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ABSTRACT

This paper’s objective was to teach the Equivalence Testing applied to Educational
Research to emphasize recommendations and to increase quality of research.
Equivalence Testing is a technique used to compare effect sizes or means of two
different studies to ascertain if they would be statistically equivalent. For making
accessible Equivalence Testing, this technique was explained with two examples by
conducting manual calculations, using an online calculator, the software R, the
software SPSS, and a t table. Furthermore, the software R with an Equivalence
Testing code was used, and its results were graphed and discussed with details.
Among other recommendations given, Equivalence Testing can be a useful tool for
comparing means and effects within certain bounds that could hopefully imply a
practical significance to provide meaning to findings. The results of Equivalence
Testing can indicate that two treatments´effects are statistically equivalent or not.
Thus, the Equivalence Testing can be a channel to replicate studies and observe if
there is a possible pattern regarding the appearance of a phenomenon.

Keywords CONFIDENCE INTERVAL, COHEN’S D, EFFECT SIZE, EQUIVALENCE
TESTING, PRACTICAL SIGNIFICANCE

1 INTRODUCTION
In experimental designs, researchers need references to compare their treatments’ effect
sizes (ES) and averages against those which others have encountered to provide meaning to
their findings: statistical equivalence tests are themodus operandi. Researchers have already
found the magnitude of their results’ practical significance (i.e., “the extent to which a study
result has meaningful applications in real-world settings” (VandenBos, 2015, p. 817) and
they would also like to know where these results stand statistically. Nevertheless, Cohen
(1965) warned against using fixed and general criteria to make inferences about results,
mentioning three different effect sizes: small, medium and large as “a common conventional
frame of reference which is recommended for use only when no better basis for estimating
the ES index is available” (p. 25). Another critique for fixed and general criteria was that
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“God loves the .06 nearly as much as the .05” (Rosnow & Rosenthal, 1989, p. 1277). Thus,
researchers should be responsible for basing their arguments on criteria (e.g., comparisons
with others’ results) and practical significance instead of using a fixed general standard.

To provide meaning to findings, this present paper demonstrates how to use Equiva-
lence Testing (ET) for comparisons with one single sample and with two independent groups.
Equivalence testing is defined as a simple statistical technique for determining whether one
should reject the presence of an effect at least as extreme as the SESOI (i.e., Smallest Effect
Size of Interest; Lakens et al., 2018). In other words, the objective of ET can be said to
be demonstrating that two treatments have the same effect “or at least close enough to be
considered similar beyond a reasonable doubt” (De Muth, 2019, p. 184).

This paper’s objective is to exemplify how to execute an ET bymanual calculations with a
t table and an online calculator as well as with the R software. Additionally, the procedures
and results of De Muth (2019) and Lakens et al. (2018), who utilized Minitab and R for ET
respectively, are shown. Overall, this paper answers the question: How can we execute an
ET?

Here, the gap in the relevant literature is identified and explained. First, a definition
of the term Educational Research as a contribution to knowledge for improving the collec-
tive understanding of education was taken from (Gall, Gall, & Borg, 2007). Second, on
December 29, 2020, the terms Educational Research and Equivalence Testing were searched
inGoogle Scholar and approximately 16,700 results appeared. A detailed inspection of these
documents showed that, strictly speaking, there were no publications covering the afore-
mentioned terms together. Therefore, it can be concluded that there is be a gap in the lit-
erature that this paper tries to fill by using the definition given by Gall et al. (2007) about
improving the collective understanding of education. As such, this study’s contribution is
to use ET in Educational Research. In contrast to this research area, pharmacology has seen
the application and publications of ET for decades related to analysing the effects of differ-
ent drugs (De Muth, 2019; Schuirmann, 1987). Furthermore, in psychology, Lakens et al.
(2018) has published some articles on ET.

2 STATEMENT OF THE PROBLEM
Thompson (2008) reported that researchers use effect sizes to explain the practical signifi-
cance of their findings as well as to evaluate the replicability of their results: i.e. comparison
between their own effect sizes and others’ to notice a possible pattern to generalize. Defin-
ing replication, Vandenbos (2015) wrote that it is, “the repetition of the original experiment
or research study to verify or bolster confidence in its results” (p. 906). For practical signifi-
cance, Cohen (1965) stated that the primary product of research is an effect size and it is not
a p-value. Regarding a definition, an effect size can be described as “the degree in which
a phenomenon is present in the population or the degree to which the null hypothesis is
false” (Cohen, 1965, pp. 9-10). In addition, Cumming (2012) explained that an effect size
might help to communicate, “to a wide range of readers, especially when the original units
first used to measure the effect are not widely familiar” (p. 282). In addition, Cumming
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and Calin-Jageman (2017) reported that, “We calculate from our data the sample effect size
(ES) and use this as our estimate of the population ES, which is typically what we would
like to know” (p. 111). These last authors (2017) added, “A population effect size is the
true value of an effect in the population” (p. 2011). One of the additional reasons to use
effect sizes is that they offer more precise information to theories and practice (cf. Plonsky
& Oswald, 2014).

Additionally, a confidence interval can be described as: “An interval estimate calculated
from sample data that indicates the precision of a point estimate” (Cumming, 2012, p. 439).
Multiple authors (e.g., Wilkinson & the APA Task Force on Statistical Inference, 1999) have
recommended and requested the reporting of effect sizes and confidence intervals along-
side the Null Hypothesis Statistical Significance Testing results (NHSST). Even so, Cum-
ming and Maillardet (2006) estimated that 95% CI can capture 84.3 % of the true value,
while Kelley and Rausch (2006) commented that it would be misleading to report estimates
without providing the uncertainty surrounding them.

2.1 p-values
Another related issue of confidence intervals is the p-value. The American Psychological
Association (2020) explained that “complete reporting of all tested hypotheses and esti-
mates of appropriate effect sizes and confidence intervals are the minimum expectation for
all APA journals” (p. 87). It is beyond this paper’s objectives to discuss p-values in depth,
but Wasserstein and Lazar (2016, pp. 131-132) addressed six related ideas and some are
misconceptions about p-values.

In addition, p-values were conceptualized for the long run and not only for one occasion,
as was done in several studies (cf. Greenland et al., 2016). The p-value is the probability of
observing a test statistic’s value (e.g., t or F calculated value) or smaller in a distribution,
given a true null hypothesis (LeMire, 2010, p. 8). In support of using the p-value, Shi and
Yin (2020) affirmed, “Although p-value is often regarded as an inadequate representation of
statistical evidence, it has not stalled the scientific advancement in the past years” (p. 3). A
further relevant view was that NHSST “is a small but important part of the entire research”
(LeMire, 2010, p. 2).

2.2 Experimental Designs
Confidence intervals and p-values are part of experiments. Gall et al. (2007) stated that the
experiment is the most powerful quantitative research method to establish cause and effect
relationships between two or more variables. Many educational research studies do not
comply with the strict definition of experiment, but they do have an Experimental Design.
This is a plan of the procedures to be followed in scientific experimentation to reach valid
conclusions, with considerations of such factors as selection of participants, manipulation
of variables, data collection and analysis, and minimization of external influences (Vanden-
Bos, 2015, p. 397). Furthermore, Serlin and Lapsley (1993) explained that the typical point
null hypothesis is false. For example, when two means are compared, it would be unlikely
to find a difference equal to zero. Another characteristic of NHSST is that since the null
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hypothesis is sensitive to sample size, large enough sample sizes will always result in its
rejection (Serlin & Lapsley, 1993).

2.3 Important Aspects of Cohen's d
Cohen’s d is, “A standardized ES expressed in units of some appropriate SD. It can often
be considered a kind of a z score” (Cumming & Calin-Jageman, 2017, p. 532). More-
over, Cohen (1965) affirmed that the coefficient d responds to the question: “How large
is the effect?” (p. 20). In an experimental design, d can be interpreted as the magnitude of
the effect caused by a treatment, other things being equal. This difference can be between
a calculated mean and a population’s mean (i.e., target value), between two independent
sample’s means (between groups), and between the same groups (pre and post-test, within
groups).

Regarding the sampling distribution of t, Cumming (2012) stated that, “d is also dis-
tributed as a non-central t” (p. 298). Incidentally, 1974 demonstrated how to calculate
non-central t distribution, though it is beyond this study’s objectives to cover it here. A
warning should be given for this effect size; that Cohen’s d is “measured with a rubber ruler
that stretches and contracts as we take successive samples” (Cumming, 2012, p. 298). More-
over, Cumming (2012, p. 283) explained that while d is sensitive to the numerator, it is
very sensitive to the denominator (SD used as the standardizer). Furthermore, Cohen’s d
depends on the mean and a non-robust measure of dispersion, which is an SD, so d is a
non-robust measure of effect size (Garstats & Garstats, 2018) .

2.4 Equivalence Testing
Sometimes, the traditional NHSST has been used to infer that two means from different
studies are statistically equivalent when the null hypothesis has not been rejected. This
inference is not correct because NHSST was designed to test significance differences but
not equivalence per se (De Muth, 2019). Moreover, Wellek (2010) explained that non-
significant differences must not be confused with significance homogeneity or, as Altam
and Bland (1995) put it, “absence of evidence is not evidence of absence” (p. 3). Thus,
the appropriate technique to infer equivalence between two means or effects is Equivalence
Testing, so when a replication of a study takes place, this is the correct procedure.

ET has been used in pharmacology to statistically establish the equivalence of an effect
of treatments or drugs on patients (cf. De Muth, 2019). Furthermore, an effect size or a
mean, considered best practice due to its practical significance, can be used as a criterion
for comparison with another to observe whether there is a statistically significant difference
between them.

Further to the above, Wellek (2010) provided a definition about this testing: “equiva-
lence means here equality except for practically irrelevant deviations” (p. 1): i.e., the differ-
ence between two populations’ means (µ1 –µ2) is within two limits: i.e., Lower Equivalence
bound (∆L) and the Upper Equivalence bound (∆U ). Briefly, the aforementioned defini-
tion of statistically equivalent means can be summarized thus: Lower Equivalence Bound
(∆L) < µ1 – µ2 < Upper Equivalence Bound (∆U ). If this happens, then equivalence is
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proven (De Muth, 2019) . These Equivalence Bounds have been given different names in
the literature, but the meaning has been the same. For example, Wellek (2010) called this
range the indifference zone within the aforementioned bounds and named their limits crit-
ical bounds, where the lower one < 0 and the upper one > 0. Incidentally, Lakens (2017)
named these limits the smallest effect size of interest (SESOI). Given these different names,
and considering pharmacology’s use of this testing and what it could be more intuitive,
it seemed that the most appropriate name would be Lower Equivalence Bound (∆L) and
Upper Equivalence Bound (∆U ). Regarding Equivalence Bounds, there is a cautionary note
that these limits were made by experts in the fields and not by statisticians (Hauck & Ander-
son, 1984). Thus, this can be interpreted as a range of practical significance, which is what
is important.

In other words, the difference between an observed effect and a target effect or differ-
ence between averages is tested to see if the difference is statistically larger than the∆L and
smaller than the ∆U . Additionally, these observed effects and differences between means
are not only point estimates, but a confidence interval is also calculated (see DeMuth, 2019;
Lakens et al., 2018; Wellek, 2010). Confidence Intervals are explained below with examples.

An ET has two one-sided tests (TOST). In brief, Figure 1 shows what the rejection areas,
which involve two alternative hypotheses (HA1 and HA2) and the non-rejection areas (i.e.,
two null hypotheses: H01 and H02), are. When the differences between effect sizes (i.e., in
standard scores) or averages (in raw scores) of an original study and a replication study are
bigger than the Lower Equivalence Limit (∆L), the null (H01) is rejected. Moreover, when
the difference is smaller than the Upper Equivalence Limit (∆U ), the conclusion is that
the other null (H02) is rejected. Given these hypotheses, ET is designed to test whether a
significant difference does not exist between twomeans. This is in contrast with theNHSST,
which is designed to examine whether a significant difference exists.

Figure 1 ET: Two One-Sided Tests (TOST)

Like theNHSST, ET starts from two different populations, fromwhich two random sam-
ples are taken and tested to see if an inference can be drawn about statistically equivalent
means.
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2.5 Possible Outcomes of Equivalence Testing
Delacre et al. (2017) usedWelch’s t-test instead of the traditional Student’s t test because they
claimed the former analysis was better to control Type I Error rates when homogeneity of
variancewas notmet, but this test loses robustness compared to the Student’s t-test when the
assumptions (homogeneity and normal distribution) were met. Using the R code by Lakens
et al. (2018), ET and NHSST can be performed at the same time and, as part of the output,
a graph with confidence intervals is provided. Lakens (2017) explained that there were four
possible outcomes (Scenarios A, B, C, and D) when the NHSST and ET are used jointly,
applying confidence intervals of 95% (thinner black lines) and 90% (thicker black Lines;
Figure 2), respectively:

• Scenario A. The meanswere statistically equivalent (∆L < µ1 – µ2 < ∆U ) and, in the
NHSST, the difference was not statistically different from 0: statistically equivalent
(Rejection of the Null) and did not differ from 0 (Not Rejection of the Null).

• Scenario B. The meanswere not statistically equivalent (∆L > µ1 – µ2 <∆U ), and, in
NHSST, the difference was statistically different from zero: not statistically equivalent
(not Rejection of the Null) and statistically different from 0 (Rejection of the Null).

• Scenario C. The meanswere statistically equivalent (∆L < µ1 – µ2 < ∆U ), and, in
NHSST, the difference was statistically different from zero: statistically equivalent
(Rejection of the Null), and statistically different from 0 (Rejection of the Null).

• Scenario D. The meanswere not statistically equivalent (∆L > µ1 – µ2 < ∆U ), and,
in NHSST, the difference was not statistically different from zero: not statistically
equivalent (not Rejection of the Null) and statistically different from 0 (not Rejection
of the Null).

Lakens (2017) corrected the degrees of freedom for Welch’s t test of ET according
to Sattherthwaite (1946) and used Welch’s t instead of Student’s t test (see Ponce-
Renova, 2021, for more about t test). In contrast to the traditional Student’s t-test, Delacre,
Lakens, and Leys (2017) claimed that Welch’s t test would be a better option.

2.6 Statistical Power
Ioannidis (2005) issued a warning by arguing that medical research was false due to lack of
sufficient statistical power, first and foremost. Two p values for two t tests (TOST) are used
in ET, so statistical power should be taken into consideration. Statistical Power is the proba-
bility of rejecting a false null hypothesis (see Cohen, 1965; Ponce-Renova, 2019). Statistical
Power has a positive relationship with effect size, alpha level and sample size. Therefore, a
recommendation for researchers who are planning to use ET, would be to find out whether
80% power is feasible in their field of study (see Cohen, 1965; Ponce-Renova, 2019).

3 EXAMPLES
This section presents several examples of how to run equivalence testing. Given the equa-
tions for estimating the Standard Error for the difference between means (SE difference),
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Figure 2 Scenarios of ET and NHSST. Source: Lakens (2017, p. 357).

a bigger sample size would reduce this SE difference (e.g. Equation 1 because of a bigger
denominator) and as a consequence the tails of confidence intervals would be reduced (e.g.
Equations 2 and 3 due to a smallermultiplier) and the t calculated values would be increased
(e.g. Equations 4 and 5 as a result of a smaller denominator). The end result is that a big-
ger sample size would have higher probabilities of producing statistically significant results,
other things being equal. Moreover, as the sample increases, the effect size’s variation is
less (Schönbrodt & Perugini, 2013). With small sample sizes, it is not possible to conclude
an absence of an effect size when p > α because of low power to detect a true effect (Lak-
ens, 2017, p. 355). For simplicity, the following examples did not consider statistical power
and the sample sizes were relatively small.

3.1 Example 1: One Single Sample Test After a Pre and Post Test
For the following One single sample example, the data and Equivalence Bounds were taken
from De Muth (2019), who performed this ET with Minitab (his results contrasted with
the present paper’s). The present example has contextualized ET in educational research
with an experimental design. This problem was solved through manual calculations using
Critical Values of the t distribution table, as well as using an online calculator to estimate p
values from t values (Science Statistics, 2020) and SPSS 24 for the NHSST.

After treatment of the experimental design with pre and post-tests to improve mathe-
matical information, the researcher wanted to compare the findings (post-test scores) to a
target value (Population’s mean: µ = 100 points). In brief, a sample’s mean (x̄= 99.85) was
obtained from a set of six students’ post-test scores (99.6, 100.2, 98.3, 99.9, 100.4, and 100.7
with a SD = 0.85).
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Before the Equivalence testing, a One sample t test was performed in SPSS 24 for the
NHSST (µ =100 vs. x̄= 99.85): the results showed tcalculated (df = 5) = -0.432, p = .684,
standard error of themean (SE difference) = 0.347, with amean difference = -0.15 andCI95%
for the difference was [-1.0423, 0.7423]. Given an alpha = .05, there was not a statistically
significant difference between the sample’s mean and the population’s one. However, this
result of no statistically significant difference does not imply statistical equivalence per se
(cf. De Muth, 2019).

For practical significance (this would be established by experts and not by statisticians),
it was considered that a range of 1.5 points from the population’s mean of 100 points would
be statistically equivalent: ∆L = -1.5 and ∆U = 1.5. The research question was: Does sta-
tistically significant equivalence exist between x̄ and µ? The first step was to establish the
hypotheses and the alpha = .05 for each t test (the TOST procedure has two t tests):

1.- Hypotheses:

H01 : x̄− µ ≤ ∆L
HA1 : x̄− µ > ∆L
H02 : x̄− µ ≥ ∆U
HA2 : x̄− µ < ∆U

x̄− µ = observed average − Target
average (the Target average can be
found in the literature or other re−
liable source).

De Muth (2019) has showed several steps to develop an ET that were followed to a certain
extent in this present study.

2.- Establish the difference: Difference = x̄− µ; (99.85− 100 = −0.15).

3.- Find or calculate the Lower and the Upper Equivalence Bounds (Lakens et al., 2017,
explained several methods to estab- lish these limits, the main goal of which is to achieve
practical significance for certain field). These can be expressed in raw or standardized form.
For the simplicity of the example, here these bounds are:

Lower − Equivalency Bound : ∆L = −1.5

Upper − Equivalency Bound : ∆U = 1.5

4.- Degrees of freedom: n− 1; df = 6− 1 = 5

5.- Standard error of the difference (SE):

SEd ifference = SD/ square root of n (Equation 1)

Substituting, SEd ifference = 0.85/ square root of 6 = 0.35

Journal of New Approaches in Educational Research, 11(2) | 2022 | https://doi.org/10.7821/naer.2022.7.930 216

https://doi.org/10.7821/naer.2022.7.930


Ponce-Renova, Hector F. Comparing Effect Sizes and their Confidence Intervals

6.- Reliability Coefficient, also known as critical t : 100(1 − α); Given the aforemen-
tioned alpha = .05, t critical (df = 5) = 2.015 (Taken from a t-table for one tail with a
significance level of 5%).

7.- Two one-sided tests (confidence intervals with 5% per tail):

DifferenceLower = (x̄− µ)− tl−α,vXSEdifference (Equation 2)

Substituting, –0.15 – 2.015 (0.35) = –0.855

DifferenceUpper = (x̄− µ) + t1−α,vXSEdifference (Equation 3)

Substituting, –0.15 + 2.015 (0.35) = 0.555
8.- Ratios of t-statistic provide two calculated t values and their corresponding p values:

one for the probability of exceeding the∆L and one for the probability of exceeding the∆U

(t calculated):

tlower limit = [(x̄− µ)−∆L] /SEdifference (Equation 4)

Substituting, t lower limit [−0.15 − (−1.5)]/0.35 = 3.86;p = .006 (with an α = .05 and
one tail, for calculating the p-value; see the calculator on Social Science Statistics, 2020).

t upper limit = [(x̄− µ)−∆U]/SEdifference (Equation 5)

Substituting, t upper limit [−0.15− (1.5)]/0.35 = −4.71; p = .003.

Using Minitab, De Muth (2019, p. 182) reported the CI95% = [-0.849486, 0.549486], but
this CI95% corresponded to the CI90% [-0.8495, 0.5495], which was calculated in SPSS 24,
as well as the one calculated here manually. Thus, there was a contradiction in calling this
CI95% when it was actually a CI90%. That is, the tcritical (df = 5) was 2.015 (i.e., Level of
significance for two tailed tests at 10%, and Level of significance for one tailed test at 5%),
and this level of confidence resulted in a CI90%, which had the same values as the CI95%
from De Muth (2019). To calculate a CI95%, the tcritical (df = 5) had to be 2.5706 (Level of
significance for two tailed tests at 5%, and Level of significance for on tailed test at 2.5%), so
the CI would have been 95%. This was the reasoning to opt for the CI90%: since the TOST
implies two t tests at the same time and each one has an alpha = .05, the lower tail of the
CI has an alpha of 5% plus the upper one that has another 5%, so if they are added up the
result is 10% (cf. Lakens et al., 2018). However, in order to be consistent with De Muth’s
(2019) results, the CI90% was observed.

In conclusion, the null hypotheses were rejected because p values < α. Therefore, there
was a statistically significant equivalencewith a 90% confidence interval between the sample
and population means (cf. De Muth, 2019). The CI90 % for the difference was [-0.855,
+0.555], with tlower = 3.86 (p = .006) and tupper = –4.71 (p = .003). In other words, the
sample’sCI95% mean difference [–0.855, 0.555], which represented a population, was within
∆L (–1.5) and ∆U (+1.5), so it can be considered as statistically equivalent to the target of
100 points (see Figure 3; cf. De Muth, 2019).
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Figure 3 CI90% for the Difference.

3.2 Example 2: For Two Independent Groups' Tests After a Pre and
Post Test

The ET for Two independent samples was intended thus: “To overcome the disadvantage of
failing to reject the null hypothesis with t-test, the two-sample equivalence was developed to
identify the similarity or equivalence between two methods or treatments” (De Muth, 2019,
p. 185). When both nulls are rejected, the alternatives are proven, which means that the
results are within equivalence limits (De Muth, 2019). Once again, because a null was not
rejected, it does not imply equivalence. The data of this last author (Table 1) was used for
the following example, which was solved partly by using SPSS 24 and manual calculations
with Critical Values of the t distribution table and online calculators (Science Statistics,
2020), as well as using an R code created by Lakens (2017) for Equivalence Testing.

Table 1 Data for the
sample of indepen-
dent groups.

Study A Study B
96,5 101,1
101,1 100,6
99,1 98,8
98,7 99
97,8 98,7
99,5 100,8

In the experimental design, the scenario was that Researcher A was trying to replicate a
study carried out by Researcher B to observe if a treatment for improving reading had the
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same significance in both studies. Researcher A followed the steps of Researcher B, such as
collecting a random sample representative of a population and applying the treatment. Fur-
thermore, Researcher A had access to Researcher B’s post-test data to test for equivalence.
For practical effect size, two units above and below the difference were considered as the
Equivalence Bounds. The research question was: Does statistically significant equivalence
exist between these two means?

Before performing the ET, a two-independent-sample t test was applied in SPSS 24 for
NHSST. Given homogeneity of variance, the results were: Levene’s test F = 0.084, and p =
.78. In summary, there was not a statistically significant difference between the means of
both groups and the: t (10) = -1.343, p= .209, with amean difference = -1.05, SE difference =
0.7819, andCI 95% [-2.792, 0.692]. Once again, this lack of statistically significant difference
does not mean statistical equivalence. In contrast, De Muth (2019) and Lakens et al. (2018)
did not assume homogeneity of variance and calculated coefficients accordingly including
a CI90%. These authors used df = 9 and df = 9.03 respectively instead of df = 10 supported
by homogeneity of variance. Given this, the SPSS 24 was used to calculate results under no
assumption of variance homogeneity: t (9.035) = –1.343, p = .212, mean difference = -1.05,
SE difference = 0.7819 and the CI 90% [-2.4827, 0.38271].

1.- Hypotheses:

H01 : µA − µB ≤ ∆L

HA1 : µA − µB > ∆L

H02 : µA − µB ≥ ∆U
HA2 : µA − µB < ∆U

If the Nulls are rejected, equivalence is proven.

2.- Establish the difference. Difference =

xA = mean of the replication study by Researcher A: 98.78 (SD = 1.56)

xB = mean of study B by Researcher B: 99.83 (SD = 1.11)

3.- Find or calculate:

Lower-Equivalence Bound: ∆ L = –2. This value was translated into a d value to
be included in the R code of Lakens et al. (2018) by dividing the Lower Equiva-
lence-Bound, which was taken as a difference between two means, by the pooled
SD*: –2 / 1.35 = –1.48 Upper-Equivalence Bound: ∆ U = 2 translated into a d
value as the previous one: 2 / 1.35 = 1.48

4.- Degrees of freedom. n 1 + n 2 – 2: 12 – 2 = 10 (This was under the assumption of
equal variance, but De Muth, 2019, and Lakens et al., 2018, used df = 9 and df = 9.03,
respectively, so for coherence with their approaches, the rounded degrees of freedom were
9 for the present manuscript.
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5.- Standard error of the difference (SE difference):
SE difference = square root of (2 X S s2 / n) (for equal sample sizes):

SEdifference = square root of
[(
s2s /n1 + s2s /n2

)]
(for equal sample sizes)

s2s = variance of both samples.

That is,

s2s =
[
Σ
(
Xi1 − X1

)2
+Σ

(
Xi2 − X2

)2]
/n1 + n2 − 2 =

1.83

Substituting, SEdifference = square root of (1.83/6 + 1.83/6) = 0.78

6.- Reliability Coefficient, also known as critical t: 100(1 – α) = α = .05, t critical (df = 9) =
1.8331 (Taken from the t-table for two tails, significance level = 10%)

7.- Two one-sided tests (confidence interval for the difference: TOST confidence interval
90%):

Difference Lower Limit =
(
XA − XB

)
− tl−α,vXSEdifference.

Substituting,= −1.05− 1.8331(0.78) = −2.4798

Difference Upper Limit =
(
XA − XB

)
+ tI−a,vXSEdifference.

Substituting,= −1.05 + 1.8331(0.78) = 0.3798

Thus, the CI 90% = [–2.4798, 0.3798], which differs to a certain extent from the ones calcu-
lated in SPSS 24 CI90% [–2.4827, 0.38271], De Muth CI95% [–2.4833, 0.3833] and Lakens et
al. (2018) CI 90% = [–2.482, 0.382]. These authors differed in calling the CI 95% and 90%,
which was discussed previously. The four TOST CI coincided in that the lower limit (i.e. ≈
–2.4798) went beyond the Lower Equivalence Bound (–2), so there was no equivalence.

8.- Ratios t-statistic (t calculated):

t Lower Limit =
(
XA − XB −∆L

)
/SE difference.

Substituting,

[–1.05 – (-2)] / 0.78 = 1.22; pV alue Lower Limit = .25 (see Social Science Statistics,
2020, for calculating a p val- ue from a t value).

t Upper limit =
(
XA − XB −∆U

)
/SEdifference
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Substituting,[−1.05− (2)]/0.78 = −3.91; p Value Upper Limit = .003

De Muth (2019) reported t V alue Lower Limit (9) = 1.215 (p = .128) and t V alue Upper Limit

(9) = –3.9007 (p = .002). Moreover, using the R code of Lakens et al. (2018): t
V alue Lower Limit (9.03) = 1.22 (pV alue Lower Limit = 0.127; and tV alue Upper Limit

(9.03) = –3.91 (pV alue Upper Limit = 0.002).
Using Lakens et al.’s (2018) R code, the results presenting the NHSST with CI95% were

very similar to the ones calculatedmanually here, as well as toDeMuth’s (2019). In compar-
ison to the manually calculated results, this code’s results were easy to operate, and required
(Table 2 in Bold) the means, standard deviations, and sample sizes of both independent
groups, as well as d coefficients that worked as the Lower Equivalence Bounds. For this
example, the Lower Equivalence Bounds (|2|) were converted into d coefficients by divid-
ing –∆L by pooled standard deviation and ∆U by pooled standard deviation.

Table 2 R results for the ET and the NHSST.

R Code
> TOSTtwo(m1 = 98.78, m2 = 99.83, sd1 = 1.56, sd2 = 1.11, n1 = 6, n2 = 6, low_eqbound_d = -1.48,
high_eqbound_d = 1.48)
TOST results: t -value lower bound: 1.22 p-value lower bound: 0.127

t-value upper bound: -3.91 p-value upper bound: 0.002
degrees of freedom: 9.03

Equivalence
bounds
(Cohen’s d):

low eqbound: -1.48

high eqbound: 1.48
Equivalence
bounds (raw
scores):

low eqbound: -2.0037

high eqbound: 2.0037
TOST
confidence
interval:

lower bound 90% CI: -2.482

upper bound 90% CI: 0.382
NHST
confidence
interval:

lower bound 95% CI: -2.817

upper bound 95% CI: 0.717
Equivalence
Test Result:

The equivalence test was non-significant, t(9.03) = 1.220, p = 0.127, given equivalence
bounds of -2.004 and 2.004 (on a raw scale) and an alpha of 0.05.
Null Hypothesis Test Result: The null hypothesis test was non-significant, t(9.03) =
-1.343, p = 0.212, given an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we can conclude
that the observed effect is statistically not different from zero and statistically not
equivalent to zero.
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Table 2 and Figure 4 were products of Lakens’ (2017) R code, which performs equiva-
lence tests for independent and dependent t tests, correlations, and meta-analysis.

Figure 4 Output from the R code: Equivalence Testing and Null Hypothesis Significance Statistical Testing.

In conclusion, given a target of 100, the lower limit was set at –2 and the upper one at
+2. The null hypothesis (H01) was not rejected because of the CI [–2.4638, 0.3638], which
exceeded the range of |2|. Furthermore, the t-ratio failed to reject the hypothesis for the
lower limit t (9) = 1.22, p = .25. Thus, there was a failure to show equivalence.

4 DISCUSSION AND CONCLUSIONS
Thepresent paper accomplished the objective and answered the research question by exem-
plifying how to execute an ET by manual calculations with a t table and an online calculator
and R, in the area of educational research. This kind of analysis can help researchers to
provide meaning to their results (means and effect sizes) by comparing the means of two
different studies and testing whether they are statistically equivalent. Additionally, the pro-
cedures and results of other authors, De Muth (2019) and the R code of Lakens et al. (2018),
who utilized Minitab and R for ET respectively, were demonstrated with one sample and
two independent samples.
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4.1 Recommendations
As a summary of the topics covered in this manuscript, here is a list of recommendations
for future research with experimental designs about effect sizes and general research:

• Keeping in mind that p-values were conceptualized for the long run and not only for
one study because it would be necessary to see if a pattern emerges from a series of
studies before drawing conclusions (see Greenland et al., 2016).

• Verifying the Statistical Power level of data (see Cohen, 1988; Faul et al., 2007).
• Calculating an effect size, showing how it was calculated, and estimating its confi-

dence interval (see Cumming, 2012)
• Interpreting the practical significance of the findings (see Kirk, 1996; Kraft, 2020).
• If there is a target or identified best practice (i.e. mean or effect size), using ET to see

if they are statistically equivalent (De Muth, 2019; Lakens et al., 2018).
• Writing asmany as possible of these recommendations onpaper (i.e. because a proper

inference requires reporting transparency, Wasserstein and Lazar (2016) and using
Open Science practices for future replications and advancement of science (see Cum-
ming & Calin-Jageman, 2017).

It could be that researchers might ask themselves: why should I care as a researcher about
effect sizes, confidence intervals and equivalence testing? The benefits are that effect sizes
and their confidence intervals can help to measure practical significance and see if a treat-
ment seems to be improving a situation. By the same token, using ET can provide meaning
for findings to see whether one study’s findings are statistically equivalent to another’s, given
someEquivalence Bounds. Regarding Equivalence Bounds, there is a cautionary note: these
limits are set by experts in the fields and not by statisticians (cf. Hauck & Anderson, 1984,
p. 658).

4.2 Limitations
One limitation was that Lakens et al. (2018) discussed some epistemological implications
of ET in relation to empirical falsification, as explained by Sir Karl R. Popper. Given the
likely complexity of epistemological issues, they would warrant the creation of a whole article
dealing with ET and empirical falsification (see Popper, 2002). Another limitation was the
lack of coverage of non-inferiority testing, which is closely related to ET and deals similarly
with comparisons, so Wellek (2010) would be a good source for this test.

4.3 Conclusions
The contribution of the present paper was to fill a gap regarding Equivalence Testing and
Educational Research because there was no paper in Google Scholar with these two terms.
By filling this gap in the literature, asGall et al. (2007)might have said, therewas an improve-
ment in the collective knowledge of education. Besides this, there was a practical element
in the context of educational research, as it how to use an ET to see if two means were
statistically equivalent given two equivalent bounds was shown.
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