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Introduction 
Transitioning from whole number concepts to rational numbers traditionally poses a 
considerable challenge to the mathematically developing mind and may become a stumbling 
block in the way of maturation in number conceptualisation (Durkin & Ritle-Johnson, 2014; 
Simon, Placa, Avitzur, & Kara, 2018). 

Experience with whole numbers makes the transition to rational numbers somewhat abstract 
(Simon et al., 2018). Bruce, Bennett and Flynn (2014) explain that fractions are multiple digits 
(numerator and denominator) that represent one quantity, making different interpretations of 
fractions possible. Bruce et al. argue that a fraction has several meanings, depending on the 
context in which it is used: for example, a part of a whole, a part of a set, ratio and rate. To fully 
understand all situations in which fractions express different meanings and to discern which 
meaning applies in a particular context, some conceptual understanding is required.

Conceptual understanding in the context of this article refers not to isolated facts, but to the ability 
of learners to make meaningful connections between fractional elements such as the numerator 
and the denominator. For example, in their studies, Deringöl (2019) and Simon et al. (2018) found 
that learners faced challenges in terms of viewing the numerator and the denominator as 
representing a whole together. Learners tend to see a fraction as a pair of numbers representing 
quantities with no relationship implied between those quantities (Stafylidou & Vosniadou, 2004). 
Furthermore, in his study, Deringöl found that learners had difficulty comprehending the 
principle of identical pieces in the piece-whole relationship. They failed to understand that an 
object must be divided into identical pieces when defining and representing fractions. 

The Grade 9 learner results of the Annual National Assessments (ANA), from 2012 to its conclusion 
in 2018, present a bleak picture. This test was administered at phase exit levels: Grade 3 marks the 
end of the Foundations Phase (FP), Grade 6 the end of the Intermediate Phase (IP) and Grade 9 the 
end of the Senior Phase (SP). Over the years, a pattern of steep decline has emerged from one exit 
level to the next. In Grade 9, the performance dropped to 5%. In 2014, only 3% of Grade 9 learners 
countrywide achieved above 50% in the ANA (mathematics), according to the report by the 
Department of Basic Education (DBE, 2014, p. 63). Grade 9 is a threshold grade, the successful 
completion of which gives access to the SP or Further Education and Training (FET) phase.

Our research with Grade 9 learners at a school in Soweto was conducted to explore learners’ 
understanding of fundamental fraction concepts used in applications required at that level of 
schooling. The study was based on the theory of constructivism in a bid to understand whether 
learners’ transition from whole numbers to rational numbers enabled them to deal with the 
more complex concept of fractions. A qualitative case study approach was followed. A test 
was administered to 40 learners. Based on their written responses, eight learners were 
purposefully selected for an interview. The findings revealed that learners’ definitions of 
fraction were neither complete nor precise. Particularly pertinent were challenges related to 
the concept of equivalent fractions that include fraction elements, namely the numerator and 
denominator in the phase of rational number. These gaps in understanding may have 
originated in the early stages of schooling when learners first conceptualised fractions during 
the late concrete learning phase. For this reason, we suggest a developmental intervention 
using physical manipulatives to promote understanding of fractions before inductively 
guiding learners to construct algorithms and transition to the more abstract applications of 
fractions required in Grade 9. 
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Several fraction concepts, including rate and ratio, are 
included in the Grade 9 curriculum, notably in formulae, 
algebraic expressions or equations. These also occur in 
various contexts in all mathematical content areas. Thus, a 
conceptual understanding of rational numbers and their 
applications is essential in Grade 9 mathematics. 

Literature review
Fractions as a transition to rational numbers
The troublesome nature of teaching and learning fractions has 
been widely reported (Bruce et al., 2014; Gabriel, 2016; Stafylidou 
& Vosniadou, 2004). The transition from whole numbers to 
rational numbers such as common fractions is gradually 
introduced during the first six years of schooling (Braithwaite & 
Siegler, 2018). Braithwaite and Siegler’s (2018) study found, 
resonating with our findings, that many learners’ knowledge of 
fractions is adversely affected by whole number bias: the 
tendency to focus on the separate whole number components 
(numerator and denominator) of a fraction rather than on the 
fraction’s magnitude (ratio of numerator to denominator). 
Several researchers, including Ni and Zhou (2005) and Brown 
(2019), have described initial rational number learning as an 
experience of conceptual change. The work of Siegler, Thompson 
and Schneider (2011) challenges the view that these differences 
are fundamental to rational number learning, proposing instead 
that children should be encouraged to see rational numbers and 
whole numbers as one unitary formal system, united by the 
property of magnitude. This property can be represented 
symbolically on the number line; that is, this property and the 
use of the ordered number line should be the basis for teaching 
rational numbers. 

In their attempt to address the challenge of the transition 
from a whole number to a rational number, Van De Walle 
et  al., (2016) illustrate in their textbook how children learn 
fractions, and then shows pre-service teachers the most 
effective methods of teaching fractions through hands-on, 
problem-based activities. The initial concrete mode of 
instruction is followed by pictorial and diagrammatical 
representations of fractions and by the end of the IP learners 
are expected to perform calculations with fractions using 
numerical symbols (Van de Walle, Folk, & Bay-Williams, 
2010). This transition is intended to prepare the IP learner for 
the formal abstract applications of rational numbers in 
algebra, geometry, probability, data handling and 
measurement applications in the SP. A critical component of 
the understanding of rational numbers and proportional 
reasoning aids the transition from informal (pre-algebra) to 
formal (algebra) mathematical thought; however, this is often 
handled as an add-on, after fraction and ratio concepts 
(Doyle, Dias, Kennis, Czarnocha, & Baker, 2016), when a 
ratio should be expressed as a comparison of a part to a 
whole. For example, the ratio of the number of girls in a class 
(9) to the number of students in the class (16) can be written 
as the ratio of 9

16
. 

The general difficulties that arise from learners’ transition 
from whole numbers to rational numbers, including their 

development of proportional reasoning, are compounded by 
their struggle to advance from informal concrete to formal 
abstract work with fractions. Although the teaching protocol 
of moving from the concrete through representational work 
to symbolic work with fractions seems to follow a logical 
developmental sequence, we doubt whether it succeeds in 
equipping learners for the work with fractions that is required 
in the SP, specifically in Grade 9. In this article, we conclude 
that learners face challenges in demonstrating a flexible 
ability (the application of fractions to other examples, related 
concepts and contexts). It appears that the most basic 
fractional concepts have not taken root.

Constructivism adapted from Piaget 
Piaget (1964a) believes that when the developing mind 
interacts with new situations or ideas, a continuous interplay 
of two cognitive processes occurs, namely: 

•	 Accommodation happens when learners reflect on the 
new experience and realise that it does not fit into their 
existing schema; they, therefore, modify their cognitive 
structure to accommodate the new idea. 

•	 Assimilation occurs when learners make meaning of the 
new idea by relating it to their existing knowledge, 
organising their cognitive structures to incorporate the 
new idea in their existing schema. 

Piaget (1964a) argues that learners need information, 
concepts, ideas or a network of connected ideas to think, and 
they will think according to the knowledge they already have 
at their disposal (in their cognitive schema). The deadweight 
of facts learnt off by heart, by memory, without thought 
given to meaning (that is rote learning), robs the learner of 
the potential excitement of relating ideas or concepts to one 
another and the possibility of divergent and creative thinking 
(Van De Walle et al., 2016). What is inculcated in learners 
because of rote-memorised rules, in many cases, is the 
manipulation of symbols that have little or no attached 
meaning. This makes learning much more difficult because 
rules are much harder to remember than integrated 
conceptual structures that are made up of a network of 
connected ideas. Such learners’ understanding of a whole 
divided into equal-sized portions is indicated in Figure 1. In 
addition, careless errors are not picked up by learners 
themselves because the task has no meaning for them: they 
are unable to anticipate the kind of result that might occur.

An integrated network of connected ideas brings about 
conceptual understanding. Understanding can be thought of 
as the measure of the quality and quantity of connections of an 
idea to existing ideas. For example, learners should see the 
numerator and the denominator in the fraction not as separate 
values, but as numbers that are related. Understanding 
depends on the existence of appropriate ideas and the creation 

FIGURE 1: Example of a fraction as part of a whole.
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of new connections. The greater the number of appropriate 
connections to a network of ideas, the better the understanding. 
Skemp (1974) argues that learners’ understanding could exist 
along a continuum. At one pole, the ideas are loosely connected 
or isolated from each other. This is the pole of so-called 
instrumental understanding (Van de Walle et al., 2016). At the 
other pole, an idea is associated with many others in a rich 
network of related ideas (the relationship between numerator 
and denominator, for example). This is the pole of so-called 
relational understanding. Knowledge learned in a rote way, 
for example without regarding the numerator and denominator 
as a unitary value, is almost always at the pole of instrumental 
understanding, where ideas are nearly always isolated and 
disconnected. 

Noureen, Arshad and Bashir (2020) suggest that 
constructivism holds that learners are not blank slates or 
empty vessels waiting to be filled with knowledge. Instead, 
from a rich array of previous experiences, knowledge and 
beliefs, learners construct new knowledge. Gupta and Gupta 
(2017) agree that just as in cell theory, where all cells are 
explained as arising from pre-existing cells, knowledge 
already resides in the human mind. What is needed is ways 
to explore this knowledge. Piaget’s (1964a) cognitive 
constructivism implies that learners engage with ideas on 
their own, work through tasks, sift through the material at 
hand and either accommodate or assimilate the present 
experience into their existing mental schemata. They do not 
merely absorb the ideas as teachers present them; rather, 
they are creators of their knowledge (Hatano, 1996).

The purpose of this study was to explore learners’ 
understanding of fundamental fraction concepts, such as 
numerator and denominator, and of the fraction itself, used 
at Grade 9 level. It was based on the ideas of constructivism 
in a bid to understand whether learners’ transition from the 
whole number to rational numbers would allow them to deal 
with more complex fraction concepts. The theory of 
constructivism was particularly pertinent in that when 
learners construct knowledge on the concept of a fraction by 
themselves, misconceptions inevitably arise. This means that 
misconceptions are part of learning; however, appropriate 
intervention is required to rectify such misconceptions.

The concept of the fraction 
When establishing the foundations of the concept of the 
fraction, the following ideas should be applied.

Conceptualising a fraction as part of a whole
Fitri and Prahmana (2019) argue that most learners still 
consider a fraction as a meaningless symbol and assume that 
the numerator and the denominator are separate numbers. 
The fraction 

1
8

 could not for instance be understood to mean 

the quantity formed by one part when a whole is partitioned 
into eight equal parts. The key to understanding fractions as 
part-of-a-whole is to identify the whole and the equal 

fractional parts. As such, fractions have meaning only 
concerning the whole to which they apply.

Van de Walle et al. (2016) explain that the conceptualisation 
of fractions concerns the relationship between the part and 
the whole. In an example using a geometric shape, a rectangle 
divided into six equal parts, each part equals one-sixth of the 
whole; therefore, five parts are five-sixths of the whole and 
six-sixths make one whole, as illustrated in Figure 1.

Van de Walle et al. (2016) emphasise the importance of the 
language used in learning fractions. To prevent 
misconceptions, they advise that in the acquisition of the 
concept, learners should be able to say, as in our example for 
instance, ‘My whole is a rectangle. It is divided into six equal 
parts. Each part is a sixth of the whole’. Conversely, given the 
whole (undivided) rectangle, they should be able to explain 
that ‘to find one-sixth of the whole, I divide it into six parts of 
equal size, and shade one part. The shaded part is one-sixth 
of the whole’.

Conceptualising fractions as numbers
Simon et al. (2018) argue that to explain fractions as part of 
geometric shapes is insufficient, as it excludes an 
understanding of some important aspects of fractions. In a 
‘part-of-a-whole’ geometric shape, part shading clearly 
shows the fraction; however, it does not convey the idea of a 
fraction as a number. The notion of a fraction as a number 
means a fraction can be expressed in the form of a/b where a 
and b are integers but not equal to 0. Similarly, Deringöl 
(2019) believes that the ‘part-of-a-whole’ conceptualisation 
limits the understanding that a fraction can be greater than 1 
and it narrows thinking to the idea of partitioning one whole. 
Simon et al. (2018) advise that learners understand fractions 
as numbers that expand the number system beyond whole 
numbers, and recommend the use of number lines as a key 
representation tool to convey fraction concepts.

We share the concern of these scholars that defining a fraction 
as a part of a whole is only a part of the understanding of the 
concept. Nevertheless, in our study, we explored learners’ 
understanding of a whole divided into equal-sized portions 
(Van de Walle et al, 2016). Representing a fraction as ‘part-of-
a-whole’ forms part of many South African textbooks and as 
such has justifiable use in the fostering of this idea (Laridon 
et al., 2005). 

Conceptualising the fraction notation
Alghazo and Alghazo (2017) believe that learners tend to see 
a fraction either as a division calculation on its own or as a set 
of two numbers written above and below a fraction line. In a 
study on equivalent fractions, Jigyel and Afamasaga-Fuata’i 
(2007) concluded that some learners perceived the 
components of fractions, the numerator and denominator, as 
two unrelated whole numbers, which led to misconceptions. 
In a bid to investigate the influence of this misperception on 
learning, Jigyel et al. (2007) conducted a test on learners to 
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choose the most appropriate way of reading 

2
5

. Options 

provided were: two-fifths, 2 over 5, 2 upon 5 and none of the 
above. Jigyel et al. found that two-fifths was the commonest 
answer, although a significant number of learners chose two 
over five. A learner selected from the 2 over 5 group explained 
that ‘there is a two on a line above five, so it is two over five’. The 
separation of the 2 from the 5 may influence the perception 

that 
2
5

 is not a number in its own right that can be positioned 

on the number line. Jigyel et al. (2007) warn that if learners 
acquire the fraction concept by counting the shaded and total 
number of parts in a geometric diagram, they may perceive 
fractions as a relationship between two unrelated counts. 

Seeing 
2
5

 as shading two out of five parts may lead them to 

perceive 2
5

 as 2 ÷ 5. This may result in learners recognising 
2
5  not as a single quotient value with a specific position on 

the number line, but rather as one number on the number 
line, divided by another number on the number line.

Deringöl (2019) clarifies the meaning of the components of 
fraction notation, arguing that most learners do not realise 
that the denominator and the numerator represent the part-
of-a-whole representation of a fraction. They do not 
understand that the bottom number is telling what is being 
counted and the top number is counting how many parts one has 
of the available whole. As a result, for 

5
6

, for example, they 

might call 5 the numerator and 6 the denominator, yet the 
terms are meaningless to them (Van de Walle et al., 2016). 

Misconceptions
Various conceptualisations of misconceptions exist in the 
literature. Some theorists emphasise the causal aspect, while 
others focus on the consequences of misconceptions. In our 
opinion, both perspectives hold value and should be 
explored, as we do in this study. 

Perspectives on the nature of misconceptions
The causal perspective of misconceptions: For Smith, 
diSessa and Roschelle (1994), misconceptions are flawed 
ideas that are firmly held by learners and that interfere with 
learning. Drawing on the notion that learners do not enter 
the learning situation as blank slates, Smith et al. argue that 
as they interact with new material, learners interlink ideas 
they already have. Therefore, when learners construct 
knowledge, the activity of reconstructing and reorganising 
what they already know and synthesising new knowledge 
may include the synthesis of misconceptions. 

Olivier (1989) asserts that misconceptions are errors made 
repeatedly, each time learners deal with similar situations, 
with the result that the repetitive misappropriation of a concept 
eventually becomes routine for the learner. Vamvakoussi and 
Vosniadou (2010) explain misconceptions as ‘synthetic 
concepts’ as they are the by-product of a broadening of 
knowledge of the number system from natural numbers to 
rational numbers. Ojose (2015) describes misconceptions as 

misunderstandings and misinterpretations based on incorrect 
meanings. In this regard, we cite the faulty understanding of 
the equality of fractional parts as an example. Frequently, the 
qualification that fractional parts are equal is misunderstood. 
Learners might, for example, say that the parts in the rectangles 
in Figure 2 are sixths, not taking into account that in these 
rectangles the whole is not divided into equal parts.

Prediger (2006) describes the obstacles faced by learners as 
didactic stumbling blocks created by the method of teaching, 
or epistemological obstacles stemming from the structure of 
mathematical content. One way or the other, that which 
misleads is the source of obstacles in the way of conceptual 
understanding. Learners seemingly construct their knowledge 
based on their own experiences. If these experiences provide 
them with only limited views of a particular concept, this may 
close their minds to other related aspects of the concept. These 
narrow experiences result in constructions that inhibit further 
understanding and are called limiting constructions. Pitkethly 
and Hunting (1996) refer to them as inhibitors – mechanisms 
that inhibit the development of new and enlarged rational 
number knowledge. Based on findings of other research 
projects, D’Ambrosio and Mewborn (1994) anticipated that 
fourth-graders in their study would have constructed many 
fraction schemes that would limit their further understanding. 
Taking a different view to the studies mentioned above, 
however, they avoided labelling the children’s constructions 
as misconceptions because they believe it is important to view 
children’s constructions as objects for a study that can provide 
insight into and a new understanding of their thinking.

The consequential perspective of misconceptions: Rather 
than delving into the possible causes of misconceptions, 
Sarwadi and Sharhill (2014) focus on their result or effect, 
namely systematic errors as consequences of misconceptions. 

Both the causal and the consequential perspectives imply 
that misconceptions are an undisputed reality and an 
inevitable part of knowledge development that will always 
be there; however, just as they came about, so they can be 
corrected and appropriately dealt with, if and when they 
surface. In our study, we started with the consequence (the 
error manifested) and moved to the cause. Confrey (1990, 
p. 18) asserts: ‘A misconception is a “conceptual stumbling” 
block, inconsistent semi-autonomous schemes, and cognitive 
process responsible for errors in problem-solving’. 

Manifested misconceptions in fractions
Resnick et al. (1989) classified misconceptions in fractions 
into three categories, of which the whole number 
misconception is particularly pertinent. The whole number 
misconception is what Ni and Zhou (2005) refer to as the 
whole number bias, limiting one’s view of numbers to whole 
numbers. Bruce et al. (2014) hold that this bias is the result of 

FIGURE 2: Rectangle divided into six parts. 
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an emphasis on whole number counting at an early age, 
which tends to reinforce a stubborn conceptualisation of 
numbers as whole numbers. In keeping with the argument of 
Jigyel et al. (2007), Durkin and Rittle-Johnson (2014) believe 
that the transition from natural numbers to rational numbers 
opens the way for the development of misconceptions.

Van de Walle et al. (2010) argue that learners build on their 
prior knowledge of whole numbers, which may both support 
and inhibit their understanding of fractions. One such 
example would be the common misconception where 
learners over-generalise their understanding of whole 
numbers, subsequently regarding both the numerator and 
denominator as whole numbers and not as an element of the 
new fraction concept. Ashlock (2010) describes the nature of 
manifested misconceptions as learners trying to make sense 
of fractions by either over-generalising or over-specialising 
the rules they know already. This implies that as much as 
previous knowledge is essential, it contains elements that 
can prejudice conceptualisation in fractions. Machaba (2016) 
asserts that misconceptions are likely to arise when learners 
construct knowledge by reconstructing and reorganising 
prior knowledge with new knowledge. Inappropriate 
linking of prior knowledge to new knowledge may 
jeopardise conceptual development. This study was 
conducted to explore the understanding of fundamental 
fraction concepts used in more advanced applications that 
are required at the Grade 9 level. In this article, we argue that 
introducing numerical fraction notation before fraction 
concepts are properly understood could be regarded as 
malpractice. For this reason, we suggest the developmental 
intervention of using physical manipulatives as a remedy 
for ill-conceived fraction concepts before guiding learners to 
inductively construct algorithms and transitions to the more 
abstract applications of fractions, as required in Grade 9. 

Work on fractions by Grade 9 learners was explored by 
posing the following research questions: 

•	 How do Grade 9 learners define, describe and represent 
the concept of fractions?

•	 What misconceptions are evident when learners define, 
describe and represent problems involving fractions?

•	 What are the root causes of learners’ misconceptions in 
the learning of fractions?

Research design and methodology 
In this qualitative study, an instrumental case study research 
design was employed, using a test and interviews as data 
collection methods. In the larger study, a test was 
administered, consisting of four questions with 15 items in 
total. For this article, we have chosen four question items 
because they are particularly relevant to our argument. The 
purpose of the test was to assess learners’ conceptual 
understanding of the concept of fractions. As learners define 
fractions, they demonstrate what they know and understand 
about this concept. Eight learners were purposively chosen 
for an interview based on how they answered the test items. 

A Grade 9 class of 40 learners completed the test on the topic 
of fractions. From the FP onwards, these learners had been 
exposed to fraction terminology, notation, calculations using 
all four operations, related applications such as rate and ratio, 
and problem-solving involving fractions. The first author 
marked the tests and classified each learner’s responses to 
each question as correct, incorrect or partially correct (see 
Table  2). Codes were randomly assigned to each learner to 
serve as references whenever necessary, for instance L1 for 
Learner 1. The interview was tape-recorded so that the 
researchers could transcribe the information correctly. 

Ethical considerations
Ethical clearance was obtained from the University of South 
Africa, College of Education Ethics Review Committee 
(2018/11/14/46511/024/43/MC). 

The first author went through the required process, applying 
for ethical clearance from the university. Since the study was 
conducted at a government school, he had to follow protocol 
and obtain clearance from all structures that govern the 
school up to the district level. He sought permission from the 
Gauteng Department of Education (GDE) to research one of 
its institutions. He requested permission from the principal 
of the school to conduct the study with Grade 9 learners and 
described the purpose and the rationale of the study. The 
school governing body (SGB) was informed of the study in a 
meeting with the principal. After permission was granted, 
the Grade 9 learners were informed of the study in good time 
so that they could decide whether to participate voluntarily 
in the study. Those learners who agreed to participate were 
guaranteed anonymity and confidentiality. Pseudonyms 
were used in the study, and responses were kept confidential. 
Researchers made it clear to participants that the study had 
nothing to do with their course work, and would not 
contribute towards promotion marks. 

The main instrument for data collection
Learners’ written responses to the test constituted the main 
body of data analysed in the study. The four (out of 15) test 
items selected for this article and under discussion here are 
shown in Figure 3.

The introductory section of the test was not at Grade 9 level, 
where the key concepts and skills include, among others, 
calculations with common fractions and mixed numbers using 
all four operations. The rational numbers in these operations 
include exponents and roots of fractions and require prior 
knowledge of multiples and factors, equivalent forms of 
fractions (common and decimal fractions and percentage), 
reciprocals and problem-solving with fractions. Fractions then 
occur in applications in other mathematics content areas, other 
than numbers, operations and relationships, such as algebra, 
geometry and data handling in measurement contexts.

Whereas Grade 9 is the exit level of the SP, the concepts and 
skills tested in the items in this test fell midway in the 
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TABLE 2: Correct learner solutions per test item.
Item Knowledge or skill tested Correct (n = 40) Percentage

1.1 Defining, describing or explaining the 
concept fraction

0 0%

1.2 Recognising a fraction as a whole divided 
into equal parts

1 3%

1.3a Shading three-fifths of fifteen equal parts 
in a rectangle

8 20%

1.3b Describing in words how three-fifths of 
fifteen was calculated before shading 

7 18%

1.4 Explaining the meaning of numerals 3 and 
5 in the fraction notation of three-fifths

11 27%

curriculum for Term 1 of Grade 4, the first grade of the IP. At 
this stage of their schooling career, learners should have 
transitioned from the FP with sufficient prior knowledge to 
complete the items in Questions 1.1 to 1.4 in Figure 3. This set 
of items could appear as is, in a Grade 4 textbook. 

The testing of these basic fraction concepts and skills in the 
present study was intended to regress across grades and 
phases to determine the roots of problems manifested in 
Grade 9 learners’ dealings with the complex requirements of 
the four test items. At face value, this leap would seem rather 
optimistic, since the researchers’ work with Grade 9 learners 
had alerted them to the possibility of gaps in their knowledge 
originating as far back as Term 1 of Grade 4, if not further.

Findings 
In the initial step of the analysis, the outcomes of learners’ 
written responses were categorised as correct (C), partially 
correct (PC) or incorrect (IC). The use of tables, percentages 
and frequencies is associated with quantitative research; in 

this case, the researchers wished to determine the extent of 
the prevalence of misconceptions to enable valid inferences 
and further analysis. Table 1 presents the classification of all 
40 learners’ responses. The eight learners who were selected 
for follow-up interviews are highlighted in bold.

The number and percentage of correct answers in items 
1.1–1.4 are indicated in Table 2.

Discernible patterns of misconceptions and faulty 
understanding showed up in learners’ written responses. The 
most common misconceptions demonstrated in learners’ 
written responses are explained in Table 3.

Particularly concerning was the fact that these basic 
constituents of the fraction concept were lacking or faulty in 
an average of 85% of the Grade 9 learners tested. The 
researchers assumed that learners who lacked an 
understanding of these basic fraction concepts would be 
unable to cope with the complex requirements of Grade 9 
fraction applications. 

Below are the verbatim verbal responses of four of the eight 
learners (L6, L11, L15 and L17) who were interviewed after 
the tests had been marked. The interview responses 
supported the patterns we observed in the written responses 
as explained in Table 3 and provided more insight into the 
reasoning that preceded the written responses. 

In the following section, we report various learners’ verbal 
responses to each question. To avoid repetition, for each 
question we selected participants whose answers reflected 
those of most of the interviewees.

TABLE 1b: Learner responses to test items 1.1 to 1.4 in three categories.  
Item L21 L22 L23 L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34 L35 L36 L37 L38 L39 L40
1.1 IC IC IC IC IC PC IC IC PC PC IC PC PC PC PC IC PC PC PC PC
1.2 IC IC IC PC PC PC IC IC PC PC IC PC IC PC IC PC IC IC IC IC
1.3a IC IC C IC IC C C IC IC IC C IC IC IC IC IC IC IC C IC
1.3b IC IC C IC IC C IC IC C IC C IC IC C IC IC IC IC IC IC
1.4 PC C IC IC IC C C IC IC C PC IC C PC IC C IC IC IC IC
C = correct, PC = partially correct, IC = incorrect.

TABLE 1a: Learner responses to test items 1.1 to 1.4 in three categories.
Item L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
1.1 PC PC IC PC IC PC PC IC IC IC IC IC IC PC PC IC PC IC IC IC
1.2 IC IC PC IC IC IC IC IC IC IC PC IC IC PC C IC IC IC IC IC
1.3a IC IC IC PC IC C IC IC IC IC IC C IC IC C IC IC IC IC IC
1.3b IC IC IC PC IC C IC IC IC IC IC IC PC IC C IC IC IC IC IC
1.4 IC IC IC IC PC C IC IC IC C C IC C IC C IC IC IC IC IC

FIGURE 3: Written test (selection of four items).

TEST: (i) Answer all the ques�ons. (ii) Show all your calcula�ons where possible.
Ques�on 1
1.1 What is a frac�on? 
1.2 Write the frac�ons represented by the following diagrams:

A B C
A ------------------------------- --
B ------------------------ ---------
C ----------------------------------

1.3 a) Shade of the rectangular mat below.3–5

3–5

3–5

3–5b) Write down in words what you would do to a shade of the 
rectangular mat.

1.4 Shade of the whole

In the frac�on , what does the 5 mean? __________ 
What does the 3 mean?________
_______________________________
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Question 1.1 What is a fraction? 
Table 5 contains selected verbatim responses from L6, L11, 
L15 and L17 during the interview. Interviewees responded 
to questions and prompts from the researcher (R) about 
Question 1.1.  

The main concerns arising from these responses were: 

•	 The idea of fractions as equal parts of a whole is distorted.
•	 The phenomenon fraction is muddled, probably by the 

(too early) introduction of fraction notation as numerical 
symbols, which were probably misunderstood at the time 
they were taught.

•	 The routine use of diagrams such as two-dimensional 
geometric shapes or the picture of a pizza seems to have 
had limiting effects on true conceptualisation.

•	 The terms are used as empty and meaningless words. 

Question 1.2 Write the fractions represented by 
the following diagrams
Table 6 contains verbatim responses of L6, L11 and L38 
on  the questions and prompts of the researcher (R) 
during  the follow-up interview. The responses pertain to 
Question 1.2.  

Verbal explanations by L6, L11 and L38 fairly represent 
the opinions of all interviewees. Although test item 1.2 
had shortcomings in that the idea of fraction-as-equal-
parts of a whole could not be fairly tested by this item with 
three different fraction diagrams, the misunderstanding 
of fractions as unequal parts of a whole became particularly 
evident in learners’ answers to this item and was 
confirmed by their responses in the interview. The main 
concern here was that learners failed to recognise that 
the  parts in Diagram A (circle) were unequal and the 
shaded part did not qualify as a third, unlike those in 
Diagram B and Diagram C, which were equal parts. 

TABLE 5: Verbal responses of selected participants about Question 1.2.
Item Verbal responses

L6 All show wholes divided into three parts so they represent the same 
fraction.

R
And the fraction represented is

1

3
?

L6
Yes, one whole divide by 3 hence

1

3
.

L11 All are divided into three parts so they are thirds.
R Ok, so what matters is the number of parts the shapes are divided into?
L11 Yes, that is where the denominator and name come from.
L38 Dividing a whole into parts tells you what fraction you are making.
R How do the fraction and parts relate?
L38

If there are five parts, for example, fifths, the fraction is
1

5
 but, in this 

case, there are three parts, thirds, so the fraction shown is 
1

3 .

TABLE 4: Verbal responses of selected participants about Question 1.1.
Item Verbal responses

L6 Ok, when you eat a slice of pizza it is a fraction.
R If you cut out a section, will the remaining part be a fraction also?
L6 No! The part of a whole cut out or removed is the one that is a fraction.
R Why not the remaining part?
L6 The removed part is like the shaded part of a whole which is used for 

showing fractions.
L11 When you buy a cake and cut it into two halves, that is a fraction and to write 

the fraction you put a whole number on top of another whole number.
L15 A piece of something complete.
R Say I cut a piece of a cake, it is a fraction according to you. What about the 

remaining cake?
L15 It is another fraction because it is also part of something complete.
L17 A number formed by two numbers.
R What happens with two numbers to form this other number?
L17 The two numbers, one is the numerator and the other is the denominator.
R Please elaborate.
L17 Yes, the numerator shows the number of parts shaded in a shape divided 

into parts shown by the denominator.

TABLE 3: Most common misconceptions and faulty understanding in items 1.1 to 1.4.
Item Misconception n = 40 % Misconception n = 40 %

1.1. Part of a whole 20 50
50% of the learners ignored the equality of parts in the sub-divided 
whole in their definition.

1.2
A =

1

3
;  B =

1

3
; C =

1

3

30 75 Number ≠ 1 
3

4 10

75% of the learners did not notice that the geometrical figures 
were not all divided into equal parts; 10% of the learners gave 
solutions with denominator 3 (because of three parts) but 
numerators differed.

1.3(a) 15 38  14 35

38% of the learners shaded 3 blocks on top of 5 blocks.
35% of the learners reckoned shadings should be overlapping on 
the top row and first column.

1.3(b) Shade 3 over 5 blocks 15 38

Explanations confirmed that 38% of the learners visualised 3 blocks 
on top of 5 blocks.

1.4 3 numerator
5 denominator

29 73

73% of the learners named the components of the fraction instead 
of explaining the meaning of each component, despite being 
probed further in the interview.
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TABLE 6: Verbal responses of L6 on Question 1.3(a) and (b).
Item Verbal responses

L6 I shaded three blocks.
R Why did you shade three blocks?
L6 The numerator shows the number of parts that must be shaded. As 

the numerator is three, I shaded three blocks. Got confused though, I 
expected only five blocks.

R If I may ask, what fraction does your diagram represent as it is now?
L6 3

15
, that’s why I said there must be five blocks only.

R Why only five blocks?
L6 The denominator shows the number of parts the shape is divided 

into. Since the denominator is five, there have to be five blocks in 
one whole.

R
What is the relationship between

3

5
and 

6

10
?

L6
 

6

10
is 

3

5
times two. 

R How so?
L6

 

3 3 6

5 5 10
+ =

Instead, when a shape was divided into three parts, for 
example, they interpreted all parts as thirds, irrespective 
of their size. 

Question 1.3 (a) Shade 35  of the rectangular 
mat below. (b) Write down in words what you 
will do to a shade 3

5
 of the rectangular mat

Figures 4 to 7 and Tables 6 to 9 reflect the written and verbal 
responses about Question 1.3 (a) and (b) by four selected 
interviewees, L6, L17, L34 and L38.

This question tested very simply the idea of a fraction of a set 
made up of several objects. In this case, there are 15 blocks on 
a mat, with three blocks constituting one-fifth of the set. Most 
learners misunderstood this conceptualisation of a fraction. 
Instead, they tried to represent the numerical symbol of the 
fraction in a visual form by shading three blocks and five 
blocks. Most of these learners shaded three blocks on top of 
five blocks, in keeping with fraction notation. Working with 
15 squares was difficult for some, so they used five little 
squares – the number they thought they needed. 

Question 1.4: In the fraction 3
5 , what does the 5 

represent? What does the 3 represent?
The responses in Table 10 from L6, L15, L17 and L38 were 
common to all respondents. 

This question was focused on the interpretation of a fraction 
in terms of its components. Instead of explaining the meaning 

FIGURE 4: L6’s demonstration of Question 1.3(a).

FIGURE 5: L17’s illustration for Question 1.3(a).

FIGURE 6: L34’s illustration for Question 1.3(a).

FIGURE 7: L38’s illustration for Question 1.3(a).

TABLE 9: Verbal response of L38 on Question 1.3(a) and (b).
Item Verbal responses 

R Make me understand the way you shaded.
L38 I shaded three out of five blocks and had to use different 

colours to show which five blocks have I chosen to use.
R So you used five blocks only?
L38

Yes, isn’t the fraction is 
3

5
?

R 
Of course,

3

5
, meaning…?

L38 Meaning shade three out of five. I had to choose my own 
five and leave the rest.

R What happens with the rest of the blocks?
L38 They are not part of my answer, I only used five blocks.
R

What is the relationship between 
3

5
 and 

6

10
?

L38
Two times

3

5
.

R
Two multiplied by

3

5
?

L38 Yes.

TABLE 7: Verbal response of L17 on Questions 1.3(a) and (b).
Item Verbal responses

R Why did you draw a separate diagram?
L17

I only need five blocks to represent 
3

5
L17 But there were 15 blocks.
L17 Ya, I chose the 5 I need.
R

What is the relationship between
3

5
 and 

6

10
?

L17 6

10
 divide by two is 

3

5
.

R How so?
L17 6 ÷ 2 = 3 and 10 ÷ 2 = 5.

TABLE 8: Verbal response of L34 on Questions 1.3(a) and (b).
Item Verbal responses

R Make me understand the way you shaded.
L34 I shaded three blocks on top of five blocks, three blocks 

over five blocks.
R Why?
L34 The fraction is 3 over 5, so three shaded parts must be 

over or on top of five shaded parts so that it is easily 

seen indicating 
3

5
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of each component, though, most learners provided a rote 
answer; they felt it sufficient to label 5 as the denominator 
and 3 as the numerator. How teachers had tried to explain 
fraction notation and the function of the numerals became 
clear from these answers; however, whether the numerals 
had meaning for the learners in terms of the fraction of which 
they formed part could not be determined. Common among 
learners’ responses were notions such as:

•	 The idea of something being cut into parts, and then counted.
•	 The top number is out of the bottom number (like a test 

score, 3 out of 5).
•	 The position of the numerals: the top number and the 

bottom number.
•	 The top number is divided by the bottom number.

Discussion and conclusion 
One objective of this study was to gain insight into Grade 9 
learners’ level of understanding of the fundamental concepts 
of fractions. In the data collection process, all participants 
wrote a test and the researchers conducted a follow-up 
interview with 20% of the sample to establish how learners 
had reasoned while completing the test. The results discussed 
in the previous section led us to conclude that the 
understanding of basic fraction concepts that is required at 
the Grade 4 level was almost non-existent among the Grade 9 
participants in this study.

Learners have a partial understanding of a 
fraction as part-of-a-whole
The equality of fraction parts
Most learners used words such as ‘sharing’, ‘dividing’ and 
‘cutting’ when defining a fraction; 50% of the learners defined 

a fraction as a part of a whole, and L15 explained it as ‘a piece 
of something complete’. ‘Piece-whole’ is the most basic concept 
in fractions. However, it appears that most learners 
experienced difficulties in mastering this concept. This may 
have been the only meaning learners had encountered in the 
classroom. Learners also had difficulty with the principle of 
identical pieces in the piece-whole relationship. They failed 
to understand that an object must be divided into identical 
pieces when defining and representing fractions. The 
question of how many identical pieces the whole was divided 
into, and of the number of these pieces that students were to 
colour in or select, was not understood. Evident in these 
responses was an absence of the qualification that fractional 
parts are equal shares or equal portions of a whole unit (Van 
de Walle et al., 2016). For example, in this study learners 
referred to three partitions in an object as ‘thirds’, irrespective 
of the size of the parts. This resonates with what Altıparmak 
and Özüdoğru (2015) found: the learners in their study had 
partitioning misconceptions, that is, using unequal parts of a 
whole while adding. They also misunderstood how to add 
the numerators and denominators of fractions. In a study of 
Turkish learners, Deringöl (2019) found that they had 
difficulty in dividing a whole into equal fraction pieces: they 
demonstrated misconceptions by failing to indicate in their 
drawing that each piece was identical. It was evident from 
their incorrect definitions that learners’ faulty prior 
knowledge of fractions and errors such as dividing an object 
into unequal parts had influenced their conceptual 
understanding of fractions. 

Learners in this study could not add new knowledge to 
their existing knowledge because they could not make sense 
of what they had already been taught (Machaba, 2016). 
They could not organise, structure or restructure their 
experience in the light of available schemes of thought (Van 
de Walle et al., 2016). If they are to overcome these 
difficulties, the piece-whole relationship should be taught 
first to learners when teaching fractions to develop prior 
knowledge of the concept of fractions. Learners will then be 
able to build on this knowledge as they continue to learn 
about mathematics. 

Regarding the numerator and the denominator of a 
fraction as separate
Learners could define a fraction as a number formed by two 
numbers. L17 said, for example, ‘it is a number formed by two 
numbers’. Learners could understand the numerator and the 
denominator in the fraction as separate values, but they did 
not realise that these numbers were related. They could not 
conceive that the numerator and the denominator represented 
a whole (Deringöl, 2019; Simon et al., 2018). They could see 
that a fraction was a pair of numbers representing quantities, 
but with no relationship implied between those quantities 
(Stafylidou & Vosniadou, 2004). They may have understood 
that the first number was reflected in the number of shaded 
parts and that the second number corresponded to the 
number of total parts.

TABLE 10: Verbal response of L6, L13, L15 and L38 on Question 1.3(a) and (b).
Item Verbal responses

L6 3 is the numerator because it is the top number in a 
fraction and 5 is the denominator. After all, it is the 
bottom number in a fraction.

R Do you know what the top number tells us about the 
fraction, and what the bottom number tells us about the 
fraction?

L6 The denominator tells how many parts the shape is cut 
into and the numerator is for the shaded parts.

L15 A denominator is a number that gives the fraction a name.
R A name how? Please elaborate.
L15 For example, if the denominator is 5, fifths, 6, sixths, and 

so on.
R What about the numerator?
L15 The numerator is the number divided by the denominator.
L17 Three is the numerator and five is the denominator.
R Yes, I agree with you; what do they mean?
L17 It means three out of five.
R Still, I need clarity on what three means and what five 

means in three out of 5?
L17 Three parts out of five parts.
L38 Three is the numerator and five is the denominator.
R Yes, I agree with you, but what do three and five mean?
L38 It means three divides by five.
R Ok, let me put it this way. From the three divides by five, 

what does three as a numerator mean and what does five 
as a denominator mean?

L38 It means how many times five goes into three. Five is 
dividing into three.
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The scope of fractions
No learner included fractions larger than 1 as part of their 
fraction definition. This led us to conclude that the part-of-a-
whole conceptualisation had limited their understanding of 
fractions to values between 0 and 1. L6, for example, said, 
‘when you eat a slice of pizza it is a fraction’. Learners perceived 
a fraction as deriving from a full set of parts making up the 
whole. A key effect of this conception was their inability to 
conceptualise an improper fraction, as having more parts 
than the number of parts in the source of those parts, the 
whole, did not make sense to them (Deringöl, 2019; Kieran, 
1981; Simon et al., 2018). When learners related the fraction 
concept to real life, they referred to solitary items. Our 
observation was similar to that of Deringöl (2019) who argues 
that the ‘part-of-a-whole’ definition limits the development 
of the idea that a fraction can be greater than 1. 

Fractions of a set
Learners’ definitions excluded the notion that fractions can 
be formed by part of a collection of discrete items. Jigyel 
et  al. (2007) found that this limitation may be mostly the 
result of linking fractions to pictures of shaded parts of a 
model such as circles or rectangles, and less frequently to 
part of a group. In our study, we observed that even when 
the geometrical figure constituted a set of equal parts 
(Question 1.3 [a] and [b]), this was not recognised as such 
and learners struggled to make sense of it in terms of their 
unitary fraction concept.

We conclude that the partial understanding of fractions 
might be traced back to the definition of a fraction as ‘part of 
a whole’, encountered in several South African textbooks, 
such as Laridon et al. (2005). It was clear from learners’ 
responses that they had a limited understanding of the term 
‘fraction’. 

Terms used when learning fractions are hollow 
words
Learners could label but not explain the meaning of the 3 and 

the 5 in the fraction 
3
5

 Almost all said that 3 was the 

numerator and 5 the denominator, without explaining what 
this meant. Learners did not comprehend the piece-whole 
relationship between the numerator and the denominator: 
they failed to understand that pieces constitute the whole 
and that the numerator is a piece of that whole, nor did they 
realise that the numerator and the denominator are related. 
Most were unaware that the bottom part of the fraction 
indicates how many parts the whole is divided into and is the 
name of a fractional part. If the number is 5, for instance, it 
means we are counting the fifths. Nor did they understand 
that the top part of the fraction tells them how many of the 
parts are shaded or identified. The top number counts or 
enumerates. The numerator thus indicates the number of fifths 
they should consider or count (Van de Walle et al., 2016). 

Moreover, fraction jargon appeared to be procedural rather 
than relational, without the true meaning being attached to 

expressions such as part of a whole, equal parts, two over 
three, three divided by five, a piece of something, a section 
cut from something, numerator on top and denominator at 
the bottom. This corresponds to findings by Jigyel et al. (2007) 
and Deringöl (2019); in their studies, learners could not read 
fractions correctly as they did not fully understand the 

concepts of numerator and denominator. They would read 
3
5

 as 3 over 5, for example, which obscured the meaning of 
numerator and denominator. If they had understood it, they 
would have read it as three-fifths: 3 as a number that counts 
and 5 as a number that indicates what is being counted. 

Rather than relational understanding, learners should have 
developed an instrumental understanding of fractions, what 
Skemp (1976) describes as ‘rules without reasons’. Indeed, 
learners wavered between unrelated fragments of fraction 
learning; they tried various perspectives, such as the quotient 
sub-construct and the whole number perspective, yet their 
knowledge remained devoid of meaning and, as such, 
completely dysfunctional as a tool with which to solve 
algebraic or context-based problems at Grade 9 level.

Getting to the root of the problem
While we do not have convincing data from learners’ 
solutions strategies to support the root of the problem, the 
interviews seemed to suggest that the root cause of 
misconceptions was learners’ prior knowledge, the teaching 
paradigm they had been exposed to, teaching practices and 
the over-generalisation of the whole number to the concept 
of fractions. This is discussed further below. 

Prior knowledge 
Our findings revealed that learners’ prior knowledge of 
fundamental fraction concepts was either lacking or flawed. 
The resulting misconceptions affected their application of 
fractions in algebra and other contexts in Grade 9. From a 
cognitive constructivist perspective, when a learner interacts 
with an experience, situation or idea – in this instance a 
fraction concept – one of two things may happen: either the 
new experience is integrated with the person’s existing 
schema, a process called assimilation, or the existing schema 
is adapted to accommodate the new idea or experience, a 
process called accommodation or adaptation (Piaget, 1964a). 
In this study, there was almost no evidence of assimilation of 
concepts into the learner’s cognitive schema. There was little 
sign of integration of the idea of fractions (new experience) in 
learners’ existing schema, which in this instance could have 
been knowledge of natural numbers. New knowledge of 
fractions was not assimilated by the appropriate schemata 
(cognitive ideas). The new concept of a fraction did not fit 
with concepts that were already part of learners’ cognitive 
schemata. There was thus disequilibrium. The existing 
schema of natural numbers did not give meaning to new 
experiences with and ideas about fractions. Learners lacked 
the basic conceptual understanding of numerator and 
denominator that would have enabled them to understand 
what fractions are all about. 
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In this study learners engaged in a process of adaptation, 
where they merely revised their existing knowledge to 
accommodate the new knowledge. The notion of the fraction 
did not fit into their existing schema, and instead of altering 
by assimilating the new fraction concepts, they ‘forced’ the 
new ideas into their unaltered existing schema. For example, 
the new knowledge of fractions should have been assimilated 
into their knowledge of natural and whole numbers, thus 
altering their number schema conceptually. 

Teaching paradigm
From a cognitive constructivist perspective, we assign the 
failed acquisition of basic fraction concepts to, at least in part, 
the behaviouristic teaching of instrumental knowledge, 
which is the traditional pedagogical approach in many South 
African schools. In this style of teaching, learners passively 
receive the knowledge poured into them without being given 
the opportunity to construct meaning for themselves. 

In the classrooms in which this study was conducted, learners 
were seated in orderly rows, and group discussion was kept 
to the minimum. In a contrasting approach, Cobb (1994) 
advocates that learners should construct mathematical 
knowledge experientially. In this way, they will learn to 
understand the world of their personal experiences. Ultanir 
(2012) agrees that real understanding is constructed through 
experience and not bestowed on the learner. 

The findings of this study led us to conclude that a shift from 
the traditional approach of direct teaching to a constructivist 
approach is needed. In such an approach, knowledge 
acquisition is facilitated rather than bestowed; ideas are 
negotiated rather than imposed, and learners are actively 
involved in ‘doing’ mathematics rather than simply passively 
executing mathematics. It appeared from this study that 
learners were not engaged in constructing knowledge on 
their own by working through set tasks, allowing their minds 
to sift through the materials they were working with, and 
integrating new ideas with existing ones. Constructivism 
rejects the notion that children are ‘blank slates’ with no 
ideas, concepts and mental structures. They should be 
encouraged not merely to absorb ideas as teachers present 
them but, rather, to be creators of their understanding. 

Teaching practices 
Some pedagogies seem to have had a limiting effect on 
conceptual understanding: 

•	 Most learners defined fractions from the part-of-a-whole 
perspective and their incorrect definitions were aligned 
with this sub-construct. We believe that the practice in 
teaching fractions of routinely shading parts of one whole 
geometric figure or cutting a pizza or a cake into pieces to 
indicate a fraction has to do with this limited 
conceptualisation (Deringöl, 2019; Van de Walle, 2016). 

•	 The part-of-a-whole sub-construct addresses area model 
type situations and learners in this had not been exposed 
to the continuous model, as evidenced by their failure to 
comprehend equivalence questions. This corresponds to 

Gabriel’s (2016) argument that learners always consider 
fractions as entities smaller than 1; thus, they have 
difficulties placing fractions on the number line. 

•	 Traditionally, there is an over-emphasis on whole number 
teaching and insufficient transitional bridging to rational 
numbers. It appears that prior knowledge of whole 
numbers encourages misunderstanding of the concept of 
fractions (Machaba, 2016). 

•	 Rote teaching and learning of the elements of fractions, 
such as fraction notation (Jigyel et al., 2007) and 
terminology (Maharaj, Brijlall, & Molebale, 2007), hamper 
true understanding. In this study, learners displayed 
rigidity in their dealings with equality, fraction 
representations and whole number over-generalisations. 
These aspects should become part of learners’ active 
vocabulary, but because teachers do not serve as models 
by using fraction terminology in their everyday classroom 
discourse, this does not happen. 

Overgeneralisations
This study found a generalisation of knowledge from whole 
numbers to work on fractions. Fractions were thus regarded 
either as two separate, unrelated whole numbers or a whole 
number divided by another whole number. We concur with 
Bruce et al. (2014) that this is the result of regarding a fraction 
as simply two whole numbers that can be treated separately. 
The fact that learners thought of the numerator and the 
denominator as separate values may have been because they 
used their knowledge of natural numbers when they 
encountered fractions. Olivier (1989), Machaba (2016) and 
Deringöl (2019) all found the source of these misconceptions 
to be mostly an overgeneralisation of previous knowledge 
(knowledge that was correct in an earlier domain) to an 
extended domain (where it was no longer valid). This meant 
that learners who had been taught whole or natural numbers 
in their early stages of learning, for instance, later 
overgeneralised this knowledge and extended it to other 
knowledge about fractions; while fractions are taught, their 
representation with symbols such as numerator and 
denominator is introduced without setting the conceptual 
basis for these symbols. 

Recommendations
Analysis of the data revealed gaps in essential aspects of 
fraction knowledge that should have been dealt with at an 
earlier stage in these learners’ education. We concluded that 
particular concepts were faulty. These included:

•	 equality of fractional parts 
•	 the numerical conceptualisation of fraction notation 
•	 the idea that the whole can comprise several objects
•	 the scope of fractions beyond 1. 

According to the specific knowledge and skills described in the 
Curriculum Assessment Policy Statement (CAPS) (DBE, 2011) 
document, these concepts are learned in Grade 3 and Grade 4, 
leading us to conclude that the problems that surfaced in Grade 
9 originated with the transition from FP to IP. However, the 
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mode of teaching is also developmentally appropriate for each 
phase. Drawing on the classical Piagetian cognitive-
developmental theory as summarised by McLeod (2009), we 
regard the movement from concrete to abstract learning as a 
cognitively appropriate progression. In this conceptualisation, 
fraction learning should ideally follow a developmental 
sequence:

•	 The initial encounter with the notion of fractions would 
typically be taught experientially, using physical 
manipulatives, such as cutting an apple into equal parts 
or grouping a set of balls in equal quantity sub-sets.

•	 This would be followed by pictures of fractions, such as 
sketches or photographs of the apple pieces or the groups 
of balls.

•	 After this, diagrams, for example geometrical shapes 
such as circles and rectangles, would represent the 
fraction of a whole or sets.

•	 Once the concepts have been firmly established, 
learners can work with fraction symbols only, without 
the need for physical, pictorial or diagrammatic 
representations. 

From what we have observed of the way learners 
responded and explained their understanding during 
interviews, we conclude that the traditional way of 
teaching fractions is to start with diagrams. Unfortunately, 
we could link several instances of fraction misconceptions 
to misinterpretations of diagrams and pictures. This 
suggests that teaching fractions primarily with the use of 
diagrams or geometrical shapes does not adequately 
support the development of fundamental fraction 
concepts. We found evidence that these diagrams often 
formed an integral part of the misconceptions (for instance, 
the typical ‘shaded part’). 

In keeping with our approach of cognitive constructivism, 
we would therefore suggest a rethink of the building process 
of the fraction concept, starting with physical manipulatives, 
even if this is regarded as inappropriate at the Grade 9 level. 
Grade 9 learners cannot be introduced to algorithms without 
understanding the basics of fractions. This implies that 
learners must unlearn their misconceptions and relearn and 
solidify the basic concepts by constructing meaning from 
basic fractions concepts.

To design cognitively appropriate remedies, we therefore 
recommend that teachers diagnose misconceptions in the 
light  of their manifestation, to establish at what point 
conceptualisation becomes problematic. The purpose is to 
deconstruct misconceptions at their point of origin by 
reconstructing foundational fraction concepts from the roots 
up. We believe that this is the path to structural cognitive 
modification, where new concepts are assimilated into existing 
schemata through relational (as opposed to instrumental) 
understanding. 
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