
MOTIVATION
Paraphrasing Antoine de Saint-Exupéry, here is a motivation for 
this study: “I pondered deeply on how a heterogeneous student 
population, comprising of high-performing and low-performing 
students, can affect the overall class performance, and how it 
might be possible to diagnose problems by parametrizing class 
heterogeneity in a useful way. After some work with coloured 

pencils, I succeeded in making my first drawings, which looked 
like those in Figure 1.”

“I showed my masterpieces to my peers and asked them 
whether my drawings of grade distributions worried them. But 
they answered: ‘Worry? Why should anyone be worried about the 
distribution? The main thing is that the average grade is reason-
able – who cares about the shape of the distribution?’” However, 
in contrast with the worrying distribution in Figure 1(a), Figure 
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A course with good learning outcomes is one in which most of the enrolled students achieve the mastery speci-
fied in the predefined learning objectives. Since the enrolment is invariably a mix of students with heterogeneous 
capabilities, the class average grade is a poor indicator of how the class is divided into at least two groups, of 
high- and low-performers. Clearly, achieving the desired outcomes implies increasing the proportion of high-per-
forming students and their mean grade by providing appropriately designed teaching protocols. In this paper, the 
actual class grade distribution is approximated by a bimodal probability distribution function, whose parameters 
enable the proportions and average performance of these two groups to be quantified. This paper describes the 
methodology to achieve this and demonstrates its usage to diagnose example exam grade distributions, as well 
as to provide quantification of the impact of pedagogic changes on the degree of achieving teaching objectives. 

(a) (b)
Figure 1. My first drawing of a worrying grade distribution with a normalized average of 0.65, shown in (a), and a drawing of an 
equivalent normal distribution with the same average, shown in (b).

Figure 2. My second drawing of the grade distribution in Figure 1(a).
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1(b) shows a normal distribution with the same mean value as 
that depicted in Figure 1(a). Clearly, my drawing in Figure 1(a) is 
not a picture of a normal distribution, but rather, of a bimodal 
distribution, whose average is misleading, as the actual student 
population is divided into two distinct groups, one in which grades 
are high-performers’ and the other of low-performers’. In such 
circumstances, an unacceptably high proportion of the class score 
well under the computed average. Would both of the grade distri-
butions presented in Figure 1 be equally desirable in a course 
outcome, even if they both have the same average grade? Accord-
ingly, I analyzed the grade distribution in Figure 1(a) by fitting the 
parameters of a bimodal distribution model, producing the picture 
as shown in Figure 2.

Note that Figure 2 discloses that the distribution is 
composed of two distinct normal distributions, for the low- and 
high-performing students respectively, in which 40% of the class 
is in the low-performing group, with an average grade of 40%, 
with the passing grade being 55%. Regrettably, the common prac-
tice of grading on the curve simply adjusts the distribution to 
achieve acceptable averages. This can lead to several problem-
atic outcomes of grade distributions such as the one illustrated 
in Figure 2:
a.	 Had the bimodal distribution’s average grade been 45% and 

not 65%, the often acceptable “fix” of adjusting the grades 
to make the average, say, 70%, would simply jack up all of the 
grades by a factor, allowing many students who did not mas-
ter the materials examined to pass the exam. This is clear-
ly an undesirable outcome, especially so if mastery of the 
course in question is a prerequisite in subsequent courses.

b.	 Students are smart enough to recognize that if their passing 
grade, obtained by adjusting grades by a factor of significant 
magnitude may mean that in many cases, the factor itself 
may contribute as much to the reported grades as their 
own efforts. If the usage of factoring is repeated semester 
after semester, this can only erode the students’ desire and 
motivation to achieve real learning (Kulick and Wright, 2008). 
Again, this is a highly undesirable outcome for students.

c.	 Ignoring the bimodal nature of the distribution overlooks 
the fact that a sizable portion of the class did not achieve 
the desired course outcomes. Would a conscientious teach-
er accept the situation where only 60% of the class achieved 
course mastery? Therefore, the practice of grading on the 
curve also leads to undesirable outcomes for teachers.
If we accept the premise that a teachers’ duty is to encour-

age as many as possible of his/her students to achieve mastery in 
the courses being taught, then it should be of interest to monitor 
the degree of engagement of the students with the course during 
the entire semester, so that the proportion of the students who 
do not achieve mastery is reduced as much as possible. Clearly, 
not everything is in the teacher’s control: As the saying goes – 
you can lead a horse to a water trough, but you cannot force 
it to drink. However, it is more likely that the horse will drink 
if you treat it well, and if you make the water taste and smell 
good. In the same spirit, the teacher does have significant impact 
on students’ motivation and curiosity, and on the availability of 
clearly presented resources and information. The teacher’s posi-
tive and patient attitude when interacting with the students in the 
contact time they share has a huge impact on students’ engage-
ment, as does aiming to maximize the degree to which students 
are participating actively with the teacher and with each other, 

rather than passively listening to lectures (Freeman et al, 2014; 
Velegol et al, 2015). Evidently, then, a key desired outcome would 
be to minimize the percentage of low-performing students in 
the final outcomes evaluations, and to measure this, one needs 
to be able to analyse grade bimodality, as illustrated in Figure 2. 
Having this analysis widely available will gauge the degree of each 
teacher’s success and drive the lecturer to improve the teaching 
protocol in future course offerings to reduce the proportion of 
low-performing students.

This paper introduces a diagnosis method that provides a 
parameterized measure of the degree of bimodality present in 
an exam grade distribution, which can be utilized by teachers 
who wish to quantify the degree to which their classes contain 
high- and low-performers. Hopefully, the opening remarks just 
presented have provided a convincing motivation that this is desir-
able. Next, brief introductory remarks are provided, intended to 
review the literature regarding the occurrence and treatment 
of bimodal grade distributions, especially in STEM courses. Then, 
a simple mathematical model is introduced that can be used to 
quantify grade distribution bimodality, which is optimally fitted to 
a given grade distribution, thus generating estimates for the diag-
nostic parameters. This is followed by a demonstration of how 
multimodal distributions with more than two modes can also be 
usefully diagnosed with the proposed method. The approach is 
tested first on the diagnosis of four consecutive years of actual 
exam grade distributions for two mathematics courses taught in 
large classes to first-year engineering students at the Technion. 
Then, the methodology is applied to data from smaller classes to 
demonstrate how the diagnosis differentiates between successful 
and unsuccessful outcomes. Finally, as an ultimate demonstration 
of the practical application of the diagnosis procedure, its usage 
is illustrated on the analysis of the impact of pedagogic changes 
implemented over time in the teaching of the Technion’s capstone 
design course in the Faculty of Chemical Engineering. The paper 
ends with some discussion and concluding remarks.

INTRODUCTION
The average is the commonly used metric to assess acceptability 
of exam grade distributions. This tacitly assumes that the distri-
bution is unimodal and normally distributed, even though the 
students sitting the exams may exhibit heterogeneous capabilities. 
Especially for courses involving abstract concepts, prevalent in 
many STEM courses, the students in the class consist of at least 
two distinct groups: 
1.	 A high-performing subset of students, who are character-

ized by those who ask questions in class and invest consid-
erable time and energy each week on the course, reviewing 
materials and practicing example exercises. Some of the 
members of this subset could also be those students who 
are retaking the course in question, and who therefore be-
gin the course with a better grasp of the subject-matter.

2.	 A low-performing subset of students, who spend relatively 
less time on the course, often leaving the majority of their 
learning to a short “cramming” period just before the final 
exam.
While there may be more than two classifications of students 

in a class, one must distinguish between at least two groups to be 
able to diagnose the impact of class heterogeneity on outcome-at-
tainment. Clearly, one would be surprised if both of these groups 
of students were to perform equally well in the exam, and indeed, 
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there is published evidence that in the more abstract courses, the 
grade distributions are often bimodal (Arthurs et al, 2019). In addi-
tion to the reasoning for the bimodality presented above, Patit-
sas et al (2016) list the following possible causes for two distinct 
student populations in a course in computer science:
a.	 Students with prior relevant experience (e.g., programming) 

and those without.
b.	 Students better able to grasp key concepts, and those who 

have difficulty with them.
c.	 Students that are naturally talented in the subject, and those 

that are not (the “Geek Gene” hypothesis).
d.	 Poor assessment protocols (e.g., unclear exam questions, or 

unfair grading that does not quantify the degree of under-
standing of a student). 
The objective of this paper is to present a straight-forward 

diagnosis method to classify the degree of bimodality in a grade 
distribution, which can gauge the relative sizes of the high- and 
low-performing groups in the class, as well as estimating their 
mean grades and standard deviations. Note that carrying out 
bimodality analysis on anything other than exam grades is not 
advisable, as all other components of a course grade may involve 
cooperative or group effort, rather than individual effort (Turton 
et al, 2013). 

METHODOLOGY 
Exam grade distribution histograms can be fitted to a bimodal 
probability density function:

In Eq.(1) it is assumed that the grade distribution can be 
approximated by the weighted sum of two normal distributions 
with averages, µ1 and µ2, and standard deviations, σ1 and σ2, where 
p is the mixing parameter (0 < p < 1). As shown by the example 
distributions presented in Figure 3, Eq. (1) can model distributions 
featuring both kurtosis and left or right skewness, by appropriate 
selection of the model parameters. The specific parameters used 
to prepare the plots in Figure 3 are presented in Table 1.

The five parameters of Eq. (1) need to be selected such that 
the bimodal probability density function matches histograms of 
actual grade distributions with minimum fitting error. The para-
metric fit can be conveniently performed using Maximum Like-
lihood Estimation methods (McLachlan and Peel, 2000; Meng 

and Rubin, 1993), as implemented, for example in the R-package 
(normalmixEM, EM Algorithm for Mixtures of univariate normals, 
Benaglia et al, 2009). In this study, the optimal model parameters 
were determined using a genetic algorithm, thus avoiding the need 
for a unique initial guess of the model parameters, which can often 
bias the results obtained. 

In Eq. (1), the indices 1 and 2 indicate the high- and low-per-
forming subpopulations, respectively, with the latter consisting of 
the fraction 1 – p of the total population. Thus, for a unimodal 
normal distribution with average and standard deviation of µ1 and 
σ1 respectively, p = 1. The degree of bimodality in grade distribu-
tions can be quantified by fitting the five distribution parameters 
to the actual grade distribution, and then computing Ashman’s D 
(Ashman, 1994):

Since D > 2 for a clean separation of the distribution into 
two distinct peaks, the magnitude of D is a measure of the degree 
of bimodality, and the value of p will indicate the proportion 
of the high-performing students in the class. Ideally, one would 
like to see values of p close to unity accompanied by relatively 
large values of µ1, indicating a high proportion of high-perform-
ing students. Values of D higher that two indicate heterogeneous 
student populations that can be clearly distinguished by separate 
peaks in the grade distribution, for example as shown in Figure 2, 
in which D = 4.3. Note, however that even when Eq. (2) estimates 
D < 2, there could still be two distinct subpopulations, which will 
express themselves either as left-or right-skewed grade distribu-
tions, when µ1 > µ2, or by observable kurtosis, in cases where µ1 
≈ µ2 (See Figure 3).

The more realistic representation of the grade distribution 
as a bimodal one has the distinct disadvantage that now, instead 
of a single average estimate, it is now necessary to interpret the 
implications of a five-parameter model. One possible useful work-
around is to present the diagnosis result as a bubble plot, where 
disks of radius proportional to p are plotted in µ1 – µ2 space (for 
examples, see Figures 9 and 13).

( )
2 2

1 2

1 2

1 1
2 2

1 2

1
.

2 2

x x
p p

f x e e
   −µ −µ

− −   
σ σ   −

= +
σ π σ π

Eq. (1)

(a) Kurtosis (µ1 ≈ µ2) (b) Left skewed (p > 0.5) (c) Right skewed (p < 0.5)
Figure 3. Example distributions modelled by Eq. (1) that exhibit kurtosis and skewness, with parameters as presented in Table 1. 
The solid lines present the actual normalized grade distributions, and the red dotted lines plot the distributions of each term in Eq. (1).

Table 1.  Example parameter value in Eq. (1) that lead 
to kurtosis, left skewness and right skewness.
Feature µ1 µ2 σ1 σ2

p

Kurtosis 0.600 0.600 0.100 0.300 0.300
Left-skewed 0.850 0.600 0.100 0.200 0.600
Right-skewed 0.850 0.600 0.150 0.100 0.300

1 2

2 2
1 2

2 .D
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=
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Eq. (2)
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WHAT IF THE TRUE GRADE 
DISTRIBUTION IS NOT BIMODAL?
It would be fair to question the reliability and purpose of fitting 
a bimodal distribution to examination grades. Even if it seems 
reasonable that there are only two levels of achievement in most 
classes, what would be the consequences of forcing a bimodal 
distribution onto a class that isn’t bimodal? For example, classes 
could be trimodally distributed, with high-, medium- and low-scor-
ing groups in the population. What about a class in which there 
is simply a rather evenly distributed set of performers, or classes 
in which the grade distribution is normal? What are the implica-
tions of forcing a bimodal distribution of the exam scores onto 
these classes?

The capability of reproducing kurtosis and skewness using Eq. 
(1) has been demonstrated. In the case of a unimodal (normal) 
distribution, fitting a bimodal approximation would result either in 
p being estimated as 1, or in two distributions being derived, with 
approximately equal means and standard deviations. The uniform-
ly-distributed case is not suitable for the bimodal approximation, 
as this exhibits no clear peaks and cannot be meaningfully fitted. 
To demonstrate the implications of the trimodally distributed case, 
consider the trimodal grade distribution function:

where mi and si are the means and standard deviations of each 
of the three subpopulations, with i = 0, 1 and 2 indicating high-, 
medium- and low-scorers, respectively, r0 is the fraction of 
high-scorers, and r1 is the fraction of medium-scorers. Let us 
consider a specific but representative case, where means and 
standard deviations of the distributions are at values that enable 
them to be seen distinctly, for example by taking the following 
parametric values: [m0, s0] = [0.90, 0.05], [m1, s1] = [0.70, 0.10], and 
[m2, s2] = [0.40, 0.10]. Furthermore, taking 0.4 as the fraction of 
low-scorers, then r0 + r1 = 0.6, and assuming that the high-perform-
ers are not in such a proportion that they dominate the popula-
tion, we investigate values of r0 up to a value of 0.2, and test the 
implications of the proportion of high-scorers on the optimally 
fitted bimodal model parameter values in Eq.(1). 

As seen in Figure 4, with the distribution frequency for a 
total of 100 examinees, the mean and standard deviation values 
selected show the effect of the value of r0 on the degree to which 

the distribution is trimodally distributed. The effect of increasing 
r0, the proportion of high-scorers, on the average grade, µ, as 
well as the best-fit bimodal approximation parameters (µ1, µ2, σ1, 
σ2 and p), Ashman’s D, and the fitting error (SSE), are presented 
in Table 2 with two representative fitting plots shown in Figure 5. 
These indicate that as r0 is increased, the five parameters of the 
bimodal distribution function (Eq. 1) are adjusted to match the 
trimodal distribution function (Eq. 3) as closely as possible. As one 
would expect, since the proportion of the high-performers (i.e., 
r0 + r1) in Eq. (3) is kept constant, the two highest peaks in Eq. (4) 
are represented by the second peak of Eq. (1) and therefore both 
µ1 and σ1 are increased. To minimize fitting error, µ2 and σ2 are 
slightly reduced, while p is increased. The essence of the trimodal 
distribution is captured by combining the high- and medium-scor-
ers’ contributions into the high-performer’s peak in the bimodal 
distribution, leading to positive adjustments in the values of µ1 and 
σ1. As expected, increasing the contribution of the high-scorers 
leads to increasing fitting errors. At some point, the fitting error 
will be so large that the reliability of the bimodal approximation 
is compromised. This will occur, for example, when trying to fit 
the bimodal model to a uniform distribution. 

Similarly to the trimodal demonstration, distributions with 
any number of modes can be approximated using two modes, with 
parameters adjusted to enable the bimodal model to match the 
true distributions as closely as possible. The important bottom 
line is this: Given the most-likely eventuality that a uniform exam 
grade distribution will not be obtained, a bimodal distribution 
enables a reasonable fit to the true grade distribution that usefully 
models the heterogeneity of the students’ grade distribution, 
providing diagnostics that identify the proportion of low-per-
formers and estimates on the effective means and standard devi-
ations of the low- and high-performers. 

In the next four sections, the method is applied to the anal-
ysis of the grade distributions of several Technion final exams, 
noting that the Technion pass grade is 55%. In the next two 
sections, the diagnosis is carried out on two core mathematics 
courses, Algebra and Calculus given to 1st year undergraduate 
engineering students at the Technion, both of which involve large 
numbers of students. The next section analyzes grade distribu-
tions for smaller classes of students, demonstrating examples of 
how successful and unsuccessful teaching protocols, as measured 
by the exam outcomes, are flagged using the proposed diagnosis 
approach. To round off the paper, the final section demonstrates 
how the diagnosis method can be used to assess the effectiveness 
of changes in teaching pedagogy over time.
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(a) r0 = 0.0 (b) r0 = 0.1 (c) r0 = 0.2

Figure 4. The effect of r0 on the degree of trimodality in Eq. (4) with [m0, s0] = [0.90, 0.05], [m1, s1] = [0.70, 0.10], and [m2, s2] = [0.40, 
0.10], and r0 + r1 = 0.6. The solid lines and histograms present the actual trimodal normalized grade distribution, and the red dotted lines plot the 
distributions of each term in Eq. (3). 
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Table 2.  Best fit bimodal distribution parameters for trimodal distribution with [m0, s0] = [0.90, 0.05], [m1, s1] = [0.70, 0.10], and [m2, 
s2] = [0.40, 0.10] and r0 + r1 = 0.6, as a function of degree of trimodality, r0.

r0 µ µ1 µ2 σ1 σ2
p D SSE

0.00 0.58 0.700 0.400 0.100 0.100 0.600 3.00 10-2

0.05 0.59 0.709 0.398 0.106 0.099 0.606 2.97 3.79
0.10 0.60 0.717 0.392 0.124 0.095 0.630 2.94 6.40
0.15 0.61 0.734 0.389 0.145 0.095 0.648 2.82 8.71
0.20 0.62 0.772 0.387 0.168 0.094 0.690 2.83 11.6

(a) r0 = 0.1 (b) r0 = 0.2
Figure 5. The effect of r0 on the resulting bimodal models. The histograms present the actual trimodal normalized 
grade distribution, the solid lines show the best fit bimodal model, with distributions of each term in Eq. (1) shown by the red 
dotted lines. 

Table 3. Bimodal distribution parameters for Algebra 1M course grades
Year N N<55 µ σ µ1 µ2 σ1 σ2

p D
2016 752 46(6%) 0.80 0.15 0.93 0.67 0.12 0.16 0.74 1.84
2017 719 46(7%) 0.79 0.15 0.89 0.66 0.11 0.17 0.74 1.62
2018 632 54(9%) 0.75 0.17 0.85 0.28 0.19 0.17 0.96 3.14
2019 719 94(13%) 0.74 0.18 0.87 0.67 0.10 0.22 0.58 1.12

(a) 2016 (b) 2017

(c) 2018 (d) 2019
Figure 6. Diagnosis of Algebra 1M exam results. Each plot shows histograms of exam grade distributions, black lines 
indicating f(x) as predicted by Eq. (1), and red dotted lines showing the high- and low-performing subpopulation contributions to 
f(x). The abscissa is the normalized exam grade while the ordinate is the number of students in each histogram bin, in steps of 5% 
of the total grade.
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Diagnosis of Algebra 1M Grade Distributions
Exam grade distributions for Algebra 1M for four academic 
years from 2016 to 2019 are shown in Figure 6. Table 3 shows a 
summary of the number of students who took each exam, the 
number of students who failed, also expressed as a percentage of 
the class, as well as averages and standard deviations. Also shown 
in the table are the resulting fitted bimodal model parameters 
as well as Ashman’s D. As an example, the first entry in Table 3 
indicates that for the 2016 exam, in which 752 students partici-
pated, the failure rate was 6%, with an average grade of 80% and 
a standard deviation of 15%. This distribution is best fitted by a 
bimodal model, in which 74% of the total students belong to a 
high-performing group with a mean grade of 93%, with a small 
group of low-performing students, including only 26% of the total 
population, with a mean grade of 67%.  

From Figure 6, it is apparent that the distributions are all 
left-skewed and comprise a majority of high-performing students. 
Of the four years, the last one presented, for 2019, indicates the 
lowest proportion of high-performing students, only 58%, but 

the effect of the 42% low-performers on the overall class perfor-
mance is less significant because the low-performers obtained 
average grades closer to those of the high performers. Another 
thing to notice is the increased variance of the low-performing 
group in the last year of data, which leads to a more pronounced 
spreading of the skew. Nonetheless, bimodality is not observable 
as separate peaks in any of the histograms for this course, and 
contributes mainly to explaining the left-skewness of the distribu-
tions. This course is the most populated course given at the Tech-
nion, and the performance over the diagnosed period represents 
a consistently good outcome, though there is evidence of a slight 
degradation in performance over time, as indicated by the grad-
ually lowering values of µ1, as well as either lower values of µ2 
or lower values of p, both of which lead to lower values of the 
average grade, µ.

(a) 2016 (b) 2017

(c) 2018 (d) 2019
Figure 7. Diagnosis of Calculus 1M exam grades. Plots prepared as in Figure 6. 

Table 4. Bimodal distribution parameters for Calculus 1M course grades
Year N N<55 µ σ µ1 µ2 σ1 σ2

p D
2016 438 65 (15%) 0.70 0.18 0.78 0.41 0.11 0.08 0.88 3.97
2017 501 49 (10%) 0.73 0.16 0.78 0.43 0.11 0.06 0.93 4.10
2018 445 55 (12%) 0.70 0.16 0.78 0.63 0.10 0.27 0.62 0.71
2019 549 96 (17%) 0.68 0.16 0.75 0.67 0.09 0.25 0.51 0.44
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Diagnosis of Calculus 1M Grade Distributions 
Exam grade distributions for Calculus 1M for four academic 
years from 2016 to 2019 are shown in Figure 7. Table 4 shows a 
summary of the number of students who took each exam, the 
number of students who failed, also expressed as a percentage of 
the class, as well as averages and standard deviations. Also shown 
in the table are the resulting fitted bimodal model parameters as 
well as Ashman’s D.

As shown in Figure 7, the first two years of data (2016 and 
2017) are clearly bimodal (D values close to 4), although the 
low-performing students constitute a small percentage of the class 
(7-12%). The bimodality is less obvious for the last two years of 
data (2018 and 2019), and the distributions look very similar to 
the general pattern observed in the Algebra grade distributions, 
but with slightly lower average grades. It is noted that in the last 
two years, the distributions of low-performing grades have larger 
variances than in the first two years, causing the left-skewed over-
all distribution to feature a flattened tail. It should also be noted 
that the students who take Calculus 1M constitute most of the 
class that takes Algebra 1M each year, and yet, the grade distribu-
tions are qualitatively different. It is clear that the calculus course 
is found to be the more difficult of the two by many students, 
and like the Algebra course, there is evidence of a slight deteri-
oration of performance over time, caused by the same changes 
in the estimated model parameters as observed for the grades 
of Algebra 1M. 

Diagnosis of Three Test Courses: 
The Good, the Bad and the Ugly
The previous two sections have demonstrated the usage of the 
diagnosis technique on the exam results for extremely large 
classes. It would be fair to question whether the diagnosis is 
capable of providing useful information when dealing with smaller 
data sets. This section demonstrates the diagnosis of three repre-
sentative engineering core courses, whose results are shown in 
Figure 8, with a summary of parametric data in Table 5. The three 
courses are diagnosed in the following order: the good, the bad, 
and the ugly. 

The Good:
The final exam for this course appears to have achieved a good 
outcome, with a failure rate of only 7%, in which the grade distri-
bution is left-skewed, as shown in Figure 8(a). The diagnosis tool 
reveals that 61% of the class are high-performers, with an average 
grade of 84%. The remaining low-performing students attained an 
average grade of 64% with a relatively tight distribution (σ2 = 0.11), 
which explains the low failure rate. Of the three exams diagnosed 
in this section, this is the one where the student population did 
the best, as clearly indicated by the estimated bimodal model 
parameters. So, a good outcome here, both for the lecturer and 
for the students. Note also that the average grade is relatively high, 
and comparable to the results obtained from the diagnosis of the 
algebra and calculus grades presented previously.

The Bad:
Even without recourse to the diagnostic tool, it is clear that the 
lecturer of this course has a problem, given the fact that 55% 
of the class has failed the exam. The results from the diagnostic 
tool, summarized in Table 5 and shown in Figure 8(b), indicate 
that the high- and low-performing groups have average grades 
that are slightly above and slightly below the fail grade, respec-
tively. The fact that it is difficult to differentiate between high- 

Table 5. Bimodal distribution parameters for three test courses.
Course N N<55 µ σ µ1 µ2 σ1 σ2

p D
“The Good” 200 13 (7%) 0.74 0.13 0.84 0.64 0.08 0.11 0.61 2.09
“The Bad” 288 159 (55%) 0.53 0.18 0.63 0.48 0.20 0.13 0.50 0.91
“The Ugly” 126 121 (96%) 0.37 0.12 0.40 0.39 0.20 0.10 0.32 0.06

(a) “The Good”

(b) “The Bad”

(c) “The Ugly”
Figure 8. Diagnosis of three representative exam grade 
distributions. Plots prepared as in Figure 6.
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and low-performers is an indication that most of the students 
have not mastered the course. Whatever is done in this case 
to mitigate the low percentage of passing students, whether it 
is by a factor to jack up the grades or by accounting for class-
work, cannot disguise the fact that the class as a whole has not 
demonstrated mastery. The lecturer needs to seriously take stock 
and implement changes to the course protocols, to significantly 
improve the mastery achieved by students in the course.

The Ugly: 
This exam result is close to the worst-possible scenario, with the 
distribution data indicating a 96% failure rate (gevalt/oy vey!). As 
confirmed in Table 5, it is further noted that the diagnostic tool 
returns a result indicating that the two student populations have 
almost the same average grades, accompanied, of course, by a 
value of D close to zero, from which it can be concluded that the 
distribution is close to a unimodal normal one, exhibiting some 
kurtosis, as clearly shown by the data and model fit in Figure 8(c). 
Unfortunately, the average grade is about 40%, which is consistent 
with the resulting high failure rate. The diagnosis is clear: all of the 
students in the course were low-performers. The lecturer of this 
course has a serious problem; the only way to mitigate the unac-
ceptable failure rate is to account for the grades of homework 
assignments, as well as a large enough factor to jack up the grades 
sufficiently. The unquestionable outcome in these circumstances, 
is that most of the students would be given passing grades, even 
though the majority have not achieved mastery in the final exam. 
Given the failure of virtually the entire class, all aspects of this 
course need thorough revision: (a) As in “The Bad,” the lecturer 
should consider appropriate modifications to the way the course 
is taught, and in particular, the support system provided to all 
students; (b) Given the failure of essentially the entire class, it may 
be prudent to more closely align the final exam with the course’s 
learning objectives. 

To put the above results in perspective, the values of µ1, µ2 
and p estimated for the above three cases are presented in the 
bubble plot shown in Figure 9, which indicates bubbles of diam-
eter proportional to the value of p plotted on the µ1 – µ2 plane. 
For comparison, the data estimated for the series of algebra and 
calculus exams have also been positioned on the same plot, noting 

that the bubbles are colour-coded: red for Algebra 1M, blue for 
Calculus 1M, and green for the three Test Courses. 

Figure 9 provides a quick visual diagnosis of the Test Courses’ 
exam results, allowing for bimodality in the grade distributions. 
It is noted that the bubble plots for both Algebra 1M and Calcu-
lus 1M are clustered on the top right of the plot area, indicating 
relatively large values of both µ1 and µ2, with the results for the 
former being slightly better than the latter. As for the three Test 
Courses, one notes that the scores for “The Good” are compa-
rable to those of Algebra 1M and Calculus 1M, while both “The 
Bad” and “The Ugly” are immediately identified as clearly prob-
lematic results. 

Diagnosing the Impact of Teaching Pedagogy 
in the Capstone Design Course
As described by Lewin and Barzilai (2021), the capstone process 
design course at the Technion has been periodically evolving over 
the last 15 years, with some of the changes having been made to 
update and/or streamline the curriculum. However, two of the 
changes involved updating the teaching pedagogy with a view 
of improving the degree to which the learning outcomes are 
achieved by the students, namely: 
a.	 Transforming the recitations, in 2011, from lecture-based 

sessions, where the teaching assistant largely demonstrated 
solutions of example problems to students, to active tuto-
rials in which most of the time is allocated for students to 
solve problems for themselves.

b.	 Transforming the course to flipped format, in 2015, in which 
the lectures have been moved to an on-line format, includ-
ing built-in quiz questions, which have become the students’ 
home assignments. The lecturer’s meetings with students 
have been converted to active problem-solving sessions 
with students’ participation. The active tutorial component 
implemented in 2011 has been retained and rounds off each 
week’s activity.
The two principle desired course outcomes, which have 

not been changed over the 15 years, are the degree of success 
of teams of students on a competitive design project, and of 
the demonstration of students’ individual mastery of the taught 
materials as measured by their exam grades. The exam data for 
the 15-year span from 2005-2020 therefore makes an interesting 

Figure 9. Bubble plot summarizing binomial distribution diagnosis. The statistics for each exam score is a 
bubble centred on the µ1 – µ2 plane, with diameter proportional to p. The bubbles are colour-coded: red – Algebra 
1M, blue – Calculus 1M, green – Test scores.

µ1

µ2

“The Good”

“The Bad”“The Ugly”
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(a) 2005 (b) 2006

(c) 2007 (d) 2008

(e) 2009 (f) 2010
Figure 10.  Diagnosis of final exam grade distributions – Before the introduction of active tutorials. Plots prepared 
as in Figure 6.

case study for the proposed diagnosis method. Some details of 
these 15 years of data are in order: (a) The same teacher taught 
all classes (the author) during the entire period; (b) Classes met 
at approximately the same time (mid-day) and day of the week 
during the entire period; (c) The learning outcomes and topics 
taught and examined remained almost constant during the entire 
period, as documented in Lewin and Barzilai (2021); (d) The demo-
graphics of enrolled students have not changed significantly during 
the entire period. The two hypotheses to be tested are as follows: 

H1: The transformation from lecture-based 
recitations to active tutorials improved the 
degree to which classes of students achieved 
the desired learning outcomes.

H2: The transformation of the course from 
lecture-based to the “flipped classroom” im-
proved the degree to which classes of stu-
dents achieved the desired learning outcomes.
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(a) 2015 (b) 2016

(c) 2017 (d) 2018

(e) 2019 (f) 2020
Figure 12.  Diagnosis of final exam grade distributions (Flipped Course). Plots prepared as in Figure 10.

(a) 2011 (b) 2012
Figure 11. Diagnosis of final exam grade distributions – After the introduction of active tutorials. Plots prepared as 
in Figure 10.
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Given that the proposed diagnostic tool enables the classifi-
cation of an overall grade distribution by high- and low-perform-
ers, it can be used to address these two hypotheses, and provide 
insights into the impact of changes in the teaching pedagogies on 
the course’s exam outcomes. Figures 10-12 present exam grade 
distributions for the years 2005 – 2020, spanning a period before 
and after the introduction of active tutorials in 2011, and since 
the introduction of flipping in 2015. Table 6 presents the resulting 
fitted bimodal model parameters as well as Ashman’s D, obtained 
after diagnosis of the exam grades. The results lead to the follow-
ing observations:
1.	 There has been a gradual improvement in the average 

grades scored in the final exam of the design course, as 
well as a reduction in the failure rates. These changes have 
become most pronounced after the switch to active tuto-
rials in 2011. This result alone supports Hypothesis H1, that 
switching to active tutorials has improved outcomes.

2.	 There is a degree of bimodality in all of the results shown 
in Figures 10-12 and Table 6, with the improvements re-
ported gradually resulting from increased averages of both 
high- and low-performers. Again, the most significant im-
provements occurred after active tutorials were introduced, 
supporting Hypothesis H1. 

3.	 There are large variations in possible class performance, as 
confirmed by the large swing in the estimated binomial dis-
tribution parameters. It is noted that the variations have 
been somewhat attenuated after the introduction of flipping. 

To facilitate elucidation of the results, the estimated values of 
µ1, µ2 and p are presented in the bubble plot shown in Figure 13, 
which shows bubbles of diameter proportional to the value of p 
plotted on the µ1 – µ2 plane. Note the bubbles are colour-coded, 
with the period before the introduction of active tutorials (Phase 
I) shown in black, those for the period between the introduction 
of active tutorials but before flipping (Phase II) shown in grey, and 
the period after flipping (Phase III) shown in white. It was hoped 
that the bubble chart would show a clear separation between the 
three phases of the course’s pedagogic evolution: before and after 
the introduction of active tutorials, and after the introduction of 
flipping. Instead, it confirms that annual grade results have signif-
icant variation, even when analyzing each period of the course’s 
evolution, leading to overlap. This implies that the inherent capabil-
ities of each cohort have a significant impact on the results. Even 
so, some features are quite distinct:
1.	 The six exam results for the period before active tutorials 

were introduced, the black bubbles representing the years 
2005-2010, are clustered on the lower-left, that is, with rel-

Table 6. Analysis of Sample Process Design Final Exam Grades, 2005-2020. 

Year N N<55 µ σ µ1 µ2 σ1 σ2
p D

2005 77 16 (21%) 0.73 0.21 0.84 0.48 0.12 0.02 0.89 3.93
2006 77 11 (15%) 0.69 0.15 0.81 0.67 0.04 0.19 0.16 0.91
2007 81 17 (21%) 0.68 0.18 0.75 0.67 0.04 0.12 0.12 0.37
2008 85 15 (18%) 0.68 0.17 0.77 0.63 0.30 0.04 0.91 0.69
2009 68 7 (10%) 0.75 0.24 0.86 0.34 0.16 0.01 0.96 4.53
2010 70 9 (13%) 0.74 0.18 0.90 0.76 0.02 0.29 0.15 0.67
2011 77 4 (5%) 0.78 0.15 0.93 0.76 0.05 0.09 0.45 2.43
2012 79 7 (9%) 0.77 0.18 0.94 0.77 0.03 0.14 0.33 1.78
2013 68 6 (9%) 0.74 0.14 0.80 0.70 0.20 0.05 0.91 0.66
2015 85 7 (8%) 0.76 0.15 0.96 0.79 0.09 0.23 0.28 0.95
2016 66 9 (14%) 0.71 0.20 0.83 0.33 0.20 0.02 0.90 3.59
2017 87 10 (11%) 0.72 0.16 0.90 0.59 0.10 0.16 0.55 2.22
2018 84 7 (8%) 0.75 0.16 0.88 0.72 0.08 0.16 0.35 1.26
2019 58 4 (7%) 0.79 0.15 0.92 0.56 0.17 0.16 0.86 2.20
2020 48 6 (13%) 0.73 0.17 0.92 0.74 0.26 0.04 0.85 0.98

Figure 13.  Bubble chart summarizing binomial distribution diagnosis. The statistics for each year 
are centred on the µ1 – µ2 plane, with the bubble diameter proportional to p. The bubbles are colour-coded 
according to period: black – Phase I: 2005-2010 (before active tutorials), grey – Phase II: 2011-2013 (before 
flipping), white – Phase III: 2015-2020 (after flipping). Ref: Lewin and Barzilai (2021).
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atively low values of both µ1 and µ2. The instances in which 
relatively high values of µ1 have been obtained have relative-
ly low values of p. Table 5 indicates that the failure rates in 
this period are relatively high, averaging at 16%.

2.	 The results for the relatively short period between the in-
troduction of active tutorials and before switching to flip-
ping, indicated by the grey bubbles representing the years 
2011-2013, have significant scatter. Even so, the average fail-
ure rate in this period was only 8%, indicating that, even 
though erratic and prone to bias depending on the nature 
of the class, there was a significant drop in the failure rate 
compared to the situation before introducing active tutori-
als. It is apparent from these findings that the move to ac-
tive tutorials have led to significantly better outcomes, thus 
strongly supporting Hypothesis H1. 

3.	 Most of the exam results for the period after flipping was 
introduced (five out of the six in all), indicated by the white 
bubbles representing the years 2015-2020, are clustered on 
the top right, that is, with relatively high values of both µ1 
and µ2. There is still some scatter, but it is less pronounced 
than for the exam results from active tutorials alone. The av-
erage performance of the six years with flipping is at about 
the same level as that over the three years with active tuto-
rials alone, noting that the failure rate in this period averages 
at 10%. However, flipping has achieved a uniformly higher 
performance, as indicated by the relatively tight clustering 
observed in the bubble plot of Figure 13, with a more con-
sistent proportion of the class achieving higher performance, 
as indicated by the larger bubbles in the cluster on the right 
of the plot, compared with those of the other two phases. 
This indicates that the transformation from active tutorials 
to full flipping has advantages, thus supporting Hypothesis 
H2, that switching to the “flipped class” paradigm has im-
proved outcomes. 

CONCLUSIONS & RECOMMENDATIONS
Ideally, one would like to see a unimodal grade distribution with 
a reasonable average grade and a relatively low variance, indi-
cating that most of the class has achieved course mastery. This 
result is unrealistic, as the class is generally split into at least two 
distinct groups, of high- and low-performing students. When a 
class is heterogeneous with respect to student capabilities, the 
desired mastery is mostly achieved by the high-performers, with 
the low-performers being left behind, leading to a bimodal grade 
distribution, and consequently, to higher failure rates. In this regard, 
the diagnostic method that has been demonstrated here provides 
a “post-mortem” indication of the number of low-performers in 
the student population, and the degree to which they will affect 
the overall failure rates. As demonstrated by the large number of 
computed examples in this paper, the most direct way in which 
a grade distribution exhibits acceptable mastery is when its diag-
nosis indicates relatively large values of p, the proportion of the 
total population in the high-performing group, accompanied by a 
reasonably high values of µ1, the average grade of the high-per-
formers. Grade distributions characterized by lower values of 
p, may still achieve acceptable performance if the average grade 
of the low-performers, µ2, is relatively high. This analysis can be 
repeated into the future and used as a diagnostic aid to assist 
in tailoring the teaching protocols to reduce the extent of the 

problem – we would like run our courses to result in relatively 
large values of p and µ1, or in relatively large values of µ1 and µ2. 

Other researchers may make use of the proposed diagnosis 
methodology to flag problematic learning outcomes and to justify 
changes to teaching pedagogy that will increase the proportion of 
engaged students. Unacceptable diagnosis results are an indication 
that more work is needed to improve course teaching protocols. 
As demonstrated by the last extended study in this paper, contin-
uous monitoring of the exam outcomes over time enables the 
diagnosis method to provide indications of the degree of success 
of the pedagogy used. This returns us to the importance of contin-
uously monitoring the degree to which the students in a class 
are engaged in their learning during the semester, which is neces-
sary to ensure good outcomes. This implies the need to make 
students learning as effective as possible by applying active learning 
methods, and possibly increasing the remedial assistance provided, 
especially for the benefit of the students who engage the least. 
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