresponding to the direct- and inverse-matched facts. To 
‘decode’ their strategy as direct or inverse, each participant’s response times (RTs) for missing-operand problems were regressed on 
their RTs for the corresponding direct and inverse facts. Our findings replicated the problem size effect for the arithmetic verification 
task and extended this effect to missing-operand (i.e., one-step) algebra problems, suggesting that the two tasks draw on common 
representations and processes in the addition (but not subtraction) context. We found individual differences in strategy choice and 
flexibility such that participants varied both in terms of fluency for retrieving the direct fact and sensitivity to the potential benefit of 
switching to the inverse fact, which was validated by self-report. We did not find a predicted relation between strategy flexibility and 
standardized mathematical achievement. These findings inform our understanding of the cognitive processes involved in strategy 
flexibility in algebra and establish an RT-decoding paradigm for future examination of individual differences in students’ learning of 
early algebra concepts.
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Success in algebra depends in large part on fact fluency (Fuchs et al., 2016) and strategy flexibility in problem-solving 
(Koedinger et al., 2008; Newton et al., 2010; Star & Newton, 2009; Star & Rittle-Johnson, 2008). Recent educational 
reforms, such as the Common Core State Standards for Mathematics initiative in the United States, have emphasized 
the value of being able to flexibly choose between multiple strategies and conceptually understand how they are 
mathematically related (National Governors Association, 2010). Solving simple algebra problems may be said to extend 
complex arithmetic thinking about inverse operations (Campbell, 2008; Peters et al., 2010; Torbeyns et al., 2018) to 
become a foundation for algebra, enabling more complex algebraic problem solving (Koedinger et al., 1997). Thus, 
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investigating performance on problems that are commonly used in early algebra instruction provides a window into the 
shift from arithmetic thinking to the strategy flexibility characteristic of algebraic problem solving.

Early algebra instruction formalizes ‘open number sentences’ from arithmetic (e.g., [ ] – 7 = 2; Carpenter et al., 1988; 
Groen & Poll, 1973; Lamb et al., 2016) into one-step algebraic equations in one variable (e.g., x – 7 = 2; Herscovics & 
Linchevski, 1994; Pillay et al., 1998). Students in early algebra can solve these ‘missing-operand problems’ via at least 
two strategies. The direct strategy involves direct retrieval of the corresponding arithmetic fact (e.g., 9 – 7 = 2). The 
inverse strategy involves applying the inverse operation and then retrieving the inverse fact (e.g., 2 + 7 = 9). Importantly, 
moving from number-specific direct retrieval to number-general ‘inverse thinking’ is a cornerstone of algebraic problem 
solving, where the inverse strategy is formalized as ‘isolating’ the unknown (e.g., by adding 7 to both sides of x –7 = 2; 
Pillay et al., 1998). We selected problems like x – 7 = 2 because they are conceptually linked to arithmetic problems, and 
their solution may involve elements of both arithmetic and algebraic problem solving.

The direct strategy involves bottom-up pattern-matching from the algebraic equation to its arithmetic fact, while 
the inverse strategy requires an additional top-down symbol-manipulation step before retrieval (i.e., transformation or 
re-representation; Anderson, 2005; Qin et al., 2003). Despite this additional step, the inverse strategy may sometimes be 
more efficient depending on features of the problem at hand (e.g., the size of the operands) and a person’s relative access 
to the direct and inverse arithmetic facts (i.e., fluency), which may vary both by problem features and the individual. 
Herscovics and Linchevski (1994) found that a class of seventh graders overwhelmingly used inverse strategies for 
missing-operand problems when direct fact retrieval was inaccessible. Thus, students who are flexible problem solvers 
may switch between direct and inverse strategies depending on their fluency for the direct fact and whether switching 
to the inverse strategy would benefit or cost their efficiency.

Essential to a deep understanding of mathematics is the ability to conceptually understand and choose appropriately 
between multiple strategies (Schneider et al., 2011). However, research suggests that strategy flexibility varies consider­
ably between individuals. Children and adults both vary in flexibility in solving open number sentences for integer 
arithmetic (Bofferding & Richardson, 2013; Lamb et al., 2016). Algebra students also vary in their strategy flexibility 
(Star & Rittle-Johnson, 2008), and mere knowledge of multiple strategies is not sufficient for flexible use (Newton et al., 
2010). Even experts, who tend to be more flexible, do not always choose the most efficient strategy (Star & Newton, 
2009).

Much of the research on strategy flexibility in algebra has primarily used more complex problems involving multiple 
steps and multiple variables. However, success in solving simple algebra problems is foundational for and predictive of 
learning to solve more complex problems (Booth et al., 2014), and many students struggle to transition from arithmetic 
to algebra (Herscovics & Linchevski, 1994; Kieran, 1992; Pillay et al., 1998). Thus, investigating strategy flexibility in 
solving simple algebra problems can inform our understanding of strategy flexibility in algebra and its developmental 
trajectory.

The current study tested a new approach to ‘decoding’ strategy flexibility in simple algebra problems (i.e., one-step 
missing-operand problems) using participants’ response times. It also investigated individual differences in use of the 
direct vs. inverse strategy for solving missing-operand problems, as well as the potential association between strategy 
flexibility and mathematical achievement. As an antecedent step, it investigated temporal profiles of the retrieval 
of arithmetic facts during the solving of missing-operand problems. Accordingly, our hypotheses derived from the 
arithmetic problem solving literature.

Prior Research
Previous research has revealed reasoners’ cognitive processes in arithmetic (Ashcraft, 1992), which may undergird 
their understanding of algebra, especially missing-operand problems. One method used to solve arithmetic problems 
is retrieval, in which the relevant arithmetic fact is directly retrieved from memory to answer the question (Ashcraft 
& Guillaume, 2009; LeFevre et al., 1996). Research indicates that people are faster to evaluate arithmetic expressions 
or to verify arithmetic sentences involving ‘smaller’ operands (e.g., to evaluate 2 + 3 or verify 2 + 3 = 5) than ‘larger’ 
operands (e.g., to evaluate 8 + 9 or verify 8 + 9 = 17). This ‘problem size effect’ (Parkman & Groen, 1971) has been 
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demonstrated robustly and throughout mathematical development (Ashcraft & Guillaume, 2009). The problem size effect 
is a key characteristic of the representations involved in arithmetic problem solving.

Reliance on direct retrieval to solve arithmetic problems is a common strategy even for young children (Ashcraft & 
Fierman, 1982; Siegler & Shrager, 1984). However, it is not the only strategy. People also use non-retrieval strategies, 
including more effortful transformational strategies. There are various transformational strategies used by young 
children learning arithmetic (Carpenter et al., 1981; Hiebert, 1982), but transformation remains common among adults, 
especially for larger problems. For example, as addition problem sums exceed 10, young adults become increasingly 
likely to self-report that they decomposed one operand to create a more familiar arithmetic fact (e.g., 7 + 4 = 7 + (3 + 1) 
= (7 + 3) + 1 = 10 + 1 = 11; LeFevre et al., 1996). Non-retrieval strategies may be especially prominent for subtraction, 
for which reasoners increasingly shift from retrieval to non-retrieval for minuends 11 and greater, sometimes using an 
inverse strategy for subtraction expressions (e.g., 13 – 7 = _) and recruiting the corresponding addition facts (e.g., 6 + 7 
= 13) (Seyler et al., 2003). This subtraction-by-addition strategy is more common when the operands are large (Campbell, 
2008) and when the subtrahend is considerably smaller than the difference (Peters et al., 2010; Torbeyns et al., 2018). It 
is even demonstrated among children, sometimes flexibly (Hickendorff, 2020; Torbeyns et al., 2018). However, it is less 
clear whether inverse transformations play a role in missing-operand problems, especially for single-digit operands (i.e., 
below 10), and how this may relate to individual differences in arithmetic fluency.

Earlier research has shown that young children struggle with open number sentences (e.g., [ ] – 3 = 5; Groen & 
Poll, 1973), especially when the unknown is the first operand or when represented as word problems (Briars & Larkin, 
1984; Hiebert, 1982). Children’s performance on such word problems improves after instruction mapping their informal 
strategies onto the mathematical symbols of open number sentences (Carpenter et al., 1988). Across these and other 
studies, children vary in their strategy choice, which can relate to achievement (Siegler, 1988) and working memory 
capacity (Seyler et al., 2003).

Finally, research has demonstrated that when individuals switch between strategies across problems, they may incur 
a ‘switch cost’ (Lemaire & Lecacheur, 2010). Despite this cost, most participants in the above studies were willing to 
use different strategies depending on problem characteristics. This suggests that people may also perceive a strategy 
‘switch benefit’ for some problems which outweighs the switch cost enough to compel them to switch strategies for 
those problems. If so, sensitivity to this strategy switch benefit may be a key characteristic of flexibility in algebraic 
problem solving and mathematical achievement more generally. We examine this ‘switch benefit’ in missing-operand 
algebra problems and whether individuals vary in sensitivity to it.

The Current Study
These findings provide an arithmetic basis on which to investigate strategy flexibility in simple algebraic problem 
solving. Given the importance of simple algebra problems and the foundational nature of arithmetic to algebra, we 
sought to assess whether individual participants’ arithmetic and algebraic problem-solving patterns are related for 
single-step missing-operand problems, and if so, whether an individual’s unique patterns could be used to ‘decode’ their 
strategies for missing-operand problems. The current study does this through addressing five research questions.

The first and second research questions concern whether arithmetic and algebraic problem solving utilize common 
mental representations and processes. After ensuring replication of the problem size effect on the arithmetic verification 
task, the first research question extends the problem size effect to one-step algebra problems: Is there a problem size 
effect on the missing-operand task? The second research question connects arithmetic and algebraic problem solving 
through an individual differences analysis: Is an individual’s problem size effect on the arithmetic verification task 
positively correlated with their problem size effect on the missing-operand task? Given the centrality of the problem 
size effect to the representations involved in arithmetic thinking, extending the problem size effect to one-step algebra 
problems and finding correlations between the effect in arithmetic and algebra tasks would suggest that participants 
may repurpose arithmetic facts for algebraic problem solving.

The third research question addresses the arithmetic-algebra relation at the problem level to measure individuals’ 
flexibility in algebraic problem solving. Recall that there are two primary ways to solve missing-operand problems: by 
retrieving the direct fact or by transforming and retrieving the inverse fact. We predict that people will differ in strategy 
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use as a function of their fluency for the direct fact and their ability to flexibly switch to the inverse retrieval when 
it is beneficial. To assess individual variation in flexibility, we formalize a switch benefit (alternatively, a stay cost) for 
missing-operand problems as the potential gain in switching from the direct fact – given its disfluency – to the inverse 
fact (or alternatively, the potential penalty of staying with the direct fact given its disfluency). We operationalize this 
at the participant level: On missing-operand problems (e.g., x – 7 = 2), is a given individual more likely to switch to 
the inverse strategy if their time to retrieve the direct arithmetic fact (9 – 7 = 2) is longer than their time to retrieve 
the inverse arithmetic fact (2 + 7 = 9) — that is, if direct retrieval of the corresponding arithmetic fact is relatively 
disfluent for that individual on that problem? An individual’s switch benefit for a problem may predict which strategy 
the individual uses to solve the problem. We propose a participant-level regression model in the analysis to address this 
question.

The fourth research question concerns the validity of this switch benefit operationalization. We assessed this 
question by comparing individuals’ ‘switch benefit’ estimates from the regression model to their explicit strategy 
self-reports collected at the end of the study.

The fifth research question concerns the relation between strategy selection, flexibility, and mathematical achieve­
ment. If flexibility is important for mathematical thinking more generally, then is it the case that sensitivity to switch 
benefit when solving missing-operand problems is associated with higher mathematical achievement more generally (as 
measured by standardized ACT and SAT scores)? We predicted that sensitivity to switch benefit would be positively 
associated with mathematical achievement.

To address these research questions, we created an experimental paradigm to ‘decode’ participants’ strategy choice 
flexibility from their response times (RTs). In this paradigm, participants make speeded judgements in the missing-oper­
and task of interest (e.g., x – 7 = 2) and also in an arithmetic verification task where they verify the corresponding 
direct and inverse arithmetic facts (e.g., 9 – 7 = 2 and 2 + 7 = 9). We addressed the first and second research questions 
by analyzing participant RTs on these tasks as a function of problem size and also operation (addition or subtraction). 
We addressed the third research question by using regression to estimate how well each participant’s missing-operand 
RTs are predicted by direct fact fluency and/or the benefit of switching to an inverse strategy. This switch benefit 
is operationalized for each participant using their own RTs on the corresponding arithmetic fact verifications. We 
addressed the fourth research question by correlating participants’ switch benefit terms from the regression model 
with their self-reported use of the inverse strategy. We addressed the fifth research question by using regression to 
evaluate whether an individual’s sensitivity to switch benefit was associated with their own standardized mathematical 
achievement score.

Method

Participants and Design
We recruited an initial sample of 62 of an intended 80 undergraduate students at a university in the Midwest U.S., 
before the onset of COVID-19 brought an end to face-to-face data collection. Because the experimental paradigm is 
new, we could not rely on the literature to estimate the number of participants and trials. We were instead guided by a 
pilot study in our lab of 64 participants experiencing 224 trials across the two tasks, which detected notable individual 
variation between-participants. Although we were unable to increase the sample size of the current study for external 
reasons beyond our control, we almost doubled the number of trials across the two tasks, to 432. (This is the number 
that they could complete in approximately 40 minutes before beginning to experience fatigue.) Given that most of our 
analyses are within-participants, we believe our increased number of trials provided adequate power. Two participants 
were excluded for having also participated in the pilot, and one participant was excluded because their accuracy was 
considerably lower than 90% on the tasks, leaving 59 participants.

Participant ages ranged from 18 to 23 years old (M = 20.04, SD = 1.28); 42 identified as women and 17 as men; and 
45 identified their race as white, 12 as Asian, 1 as Black, and 1 as multiracial. Recruitment and study procedures were 
approved by the local IRB. Each participant received $12 USD compensation for the study, which lasted approximately 
40 minutes.
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Materials
The experiment was implemented using PsychoPy (Peirce et al., 2019). Participants were instructed in both tasks to 
respond to each trial as quickly and accurately as possible. Response time and accuracy were recorded. The experiment 
script and all stimuli files are provided as Supplementary Materials.

Missing-Operand Task

Participants were given one-step algebra problems and asked to identify the unknown (e.g., x + 5 = 8; x – 7 = 2) by 
pressing the corresponding number key (1 to 9) on the computer keyboard. There were 88 unique trials, each appearing 
twice, once in each of two blocks. The within-block trial order was randomly shuffled for each participant. The 
trials were constructed from all possible combinations of single-digit operands for addition and subtraction problems, 
excluding tie problems (i.e., equal operands), non-positive results (e.g., x – 4 = -2 was excluded), and problems with sizes 
less than 6 (e.g., x + 3 = 5 was excluded). This yielded 64 addition problems and 24 subtraction problems.

Arithmetic Verification Task

Participants were shown arithmetic sentences, which they had to judge as ‘true’ or ‘false’ by pressing the corresponding 
key as quickly and accurately as possible. The stimuli consisted of 129 true trials such as 9 – 7 = 2 and 127 false trials 
such as 9 – 7 = 4, which appeared once in one of two blocks.1 Trial order was randomly shuffled for each participant 
with a break inserted halfway. The true trials were derived from the 88 missing-operand problems that participants also 
solved, e.g., for x – 7 = 2, both the direct arithmetic fact 9 – 7 = 2 and the inverse arithmetic fact 2 + 7 = 9 appeared 
as true arithmetic verification sentences. The problem size of each verification trial was defined by the sum of the two 
operands. The subtraction arithmetic verification trials had a wider range of problem size (16 in the example; 7 – 26 
overall) than the addition arithmetic verification trials (9 in the example above; 6 – 17 overall). This was a consequence 
of the mathematical nature of the problems and also the experimental constraint that all answers to the missing-operand 
problems had to be a single digit to equate for motor output time. Following standard practice (Parkman & Groen, 1971), 
the false trials had the same left-hand side as true trials but a result that differed from the correct result by 2, either 
increased or decreased by 2 systematically across trials.2 This preserved the parity relationship to the operands, e.g., the 
sum of two even numbers must be even. For data analysis, we used the RT of the true trials only; the false trials were 
included as controls.

ACT and SAT Scores

Participants’ scores on the math section of the ACT or SAT tests were obtained with consent from university records. 
The ACT and SAT are comprehensive standardized tests used in U.S. university admissions and are used as estimates 
of mathematical achievement. The mathematics subtests of these exams include topics such as early algebra (linear 
equations and systems-of-equations), polynomial equations, probability and statistics, geometry, and trigonometry.

Procedure
For each task, participants first completed eight practice trials with feedback. The experimental trials that followed 
were divided into two blocks with a break halfway. The order of the two tasks was counterbalanced across participants. 
After finishing both tasks, participants completed a strategy questionnaire about how they solved the missing-operand 
problems and what percentage of the time they utilized each strategy type (i.e., direct vs. inverse). Lastly, they 
completed a demographics form.

1) The intended design was 128 true and 128 false trials, but due to an error in the stimuli file discovered in analysis, the true trial 2 + 9 = 11 was presented a 
second time instead of its corresponding false trial, 2 + 9 = 13. For data analysis, we used the RT of the intended true trial.

2) There were two necessary deviations. For false subtraction trials with a correct difference of 1 or 2 (e.g., 4 – 3), the results were always increased by 2 to 
prevent the introduction of negative results. For false addition trials with 2 as an operand (e.g., 2 + 7), the results were always increased by 2 (e.g., to 11) to 
prevent the sum from being equal to the second operand, in which case the statement could trivially be seen to be false by using surface features alone (e.g., 2 
+ 7 = 7).
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Results
The analysis script, data files, codebooks, and survey are provided as Supplementary Materials. Additionally, Bayes 
Factors were computed in JASP (JASP Team, 2021) following Faulkenberry et al. (2020). All analyses include only 
response time (RT) data for trials in which the participant answered correctly and quickly – in less than 5 seconds 
for missing-operand problems and less than 4 seconds for arithmetic verification problems, as determined from a pilot 
experiment. All statistical tests were conducted two-tailed with α = .05.

Problem Size Effects
Before answering our first research question, we assessed whether we replicated the problem size effect for the true 
trials in the arithmetic verification task. Each participant’s mean RT for each problem size and operation type (addition 
and subtraction) are visualized in Figure 1, along with the overall means. For each participant and each operation 
type (addition and subtraction), we computed the Kendall’s rank correlation (τ) between their RT and the problem 
size, operationalized as the sum of the operands.3 For the addition problems, all participants had descriptively positive 
correlation coefficients, with individual τs ranging from .05 to .55 (Median = .29). The individual τ coefficients were 
significantly different from zero for 48 of the 59 participants. A one-sample t-test found that overall, participants’ 
correlations for addition problems were different from zero, t(58) = 18.8, p < .001. For the subtraction problems, 57 of the 
59 participants had descriptively positive correlation coefficients, with individual τs ranging from -.005 to .42 (Median = 
.19), of which 32 were significantly different from zero. Participants’ correlations for subtraction problems were different 
from zero, t(58) = 14.5, p < .001. Thus, the problem size effect was replicated across both operations at the group level 
and also at the individual level for the majority of participants.

Figure 1

Problem Size Effects for Arithmetic Verification Task

Note. Each line represents an individual participant’s mean RT (y-axis) for each problem size (x-axis) for each operation (panels) in the arithmetic 
verification task. The thicker line indicates the mean across all participants.

3) For this and subsequent correlations, Kendall’s τ is used instead of Pearson’s r given the skew in the RT data.
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The first research question was whether the problem size effect extended to the missing-operand problems (Figure 
2). We operationalized the problem size as the sum of the problem’s operands, one unknown and the other known. 
We computed the Kendall’s rank correlation (τ) between RT and problem size for each participant and operation. For 
the addition problems, most participants had descriptively positive correlation coefficients (individual τs ranging from 
-.11 to .36, median of .20), and the individual τ coefficients were statistically different from zero for 36 of the 59 
participants. A one-sample t-test found evidence that overall, participants’ correlations for addition missing-operand 
problems were different from zero, t(58) = 11.6, p < .001. A Bayesian one-sample t-test (Faulkenberry et al., 2020) 
indicated that these correlations were more likely under a problem size effect model than the null model (BF10 = 5.5 
× 1013). For the subtraction problems, participants were almost evenly split between positive and negative correlation 
coefficients (individual τs ranging from -.19 to .25, median of -.004), and only 2 correlations differed statistically from 
zero. Participants’ correlations for subtraction problems were not significantly different from zero, t(58) = 0.5, p = .61. 
The Bayes factor was BF01 = 6.211, indicating the observed correlations are 6 times more likely under a null model. 
Thus, the problem size effect was extended from arithmetic problems to missing-operand problems, but only for the 
addition context. This provides initial evidence for some overlap in the mental representations and processes recruited 
for arithmetic, specifically addition, and simple algebra. Notably, we observe a dip in the mean RT for addition facts 
with a problem size of 10 (Figure 2, left). This may reflect practice effects given the role of 10 sums in ‘transformation’ 
strategies (LeFevre et al., 1996).

Figure 2

Problem Size Effects for Missing-Operand Task

Note. Each line represents an individual participant’s mean RT (y-axis) for each problem size (x-axis) for each operation (panels) in the missing-
operand task. The thicker line indicates the mean across all participants.

The second research question concerned whether overlapping mental representations and processes are recruited for 
arithmetic and algebra. We addressed this question using an individual differences approach. Specifically, individuals 
varied in the strength of their problem size effect in both arithmetic and simple algebra contexts (Figures 1 and 2). 
We assessed whether these differences covaried across the tasks by performing a simple linear regression predicting 
participants’ problem size effect for missing-operand problems from their problem size effect for arithmetic problems. 
For each problem class (i.e., missing-operand and arithmetic verification), the problem size effect was operationalized 
as the Kendall’s rank correlation between the problem size and the RTs (Figure 3). We conducted these analyses 
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separately for the addition and subtraction contexts. For the addition context, there was an association between the 
missing-operand and arithmetic problem size effects, b = .45, 95% CI [.23, .67]), t(57) = 4.13, p < .001, R 2 = .23. A Bayesian 
linear regression indicated this association was more likely under the model where problem size effects are correlated 
across task than uncorrelated (BF10 = 191.1). This is consistent with the recruitment of the same mental representations 
and processes for the two problem classes. For the subtraction context, there was no such association, b = .20, 95% CI 
[-.05, .46], t(57) = 1.58, p = .11, R 2 = .04. Here, the Bayes factor was BF01 = 1.34, indicating the observed correlations are 
slightly more likely under a null model, i.e., weak support for the absence of this correlation.

Figure 3

Between-Task Correlations of Problem Size Effect

Note. Scatterplot of each participant’s Kendall’s correlation coefficient between problem size and RT for arithmetic verification task (x-axis) and the 
missing-operand task (y-axis), separated by operation (panes). The marginal distributions are shown as rug plots. Point estimate (line) and confidence 
envelope (shaded region) from simple linear regressions were computed separately for each operation.

Flexible Strategy Use
The third research question asks whether participants are fluent and/or flexible across problems in their strategy selec­
tion during the missing-operand task. Can we ‘decode’ whether participants are sensitive to the benefit of switching to 
the inverse strategy when solving missing-operand problems? For this analysis, multiple linear regressions were run for 
each participant individually, using all cases where the missing-operand problem and the direct and inverse arithmetic 
facts were all three answered correctly and within the time cutoffs.

We operationalized the ‘switch benefit’ for missing-operand problems as the ratio of an individual’s speed in 
retrieving the direct vs. inverse arithmetic facts during the arithmetic verification task:

SwitchBenefit = DirectRT
InverseRT

This switch benefit ratio reflects the degree to which switching from direct retrieval to the inverse strategy would 
reduce an individual’s RT (or alternatively, the degree to which staying with direct would cost their RT). Consider the 
missing-operand problem x – 7 = 2. If participant A verified the direct match 9 – 7 = 2 in 1500 ms and the inverse match 
2 + 7 = 9 in 1000 ms, then this ratio would be 1500 / 1000 = 1.5. That is, A would reduce their RT if they switched to 
the inverse route when solving x – 7 = 2. If participant B verified these same arithmetic facts in 1200 ms and 1800 ms, 
respectively, B’s switch benefit ratio would be 1200 / 1800 = .67, indicating that they would not reduce their RT if they 
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switched; instead, B should stick with direct retrieval. To measure whether participants were sensitive to their individual 
switch benefit, we included it as a term in a regression predicting their missing-operand RT. Note that this variable is a 
reverse indicator: The larger the switch benefit ratio, the greater the benefit of switching from the direct strategy to the 
inverse strategy. Thus, if a participant is sensitive to this ratio and switches adaptively to the inverse strategy, then this 
term will be negatively predictive of their missing-operand RT (by reducing RT).

Thus, we regressed each participant’s RTs for missing-operand problems on their switch benefit term, and also on 
their RT for the directly matched arithmetic fact. The direct match RT operationalizes the participant’s retrieval fluency. 
We also included block number (1 or 2) as a predictor to control for practice effects. The full equation is:

MissingOperandRT DirectRT
InverseRT + DirectRT + BlockNum

Given the full regression model, the switch benefit ratio predictor thus measures strategy flexibility over and above fact 
fluency.

Figure 4 visualizes the results of the individual-level regressions. Each point shows the t-value for the direct RT 
predictor (x-axis) and the t-value for the switch benefit ratio predictor (y-axis) for a participant. The figure shows 
an overall trend (τ = -.49, p < .001) as well as a range of individual differences. When participants’ missing-operand 
RTs are more positively predicted by their direct match RT (more positive on Figure 4’s x-axis), they tend to also 
be more negatively predicted by their switch benefit (more negative on y-axis), as indicated by the overall negative 
trend between the two t-values. Those participants with positive t-values for direct RT may be inferred to have high 
arithmetic fact fluency, and those with negative t-values for switch benefit may be inferred to have both (1) sensitivity 
to the ratio of each fact’s fluency (recall that this variable is reverse-coded) and (2) the strategy flexibility to switch to 
the inverse strategy when beneficial. This suggests an overall positive relationship between fact fluency and strategy 
flexibility. Additionally, there are clear individual differences, with a couple of participants positively predicted by 
switch benefit and not direct RT alone (top-middle of Figure 4), several by direct RT alone and not switch benefit 
(middle-right), some by both (lower-right), and some by neither (middle).

Figure 4

Regression Scatterplot

Note. Scatterplot of individual participants’ t-values for predicting missing-operand problem RTs from the direct arithmetic match RT (x-axis) and the 
switch benefit (ratio of direct over inverse arithmetic match RTs; y-axis). Horizontal and vertical dashed lines indicate cutoffs for statistical 
significance, and the diagonal line represents identity between t-values.
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The regression analyses indirectly estimated the switch benefit for each participant from their RTs. The fourth research 
question sought converging evidence for these analyses. Do the resulting estimates correspond to participants’ self-re­
ports about their strategy usage? We evaluated this by correlating the t-values for the switch benefit ratio to the 
percentage of the time they self-reported using the inverse strategy on the survey at the end of the experiment. As 
predicted, the two variables were negatively, though modestly, correlated, τ = -.25, p = .007. Thus, the more sensitive 
participants were to their switch benefit (the more negative the t-value associated with the switch benefit ratio variable), 
the higher their self-reported use of the inverse strategy. This correlation provides external validation for the strategy 
flexibility of participants that we indirectly measured (i.e., decoded) in our regression models.

The fifth research question asked whether strategy flexibility on missing-operand problems was associated with 
higher mathematical achievement more generally as measured by college entrance exam scores. We obtained standar­
dized test scores for 58 of the 59 participants, 50 for the ACT college entrance exam and 8 for the SAT; the latter were 
converted to equivalent ACT scores using a concordance table.4 We fit a regression model predicting their ACT-Math (or 
equivalent) scores from the t-value for their switch benefit ratio predictor and the t-value for their direct RT predictor. 
In contrast to our predictions, we did not find a significant negative relationship between switch benefit and ACT-Math 
scores, b = -0.65, t(55) = -1.53, p = .13. However, direct match fluency was a significant and negative predictor of 
ACT-Math, b = -1.09, t(55) = -2.92, p = .005. We did not make any explicit hypotheses regarding this latter relation and do 
not have a clear interpretation of it. (These two results remained the same after removing an outlier with an ACT-Math 
score more extreme than 3 SDs below the mean, p = .26 and p = .027, respectively.) A Bayesian linear regression with 
both terms revealed the model with the highest odds increase from prior to posterior included only the direct match 
fluency predictor (BFM = 2.5), followed by the model with both predictors (BFM = 1.9). These results provide moderate 
evidence that direct match fluency is associated with ACT-Math scores (posterior inclusion BF = 5.2), but not switch 
benefit (inclusion BF = 0.73).

Discussion
The current study investigated the strategies that undergraduate students use when solving simple algebra (missing-op­
erand) problems. We developed an RT-decoding paradigm to infer whether a person uses bottom-up pattern-matching 
to retrieve a direct arithmetic fact or, depending on the problem, whether they switch from retrieving the direct fact 
to retrieving the inverse arithmetic fact (i.e., applying top-down algebraic rules). This paradigm revealed individual 
differences in undergraduates’ strategy choice. Namely, the correlation between the t-values for direct match and switch 
benefit terms suggests that many participants who are highly fluent for direct facts tend to also be highly flexible in 
choosing a solution strategy based on the benefit of switching. Our results extend prior research (Campbell, 2008; Peters 
et al., 2010) by providing evidence for individual variation, particularly that individuals vary in their sensitivity to the 
benefit of switching to an inverse strategy, and that they do so for smaller operands than have previously been studied 
in arithmetic (Hickendorff, 2020; Seyler et al., 2003; Torbeyns et al., 2018).

More specifically, we examined five research questions. First, we extended the problem size effect from arithmetic 
verification to missing-operand problems, but only for addition problems; participants did not consistently show this 
effect for subtraction problems. Second, we conducted an individual differences analysis of whether participants’ 
problem size effect for missing-operand problems predicted their problem size effect for arithmetic problems. We found 
a significant relationship for addition, suggesting that missing-operand problems in addition recruit similar mental 
representations and processes to arithmetic verification. There was no such relationship for subtraction. Third, we 
‘decoded’ individual differences in missing-operand RTs through individual-level regression models, predicting missing-
operand performance by an individual’s RTs for both the direct arithmetic fact and the ‘switch benefit’ ratio of direct 
vs. inverse facts. We found an overall trend where higher direct fact fluency was associated with higher sensitivity to 

4) We used the 2018 ACT/SAT Concordance Tables published by ACT, Inc. We judged 2018 to be the year that most participants in our sample 
likely took the ACT, i.e., the Spring of their junior year and the Fall of their senior year in high school. The tables are available for download: 
https://www.act.org/content/dam/act/unsecured/documents/ACT-SAT-Concordance-Tables.pdf
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the switch benefit, suggesting higher strategy flexibility. Fourth, we validated the RT-based switch benefit measures 
by participants’ self-reported use of the inverse strategy. Fifth, we failed to find a predicted relationship between our 
‘decoded’ strategy flexibility variable (i.e., switch benefit) and standardized mathematics scores.

The predicted extension of the problem size effect to missing-operand problems (our first research question) and 
the correlation between problem size effects across arithmetic problems and missing-operand problems (our second 
research question) were only found for addition problems. The mathematical cognition literature offers multiple possible 
explanations for this asymmetry. It may be that subtraction facts are less fluent for direct recall compared to addition 
facts, perhaps due to less practice (Ashcraft & Guillaume, 2009). Alternatively, reasoners may solve subtraction problems 
by transformation to addition (e.g., Peters et al., 2010), although previous studies demonstrating adults’ inverse strategy 
used considerably larger subtraction facts (e.g., 81 – 37 = _), with Seyler et al. (2003) finding it with minuends as low 
as 11. By comparison, all of our minuends and subtrahends were single-digit numbers. Future research might attempt 
to extend the current findings to missing-operand problems for another pair of operations, multiplication and division, 
which are also inversely related.

Of primary theoretical importance are the individual-level regression models that implicitly ‘decode’ participants’ 
strategies during the missing-operand task. Prior work has shown individual differences in students’ (i.e., children’s) 
strategy flexibility (Lamb et al., 2016; Star & Rittle-Johnson, 2008). Here, we show that even undergraduate students ap­
pear to vary in strategy across missing-operand problems with single-digit operands, and moreover this is conditioned 
on their own fact fluency. Many participants appeared sensitive to a switch benefit for performing an inverse operation 
over direct retrieval when their individual fluency was higher for the inverse fact. That is, participants varied not just in 
their flexibility but in how efficient their flexibility may be.

These ‘decoding’ results were validated by explicit self-report. While self-report of strategies can be informative 
(LeFevre et al., 1996), there are also limitations on its reliability: Self-report can be less veridical for automatic processes, 
and task descriptions can induce demand characteristics (Kirk & Ashcraft 2001). While this may have played a role 
in the present study’s self-report data, any unreliability of self-report would only attenuate the correlation estimate, 
meaning the true correlation would be higher. Thus, the fact that participant self-report for the inverse strategy 
correlates with decoded sensitivity to the trial-level switch benefit provides convergent evidence for the individual 
differences found in the current study.

Future studies should investigate performance characteristics of the direct and inverse strategies for missing-operand 
problems to further assess the validity of this study’s paradigm. One way to do so is by varying the instructions given 
to participants about which strategy to use when solving problems or whether they can choose (i.e. choice/no-choice); 
another is by varying problem characteristics that are more or less conducive to certain strategies. Such work has 
already improved our understanding of strategy choice in arithmetic problems (Eaves et al., 2019; Hickendorff, 2020; 
Siegler & Lemaire, 1997; Torbeyns et al., 2018).

This study built on prior work emphasizing the importance of strategy flexibility to student success in algebra (Star 
& Rittle-Johnson, 2008) by investigating strategy flexibility in missing-operand problems, which involve elements of 
both arithmetic and algebra. We found that arithmetic representations play a crucial role in algebra problem solving 
strategy. RT-based regression models decoded individual differences in undergraduates’ strategy choice and brought to 
light individual differences in fact fluency and flexibility based on participants’ own fact retrievability. Our RT-based 
decoding paradigm is promising for future work examining when and how such differences emerge in younger students 
learning early algebra, as it allows for the potential identification of the cognitive processes that enable reasoners to 
flexibly select strategies for solving algebra problems.
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