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Abstract 

Big data is an important part of innovation that has recently attracted a lot of interest from academics and 
practitioners alike. Given the importance of the education industry, there is a growing trend to investigate the 
role of big data in this field. Much research has been undertaken to date in order to better understand the use of 
big data in many sectors for diverse reasons. Big data in higher education, however, still lacks a complete 
examination. Thus, the purposes of the research were (1) to design the system architecture of big data in higher 
education for student behavior analytics and (2) to evaluate the system architecture of big data in higher 
education for student behavior analytics. The research procedure was divided into two phases. The first phase is 
designing a system architecture for big data in higher education for student behavior analytics, and the second 
phase is the architecture evaluation by experts. Purposive sampling was used to select ten experts in big data and 
student behavior analytics. Data collection tools were the system and the assessment of an appropriate model 
with a five-level rating scale. The statistics used in the data analysis were means and standard deviation. The 
results showed that the system architecture of big data in higher education for student behavior analytics consists 
of four elements: a) Big Data Sources for Behavioral Analytics; b) Big Data Sources for Behavioral Analytics 
Sub-Domains; c) Big data capture and storage for behavioral analytics; and d) big data behavioral analysis. The 
experts' opinions on the system architecture were at the most appropriate level. 
Keywords: big data, higher education, student behavior analytics, learning analytics, Big Data-HE-SBA 
1. Introduction 

The world is evolving at a breakneck pace as new technologies emerge (Chae, 2019). Individuals nowadays 
employ a great number of electronic equipment (Shorfuzzaman, Hossain, Nazir, Muhammad, & Alamri, 2019). 
These gadgets produce a large amount of data every single second (ur Rehman et al., 2019). Current technology 
and apps are being created to accommodate to this huge data. These technologies and applications can be used to 
analyze and store data (Kalaian, Kasim, & Kasim, 2019). For researchers, big data has piqued their attention 
(Anshari, Alas, & Yunus, 2019). Mikalef, Pappas, Krogstie, and Giannakos attempted to define and characterize 
big data in various ways in 2018. Big Data is a "cultural, technical, and scholarly phenomenon" (Boyd & 
Crawford, 2012), researchers and analysts alike have struggled to come up with a "rigorous term" 
(Mayer-Schönberger & Cukier, 2014). Due to different sources of data and knowledge generated by analyzing 
human activities or information leaks by people, Big Data allows for „things one can do at a wide scale that 
cannot be achieved at a smaller scale, to extract new ideas or produce new types of value' (Mayer-Schönberger & 
Cukier, 2014). This has proved effective in a variety of contexts and higher education also uses analytical 
research techniques to gather information on student behaviors, processes of learning, and institutional practices. 
A well-developed concept is needed in learning analytics like big data (Van Barneveld, Arnold, & Campbell, 
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2012). More generally, it is defined as the evaluation, collection, analysis, and reporting of student data and their 
contexts to understand and optimize the learning environment (Long & Siemens, 2011). Although emerging 
learning analytics practices have the potential to change higher education, they are morally ambiguous and raise 
ethical questions, particularly in terms of student privacy. Since learning analytics often relies on aggregating 
huge amounts of sensitive and personal student data from a dynamic network of data flows, the issue of whether 
students have the right to limit data collection practices and express their privacy desires as a means of handling 
their data and information emerges. 
We begin by reviewing student behavior analytics in general. This is accompanied by a discussion of privacy 
theory, especially when it applies to data management and how certain controls aid and expand human autonomy. 
We appreciate the importance and limitations of informed consent to our privacy issues. It has historically been 
the mechanism by which we have tried to control information about ourselves in the age of Big Data. Following 
that, we'll go through the different instances in which students unintentionally disclose data and knowledge to 
their company and third parties without having any control over the disclosures. Finally, we propose a Big Data 
in Higher Education for Student Behavior Analytics System Architecture (Big Data-HE-SBA System 
Architecture) that strikes a compromise between student and institutional needs in higher education. 
2. Literature Review 

In the design the System Architecture of Big Data in Higher Education for Student Behavior Analytics, the 
related studies and literature were as follows: 
2.1 Big Data Concept 
Social networking outlets and smartphone networks have the most data, but the percentage of usable information 
is lower as compared to other types of data sources that are more valuable, such as financial and political 
organizations, academic institutions, and the corporate climate. Big data within the meaning of e-learning 
systems are referred to information created by trainers, but in particular by students, as defined by the institutions 
or profession during the training period, and collected through the teaching management systems, multimedia, 
and social networks. Briggs (2014) described Big Data by four key characteristics. These are Volume, Velocity, 
Variety, and Value. According to Banica et al., (2014, pp. 5256) the proper description of the term is as follows: 
“Big data is a massive collection of shareable data originating from any kind of private or public digital sources, 
which represents on its own a source for ongoing discovery, analysis, and Business Intelligence and Forecasting.” 
By incorporating these features into Big Learning Data, we will be able to better explain the context and 
significance of each main character using the four Vs approach:  
2.1.1 Volume 
The size of the results. The limits of Big Data are challenging to define since this is a very relative characteristic 
within every domain of usage, even schooling. Even if data from multiple students at a single university is used, 
we still think the big data model is viable if higher education organizations work together to benefit the students 
and researchers who make use of it. 
2.1.2 Velocity 
The increasing flow of data necessitates hardware and networking devices capable of carrying more and more 
information, as well as technological systems capable of processing it as quickly as possible. Big Learning Data 
would provide students and Instructors with immediate access to information needed in the teaching process, 
such as correcting a wrong answer on an assessment test, encouraging Instructors to make revisions to course 
material during class, and answering students' questions in real-time. 
2.1.3 Variety 
Big Data is a mash-up of all kinds of formats, both unstructured and hierarchical. As a result, Big Learning Data 
captures, analyzes, and delivers knowledge from diverse contexts to ensure better learning resources; the 
emphasis is on managing them, so there can be no inconsistent activities or performances. 
2.1.4 Value 
If Big Data has science or economic merit. So, while businesses must use social media data in combination with 
internal data to grow their business, the degree of creativity is more important in the educational setting. Big 
Learning Data's goal is to achieve a high degree of education and awareness, as well as to build programs in 
research domains that will result in new technologies in all fields. 
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2.2 Big Data and Higher Education 
New opportunities for higher education policy and learning sciences are opening up as a result of the emergence 
of integrated libraries in data centers. Many learning analytics supporters believe that tracking, archiving, and 
analyzing student profiles and behaviors would result in greater instructional decision making, improved 
learning performance for at-risk pupils, enhanced trust in schools due to data disclosure, and significant 
pedagogical evolutions, among other items (Long & Siemens, 2011). Universities are actively gathering student 
data to support several learning analytics programs, which we will explore in this segment. 
2.3 Learning Analytics and Privacy as Control of One’s Data and Information 
As universities continue to implement data analytics projects and infrastructures to collect sensitive, detailed 
student data, the responsibility to do so responsibly will grow. Even when noble and good goals are in sight, such 
as optimizing learning (however defined), learning analytics approaches to monitor and engage in the lives of 
students. As a result, learning analytics, like all Big Data methods, is riddled with privacy issues and ethical 
quandaries that are only growing in scope (Johnson, Adams Becker, Estrada, & Freeman, 2015). The concern 
then becomes whether those who develop and fund learning analytics programs can provide students with 
privacy rights. According to the evidence in the literature, learning analytics demonstrate „blind holes' (Greller & 
Drachsler, 2012) in educational strategy and „poses certain additional boundary constraints' (Pardo & Siemens, 
2014) surrounding student data and privacy, which could harm learning analysis ability if left unaddressed 
(Siemens, 2012).  
2.4 eAdvising Analytics 
Another field ripe for learning analytics is eAdvising programs. The eAdvising framework at Austin Peay State 
University incorporates a recommendation engine that recommends courses based on students' academic profiles 
and compares their course direction to the previous experience of peers like them (Denley, 2012). Other eAdvice 
services alert students of the possibility to complete the courses without returning to a pre-specified courses chart 
if they are at risk, or of eligible experts giving them priority guidance if students have been considered to 'at risk' 
(California State University Long Beach, 2014).  
2.5 Edge-case Analytics Using Social and Biometric Data 
Leading learning analytics thinkers contend that a student's “every click, every Tweet or Facebook status update, 
every social interaction, and every page read online can leave a digital footprint” (Long & Siemens, 2011, pp 32) 
that can "make noticeable" previously invisible social learning habits. This „smorgasbord' (Diaz & Brown, 2012) 
approach to data aggregation motivates innovative approaches to learning analytics and promotes data „fishing 
expeditions' (Mayer-Schönberger & Cukier, 2013) for new perspectives and patterns.  
Learning analytics proponents have yet to show the effectiveness of social analytics at scale, although new 
projects indicate some possible applications. Some institutions are tracking and mining their students' Facebook 
use (Ho, 2011; Hoover, 2012), while others are scanning RFID chips in student IDs at lecture halls and 
classrooms to equate attendance with classroom success (Brazy, 2010; O'Connor, 2010). Universities start to 
consider students' social life, their partnerships, and their networking systems on campuses by monitoring 
student behaviors with geological information and mapping interpersonal experiences. 
In addition, institutions and academics are investigating the use of biometric data in learning analytics. 
Biometrics for learning analytics proponents contend that measures of a student's pulse rate, body temperature, 
ambient luminosity, [location and movement], 'among other things, can be useful for recognizing concentration, 
tension, and sleep cycles, which can assess conditions that hinder or assist learning (Arriba Pérez, Santos, & 
Rodriguez, 2016). Initial research shows that when biometrics and their analytics are shared with students, such 
information will allow people to self-govern their attention (Spann, Schaeffer, & Siemens, 2017). 
2.6 Comprehensive Profiles 
Understanding how diverse groups of students learn is one of the motivating motivations of those who campaign 
for studying analytic technology. Institutions must create detailed profiles of learners to do this. Businesses that 
want to achieve the same aim search outward and buy data profiles from data brokers. Higher education 
institutions examine themselves and mine the wealth of data gleaned from admissions materials and applications. 
The details students provide about themselves on admissions applications and supporting materials is not trivial; 
in particular, it is often sensitive and revealing. Questions about a student's academic performance, such as 
transcripts and standardized test scores; career ambitions; demographic and socioeconomic information; and 
family networks, as well as their academic achievement rating, are all included in admission applications. The 
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ACT (American College Test) and SAT (Scholastic Aptitude Test or Scholastic Assessment Test) records, for 
example, provide details on the types of events students engaged in during high school, as well as the types of 
social activities they expect to partake in while in college. Any applications require informative essays about the 
prospective student's reading patterns and cultural preferences, as well as his or her disciplinary and criminal 
background. Others might inquire about the student's religion, sexual orientation, or gender identity (Caldwell, 
2012; Hoover, 2011; Steinberg, 2010). In general, this data is used to create detailed personal profiles. 
Universities lay the groundwork for conducting empirical experiments and making forecasts by developing 
data-rich student profiles. Institutional players should correlate data profiles of applicants with parts of the 
current student body to build predictive ratings of the applicant's prospects for achievement, further informing 
the student enrollment method (Goff & Shaffer, 2014). The technology of learning analysis often correlates 
digital and analog behaviors of a student with specific sections of their particular profiles as they enter your 
preferred institution. Since they will compare the digital trials and information available in their particular 
professions, the efficacy of other apprenticeship analysis applications would be significantly diminished. While 
admissions applicant data profiles are abundant, they become much richer as other forms of student data are 
grafted on as students engage with institutional information systems (Jantakun, Jantakun, & Jantakoon, 2021).  
The issue is that higher education agencies are unlikely to adequately educate their prospective applicants on 
how and for whom the personal information they provide on admissions applications would be used. Students 
clearly expect these applications to guide admissions decisions, but they don't anticipate downstream uses, and 
universities don't specifically clarify the knowledge practices that rely on this repository of personal data. In 
reality, applications for admission, the stage at which we would expect universities to determine informed 
consent, do not even articulate student privacy rights, particularly when it comes to data control; certain 
organizations even assert a property right to prospective students' records. This approach is particularly 
troublesome since students may feel compelled to share all of the intimate aspects of their lives because there is 
always the risk of being refused entry if they do not.  
2.7 Some Motivations of Introducing Big Data in E-Learning 
Learning management systems (LMS) focused on interconnected shared computing frameworks are used in 
universities all over the world. Wikis, chat rooms, and blogs empower teachers to track and monitor students' 
development, and students to interact more effectively among themselves and with their teachers, allowing them 
to progress faster and more effectively in an information area. The best service for an instructor who needs to 
know the extent of understanding of the students regarding the subjects suggested for research is resource 
sharing and exchanging of ideas. As Banica (2014) points out, a discussion of the educational potential of 
interactive technologies can begin with the perspectives of the interested classes of students on the one hand and 
learning practitioners on the other. 
3. Methods 

3.1 Phase 1 System Architecture Design 
Design Big Data-HE-SBA System Architecture. Create an instrument for assessing the appropriateness of the 
system architecture of Big Data in Higher Education for Student Behavior Analytics. 
3.2 Phase 2 Evaluates the Appropriateness of System Architecture of Big Data in Higher Education for Student 
Behavior Analytics 
Population: Population is the experts in the field of Big Data and Student Behavior Analytics. Samples groups: 
Samples are 10 experts in the field of Big Data and Student Behavior Analytics. Chosen by purposive sampling. 
They are highly experienced experts in these fields for at least 5 years. Variable: Independent variable is the 
system architecture of Big Data in Higher Education for Student Behavior Analytics. The dependent variable is 
the appropriateness of the system architecture of Big Data in Higher Education for Student Behavior Analytics. 
The research instruments were an evaluation of the system architecture of Big Data in Higher Education for 
Student Behavior Analytics. The statistics were used to collect and look at the data from the questionnaire. The 
standard deviation and arithmetic mean are computed. 
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4. Results 

4.1 Big Data-HE-SBA System Architecture 

 

Figure 1. Big Data-HE-SBA System Architecture 
 

4.1.1 Sources of Big Data for Behavioral Analytics and Sub-Domains 
Since many variables may affect a student's behavior, behavior analytics is a difficult task. Family, mates, 
behaviors, and desires are examples of these causes. It's possible that data on these variables isn't readily 
accessible. Furthermore, any of the available data could be unethical or illegal to obtain. Furthermore, data 
storage need not be prohibitively expensive or time-consuming. Let's have a look at some of the data that is 
present in a traditional university that can be used to track and assess a student's behavior. 
4.1.1.1 Traditional Databases 
Established relational databases, data centers, data marts, and all other software infrastructure producing 
organized data are traditional data sources. We have details about classes, lessons, exam results, and so on in this 
list. Databases could be available in the university's hotels, medical facilities, gymnasium, and houses of worship, 
among other places. Existing files may be supplemented with missing records, such as course schedules, 
classroom and laboratory assignments, building opening times, teachers' office hours, and so on. We will not 
only figure out what classes a student is attending, but also where he or she is expected to be at any specific time 
of day using these databases. 
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4.1.1.2 Personal Data 
This information may be interactive or non-digital. E-mails, phone calls, instant messages, multimedia images, 
audio and video files, internet orders, and credit card use are all examples of digital records. Paper books, 
handwritten notes, paper-based photos, newspaper cuttings, and other non-digital evidence are examples. 
Personal data is normally unstructured or semi-structured, and obtaining it is unlawful or immoral until police 
have a clear suspicion. 
4.1.1.3 Web Digital Trail 
A digital footprint is left from all of our daily web-based acts. If students link to the internet via university 
networks and Wi-Fi zones, their online activities may be tracked. The meta-data of e-mails and a record of pages 
visited when browsing are two instances. Web and text mining, social network sentiment mining, and data 
obtained from online portals are some of the more widely employed sources. Social networking networks like 
Facebook, LinkedIn, and Twitter provide a variety of data that is publicly accessible. Uploading images and 
videos, leaving notes, sending texts, and pressing the "like" button are all examples of things you may do. 
Opinion mining, for example, may be used to track certain results. The data is unstructured, and the amount of 
data access could be insufficient for a person to have useful input. However, with both of the students together, 
the data could be enormous. 
4.1.1.4 Outdoor Activities Data 
The university administration is regulated by several outlets, for example.: 
- Data about cars entering or leaving a parking area. 
-Video surveillance. 
-Information from gymnasium, restaurants, and university worship places, etc. 
-Internet of Things (IoT). 
Surveillance cameras, parking alarms, permission systems for room entry, and a variety of other technologies are 
often used in the university. Data from these applications is typically tracked and maintained in an isolated way, 
with local inspection available for identifying security breaches and other rule violations. 
Other outlets exist as well, but they might not be compatible with a university-owned scheme. Data on mobile 
phones pinging cell towers to verify their location and GPS systems tracking a vehicle or a phone are two 
examples. To find out where they are, mobile phones send pings to cell towers. The IoT is a new trend. In a few 
years, it is expected to become a common phenomenon. 
IoT systems can be cost-effective to install indoors, screens, and electrical switches. The systems would be 
installed in the building's units and sub-units. This will entail things like a spa, parking, a pharmacy, and 
restaurants, among other things. We would have apps for automatically turning lights on and off, automated use 
analysis of rooms and halls, and other things based on these devices. It would be a move toward creating a more 
energy-efficient and environmentally sustainable climate. Data from IoT devices may be useful for behavioral 
analytics as well.  
4.1.2 Capturing and Storage of Big Data for Behavioral Analytics 
Hadoop: It's a system that allows a large number of computers to process a large number of data sets in a 
distributed manner. Hadoop is a robust framework for dealing with large amounts of data. 
4.1.2.1 Hadoop Distributed File System (HDFS) 
It's a distributed, modular, and compact file system. It's a method of storing massive files through many servers. 
As a result, Hadoop may have hundreds or even millions of different files distributed over several devices, all of 
which are linked by software. 
4.1.2.2 MapReduce 
It's another crucial component of Hadoop that handles distributed computing. This is a mapping and reducing 
method. Mapping divides a mission and the associated data into several bits, allowing them to be submitted to 
multiple servers and processed in parallel. The reducing method blends the outputs from the various computers 
into a single output. 
4.1.2.3 Pig 
It is a Hadoop framework for developing MapReduce programs. Pig Latin Programming Language is the 
language it uses. 
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4.1.2.4 Hive 
Inside Hadoop, there is a data warehouse. It can be used for data summarization, interpretation, and queries. For 
questions, it employs HiveQL (a SQL-like language). 
4.1.2.5 Other Components 
There are also other components available. HBase (a NoSQL database), Storm (for streaming data processing), 
Giraph are some of the most common (used for analyzing social network data), and Spark (for quick in-memory 
processing). 
4.1.3 Behavioral Analysis using Big Data 
Several analytical instruments have long been in use. Data analysis, document analytics, network analytics, and 
predictive analytics are examples of these. 
4.1.3.1 Data Mining 
Data mining aims to discover unforeseen data trends. Unexpected correlations between variables or individuals 
clustering together in unexpected ways are examples of these trends. 
4.1.2.2 Text Analytics 
Text analytics is a form of data mining as well. It is aimed at taking the actual text data content and finding 
meaning and patterns in words. One of the most important activities of text analytics is sensational research. 
4.1.3.3 Social Network Analytics 
The analysis of social network dynamics, the identification of important individuals, and the discovery of 
fascinating patterns of activity are all part of social network analytics. Surprisingly, law enforcement authorities 
track crime networks as part of this. 
4.1.4.4 Predictive Analytics 
Predictive analytics employs a variety of methods (such as neural networks, decision trees, and SVM) to attempt 
to forecast potential occurrences based on historical data. 
4.2 The Evaluation of Big Data-HES-SB System Architecture 
Table 1. Experts‟ evaluation of the Big Data-HE-SBA System Architecture 
  Level of assessment 
Evaluation Lists Level of suitability x̅ S.D. 
1. Principles and concepts used as the basis for the  
design of the Big Data-HES-SB System Architecture 

Most 4.80 0.4216 

2. Big Data-HES-SB System Architecture Processes Most 4.50 0.5270 
3. The Big Data-HES-SB System Architecture Most 4.65 0.4690 
   3.1 Sources of Big Data for Behavioural Analytics Most 4.50 0.5270 
   3.2 Sources of Big Data for Behavioural Analytics Sub-Domains Most 4.90 0.3162 
   3.3 Capturing and storage of Big Data for behavioral analytics Most 4.60 0.5164 
   3.4 Behavioural analysis using Big Data Most 4.60 0.5164 
4. The Big Data-HES-SB System Architecture that  
can be used for practical 

Most 4.80 0.4216 

Overall Most 4.65 0.4708 
 
Evaluation of the appropriateness of the Big Data-HE-SBA System Architecture in Table 1 shows that the ten 
experts agree with the principles and concepts used as the basis for the design of the Big Data-HES-SB System 
Architecture that had the most level results (mean = 4.80, S.D. = 0.4216). The Big Data-HES-SB System 
Architecture Processes were the most level (mean = 4.50, S.D. = 0.5270). The Big Data-HES-SB System 
Architectures that are clear and continuous were the most level (mean = 4.65, S.D. = 0.4690). The Big 
Data-HES-SB System Architecture that can be used for practical purposes was the most level (mean = 4.80, S.D. 
= 0.4216), and the overall was the most level (mean = 4.65, S.D. = 0.4708). 
5. Conclusions 

The composition of the Big Data-HE-SBA System Architecture, derived from the design of four elements of 
service providers, can be described as follows: a) Behavioral Analytics Big Data Sources; b) Big Data Sources 
for Behavioral Analytics Sub-Domains; c) Behavioral Analytics Big Data Collection and Storage; and d) 
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Behavioral Analytics Big Data Analysis. The assessment result of the suitability of the composition of the Big 
Data-HE-SBA System Architecture from 10 experts reveals that the most level. The results showed that the 
composition of the system derives from the design, which may be improved by using the Big Data-HE-SBA 
System Architecture to guide researchers and instructors who want to study, implement, and apply Best Practice 
to support big data in the higher education management process. Using the latest digital technology, which 
includes a wide range of tools and techniques that are currently available for the development of big data in 
higher education for student behavior analytics, such as predictive analytics and data mining, can perform 
advanced and real-time investigations quickly. Then, use an intelligent teaching system capable of analyzing data 
from students' interactions during teaching and learning. Implementing higher education platforms, on the other 
hand, provides various obstacles, especially since it must retain a low level of investment and network 
management systems to give a wide range of communication and information access. In this research, we 
presented the design of student behavior analytics for the big data platform. The ideas that underlie the analysis 
can be used in a wide range of higher education management and instruction, such as improving services to meet 
the needs of lecturers or students, as well as getting all of the services that are needed for efficient adaptation and 
deployment in higher education institutions. 
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