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Abstract

The unstructured multiple-attempt (MA) item response data in virtual learning envir-
onments (VLEs) are often from student-selected assessment data sets, which include
missing data, single-attempt responses, multiple-attempt responses, and unknown
growth ability across attempts, leading to a complex and complicated scenario for
using this kind of data set as a whole in the practice of educational measurement. It
is critical that methods be available for measuring ability from VLE data to improve
VLE systems, monitor student progress in instructional settings, and conduct educa-
tional research. The purpose of this study is to explore the ability recovery of the
multidimensional sequential 2-PL IRT model in unstructured MA data from VLEs. We
conduct a simulation study to evaluate the effects of the magnitude of ability growth
and the proportion of students who make two attempts, as well as the moderated
effects of sample size, test length, and missingness, on the bias and root mean square
error of ability estimates. Results show that the model poses promise for evaluating
ability in unstructured VLE data, but that some data conditions can result in biased
ability estimates.
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Virtual learning environments (VLEs) are online instructional systems in which lear-

ners and teachers interact for an educational purpose (Weller, 2007). Allowing or

encouraging multiple attempts (MA) on assessment items is increasingly common in

these VLEs (Abbakumov et al., 2018; Bergner et al., 2019). As opposed to some

more traditional forms of MA assessment administration, such as an ‘‘answer-until-

correct’’ item administration (Pressey, 1926), some VLEs allow students to attempt

items multiple times at their own discretion while not requiring students, per say, to

make multiple or even single attempts on items.

Due to these characteristics, MA data from VLEs can be considered unstructured

as it often contains a mix of single- and multiple-attempt responses to items regard-

less of success on a first attempt, variability in the degree to which students’ traits

may increase across multiple attempts, and large amounts of missingness. In tradi-

tional MA data, there is often a fixed set of items in which each student makes at least

one attempt and will make multiple attempts if the first attempt was incorrect, and

there is often little time between attempts. However, in VLE MA data, students are

often self-selecting to engage in assessments and may re-attempt an item at a much

later date than the original attempt, if at all. Two characteristics of unstructured MA

data from VLEs, namely the proportion of students making MA and the differential

magnitudes of the changing ability across attempts per student, introduce variability

in the data that has not been studied with respect to how to score the students. In addi-

tion, the unstructured MA data contain multiple types of missing data as some ran-

dom missingness can come from items being randomly selected from the item bank

to display to students who want to engage in the assessment and also some missing

not at random (MNAR) data can be present when students choose to not respond to

items presented or to only make one incorrect attempt. Hence, this study focuses on

such item response data from these VLE-based, student-selected MA assessments,

with a focus on being able to extract unbiased student ability estimates from such

data, which can then be used for improving algorithms in the VLE (e.g., personaliz-

ing), informing instructors of student performance in the VLE, or conducting educa-

tional research from the VLE data.

Previous studies have applied classical test theory models (CTT), traditional item

response theory models (IRT), and extended IRT models to evaluate data with MA

to detect student learning (e.g., Abbakumov et al., 2018; Culpepper, 2014; Gönülates

& Kortemeyer, 2015). For example, Attali and Powers (2010) followed the CTT

framework to compare the observed scores between a three-attempt group and a

single-attempt group on an MA test, finding that students’ scores increased up to

19% in the group with three attempts. Abbakumov et al. (2018) extended the tradi-

tional IRT model by modeling the effect of attempts, finding that the growth of stu-

dents’ ability depended on the initial ability. Culpepper (2014) used a sequential

Rasch model to estimate student ability in an up-to-five-attempt MA test, pointing

out that student ability was constant at the first two attempts and then showed growth

in following attempts. All these approaches analyzed their MA data either by adding

an index to model the effect of attempts on student ability (e.g., Abbakumov et al.,
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2018; Gönülates & Kortemeyer, 2015; Hung & Huang, 2019) or by separating the

number of attempts into various groups (e.g., Attali & Powers, 2010; Cheng & Liu,

2016; Culpepper, 2014).

However, to our knowledge, neither these methods nor any other methods pro-

posed in the literature for estimating ability from MA data have been evaluated in the

context of unstructured MA item response data from VLEs. Since the data character-

istics in previous research were not aligned with unstructured MA item response data

from VLEs, it is critical to understand the performance of methods for estimating stu-

dent ability from unstructured MA item response data. Otherwise, measurement mod-

els may result in biased or error-prone estimates. With the increasing popularity of

online education and the increasing need for well-studied computational psycho-

metrics methods, researchers and practitioners need appropriate measurement models

to evaluate student ability from the unstructured VLE data.

One reason it is challenging to estimate student ability with unstructured MA data

is because of the uncertainty about whether a particular student’s ability is changing

or staying constant across the repeated item attempts. It is easy and convenient for

simulation studies to either assume constant ability or to assume growing ability

within a particular degree across all simulees. But for applied studies, it is difficult

for researchers to know the true ability change, leading to a challenge of model

selection for appropriate ability estimates. In Culpepper’s (2014) application study,

he fit a unidimensional sequential Rasch model to a data set by classifying the num-

ber of attempts into different groups. After noticing student ability changed over

attempts, he fit a multidimensional sequential Rasch model. Another example is from

Bergner’s et al. (2019) application study. Due to the unknown nature of true ability,

they primarily analyzed model fit and the correlations between the estimated first-

attempt scores and observed scores to evaluate the ability recovery of the sequential

two-parameter logistic (2-PL) IRT model with three-attempt data, including MNAR

data. As the true ability and ability growth are unknown in these applied studies,

Culpepper’s (2014) and Bergner’s et al. (2019) results are bolstered by simulation

work that supports the use of the approach in data similar to the applied data.

However, as mentioned above, the unstructured MA data in VLEs are quite different

than the data in previous MA studies, including those that used various versions of

sequential measurement models, and hence simulations are needed to begin to under-

stand how previously applied methods may work in such data environments.

The purpose of this study is to explore the ability of a sequential IRT model to

recover unbiased ability estimates from unstructured MA data stemming from VLEs.

We explore the model performance by manipulating four factors: the growth in stu-

dent ability between attempts, the proportion of students making multiple attempts,

the number of presented items, and the sample size. Also, we investigated the effect

of MNAR data on the sequential IRT model performance. The outcomes of interest

were bias and root mean square error (RMSE) surrounding ability estimates from the

sequential IRT model. Hence, the research questions for this study are the following:
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Research Question 1: Does the proportion of students with MA in items

affect the bias and RMSE of ability estimates of the sequential IRT model?

Research Question 2: Does the growth in true ability affect the bias and

RMSE of ability estimates of the sequential IRT model?

Research Question 3: Do the answers to research questions 1 and 2 depend

on sample size or the number of presented items?

Research Question 4: Does the MNAR rate affect the bias and RMSE of abil-

ity estimates of the sequential IRT model?

The Sequential IRT Model and VLE Data

Sequential measurement models were proposed by Tutz (1990) and defined as

P Xij = rjbi, dj1, . . . , djr

� �
=
Yr�1

s = 1

1� F djs � bi

� �� �
F djr � bi

� �
, ð1Þ

where bi is person i’s ability, djs is item j’s difficulty at the sth attempt, and r is the

number of attempts. The function F can be defined in various ways and can come

from one of the IRT or Rasch family models (Tutz, 1990). If we apply the binary

Rasch model in a study, F is defined as

F djs � bi

� �
=

exp bi � djs

� �
1 + exp bi � djs

� � : ð2Þ

If we apply the 2-PL model (Birnbaum, 1968) into the sequential model framework,

as Bergner et al. (2019) did, F is defined as

F djs � bi

� �
=

exp ajs bi � djs

� �� �
1 + exp ajs bi � djs

� �� � : ð3Þ

The logic of the sequential model’s function is similar to the geometric random vari-

able function, where
Qr�1

s = 1

(1� F(djs � bi)) refers to the probability of the failure at

the first s attempts and F(djr � bi) refers to the probability of the first success at the

rth attempt. The details of distinguishing the differences between the sequential IRT

models and the other IRT model extensions can be found in Bechger and

Akkermans’s (2001) research and Hemker et al.’s (2001) research, and they also

mentioned the item parameterization in the sequential IRT models.

One reason to expect that sequential IRT models may perform well in unstructured

MA data from VLEs is that these models have shown strong ability recovery perfor-

mance in complex situations. Culpepper (2014) was the first application study using

sequential models for a five-attempt test while defining the model as a sequential

Rasch rating scale model. Also, he built the linear model for estimating student ability
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at every attempt. Culpepper (2014) claimed that the sequential Rasch model can esti-

mate student ability with less bias at every attempt. Bergner et al. (2019) conducted a

simulation study for MA item response data and concluded that the sequential 2-PL

IRT model was associated with low RMSE values in estimating ability even when

the data contained missing values.

Given that sequential IRT models may appropriately estimate student ability under

the MA response structure, we selected a sequential IRT model to evaluate whether

this model can estimate student ability for the unstructured MA data. To estimate

each student’s various abilities during attempts in one model fitting, we selected the

multidimensional 2-PL IRT model. The reason for selecting a 2-PL framework exten-

sion was that our previous work in the VLE platform established the appropriateness

of a 2-PL framework underlying all of our item data (Xue et al., 2021). Therefore,

the multidimensional sequential 2-PL IRT model is defined as

P Xij = rjbi1, . . . , bir, dj

� �
=
Yr�1

s = 1

1� F ajs, djs, bi1, bi2

� �� �
F ajr, djr, bi1, bi2

� �� �
,

ð4Þ

where

F ajs, djs, bi1, bi2

� �
=

exp ajs bi1 � djs

� �
+ ajs bi2 � djs

� �� �
1 + exp ajs bi1 � djs

� �
+ ajs bi2 � djs

� �� � : ð5Þ

Probability of Skipping Items and Skipping Rate in Our Prior
Work With the VLE

In VLEs, the unstructured MA data contain MNAR data due to skipping items.

Students studying in VLEs may skip some challenging practices or select the learning

materials that they are interested in or familiar with, since they can self-determine

their learning materials. In the VLE of this current study, there is a large bank of

items associated with various domains of content. When a student decides to engage

in assessment, 10 items are drawn randomly from the relevant item bank and pro-

vided to the student. On any given item, the student can make no attempt or one

attempt. At a later date, the same student may decide to practice with assessment

items again in the VLE, and they may receive an item they have attempted in the

past, allowing for another attempt on that item. Hence, the data have a large mix of

missingness, single attempt on items, and multiple attempts on items.

Our previous work found that student ability and item difficulty were systemati-

cally related to skipping items that were presented to students in the VLE (Xue et al.,

2021). We used logistic regression to simulate the skipping item response data and

showed that the percentage of missingness in the data generated for simulations was

similar to the characteristics of the observational VLE data. Hence, for this study we

defined the probability of skipping items in alignment with our previous work as
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pij = P skipping = 1ð Þ=
exp B1Abilityi + B2Difficultyj

� �
1 + exp B1Abilityi + B2Difficultyj

� � , ð6Þ

where B1 and B2 are the coefficients for student ability and item difficulty. When

pij\0:5, it means that Student i has a lower probability to skip Item j. In this case,

we assumed Student i responded to Item j. On the contrary, if pij � 0:5, we assumed

Student i skipped Item j.

In this study, we obtained B1 and B2 by using the random-walk-based Metropolis-

Hastings algorithm with four chains in R 4.0 (R Development Core Team, 2020).

The likelihood of skipping, Yn, followed a Bernoulli distribution with probability

where n is the sample size of 1,000. pn was computed by Equation 6 where Abilityn

and Difficultyn were drawn from a standard normal distribution. The prior B1 and B2

were a normal distribution with mean of 20.10 and 0.12 and variance of 0.010 and

0.001, respectively, based on Xue et al. (2021). The proposal candidate B
0
i was

defined as

B
0

i = Bi + ε, ð7Þ

where ε was a normal distribution with mean of 0 and variance of 0.10. Each chain

conducted 10,000 iterations and discarded the first 5,000 burn-in values. Finally, the

Gelman-Rubin-Brooks plots (Figures 1 and 2) of B1 and B2 sampling and each

chain’s Auto-Correlation-Function (ACF) plot (Figures 3 and 4) showed that our

Figure 1. The Gelman-Rubin-Brooks Plot for Testing the Convergence Between and Within
Chains in B1 Sampling.
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samples had appropriate posterior distributions. The Gelman-Rubin-Brooks plots

were conducted by coda package (Plummer et al., 2020).

In addition, we considered the skipping rate when generating item response data.

The skipping rate was defined as

R =
The number of skipping items

Total number of items
: ð8Þ

Suppose students should respond to all items, we can obtain the number of skipped

items for each student by calculating every student’s probability of skipping per item.

A lower skipping rate R means that a student responds to more items. To be more

specific, combining Equations 6 and 8, a higher ability student will respond to more

items, leading to a higher probability of more re-attempting of items, or more MA.

Our previous work has shown that higher ability students engage more with the VLE

and show less item skipping and, thus, they have a higher probability of seeing items

repeatedly in the system (Xue et al., 2021).

Current Simulation Study

A simulation study was conducted based on operational data from an online learning

platform Math Nation (Lastinger Center for Learning, University of Florida, 2019),

which is a statewide VLE that provides video resources about Algebra 1, Geometry,

and Algebra 2 to assist upper middle school and high school students with learning

Figure 2. The Gelman-Rubin-Brooks Plot for Testing the Convergence Between and Within
Chains in Sampling.
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in these mathematics subjects. This VLE allows students to determine their learning

pace and select learning materials by themselves (Leite et al., 2019). Notably, the

items presented to students neither relate to student ability nor the item selection in

the next engagement with the VLE. Rather, the VLE randomly assigns items from

their item bank after students select their learning materials. Teachers sometimes

assign students to practice with the items, but they do not assign particular items as

random ones are chosen by the system. Students can decide which items to engage

with, and their responses do not affect the random selection of the presented items in

the next engagement.

We obtained three operational data sets that were collected from Grade 8 to 10 stu-

dents’ VLE activity logs during the spring semester of 2018, the spring semester of

2020 before COVID-19 school closures, and the spring semester of 2020 after COVID-

19 school closures. Each data set records the presented item numbers and students’

scores at every attempt, which has some students re-attempting an item more than once.

For those students who skip the presented items, their scores record as NAs in the data

set. The simulation conditions in the current study mimic descriptive statistics from

these three data sets, with the exception of the ability growth between attempts which

is unknown in the operational data sets and assumed to vary across students as the time

between attempts also varies. Due to the limited choices in each item, students can rela-

tively easily guess the correct answer on the third or higher attempt of an item, assum-

ing they recall their earlier attempts. Hence, this simulation study allowed students to

attempt the same items no more than two times, as we only considered the first two

attempts in our operational data to be data that can help to evaluate student ability.

Simulation Factors

The proportion of students making two attempts on items was created as five levels,

which were 1, 0.8, 0.6, 0.4, and 0.2. In the three operational data sets, the proportions

of students making MA on at least one item varied were 13%, 24%, and 39%. In

other words, the proportion of students making MA on items depends on the sample

of data. Therefore, we set five levels with equal intervals to explore the effect of pro-

portion of students making MA on the ability parameter recovery.

We set three levels and an additional baseline level for the simulation factor of

ability growth between attempts, sl, which were (a) (0, 0) as a baseline level, that is,

student ability increases 0 standard deviations (SD) from the first to second attempt;

(b) (0, 0.5 SD), that is, students who have a less than 0.5 skipping rate (Equation 8)

increase 0.5 SD ability on their second attempt while abilities of those with higher

skipping rates does not change; (c) (0, 1 SD), that is, students who have a less than

0.5 skipping rate increase 1 SD ability on their second attempt while others’ do not

show ability change; (d) (0.5 SD, 1 SD), that is, students who have a less than 0.5

skipping rate increase 1 SD ability while others’ abilities increase 0.5 SD on their

second attempt. As we discussed the skipping rate in an above section, our previous

work (Xue et al., 2021) found that higher ability students had lower skipping rates
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on average, and thus may attempt more items and have more multiple-attempt items.

Hence, students with a lower skipping rate had a higher magnitude in ability growth

than those who had a higher skipping rate. We selected 0.5 SD units and 1 SD units

from previous MA studies (e.g., Feinberg et al., 2015) to represent a moderate and

strong magnitude in ability growth across two attempts, respectively.

The sample size was set as three levels, which were 500, 1,000, and 5,000. The

sample sizes of three operational data sets were all larger than 3,000. It is a common

situation in statewide or nationwide VLEs that the sample size is larger than 3,000.

Thus, we set a level of 5,000 to represent those VLE data sets’ sample sizes. The

level of 1,000 is a common level of sample size in many traditional IRT studies, and

thus some researchers also selected this level of sample size to conduct MA studies

with sequential IRT models (e.g., Bergner et al., 2019). Although research about the

level of the sample size of 1,000 has been evaluated in traditional IRT models, the

complicated characteristics of unstructured MA data in VLEs include a small number

of item responses per student compared with the total number of items, various pro-

portions of students making MA on items, and a nonignorable proportion of missing

data. We decided to set 1,000 as one of the simulation sample size levels in our study

for providing evidence to support the sample size selection in future MA application

research in smaller VLE data sets. The level of 500 is also a common condition in

other online educational learning studies (e.g., Hamutoglu et al., 2020; Jones et al.,

2021). Hence, we set a level of 500 to represent small sample sizes in VLEs.

We created three levels for the simulation factor of the number of presented items,

which were 5, 15, and 30. The VLE under study presents 10 items at a time, and most

students engage with approximately one to three sets of items, with some skipping

present. Thus, we set a level of 30 items as a baseline, with 15 items as a moderate

amount of item engagement, and 5 items for students who are less engaged.

In total, there were 180 conditions, each of which were evaluated under 100 itera-

tions in this study.

Data Generation

In this section, we mimicked the characteristics of the unstructured MA data in VLEs

based on the operational data sets. We randomly sampled items for every student and

randomly selected a proportion of students to make a second attempt on items. The

response data for each attempt was generated separately with the 2-PL IRT model

(Equation 3). The initial latent ability bi was sampled from a normal distribution with

a mean of 0 and a standard deviation of 1. The second-attempt ability b
0

i was com-

puted from bi + lð Þ, where l represents ability change, and was sampled from a nor-

mal distribution with a mean of 0 and a standard deviation of sl. Below we provide

an example of the data generated under the condition that sl is (0, 0.5 SD), the sam-

ple size is 1,000, the number of presented items is 15, and the proportion of students

making MA on items is 0.2.

At the first step, we randomly selected 15 items for every student who might skip

items based on Equation 6. We re-sampled randomly from the remaining unselected
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items until students had at least five responses for mimicking the characteristics of

the operational data. In a special case of students who skipped all items, we ran-

domly selected two items to record their responses to keep those students in the data-

base. Without this catch, many students went completely missing on the five-item

test, making for incomparable simulation results across conditions. Next, we ran-

domly selected 200 students out of 1,000 to make a second attempt on items. The

proportion of re-attempt items depended on those selected students’ skipping rates

(see Equation 8). Suppose a student responded to five items at the first attempt and

their skipping rate was 90%, then we randomly selected one item (5310%) as the

re-attempt item from the first-attempt items. To keep the number of presented items

consistent across conditions, we re-sampled 14 items (15� 1) from the un-selected

items. At the third step, the selected students who had a less than 0.5 skipping rate

(Equation 8) increased 0.5 SD in their ability at the second attempt while the remain-

ing selected students had 0 ability growth.

For the generation of item parameters, item discriminations, ajs, were sampled

from a uniform distribution with a range from 0.8 to 2.19 based on the range of the

operational data sets. The item difficulties, djs, were generated from a standard nor-

mal distribution, which was a close approximation to the operational item difficul-

ties. Notably, item parameters were known and set to be constant in the generation

of data across the two attempts. These unbiased item parameters were obtained from

a previous study (Xue et al., 2021), which used neural networks to remove bias from

MNAR data in item parameters estimates from the 2-PL IRT model using the same

source data as us. The data were generated in R 4.0 (R Development Core Team,

2020).

Data Analysis and Evaluation Criteria

We fit the multidimensional sequential 2-PL IRT model (Equations 4 and 5) while,

notably, constraining item parameters to be equal across attempts. The models were

fit in the MIRT package (Chalmers et al., 2020) in R.

To evaluate the recovery of latent ability bi and b0i, the bias and the RMSE were

calculated. The bias is used to assess the difference between the estimated ability and

the true ability and is defined as

bias =

Pn
i = 1

bbi � bi

� �
n

ð9Þ

where n is the number of repeated times, and b̂i is the estimated latent ability. A

smaller magnitude of bias represents a better recovery of ability by the sequential

model. An unbiased estimate will be equal to 0 after averaging over the iterations

(Feinberg & Rubright, 2016).

RMSE is used to compare the deviations of the estimated abilities, and is defined

as
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

bbi � bi

� �2

n� 1

vuut
: ð10Þ

To investigate the research questions, four factorial analysis of variance

(ANOVA) models were used to analyze the main and interaction effects of the four

simulation factors and the MNAR rate variable on the bias and RMSE, treated sepa-

rately. The MNAR rate is defined as

MNAR =
the number of skipping items in each iteration dataset

the total number of presented items in each iteration dataset
: ð11Þ

Results

For all 180 conditions, the bias of the first-attempt ability estimates ranged from

20.77 to 20.05, and the RMSE of initial ability estimates ranged from 0.07 to 0.79.

For the second-attempt ability estimates, the bias ranged from 20.82 to 0.44, and its

RMSE ranged from 0.04 to 0.86. These results indicate that the multidimensional

sequential 2-PL IRT model has a good recovery in student ability under some condi-

tions but not all conditions. Prior to submitting these results to ANOVA models, we

checked and upheld the normality, independence, and linearity assumptions.

As shown in Tables 1 and 2, the proportion of students making MA on items had a

statistically significant main effect on bias and RMSE of the first-attempt ability esti-

mates (FT1bias, prop(4) = 1943:792, p\2310�16, h2 = 0:50; FT1RMSE, prop(4) = 1237:393,

p\2310�16, h2 = 0:40). As the proportion increased, the absolute value of bias and

RMSE in the first-attempt ability estimation increased (see Figures 5 and 6). When the

proportion of students making MA on items was 0.2, the bias and RMSE of the first-

attempt ability, to some extent, was smaller than in cases of larger proportions of MA.

Tables 3 and 4 showed that for the second-attempt ability estimates there was

also a main effect on the bias and RMSE of the proportion of students making MA

on items (FT2bias, prop(4) = 4316:672, p\2310�16, h2 = 0:18; FT2RMSE , Prop(4) = 92:244,

p\2310�16, h2 = 0:11). Notably, the higher the proportion of students making MA

on items the larger the bias of the initial ability estimates but the lower the bias of

the second-attempt ability estimates (Figure 5), which makes sense as more MA is

needed to have sufficient data to have unbiased estimates for the second-attempt abil-

ity. There was a similar finding for RMSE, as shown in Figure 6. When 20% of stu-

dents made MA on items, we found some of the smallest bias and RMSE values for

the initial ability estimation but also some of the largest bias and RMSE values for

the second-attempt ability estimation. Conversely, when the proportion of students

making MA on items was no less than 0.8, the bias and RMSE of the ability esti-

mates were relatively large for the initial-attempt ability but relatively small for the

second-attempt ability (see Figures 5 and 6). Therefore, having a moderate propor-

tion of students making MA on items, such as 0.4 and 0.6, resulted in the most
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acceptable overall amount of bias and RMSE when simultaneously considering the

initial and second-attempt ability estimation.

Regardless of the initial or the second-attempt ability estimates, Tables 1 to 4

showed that the impact of the proportion of students making MA neither depended

Table 1. ANOVA for Bias of the Initial Ability Estimate.

Predictors Sum of

Squares

df M square F p Eta square

Proportion 2.240 4 0.560 1,943.792 \2e-16*** 0.50

Growth 0.184 3 0.061 212.369 \2e-16*** 0.04

Sample size 0.301 2 0.150 521.633 \2e-16*** 0.07

Items 1.143 2 0.572 1,983.581 \2e-16*** 0.25

Missing not at random rate 0.045 1 0.045 157.568 \2e-16*** 0.01

Sample 3 Items 0.420 4 0.105 364.670 \2e-16*** 0.09

Sample 3 Growth 0.001 6 0.000 0.488 0.816 1.87e-04

Items 3 Growth 0.012 6 0.002 7.162 2.55e-06*** 2.75e-03

Proportion 3 Growth 0.023 12 0.002 6.554 2.14e-08*** 5.03e-03

Proportion 3 Sample 0.016 8 0.002 6.986 3.26e-07*** 3.57e-03

Proportion 3 Items 0.061 8 0.008 26.323 \2e-16*** 0.01

Grow 3 Sample 3 Items 0.008 12 0.001 2.304 0.013* 1.77e-03

Proportion 3 Sample 3 Items 0.023 16 0.001 4.991 2.45e-07*** 5.11e-03

Residuals 0.027 95 0.000

Note. The presented model was determined by removing the interaction terms that had neither

statistically significant effects on bias of the initial ability estimates nor statistically significant effects on

the bias of the second-attempt ability estimates.

*p\0.05. ***p\0.001.

Table 2. ANOVA for Root Mean Square Error of the Initial Ability Estimate.

Predictors Sum of

Squares

df M square F p Eta square

Proportion 1.843 4 0.461 1,237.393 \2e-16*** 0.40

Growth 0.185 3 0.062 165.827 \2e-16*** 0.04

Sample size 0.471 2 0.235 631.997 \2e-16*** 0.10

Items 1.260 2 0.630 1,692.545 \2e-16*** 0.27

Missing not at random rate 0.037 1 0.037 98.766 2.24e-16*** 8.01e-03

Sample 3 Items 0.563 4 0.141 378.084 \2e-16*** 0.12

Sample 3 Growth 0.001 6 0.000 0.440 0.850 2.14e-04

Items 3 Growth 0.016 6 0.003 6.978 3.62e-06*** 3.39e-03

Proportion 3 Growth 0.021 12 0.002 4.730 5.20e-06*** 4.60e-03

Proportion 3 Sample 0.033 8 0.004 11.025 6.84e-11*** 7.15e-03

Proportion 3 Items 0.066 8 0.008 22.265 \2e-16*** 0.01

Grow 3 Sample 3 Items 0.010 12 0.001 2.139 0.021* 2.08e-03

Proportion 3 Sample 3 Items 0.051 16 0.003 8.585 1.88e-12*** 0.01

Residuals 0.035 95 0.000

Note. *p\0.05. ***p\0.001.
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on the sample size nor the number of presented items (see negligible Eta-squared

effect sizes).

The magnitude of ability growth had small and even close-to-zero main effects on

the bias and RMSE of the first-attempt ability estimates. However, it had statistically

and practically significant main effects on the bias and RMSE of the second-attempt

ability estimates (FT2bias, Growth(3) = 22905:336, p\2310�16, h2 = 0:71; FT2RMSE , Growth

(3) = 435:106, p\2310�16, h2 = 0:38). The main finding here was that when stu-

dent ability did not grow across the two attempts, the second-attempt ability cannot

be well estimated, presumably because it was not distinguished from the initial-

attempt ability. The gray lines in Figure 5 showed that when some portion of students

had moderate growth in their second-attempt ability and the rest of the students’ abil-

ities did not change across attempts (Growth [0,0.5]), the bias was smaller and close

to 0 as compared with other ability growth conditions. Similar descriptions can be

made of the second-attempt ability estimate results and their associated RMSE out-

comes (see gray lines in Figure 6).

In addition, the magnitude of ability growth had an interaction effect with the

number of presented items on the RMSE of the second ability estimates

(FT2RMSE , Growth � Items(6) = 56:166, p\2310�16, h2 = 0:10). The gray lines in Figure 6

described that the RMSE of the second-attempt ability was large in a short test (e.g., 5

items) when the growth ability was (0, 1) or (0.5, 1). Such results indicated that a better

estimation of the second-attempt ability needs a test with no less than 15 presented items,

particularly when some examinees may have large growth in ability across attempts.

The MNAR rate ranged from 0.24 to 0.43. Tables 1 to 4 showed that the MNAR

rate had close-to-zero effects on the bias and RMSE regardless of the initial or the

second-attempt ability estimates.

As a final finding of practical and statistical significance, there was an interaction

between sample size and test length in their effects on the bias and RMSE of ability

estimates, shown in Tables 1 and 2 (FT1bias, Sample � Items(4) = 364:670, p\2310�16,

h2 = 0:09; FT1RMSE, Sample � Items(4) = 378:084, p\2310�16, h2 = 0:12). Also, each

of these simulation factors has a main effect on the bias and RMSE of the initial abil-

ity estimates (FT1bias, Sample(2) = 521:633, p\2310�16, h2 = 0:07; FT1bias, Items(2) =

1983:581, p\2310�16, h2 = 0:25; FT1RMSE , Sample 2ð Þ = 631:997, p\2310�16, h2 =

0:10; FT1RMSE , Items(2) = 1692:545, p\2310�16, h2 = 0:27). As shown in Figures 5

and 6, under conditions with sample size no less than 1,000 and number of presented

items no less than 15, we found relatively less bias and RMSE results. For the

second-attempt ability estimates, Tables 3 and 4 showed that the number of pre-

sented items had a main effect on the estimated bias (FT2bias, Items(2) =

2922:553, p\2310�16, h2 = 0:06), where the bias mostly trended toward zero as

the number of presented items increased.

Discussion

The purpose of this study was to evaluate the ability parameter recovery of the multi-

dimensional sequential 2-PL IRT model when applied to unstructured MA item
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response data in VLEs. Results from the simulation study demonstrated that the mul-

tidimensional sequential 2-PL IRT model can recover ability parameters in some

data contexts that contain mixed single and multiple attempts, various ability growth,

and MNAR data. Importantly, even when the MNAR rate in the unstructured MA

Table 3. ANOVA for Bias of the Second Ability Estimate.

Predictors Sum of

Squares

df M square F p Eta square

Proportion 2.425 4 0.606 4,316.672 \2e-16*** 0.18

Growth 9.652 3 3.217 22,905.336 \2e-16*** 0.71

Sample size 0.334 2 0.167 1,190.632 \2e-16*** 0.02

Items 0.821 2 0.411 2,922.553 \2e-16*** 0.06

Missing not at random rate 0.040 1 0.040 282.324 \2e-16*** 2.93e-03

Sample 3 Items 0.052 4 0.013 93.015 \2e-16*** 3.87e-03

Sample 3 Growth 0.002 6 0.000 2.439 0.031* 1.52e-04

Items 3 Growth 0.013 6 0.002 14.848 6.63e-12*** 9.26e-04

Proportion 3 Growth 0.036 12 0.003 21.163 \2e-16*** 2.64e-03

Proportion 3 Sample 0.017 8 0.002 15.197 3.75e-14*** 1.26e-03

Proportion 3 Items 0.077 8 0.010 68.189 \2e-16*** 5.67e-03

Grow 3 Sample 3 Items 0.002 12 0.000 1.382 0.188 1.72e-04

Proportion 3 Sample 3 Items 0.032 16 0.002 14.334 \2e-16*** 2.38e-03

Residuals 0.013 95 0.000

Note. *p\0.05. ***p\0.001.

Table 4. ANOVA for Root Mean Square Error of the Second Ability Estimate.

Predictors Sum of

Squares

df M square F p Eta square

Proportion 0.541 4 0.135 92.244 \2e-16*** 0.11

Growth 1.914 3 0.638 435.106 \2e-16*** 0.38

Sample size 0.130 2 0.065 44.364 2.47e-14*** 0.03

Items 0.128 2 0.064 43.766 3.37e-14*** 0.03

Missing not at random rate 0.000 1 0.000 0.229 0.634 6.72e-05

Sample 3 Items 0.033 4 0.008 5.549 0.000*** 6.53e-03

Sample 3 Growth 0.151 6 0.025 17.151 2.44e-13*** 0.03

Items 3 Growth 0.494 6 0.082 56.166 \2e-16*** 0.10

Proportion 3 Growth 1.293 12 0.108 73.469 \2e-16*** 0.26

Proportion 3 Sample 0.038 8 0.005 3.198 0.003** 7.53e-03

Proportion 3 Items 0.061 8 0.008 5.231 1.97e-05*** 0.01

Grow 3 Sample 3 Items 0.015 12 0.001 0.832 0.617 2.94e-03

Proportion 3 Sample 3 Items 0.048 16 0.003 2.056 0.017* 9.68e-03

Residuals 0.139 95 0.002

Note. *p\0.05. **p\0.01. ***p\0.001.
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data reaches 42.9%, the multidimensional sequential 2-PL IRT model can recover

ability parameters in a similar manner to when lower MNAR rate is present.

However, some data conditions do result in increased bias and RMSE compared with

other conditions.

We found that the recovery of ability parameters from the multidimensional 2-PL

IRT model is affected by the proportion of students making MA on items, sample

size, and the number of presented items. This is a positive finding because those fac-

tors are relatively manipulable in practice. When an unstructured MA data set con-

tains a moderate proportion of students making multiple attempts on items (i.e.,

40%–60%), the multidimensional sequential 2-PL IRT model has a strong recovery

of the first-attempt and second-attempt ability parameters. Generally, if the unstruc-

tured MA data set has more than 60% of students making multiple attempts on items,

the model can estimate the second-attempt ability with less bias to explore student

ability growth with a known prior ability.

Based on our results, we recommend applying the multidimensional sequential 2-

PL IRT model with a sample size of more than 1,000 and a test length of no less than

15 items to obtain acceptable estimates for both the first- and second-attempt ability.

This study demonstrated that sample size and the number of presented items play

nonignorable roles in obtaining unbiased estimates of ability. These findings related

to the effects of sample sizes and test length on parameter recovery are redundant

with traditional IRT research, but serve as a reminder that these features matter in

both traditional measurement data as well as complex MA data from technology-

enhanced platforms. For researchers and practitioners considering using a multidi-

mensional sequential IRT model to estimate ability from the unstructured MA data

in VLEs, we recommend paying close attention to sample sizes and the number of

presented items.

Notably, we found that the magnitude of growth ability and the MNAR rate, which

are not under the control of researchers and practitioners, have limited impacts, and

in some cases no impact, on the recovery of ability parameters from the multidimen-

sional sequential 2-PL IRT model. The only impact, at least based on our study out-

comes, is that the model has a better performance in second-attempt ability recovery

when the unstructured MA data set contains students with moderate growth ability

and the rest without growth. But such an effect can be adjusted, to some extent, by

setting the number of presented items to no less than 15. We also recommend setting

a maximum or minimum amount of time between attempts to include in the data, as

likely this can reduce variability in the magnitude of ability growth between attempts.

This study shows some promise for researchers and practitioners to consider using

the multidimensional sequential 2-PL IRT model in their VLE data containing some

MA to obtain unbiased ability estimates, assuming of course that the data are similar

to our simulated conditions in which we found acceptable levels of bias and RMSE.

In cases where the data conditions of a VLE are quite different from our studied con-

ditions or align with our conditions in which bias and RMSE were larger, we encour-

age conducting a simulation like ours but with adjusted settings and comparing the
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model performance to other options for ability estimation. Indeed, we found our

simulation very helpful in understanding how we can estimate ability in our data,

and we believe other practitioners and researchers of VLE data may find the same

benefits with adjusted simulations.

This discussion of data generation in our simulation study brings up recommenda-

tions for future studies. For every data set we generated in our simulation, we grouped

students into two types, those who make a single attempt on items and those who

make two attempts on items. Meanwhile, we related the number of multiple-attempt

items to student ability and item difficulty. In other words, we simulated the amount

of MA as a property of the interaction of students with particular items. This is sup-

ported by our operational data, which shows that students’ MA on items relates to

their ability and item difficulty. However, others may want to consider simulating an

environment in which MA is treated as a property of item-based features only (i.e.,

group items into those that have MA and those that do not) if that better represents their

VLE unstructured MA item response data. Therefore, a recommendation for future stud-

ies is to evaluate the recovery ability of the multidimensional sequential 2-PL IRT

model by simulating MA data based on item-level differences rather than person-item

level interactions. Another recommendation for future studies is to consider the effect of

more than two attempts on the model’s recovery of ability. Based on the characteristics

of the operational data, we allowed students to attempt items up to twice. However, oth-

ers may want to consider the ability recovery of the multidimensional sequential 2-PL

IRT model with more than two attempts, such as in an ‘‘answer-until-correct’’ format.

Such studies can enhance the target precision of the sequential IRT model application in

broad VLEs with unstructured MA item response data.

Ultimately, our study results indicate acceptable recovery of ability estimates

under some conditions, but not all conditions, from the multidimensional sequential

2-PL IRT model fit to unstructured MA data in our simulated VLE-like environ-

ments. Although the proportion of students making multiple attempts on items, the

sample size, and the number of presented items have effects on the ability parameter

recovery of the multidimensional sequential 2-PL IRT model, these factors are rela-

tively manipulable in practice. For those factors that are not under the control of

measurement practitioners and researchers (i.e., the magnitude of growth ability and

the MNAR rate), they mostly do not affect the ability estimation from the multidi-

mensional sequential 2-PL IRT model with unstructured MA data. Only the magni-

tude of growth ability has an effect on the second-attempt ability estimates, but it

can be reduced by adjusting test length. Therefore, we conclude that the multidimen-

sional sequential 2-PL IRT model poses much promise for evaluating student ability

and change in ability in VLE systems.
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