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Learning trajectories (LTs) in early mathematics curriculum 
development and teaching have received increasing atten-
tion (Baroody et  al., 2019; Clements, 2007; Clements & 
Sarama, 2021; Maloney et  al., 2014; Sarama & Clements, 
2009). For example, LTs were a core construct in the National 
Research Council (2009) report on early mathematics edu-
cation (subtitled “Paths toward excellence and equity”) and 
the notion of levels of thinking was a key first step in the 
writing of the Common Core State Standards—Mathematics 
(National Governors Association Center for Best Practices, 
Council of Chief State School Officers, 2010). However, 
little research has directly tested the specific contributions of 
LTs to teaching compared with instruction provided without 
LTs (Frye et al., 2013). The goal of the present study was to 
compare the learning of kindergarteners who received 
instruction on length measurement following an empirically 
validated LT to those who received an equal amount of time 
on the same instructional activities that were not sequenced 
along the LT’s developmental progression.

Theoretical Framework and Background

Learning Trajectories: Definition and Assumptions.  Our 
theoretical framework is hierarchic interactionalism 
(Sarama & Clements, 2009). This term reflects the influ-
ence and interaction of global and local (domain specific) 
cognitive levels and the interactions of innate competen-
cies, internal resources, and experience (e.g., cultural tools 
and teaching). LTs synthesizing these interactions stand at 
the core of this theory. Different fields name similar con-
structs differently, such as the use of “learning progres-
sions” in science education.

The structure of LTs is built on the assumption that to 
be optimally useful to educators, LTs must include and 
integrate educational standards, empirical research on 
how children think and learn, as well as teaching strategies 
(Baroody et  al., 2004; Carnine et  al., 1997; National 
Research Council, 2007; Steedle & Shavelson, 2009). 
Therefore, we define a LT as having three components: a 
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goal, a developmental progression that describes levels of 
thinking, and instructional activities (including curricular 
tasks and pedagogical strategies) designed explicitly to 
promote the development of each level (Clements & 
Sarama, 2004; Maloney et  al., 2014; National Research 
Council, 2009; Sarama & Clements, 2009). Definitions of 
LTs and learning progressions can differ, with some 
including only LTs’ developmental progressions, and oth-
ers, as also including a sequence of instructional activities. 
That is, the uniqueness of this view of the LTs construct 
stems from the inextricable interconnection between the 
components.

Goals are based on the structure of mathematics, soci-
etal needs, and research on children’s thinking about and 
learning of mathematics and require input from those with 
expertise in mathematics, policy, and psychology as well as 
educators (Clements, Sarama, & DiBiase, 2004; Fuson, 
2004; Sarama & Clements, 2009; Wu, 2011). Descriptions 
of the other two components of LTs require more details 
about hierarchic interactionalism (Sarama & Clements, 
2009). Consistent with Vygotsky’s (1935/1978) construc-
tion of the zone of proximal development (ZPD), hierar-
chic interactionalism posits that most content knowledge is 
acquired along developmental progressions, or levels of 
thinking within a specific topic that are consistent with 
children’s informal knowledge and patterns of thinking and 
learning. Each level is more sophisticated than the last and 
is characterized by specific concepts (e.g., mental objects) 
and processes (mental “actions-on-objects”) that underlie 
mathematical thinking at level n and serve as a foundation 
to support successful learning of subsequent levels. 
However, these levels are not stages but probabilistic pat-
terns of thinking through which most children develop 
(e.g., an individual may learn multiple levels simultane-
ously; Sarama & Clements, 2009).

Hierarchical interactionalism also posits that teaching 
based on those developmental progressions is more effec-
tive, efficient, and generative for most children than learn-
ing that does not follow these paths. Thus, each LT includes 
a third component, recommended instructional activities 
corresponding to each level of thinking. That is, based on 
the hypothesized, specific, mental constructions (mental 
actions-on-objects) and patterns of thinking that constitute 
children’s thinking, LTs include instructional tasks explic-
itly designed to include external objects and actions that 
mirror the hypothesized mathematical behavior of chil-
dren as closely as possible. These tasks are sequenced, 
with each corresponding to a level of the developmental 
progression, to complete the hypothesized learning trajec-
tory. Such tasks will theoretically constitute a particularly 
efficacious educational program. However, there is no 
implication that the task sequence is the only path for 
learning and teaching; only that it is hypothesized to be 
one fecund route. In sum: LTs are

descriptions of children’s thinking and learning in a specific 
mathematical domain, and a related, conjectured route through a 
set of instructional tasks designed to engender those mental 
processes or actions hypothesized to move children through a 
developmental progression of levels of thinking. (Clements & 
Sarama, 2004, p. 83; Sarama & Clements, 2009, provides a 
complete description of hierarchic interactionalism’s 12 tenets)

The goals and developmental progressions for many top-
ics have been supported and validated by theoretical and 
empirical work describing consistent sequences of thinking 
levels. However, the amount of empirical support differs for 
different topics and ages (Confrey, 2019; Daro et al., 2011; 
Gravemeijer, 1994; Maloney et al., 2014; National Research 
Council, 2009), especially in domains such as the approxi-
mate number system and subitizing (e.g., Clements, Sarama, 
& MacDonald, 2019; vanMarle et al., 2018; J. J. Wang et al., 
2016), counting (e.g., Fuson, 1988; Purpura et  al., 2013; 
Spaepen et  al., 2018), and arithmetic (e.g., Hickendorff 
et al., 2010). Furthermore, the application of developmental 
progressions as curricular guides (e.g., D. M. Clarke et al., 
2001) and complete LTs (i.e., Clements et al., 2011; Clements 
& Sarama, 2008) have been successfully applied in early 
mathematics intervention projects, with significant effects 
on teachers’ professional development (B. A. Clarke, 2008; 
Kutaka et  al., 2016; Wilson et  al., 2013) and children’s 
achievement (D. M. Clarke et al., 2001; Clements & Sarama, 
2008; Clements & Sarama, 2008; Kutaka et  al., 2017; 
Murata, 2004; Wright et al., 2006).

Learning Trajectories: Empirical Evidence.  Despite this 
research foundation, there are few studies that directly test 
the theoretical assumptions and specific educational contri-
butions of LTs. That is, most studies showing positive results 
of LTs confound the use of LTs with other factors (Baroody 
& Purpura, 2017; Frye et al., 2013), thus suggesting the use 
of LTs yields benefits, but without identifying their unique 
contribution (D. M. Clarke et  al., 2001; Clements et  al., 
2011; Clements & Sarama, 2007; Fantuzzo et  al., 2011; 
Gravemeijer, 1999; Jordan et al., 2012). For example, pre-
schoolers who experienced a curriculum specifically 
designed on LTs demonstrated (a) significantly greater 
growth in mathematics competencies than those in a busi-
ness-as-usual (BAU) control group score (effect size = 
1.07) as well as (b) greater growth than those who experi-
enced an intervention using a research-based curriculum that 
followed a sequence of mathematically rational topical units 
(effect size = 0.47; Clements & Sarama, 2008). Given that 
the contents of the two curricula were closely matched, the 
latter difference may be due to the use of LTs (e.g., the devel-
opmental progressions of the LTs provided benchmarks for 
formative assessments, especially useful for children who 
enter with less knowledge). However, the two curricula also 
differed in organization (e.g., interwoven counting, arithme-
tic, geometry, and patterning LTs vs. separate units on these 
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topics) and in specific activities. Therefore, again, several 
factors were confounded with the use of LTs and thus the 
specific effects of LTs could not be distinguished (Clements 
& Sarama, 2008).

Testing the Theoretical Assumptions of a Learning 
Trajectories Approach

The present study is one of multiple experiments rigor-
ously evaluating whether instruction based on LTs for early 
mathematics (Baroody et  al., 2019; Clements & Sarama, 
2021; Frye et al., 2013; National Research Council, 2009; 
Sarama & Clements, 2009) is significantly more efficacious 
than alternatives. To do so, we need to avoid confounding 
the essential elements of a learning trajectory with the myr-
iad characteristics of curricula based on LTs. Therefore, we 
distilled two of the main characteristics of LTs that distin-
guish their application to curriculum and teaching from 
alternative pedagogical approaches and designed experi-
mental conditions to rigorously test the efficacy of those two 
unstated assumptions.

The first assumption is that instruction should move chil-
dren from their present level to the next higher level and 
continue in this manner until the instructional goal is reached. 
A competing approach posits that it is more efficient and 
mathematically rigorous to teach the target level immedi-
ately by providing accurate definitions and demonstrating 
accurate mathematical procedures (see Bereiter, 1986; Wu, 
2011), potentially obviating the need for potentially slower 
movement through each level. There is evidence supporting 
this approach to learning (Borman et  al., 2003; Carnine 
et al., 1997; Clark et al., 2012; Gersten, 1985; Heasty et al., 
2012), although the research designs often do not include 
other research-validated approaches. In contrast, LT 
approaches justify the assumption that each contiguous level 
be taught consecutively because LT’s developmental pro-
gressions are more than linear sequences based on accretion 
of numerous facts and skills. Each is based on a progression 
of levels of thinking characterized by specific mental actions-
on-objects that serve as a foundation for successful learning 
of all subsequent levels. We have tested this assumption in a 
series of studies that support the LT approach, with children 
exhibiting significantly greater learning than those taught at 
the target level for the same amount of time, including per-
forming higher on target-level items, particularly those with 
low entry knowledge (Clements, Sarama, Baroody, & 
Joswick, 2020; Clements, Sarama, Baroody, Kutaka, et al., 
2020; Clements, Sarama, Baroody, et al., 2019).

The second assumption of an LT approach is that there is 
a definite sequence of such levels of learning and teaching 
that is determined by research-based developmental pro-
gressions and that instruction is more efficacious if it builds 
each level in turn. Postulating that each level of thinking 
builds hierarchically on the concepts and processes of the 
previous levels stands in contrast to some traditional early 

childhood curricular organizations: theme, project, and 
emergent approaches (Broderick & Hong, 2020; Edwards 
et al., 1993; Helm & Katz, 2016; Hendrick, 1997; Katz & 
Chard, 2000; Tullis, 2011). In these approaches, it is the 
classroom theme (e.g., “colors”), or a project (visiting an 
apple orchard and making applesauce or building a bus when 
children expressed interest in buses spontaneously, reflect-
ing the emergent curriculum approach) that determines the 
ordering of activities. For example, if the theme is colors, 
children are asked to sort by color; if it involves apples, chil-
dren might count the seeds in an apple or cut them and talk 
about “halves.” Thus, the activity is chosen for its fit to the 
classroom work, which is ostensibly more meaningful and 
connected for the child and thus will lead to greater learning. 
The critical question of “Which approach, LT, mathemati-
cal-relational, or traditional, results in better mathematical 
outcomes for preschool children?” has yet to be answered 
causally. We believe the benefits of LTs’ sequencing of lev-
els of thinking outweighs the benefits this type of “integra-
tion” of math with other themes (and the general philosophy 
that all early education events should emerge from children’s 
choices). The present study is the first experiment to focus 
on the second assumption.

Present Study

To evaluate the second, instructional sequence-of-levels 
assumption, with controlled conditions, we selected the 
length measurement learning trajectory. Early length mea-
surement is important itself and serves as a critical bridge 
between geometry and number concepts (Clements & 
Sarama, 2021; Sarama & Clements, 2009). Research on the 
development of length-measurement knowledge suggests 
that young children enter school with a basic idea of how to 
use rulers and can verbally list or draw its attributes (e.g., 
lines and numbers, MacDonald & Lowrie, 2011). However, 
aligning an object at zero and reading the measure of a 
ruler does not mean that children understand how or why a 
ruler works. In fact, young children have trouble under-
standing the relationship between units and how iteration 
(accurate, repeated placement of a single unit) of discrete 
standard and nonstandard units produce measures (Lehrer, 
2003; National Research Council, 2007). Thus, early mea-
surement is important, but often taught badly, indicating a 
need for practice-based evidence (Bryk, 2015; Clements & 
Sarama, 2021).

Instructional Conditions.  To test the significance of the 
instructional sequence-of-levels assumption in the context 
of an experimental study, the primary experimental group 
(LT) received one-on-one instruction that followed an 
empirically validated learning trajectory for length (Barrett 
et al., 2011, 2017; Sarama et al., 2011, 2021; Szilagyi et al., 
2013). We compared growth in their length-measurement 
knowledge to two counterfactual groups. The secondary 
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experimental condition, reverse-order (REV) condition, pro-
vided one-on-one instruction that did not follow the order of 
the developmental progression. Instruction in this condition 
instead consisted of the same activities as the LT group, 
which covered all levels of the trajectory but sequenced in 
the reverse order of the learning trajectory. This order stood 
in for the aforementioned traditional approaches for three 
reasons. First, the traditional approaches would take place 
over a full year, well beyond the study’s time frame, and still 
would not necessarily include all of the LT activities, which 
a rigorous test required. Second, the design also required a 
consistent, well-specified order (a random order would 
likely mix LT- and non-LT-sequences, as well as cover mul-
tiple topic strands). Third, studies suggest that attempting to 
solve challenging problems first is beneficial, as productive 
failure can help children make sense of the goals of subse-
quent instructional sessions (see discussions in Kapur, 2010; 
Loehr et al., 2014), providing a rationale for the efficacy of 
the REV condition and thus its usefulness as a counterfac-
tual (albeit direct instruction following failure was not pro-
vided). The BAU condition did not receive any one-on-one 
instruction; of course, they continued with their classroom 
curriculum as did all children in all groups. This curriculum 
did not teach length during the semester of the study, so the 
BAU group served as a nontreatment control for statistical 
purposes.

What Can We Learn From These Comparisons?  Comparing 
BAU growth to that of the LT and REV groups enables us to 
draw two categories of conclusions. First, we can confirm 
that “no harm” was done to student learning through pull-out 
participation in the LT and REV instructional sessions. Sec-
ond, we can observe whether the LT length-measurement 
instructional activities benefit learning in the fall of kinder-
garten, which necessitated the no-treatment group compari-
son. This is a valid question, especially as even with 
instruction, children make slow progress even across grades 
(Barrett et al., 2017).

Comparing the two experimental conditions addresses 
the main research question, which is to clarify which charac-
teristics of the LTs are “active ingredients” (vs. “inert,” Bell 
et al., 2013) to more clearly describe their contributions to 
teaching and learning. To this end, we use a dismantling 
design. In such studies, a full “treatment package” is com-
pared with a (dismantled) treatment condition with the 
hypothesized active component removed. If the full treat-
ment (instruction for the LT condition) is found to be more 
effective than the dismantled treatment (instruction for the 
REV condition), the component that was removed (the order 
of the LT sequence) can be described as an active ingredient 
of treatment (Bell et al., 2013). Because the children in the 
REV group received the same activities (unlike our previous 
studies addressing the first assumption of LTs), we can attri-
bute any differences in learning to the second assumption: 

instruction is more efficacious if it supports children to learn 
each LT level in sequence. Thus, we examine the following 
research question: Does instruction aligned with an LT’s 
sequence result in greater learning than instruction that uses 
an LT’s sequence in reverse order?

Method

We used a randomized control trial to compare the three 
experimental groups: the intervention LT group, the REV 
group, and the BAU group.

Sample

The intervention took place in a large, urban school dis-
trict in a Mountain Range state. This school district is 
racially/ethnically diverse: 53.8% Latinx, 24.7% White, 
13.2% African American, 3.2% Asian, 0.7% American 
Indian, 0.4% Native Hawaiian or Other Pacific Islander, and 
4.1% respondents who identified as having two or more 
races. Additionally, 65% of students qualify for free-/
reduced-lunch and 36.3% are English language learners. 
Preassessments were administered to 187 students; two stu-
dents moved before the posttest, so 185 students were 
administered the postassessment.

Recruitment Process.  Prior to our recruitment, the proposed 
study was submitted to the district external research review 
board. On approval, we reached out to multiple elementary 
schools that had more than one kindergarten classroom. Five 
school principals and their kindergarten teams agreed to host 
the study. Participating schools were offered professional 
development on early mathematics by the principal investi-
gators of the project, as well as given the instructional mate-
rials at the end of the intervention. Table 1 contains basic 
demographic information of each site.

Prior to the study, graduate student instructors volun-
teered on at least two separate occasions in the participating 
teachers’ classrooms for two reasons. First, we wanted to be 
seen as friendly adults by students. Second, it was the begin-
ning of the academic year and teachers were still in the pro-
cess of establishing classroom norms, expectations, and 
routines. We wanted to make sure that we set and communi-
cated behavior expectations consistent with each classroom 
teacher.

Randomization and Assignment to Experimental Condition.  
The randomization process began in August 2019 and was 
completed in September 2019. Within each school, teachers 
and the research leadership team agreed to the following 
recruitment and randomization plan. Teachers and the 
instructional team members worked together to collect as 
many parental consent forms as possible. Once the teacher 
confirmed that we had as many signed permission forms we 
could reasonably expect, we created a list of these children. 
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We used a random number generator to assign each student 
a number from 0 to 1,000 to reorder the class list. Next, 
using the reordered class list, we used another random num-
ber generator, which assigned a 1, 2, or 3 to each student. 
Students who were assigned a 1 were put in the LT group, 2 
in the REV group, and 3 in the BAU group. Frequency anal-
yses were run to ensure that baseline levels of knowledge at 
pre-assessment (see details in “Assigning Pre-Mastery Lev-
els”) were distributed evenly among conditions for the 
whole sample. Table 2 lists the number of students per 
experimental condition by classroom and by school.

English Language Learners.  As can be seen in Table 1, 
there were two classrooms (one in School 2 and another in 
School 3) where Spanish is the primary language of instruc-
tion. Assessment and instruction were administered by two 
bilingual instructors and one assessor proficient in Spanish. 
Additionally, there were three students at School 5 who were 
Mandarin speakers who were new to the country. Assess-
ment and instruction were administered by one bilingual 
instructor. The assessment and instructional materials for the 
Mandarin speakers were translated in advance but did not go 
through the translation and back-translation process like the 
Spanish assessment materials.

Experimental Conditions

Students in the LT and REV experimental conditions 
received ten 12-minute instructional sessions (120 minutes), 
while the BAU did not receive one-on-one instruction. The 
data collection period began the first week of September and 
ended the first week of December. Each LT and REV student 
had, at minimum, one instructional session per week. 
However, the pull schedule varied by classroom and reflected 
the preferences of the teacher. For example, one teacher 
requested that her students be pulled no more than one time 
per week, while another teacher in the same school wanted 
us to pull her students at least twice per week. As per our 
agreement with school leadership and teachers, we did not 

remove students from recess, lunch, math blocks, or literacy 
instruction.

Our rationale for implementing 10 instructional ses-
sions for each group is based on findings from the small-
scale pilot study conducted in a single-classroom prior to 
the larger scale study reported here. During the pilot, we 
trained instructors and assessors to fidelity in situ, evalu-
ated our assessments for sensitivity, as well as examined 
the effectiveness of the instructional activities (e.g., 
added or deleted recommended scaffolding questions). 
Importantly, we also learned that 10 instructional ses-
sions were necessary to develop a warm and productive 
relationship with students and to observe student growth, 
as indicated by a student’s transition to n + 1 on the 
developmental progression. Furthermore, the ten 12-min-
ute instructional sessions were negotiated to accommo-
date the request of participating classroom teachers and 
school leadership that the intervention minimize the 
amount of time students were removed from classroom 
instruction. The following describes each condition and 
instructor training.

Learning Trajectories Approach.  There were 71 students in 
the LT condition (37 girls). This condition was composed of 
10 one-on-one instructional sessions. Each instructor had 
access to a set of instructional activities that aligned with 
each level of the development progression and selected 
activities based on the child’s present level of thinking and 
the competences needed to master a particular level. Ulti-
mately, the developmental sequence of each activity pre-
pares the student for the following level.

During the one-on-one sessions, the instructors selected 
activities based on the student’s preassessment performance. 
The instructors documented and tracked the students’ pro-
gression throughout the instructional sessions, which 
informed the selection of subsequent activities in later ses-
sions. As children demonstrated higher levels of thinking, 
they were encouraged to use more sophisticated strategies, 
such as iterating with a single unit (instead of using multiple 

Table 1
Demographic Information for Participating Schools

Demographic School 1 School 2 School 3 School 4 School 5

No. of kindergarten classrooms 3 4 4 1 4
No. of classrooms with Spanish instruction — 1 1 — —
No. participants/total number of students 26/405 22/226 63/583 11/177 65/457
English language learner status N/A 45.1% 49.9% N/A 8.1%
Individualized Education Program N/A 11.1% 11.0% N/A 9.8%
School-level free/reduced-price lunch N/A 83.2% 89.4% N/A 21.2%
Type Private Public Public Private Public

Note. School 2 classrooms are composed of kindergarten and first grade students. N/A = Data not publicly available.
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units). The instructors provided scaffolds and differentiation 
throughout instruction based on what was most appropriate 
for each child, including (but not limited to) providing feed-
back on correctness of solution and instructor modeling of 
strategies. Unique to this condition, as necessary, instructors 
could modify an activity so that it required only the preced-
ing level of thinking in the LT, then return to the original 
activity structure.

Reverse Order Group.  There were 59 students in the REV 
condition (31 girls). This active control condition was com-
posed of 10 one-on-one instructional sessions. Unlike the LT 
condition, 10 length activities were selected from each level 
of the developmental progression, which are listed on Table 3 
and can be found on the [LT]2 website (LearningTrajetories.
org) for in-depth review. Instructors provided activities in a 
developmental sequence in the length LT in reverse order. 
Thus, students were exposed to similar activities as the LT 
condition but began with the most sophisticated level: Level 
5 (conceptual ruler measurer).

REV instructors provided feedback about the correctness 
of children’s solutions to questions but did not modify activ-
ities structurally to accommodate less sophisticated levels of 
thinking, as that would have broken the REV sequence. In 
the event that the child shared an incorrect solution, the 
instructor would gently let them know they did not get the 
right answer and would proceed to show them how to solve 
the problem (e.g., “Hmm, that is not quite right. Here is how 
I would solve the problem . . .”). The child would then solve 
the problem themselves before the instructor progressed to 
the next part of the activity. Children sometimes finished 
activities before the end of the session.

Business-as-Usual.  There were 57 students in the BAU 
condition (31 girls). Students in this condition did not par-
ticipate in any one-on-one instructional sessions, nor was the 
topic of length-measurement covered in the general curricu-
lum. However, if one of the students expressed disappoint-
ment in not being “picked” to play math games, the instructor 
asked the teacher for permission to play a 10-minute subitiz-
ing or shape composition math game. Each of the instructors 

at the schools confirmed that kindergarten teachers were not 
exposed to LT curriculum prior to or during the study.

Instructor Training.  The instructional team was composed 
of nine graduate research assistants (GRAs) from programs 
within the College of Education (others, including the 
senior authors, taught when needed). All of the GRAs had 
experience working with young children, and  two were 
certified high school teachers for English literature. The 
rest of the instructional team members were students from 
the counseling or research methods and statistics programs. 
Each of the GRAs were trained by the co–principal inves-
tigators (co-PIs) and the project director. The GRAs were 
trained to implement instruction for the LT and REV 
conditions.

The training included description of the study design, the 
theoretical foundations of LTs for length-measurement, and 
how children advance along the developmental progression. 
After instructors became familiar with the length-measure-
ment LT, the focus of training shifted to observing and inter-
preting children’s thinking. Additionally, instructors were 
trained on how to provide appropriate instruction based on 
their interpretation of the child’s thinking. As such, instruc-
tors were trained on selecting and implementing appropriate 
instructional tasks for each child (e.g., modifying activities 
between sessions to match instructional tasks to develop-
mental levels of individual children) during weekly profes-
sional development sessions. In addition, the co-PIs and 
project directors observed the recorded instructional ses-
sions weekly for each instructor and provided constructive 
feedback.

Each of the instructors participated in weekly team meet-
ings where the co-PIs and Project Directors provided consul-
tation on student cases. Furthermore, co-PIs and project 
directors were available, as a form of peer-debriefing, to 
answer questions and recommend next steps every day. 
Finally, each of the LT instructors had an in-person midpoint 
check-in (at or around the fifth instructional session) to 
determine if any midcourse corrections needed to occur. 
During this meeting, the graduate instructor consulted with 
the project director for each individual case.

Table 2
Students per Experimental Condition by School and Classroom

School 1 School 2 School 3 School 4 School 5

Total  1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18

BAU 2 3 3 2 1 2 2 8 2 5 6 4 4 4 5 4 57
LT 4 2 4 1 1 4 2 4 6 7 4 4 6 6 7 7 69
REV 2 3 3 1 2 0 3 4 5 4 8 3 8 4 5 4 59
Total 8 8 10 4 4 6 7 16 13 16 18 11 18 14 17 15 185

Note. A total of 187 students were administered pre-assessments and two students moved before the posttest. BAU = business-as-usual; LT = learning 
trajectory; REV = reverse-order.
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Although we did not have the resources to measure 
fidelity of implementation in every session, we worked to 
ensure adequate implementation. Part of the LT instructor 
debrief included watching videos of instruction (see 
instructor training). This daily debrief served as an oppor-
tunity for the project lead to watch videos of sessions with 
instructors to provide feedback; for example, a reminder 
to use a scaffold listed in the activity sheet. Moreover, a 
fidelity evaluator reviewed the videos of two randomly 
selected students from each instructional team each week 
and documented whether the instructor Never (0%–25% 
of the time), Sometimes (26%–50%), Often (51%–75%), 
or Always (76%–100%): (a) taught in a teaching space 
that was conducive to student learning, (b) used the [LT]2 
write-up to clearly explain the activity directions, (c) posi-
tively engaged the student, (d) correctly set up the activity 
materials outlined in the [LT]2 write-up, and (e) provided 
feedback about whether student responses were correct or 
incorrect (and for LT, moved in the developmental pro-
gression if indicated; for the REV, did not do so). Fidelity, 
defined as equal to or greater than 90%, was achieved for 
all instructors each week of the experiment.

Instrument

The length measurement assessment was composed of 28 
items adapted from the Research-Based Early Mathematics 
Assessment (Clements et al., 2008, 2021) and Cognitively 
Based Assessment (Battista, 2012) designed to assess length 
measurement learning for kindergarten students. Items 
assessed competences from four levels of the length LT, 
beginning with direct length comparing (e.g., compare the 
lengths of two objects, presented without alignment) up to 
length measurer (e.g., measure a 34.5-inch ribbon with a 
10-inch ruler). Each item was scored for correctness and 
strategy sophistication (where 1 = low, 2 = medium, and 
3 = high). Rasch scores were constructed (mean of 0, stan-
dard deviation of 1) and difficulty parameters confirmed that 
that beginning items are less difficult compared with the 
items near the end of the assessment.

Preassessment.  Past work with kindergarteners (not in the 
study) indicated that they could not respond successfully to 
most of the higher level items. Therefore, to avoid undue 
frustration and possibly attrition, the preassessment adopted 

Table 3
Instructional Sequence for the Reverse Order Experimental Condition

Level in the developmental 
progression Description Activity name

Level 5: Conceptual Ruler 
Measurer

Possesses an “internal” measurement 
tool. Mentally moves along an object, 
segmenting it and counting the 
segments. Estimates with accuracy.

Yard stick visualization
“Guess and check” activities with initial estimates followed 

by measurements help children develop an “internal sense” 
of a length unit and iteration of that unit mentally.

Level 4: Length Measurer Measures, knowing need for identical 
units, relationship between different 
units, partitions of unit, zero point on 
rulers, and accumulation of distance.

Taxi Ride
Wobbly Roads
Activities challenge children to combine the length 

measurements of a path with angles (bends or turns). Doing 
so using paths children can walk on, and later “walking 
with fingers” along paths drawn on paper may help children 
develop the conception of “connected lengths.”

Level 3: Length Unit 
Relator and Repeater

Measures by repeating (iterating) a 
single unit and understands the need 
for equal-length unit. Relates the 
size and number of units (inverse 
relationship).

Building Down
Cubes & Tiles
Which Bike Path is Shorter?
Children measure by repeating (iterating) a single unit, with 

the task providing intrinsic feedback as to accuracy.
Level 2: End-to-End 

Length  Measurer
Can lay units end to end to measure but 

may not recognize the need for equal-
length units or be able to measure if 
there are fewer units than needed.

Fire Trucks
Actual Size
Children must measure by laying (a sufficient number of) 

units end to end without gaps or overlaps, with the task 
providing intrinsic feedback.

Level 1: Length Direct 
Comparer

Physically aligns two objects to 
determine which is longer or if they 
are the same length.

As Long as My Arm
Measuring Our Shoes
Activities focus on lining up objects at one of their endpoints 

and then comparing the other endpoints.

Note. Children in the LT condition started one level above their initial developmental level as determined by the pretest and were then taught at successively 
higher levels. LT = learning trajectory.
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a stop rule: administration ended when a student made three 
consecutive mistakes. Consequently, the pre-Rasch scores 
were constructed on a subset of the earliest items that com-
pose the full-length measurement assessment. The sequenc-
ing of items according to Rasch difficulty guaranteed that 
after three incorrect responses, there was a very low probabil-
ity that a child would answer any subsequent items correctly. 
Meanwhile, information—an analog of reliability—gener-
ated by the item response theory scores was 3.6 at the sample 
mean, equivalent to a reliability score of .78.

Postassessment.  The postassessment was composed of the 
same items as the preassessment. All items were adminis-
tered (because analyses were not on pre- to post change, and 
administrations were the same for all groups, such differ-
ences in administration did not affect the rigor of the assess-
ments and data). Similar to the preassessment, Rasch scores 
were constructed and difficulty parameters suggest that 
beginning items are less difficult compared with the items 
near the end of the assessment. Additionally, information—
an analog of reliability—generated by the item response 
theory scores was 8.8 at the sample mean, which is equiva-
lent to a reliability score of 0.90.

Assigning Starting Points for Instruction.  An initial prein-
struction level of thinking in length measurement was 
assigned to each student. The preinstruction level was deter-
mined by correctly answering at least 75% of the items at n 
and all earlier levels. Table 4 contains the students’ prein-
struction level by condition.

Covariates.  We tested two child-level covariates for the full 
sample. Child gender (0 = boy) and school type (public/
private, where 0 = public) are coded as binary. During the 
intervention, no children transferred from one school type to 
another.

Analytic Approach

The research question was examined within a Bayesian 
hierarchical linear modeling (HLM) framework using the 
brms package (Bürkner, 2018) in R 3.6.2 (R Core Team, 

2019). Bayesian models more accurately quantify and prop-
agate uncertainty (e.g., Kruschke, 2014) and can be more 
reliable in cases where traditional HLM methods typically 
fail (Eager & Roy, 2017).

The baseline model was specified to include preassess-
ment ability, the effect of treatment, and a random inter-
cept for classroom. The covariates we tested included 
child gender and whether the child attended a public or 
private school. We did not include a random intercept for 
the five participating schools since Snijders and Bosker 
(1993) advise against estimating multilevel models for 
clusters below 10.

The final models for each research question was selected 
using Watanabe–Akaike information criteria (WAIC; 
Watanabe, 2010). Each covariate was added sequentially 
and tested based on their contribution to model fit (as mea-
sured by the WAIC) and compared with the previous, less 
complex model. We favored parsimonious model solutions: 
smaller WAIC values to select for robustness and expected 
out-of-sample predictive performance. As we only have a 
single quantitative covariate (preassessment Rasch score) 
we tested a model that specified random slopes that allowed 
different effects of preassessment Rasch within each class-
room. This model was not selected based on a comparison of 
information criteria.

Results

Descriptive Statistics

Table 5 contains the pre- and postassessment Rasch 
scores for each experimental condition. Baseline equiva-
lence was examined and Table 6 contains the differences in 
preassessment performance, associated effect sizes, and 
notes whether these effect sizes meets the What Works 
Clearinghouse (2020) baseline equivalence standard of 0.05 
or less in absolute value. The difference in the preassess-
ment scores for the LT and BAU groups meet Institute of 
Education Sciences baseline equivalence standards. 
However, there are statistically nonsignificant initial differ-
ences between the LT and REV group, as well as the BAU 
and REV group (Table 5). In accordance with What Works 
Clearinghouse standards, we include child gender as a 

Table 4
Preinstruction Levels by Experimental Condition

Condition

Level (Table 2)

0 1 2 3

BAU 10 (5.41%) 39 (20.08%) 10 (5.41%) 0
LT 10 (5.41%) 54 (29.19%) 4 (2.16%) 1 (0.54%)
REV 8 (4.32%) 49 (26.49%) 0 0

Note. Level 0 is “length quantity recognizer” in which children recognize length as an attribute, possibly as an absolute descriptor rather than comparative, 
and distinguish it from other measurable attributes (area, volume). BAU = business-as-usual; LT = learning trajectory; REV = reverse-order.



9

covariate, given the slight advantage of girls are pre-assess-
ment (effect size = 0.13). Additionally, there were initial 
differences between student performance in public (n = 52 
students across three schools) versus private schools (n = 
135 students across two schools; see Table 7; Hedges g 
effect size = 0.87).

Impact of the Learning Trajectories Approach

The final model was the parsimonious baseline model 
(see Table 8). For the ith student in the jth classroom, the 
postassessment Rasch score (θ _ POSTij ) is modeled as 
follows:

θ β θ_ _POST u PRE LT REV

GENDER PRIVATE

ij j ij ij ij

ij ij ij

= +( ) + + +

+ + +
0



u Normalj u~ ,0 σ( )

ij Normal~ ,0 σ( )

In the equation above, θ _ PREij is the preassessment 
Rasch score, LTij  and REVij are dummy variables indicating 
assignment into LT and REV conditions, GENDERij is  
a dummy variable for child sex, PRIVATEij is a dummy  
variable for private versus public school, and u j  

represent classroom random intercepts. We considered sev-
eral interactions, but the addition of interactions did not 
improve the WAIC (see Table 8). This indicates that the 
effect of the treatment was moderated neither by initial 
length-measurement competences nor by what kind of 
school students attended.

HLM parameters are presented in Table 9 and differences 
between experimental conditions are show in Figure 1. 
Students in the LT and REV condition outperformed their 
peers in the BAU condition. Contrasts further reveal that stu-
dents in the LT group also outperform their REV peers = .32 
[0.57, 0.07]. Credible Intervals of 95% were estimated for 
child gender and whether the child attended a public or pri-
vate school. However, these intervals include zero and there-
fore deemed to be statistically nonsignificant.

Discussion

As one of a set of experiments rigorously testing the 
efficacy of the educational application of LTs, this study 
focused on the second assumption of an LT approach: 
there is a sequence of learning and teaching that is deter-
mined by a research-based developmental progression. 
The topic of length was selected as being both important 
to early mathematics learning and amenable to the LT and 
counterfactual conditions. The first of these reversed the 

Table 5
Average Rasch Scores for Pretest and Posttest by Intervention Condition With Standard Deviations

Condition BAU (n = 57) LT (n = 71) REV (n = 59)

Pretest n = 185 0.03 (0.76) 0.04 (0.84) −0.07 (0.62)
Posttest n = 185 −0.33 (0.72)a 0.31 (1.24)a −0.15 (0.75)

Note. BAU = business-as-usual; LT = learning trajectory; REV = reverse-order.
aPaired t test for the means was statistically significant at = .05.

Table 6
Differences in Average Preassessment Scores and Associated Effect Size by Intervention Condition

Condition Theta mean difference (SE) Effect size WWC standard met?

LT-BAU 0.01 (0.00) 0.01 Yes
LT-REV 0.11 (0.01) 0.13 No
BAU-REV 0.11 (0.00) 0.12 No

Note. WWC = What Works Clearinghouse; LT = learning trajectory; BAU = business-as-usual; REV = reverse-order.

Table 7
Baseline Effect Size by Private or Public School

School type Theta SD Theta mean Theta mean difference Effect size

Public 0.70 −0.12 0.62 0.87
Private 0.73 0.50  
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sequence of the LT activities to directly test the assump-
tion (REV). The second counterfactual, BAU, served as a 
passive control.

Students in the LT group outperformed their BAU and 
their REV peers. The latter contrast, especially, supports the 
hypothesis that following the developmental progression of 
an empirically validated LT promotes learning more than the 
same activities not in that order.

We acknowledge there is a possible alternative explana-
tion for the difference in LT versus REV postassessment per-
formance: the instructor response to student error differed 
between the LT and REV conditions. Instructors in the LT 
and REV condition provided feedback about the correctness 
of solution and modeled how to solve the problem. However, 
scaffolds provided in response to incorrect answers differed 
between conditions. Take, for example, the game “Which 
Bike Path Is Shorter?” In this game, students measure and 
compare two lengths that cannot be physically compared 
(length direct comparer level in Table 3) by iterating one or 
two units—a common cognitive knot.

If a REV student did not endorse the correct answer, the 
instructor would say, “You’re working very hard and I like 
how you’re thinking. But, that’s not quite right. Here is how 
I would do it.” The instructor would then provide a demon-
stration of how to leapfrog two units for the correct answer, 
narrating their actions in child-friendly language. The child 
would then be given a turn. If an LT student made an error, 
the instructor would ask probing questions for diagnostic 
purposes. A response that was productive for most students 
was to have the student share their unitized answer and then 
check their work against the same length, but this time using 
as many units as they need to cover the distance. The ratio-
nale behind the differences in response is that providing an 
LT-aligned response to REV student errors would have been 

Table 8
Fit Indices for Model Selection Based on WAIC and Bayesian R2 (95% Credible Intervals)

WAIC Effective parameters Bayesian R2

Baseline model 429.6 25.6 0.51 [0.42, 0.58]
Baseline model + condition × prelength 433.9 28.3 0.51 [0.43, 0.58]
Baseline + condition × private 435.1 28.0 0.51 [0.43, 0.58]
Baseline + condition × gender 433.4 27.0 0.51 [0.43, 0.57]

Note. Models with smaller information criteria indicate lower expected out-of-sample predictive performance; models with larger R2 indicate better within-
sample performance. WAIC = Watanabe–Akaike information criteria.

Table 9
Model Parameter Estimates (Posterior Medians) with 95% Credible Intervals for Postlength With Random Effect of Classroom

Estimate SE 95% CI (lower) 95% CI (upper)

Intercept −0.49 0.22 −0.92 −0.07
Prelength 0.33 0.06 0.20 0.45
Condition–LT (BAU is reference group) 0.58 0.13 0.33 0.84
Condition–REV (BAU is reference group) 0.27 0.14 −0.01 0.53
Child gender (girls are reference group) –0.03 0.10 −0.23 0.18
Public/private (public is reference group) 0.43 0.40 −0.36 1.22
Intraclass correlation (classroom) 0.40 0.12 0.23 0.62
Residual error 0.71 0.04 0.64 0.79
Bayesian R2 0.51 0.04 0.42 0.58

Note. Bayesian R2 is computed using methods specified in Gelman et al. (2019). LT = learning trajectory; BAU = business-as-usual; REV = reverse-order.

Figure 1.  Estimated growth scores (posterior medians with 
95% credible intervals) for three experimental conditions.
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incompatible with the nature of the REV condition. To prop-
erly address REV student thinking, instructors would have to 
build skills promoted at a different level of the developmen-
tal progression than the intended daily activity.

Students in the REV condition also outperformed their 
peers in the BAU condition. This indicates that the activities, 
even when implemented in an order other that of the LT’s 
developmental progression, are still effective. This result is 
similar to that of the studies testing the first LT assumption, 
those that had a “teach-to-target” counterfactual (Clements, 
Sarama, Baroody, & Joswick, 2020; Clements, Sarama, 
Baroody, Kutaka, et al., 2020; Clements, Sarama, Baroody, 
et  al., 2019). That is, these and the present study suggest 
teaching each contiguous level in developmental order of a 
LT is more efficacious and thus more useful than alterna-
tives, but not necessary to facilitate learning in all cases—
children experiencing the active counterfactuals also learned, 
but they learned less. However, note that in previous studies 
using a teach-to-target approach to test assumption 1 
(Clements, Sarama, Baroody, & Joswick, 2020; Clements, 
Sarama, Baroody, Kutaka, et al., 2020; Clements, Sarama, 
Baroody, et al., 2019), instruction was at levels n + 2 or n + 
3, avoiding instruction at n + 1. In the present study, chil-
dren in the REV condition experienced activities at each 
level considered in this study (Table 3) and thus the activities 
eventually crossed over the child’s present level of thinking 
(including n − 1, n, n + 1, etc.).

We also note an alternative explanation for the findings 
regarding comparisons to the BAU group: LT and REV stu-
dents received one-on-one instructional sessions, whereas 
the BAU students did not. It may be that any one-on-one 
attention yields greater length-measurement performance at 
postassessment. Indeed, time spent in domain-specific, 
rather than general, instruction is associated with higher 
scores in targeted domains, including mathematics, in chil-
dren from low-income preschool and kindergarten back-
grounds (Votruba-Drzal & Miller, 2016; A. H. Wang, 2010).

Another caveat is that comparisons to the BAU condi-
tion necessarily confounded the additional one-on-one ses-
sions with the instructional activities. These comparisons 
were relevant to an evaluation of the activities’ efficacy, 
but did not address our main question. Finally, the com-
parison between the LT and REV groups, which differed 
mainly on the sequence they embodied, is confounded by 
necessity with the added scaffolding provided children in 
the LT condition that modified activities at level n to an n 
− 1 structure temporarily.

Implications for Theory, Research, and Practice

Instruction using activities sequenced according to the 
levels of an empirically validated learning trajectory was 
more efficacious than instruction using the same activities 
for the same amount of time, but not so ordered. This 

supports the LT assumption that each builds hierarchically 
on the concepts and processes of the previous levels (e.g., 
Goodson, 1982; Sarama & Clements, 2009; van Hiele, 
1986). That is, each level is characterized by specific con-
cepts (e.g., mental objects) and processes (mental “actions-
on-objects”; Clements, Wilson, & Sarama, 2004; Steffe & 
Cobb, 1988) that underlie mathematical thinking at level n 
and serve as a foundation to support successful learning of 
subsequent levels (Sarama & Clements, 2009). However, the 
learning process is not intermittent and step-like, but rather 
incremental and gradually integrative. A critical mass of 
ideas from each level must be constructed before thinking 
characteristic of the subsequent level becomes ascendant in 
the child’s thinking and behavior (Clements et al., 2001).

Findings are consistent with Vygotsky’s construction of 
the ZPD (Vygotsky, 1935/1978) but add required theoreti-
cal, empirical, and practical knowledge. For example, 
application of ZPD must confront the question of whether 
any particular competence or activity stands within a child’s 
ZPD (vs. already interiorized or beyond the zone) and must 
clarify the role and nature of adult guidance for that activity 
(Wertsch, 1984). The three components of a learning trajec-
tory, instantiated in the theory of hierarchic interactionalism 
(Sarama & Clements, 2009), provide a research-based 
structure for children’s mathematical knowledge as well as 
pedagogical tools that enable us to work in congruity with 
the ZPD theory. That is, goals elucidate the mathematical 
content, and developmental progressions specify and 
arrange increasingly sophisticated levels of thinking. These 
enable us to identify the child’s current level of thinking and 
the following level—exactly the ZPD (the “upper threshold 
of instruction, Wertsch, 1984). The instruction for that level 
provides the teacher, Vygotsky’s More Knowledgeable 
Other, with specific teaching activities, as well as a theoreti-
cal rationale for why the activity will activate the mental 
actions-on-objects constituting thinking at that level. LTs 
also posit the mechanisms that tie a developmental progres-
sion levels of thinking to the instructional tasks through the 
specification of “actions-on-objects.”

Also consistent with the ZPD construct (Vygotsky, 
1935/1978), the LT approach involves using formative 
assessment (National Mathematics Advisory Panel, 2008; 
Shepard & Pellegrino, 2018) to provide instructional activi-
ties aligned with such empirically validated developmental 
progressions (D. M. Clarke et  al., 2001; Fantuzzo et  al., 
2011; Gravemeijer, 1999; Jordan et  al., 2012) and using 
teaching strategies that evoke children’s natural patterns of 
thinking at each level, as posited by hierarchical interaction-
alism (Sarama & Clements, 2009). This approach appears 
particularly productive for those with the lowest levels of 
entry competencies. This similarly indicates the importance 
of supporting children’s learning of each level of the LT in 
order, as children may not be able to make sense of tasks 
from higher levels if they have not built the concepts and 
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procedures that constitute prior levels of thinking. Children 
with low entering competencies may be especially at risk of 
learning only to apply rote, prescribed procedures (“reduc-
tion of level” according to van Hiele, 1986).

Consistent with previous research (Clements, Sarama, 
Baroody, & Joswick, 2020; Clements, Sarama, Baroody, 
Kutaka, et  al., 2020; Clements, Sarama, Baroody, et  al., 
2019), teaching each contiguous level in developmental 
order of a LT is more efficacious and thus useful than alter-
natives, but not necessary to facilitate learning in all cases—
children experiencing the active counterfactuals also learned, 
just not as much.1 Thus, selecting activities with traditional 
approaches (reminiscent of the sequence of instructional 
activities that defined the REV condition or a random order) 
has the potential to teach young children mathematics, but 
not as effectively as selecting activities based on children’s 
present level of thinking.

A caveat regarding implications for practice is that poten-
tial pedagogical power of the traditional approaches, that is 
integration with other activities and domains, could not be 
realized in the REV condition due to logistical and research 
design constraints. Furthermore, the REV condition outper-
formed the BAU condition, showing that the activities were 
effective even when not aligned with the developmental pro-
gression (the relative efficacy of the LT condition may have 
been attenuated by the recency effect). Therefore, the results 
support the efficacy of following the developmental progres-
sion, but should not be interpreted, for example, as an evalu-
ation of the traditional approaches, which would require 
full-year research with different curriculum structures. 
However, the study does imply that theme approaches that 
considers LTs in their planning would be more effective than 
those that do not.
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Note

1.   When a level is prerequisite for learning a higher level, and 
instruction does not include the content of the prerequisite level, 

the developmental order may, of course, be a necessary condition, 
such as we found in a related experiment with cardinality Baroody 
et al. (under review).

References

Baroody, A. J., Cibulskis, M., Lai, M.-l., & Li, X. (2004). Comments 
on the use of learning trajectories in curriculum development 
and research. Mathematical Thinking and Learning, 6, 227–
260. https://doi.org/10.1207/s15327833mtl0602_8

Baroody, A. J., Clements, D. H., & Sarama, J. (2019). Teaching 
and learning mathematics in early childhood programs. In C. P. 
Brown, M. B. McMullen, & N. File (Eds.), The Wiley handbook 
of early childhood care and education (1st ed., pp. 329–353). 
Wiley Blackwell. https://doi.org/10.1002/9781119148104

Baroody, A. J., Eiland, M. D., Clements, D. H., & Sarama, J. 
(2021). Does a learning trajectory facilitate the learning of 
early cardinal-number concepts? Manuscript submitted for 
publication.

Baroody, A. J., & Purpura, D. J. (2017). Number and operations. In 
J. Cai (Ed.), Handbook for research in mathematics education 
(pp. 308–354). National Council of Teachers of Mathematics.

Barrett, J. E., Clements, D. H., & Sarama, J. (2017). Children’s 
measurement: A longitudinal study of children’s knowledge 
and learning of length, area, and volume. Journal for Research 
in Mathematics Education Monograph Series (Vol. 16).

Barrett, J. E., Cullen, C. J., Sarama, J., Clements, D. H., Klanderman, 
D., Miller, A. L., & Rumsey, C. (2011). Children’s unit con-
cepts in measurement: A teaching experiment spanning grades 
2 through 5. ZDM–The International Journal on Mathematics 
Education, 43(5), 637–650. https://doi.org/10.1080/10986065.
2012.625075

Battista, M. T. (2012). Cognition based assessment and teaching 
of geometric measurement (length, area, and volume): Building 
on students’ reasoning. Heinemann.

Bell, E. C., Marcus, D. K., & Goodlad, J. K. (2013). Are the parts 
as good as the whole? A meta-analysis of component treatment 
studies. Journal of Consulting and Clinical Psychology, 81(4), 
722–736. https://doi.org/10.1037/a0033004

Bereiter, C. (1986). Does direct instruction cause delinquency? 
Response to Schweinhart and Weikart. Educational Leadership, 
44(3), 20–21. https://doi.org/10.1016/0885-2006(86)90036-0

Borman, G. D., Hewes, G. M., Overman, L. T., & Brown, S. (2003). 
Comprehensive school reform and achievement: A meta-anal-
ysis. Review of Educational Research, 73(2), 125–230. https://
doi.org/10.3102/00346543073002125

Broderick, J. T., & Hong, S. B. (2020). From children’s interests to 
children’s thinking: Using a cycle of inquiry to plan curriculum. 
National Association for the Education of Young Children.

Bryk, A. S. (2015). Accelerating how we learn to improve. Educational 
Researcher, 44(9), 467–477. https://doi.org/10.3102/001318 
9x15621543

Bürkner, P.-C. (2018). Advanced Bayesian multilevel model-
ing with the R Package brms. The R Journal, 10(1), 395–411. 
https://doi.org/10.32614/RJ-2018-017

Carnine, D. W., Jitendra, A. K., & Silbert, J. (1997). A descrip-
tive analysis of mathematics curricular materials from 
a pedagogical perspective: A case study of fractions. 
Remedial and Special Education, 18(2), 66–81. https://doi.
org/10.1177/074193259701800201

https://orcid.org/0000-0003-1800-5099
https://doi.org/10.1207/s15327833mtl0602_8
https://doi.org/10.1002/9781119148104
https://doi.org/10.1080/10986065.2012.625075
https://doi.org/10.1080/10986065.2012.625075
https://doi.org/10.1037/a0033004
https://doi.org/10.1016/0885-2006(86)90036-0
https://doi.org/10.3102/00346543073002125
https://doi.org/10.3102/00346543073002125
https://doi.org/10.3102/0013189x15621543
https://doi.org/10.3102/0013189x15621543
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.1177/074193259701800201
https://doi.org/10.1177/074193259701800201


Testing a Theoretical Assumption of Learning Trajectories

13

Clark, R. E., Kirschner, P. A., & Sweller, J. (2012). Putting stu-
dents on the path to learning: The case for fully guided instruc-
tion. American Educator, 36(1), 6–11.

Clarke, B. A. (2008). A framework of growth points as a powerful 
teacher development tool. In D. Tirosh & T. Wood (Eds.), Tools 
and processes in mathematics teacher education (pp. 235–256). 
Sense.

Clarke, D. M., Cheeseman, J., Clarke, B., Gervasoni, A., Gronn, 
D., Horne, M., McDonough, A., Montgomery, P., Rowley, G., 
& Sullivan, P. (2001). Understanding, assessing and develop-
ing young children’s mathematical thinking: Research as a 
powerful tool for professional growth. In J. Bobis, B. Perry, & 
M. Mitchelmore (Eds.), Numeracy and beyond (Proceedings 
of the 24th Annual Conference of the Mathematics Education 
Research Group of Australasia, Vol. 1) (pp. 9–26). Mathematics 
Education Research Group of Australasia.

Clements, D. H. (2007). Curriculum research: Toward a frame-
work for “research-based curricula.” Journal for Research 
in Mathematics Education, 38(1), 35–70. https://doi.
org/10.2307/30034927

Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo 
and geometry (Vol. 10). National Council of Teachers of 
Mathematics. https://doi.org/10.2307/749924

Clements, D. H., & Sarama, J. (2004). Learning trajectories 
in mathematics education. Mathematical Thinking and 
Learning, 6(2), 81–89. https://doi.org/10.1207/s15327833 
mtl0602_1

Clements, D. H., & Sarama, J. (2007). Effects of a preschool math-
ematics curriculum: Summative research on the Building Blocks 
project. Journal for Research in Mathematics Education, 38(2), 
136–163. https://doi.org/10.2307/748360

Clements, D. H., & Sarama, J. (2008). Experimental evaluation of 
the effects of a research-based preschool mathematics curricu-
lum. American Educational Research Journal, 45(2), 443–494. 
https://doi.org/10.3102/0002831207312908

Clements, D. H., & Sarama, J. (2021). Learning and teaching early 
math: The learning trajectories approach (3rd ed.). Routledge. 
https://www.routledge.com/Learning-and-Teaching-Early-
Math-The-Learning-Trajectories-Approach/Clements-
Sarama/p/book/9780367521974

Clements, D. H., Sarama, J., Baroody, A. J., & Joswick, C. 
(2020). Efficacy of a learning trajectory approach compared 
to a teach-to-target approach for addition and subtraction. 
ZDM Mathematics Education, 52(4), 637–648. https://doi.
org/10.1007/s11858-019-01122-z

Clements, D. H., Sarama, J., Baroody, A. J., Joswick, C., & Wolfe, 
C. B. (2019). Evaluating the efficacy of a learning trajectory 
for early shape composition. American Educational Research 
Journal, 56(6), 2509–2530. https://doi.org/10.3102/00028312 
19842788

Clements, D. H., Sarama, J., Baroody, A. J., Kutaka, T. S., 
Chernyavskiy, P., Joswick, C., Cong, M., & Joseph, E. (2020). 
Comparing the efficacy of early arithmetic instruction based 
on a learning trajectory and teaching-to-a-target. Journal of 
Educational Psychology. Advance online publication. https://
doi.org/10.1037/edu0000633

Clements, D. H., Sarama, J., & DiBiase, A.-M. (Eds.). (2004). 
Engaging young children in mathematics: Standards for early 
childhood mathematics education. Lawrence Erlbaum.

Clements, D. H., Sarama, J., & MacDonald, B. L. (2019). Subitizing: 
The neglected quantifier. In A. Norton & M. W. Alibali (Eds.), 
Constructing number: Merging perspectives from psychology 
and mathematics education (pp. 13–45). Springer. https://doi.
org/10.1007/978-3-030-00491-0

Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., & 
Wolfe, C. B. (2011). Mathematics learned by young children 
in an intervention based on learning trajectories: A large-scale 
cluster randomized trial. Journal for Research in Mathematics 
Education, 42(2), 127–166. https://doi.org/10.5951/jresemathe-
duc.42.2.0127

Clements, D. H., Sarama, J., Wolfe, C. B., & Day-Hess, C. A. 
(2008/2021). REMA—Research-based Early Mathematics 
Assessment. Kennedy Institute, University of Denver.

Clements, D. H., Wilson, D. C., & Sarama, J. (2004). Young chil-
dren’s composition of geometric figures: A learning trajectory. 
Mathematical Thinking and Learning, 6(2), 163–184. https://
doi.org/10.1207/s15327833mtl0602_1

Confrey, J. (2019). A synthesis of research on learning trajecto-
ries/progressions in mathematics. Organisation for Economic 
Co-operation and Development. http://www.oecd.org/
education/2030/A-Synthesis-of-Research-on-Learning-Trajec-
tories-Progressions-in-Mathematics.pdf

Daro, P., Mosher, F. A., Corcoran, T. B., Barrett, J., Battista, M. T., 
Clements, D. H., Confrey, J., Daro, V., Maloney, A., Nagakura, 
W., Petit, M. M., & Sarama, J. (2011). Learning trajectories in 
mathematics: A foundation for standards, curriculum, assess-
ment, and instruction. Consortium for Policy Research in 
Education.

Edwards, C., Gandini, L., & Forman, G. E. (1993). The hundred 
languages of children: The Reggio Emilia approach to early 
childhood education. Ablex.

Fantuzzo, J. W., Gadsden, V. L., & McDermott, P. A. 
(2011). An integrated curriculum to improve mathemat-
ics, language, and literacy for Head Start children. American 
Educational Research Journal, 48, 763–793. https://doi.
org/10.3102/0002831210385446

Frye, D., Baroody, A. J., Burchinal, M. R., Carver, S., Jordan, N. 
C., & McDowell, J. (2013). Teaching math to young children: 
A practice guide. National Center for Education Evaluation and 
Regional Assistance (NCEE), Institute of Education Sciences, 
U.S. Department of Education. https://ies.ed.gov/ncee/wwc/
PracticeGuide/18

Fuson, K. C. (1988). Children’s counting and concepts of number. 
Springer-Verlag. https://doi.org/10.1007/978-1-4612-3754-9

Fuson, K. C. (2004). Pre-K to grade 2 goals and standards: 
Achieving 21st century mastery for all. In D. H. Clements, J. 
Sarama, & A.-M. DiBiase (Eds.), Engaging young children in 
mathematics: Standards for early childhood mathematics edu-
cation (pp. 105–148). Lawrence Erlbaum.

Gersten, R. (1985). Direct instruction with special education students: 
A review of evaluation research. Journal of Special Education, 
19(1), 41–58. https://doi.org/10.1177/002246698501900104

Goodson, B. D. (1982). The development of hierarchic organiza-
tion: The reproduction, planning, and perception of multiarch 
block structures. In G. E. Forman (Ed.), Action and thought (pp. 
165–201). Academic Press.

Gravemeijer, K. P. E. (1994). Educational development and 
developmental research in mathematics education. Journal for 

https://doi.org/10.2307/30034927
https://doi.org/10.2307/30034927
https://doi.org/10.2307/749924
https://doi.org/10.1207/s15327833mtl0602_1
https://doi.org/10.1207/s15327833mtl0602_1
https://doi.org/10.2307/748360
https://doi.org/10.3102/0002831207312908
https://www.routledge.com/Learning-and-Teaching-Early-Math-The-Learning-Trajectories-Approach/Clements-Sarama/p/book/9780367521974
https://www.routledge.com/Learning-and-Teaching-Early-Math-The-Learning-Trajectories-Approach/Clements-Sarama/p/book/9780367521974
https://www.routledge.com/Learning-and-Teaching-Early-Math-The-Learning-Trajectories-Approach/Clements-Sarama/p/book/9780367521974
https://doi.org/10.1007/s11858-019-01122-z
https://doi.org/10.1007/s11858-019-01122-z
https://doi.org/10.3102/0002831219842788
https://doi.org/10.3102/0002831219842788
https://doi.org/10.1037/edu0000633
https://doi.org/10.1037/edu0000633
https://doi.org/10.1007/978-3-030-00491-0
https://doi.org/10.1007/978-3-030-00491-0
https://doi.org/10.5951/jresematheduc.42.2.0127
https://doi.org/10.5951/jresematheduc.42.2.0127
https://doi.org/10.1207/s15327833mtl0602_1
https://doi.org/10.1207/s15327833mtl0602_1
http://www.oecd.org/education/2030/A-Synthesis-of-Research-on-Learning-Trajectories-Progressions-in-Mathematics.pdf
http://www.oecd.org/education/2030/A-Synthesis-of-Research-on-Learning-Trajectories-Progressions-in-Mathematics.pdf
http://www.oecd.org/education/2030/A-Synthesis-of-Research-on-Learning-Trajectories-Progressions-in-Mathematics.pdf
https://doi.org/10.3102/0002831210385446
https://doi.org/10.3102/0002831210385446
https://ies.ed.gov/ncee/wwc/PracticeGuide/18
https://ies.ed.gov/ncee/wwc/PracticeGuide/18
https://doi.org/10.1007/978-1-4612-3754-9
https://doi.org/10.1177/002246698501900104


Sarama et al.

14

Research in Mathematics Education, 25(5), 443–471. https://
doi.org/10.2307/749485

Gravemeijer, K. P. E. (1999). How emergent models may fos-
ter the constitution of formal mathematics. Mathematical 
Thinking and Learning, 1(2), 155–177. https://doi.org/10.1207/
s15327833mtl0102_4

Heasty, M., McLaughlin, T. F., Williams, R. L., & Keenan, B. 
(2012). The effects of using direct instruction mathematics for-
mats to teach basic math skills to a third grade student with a 
learning disability Academic Research International, 2(3), 382–
387. www.savap.org.pk/journals/ARInt./Vol.2(3)/2012(2.3-
47).pdf

Helm, J. H., & Katz, L. G. (2016). Young investigators: The project 
approach in the early years (3rd ed.). Teachers College Press.

Hendrick, J. (Ed.). (1997). First steps toward teaching the Reggio 
way. Prentice Hall.

Hickendorff, M., van Putten, C. M., Verhelst, N. D., & Heiser, 
W. J. (2010). Individual differences in strategy use on divi-
sion problems: Mental versus written computation. Journal 
of Educational Psychology, 102(2), 438–452. https://doi.
org/10.1037/a0018177

Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, 
C. (2012). Building kindergartners’ number sense: A random-
ized controlled study. Journal of Educational Psychology, 
104(3), 647–660. https://doi.org/10.1037/a0029018

Kapur, M. (2010). Productive failure in mathematical prob-
lem solving. Instructional Science, 38, 523–550. https://doi.
org/10.1007/s11251-009-9093-x

Katz, L. G., & Chard, S. C. (2000). Engaging children’s minds: 
The project approach (2nd ed.). Ablex.

Kutaka, T. S., Ren, L., Smith, W. M., Beattie, H. L., Edwards, C. 
P., Green, J. L., Chernyavskiy, P., Stroup, W. W., Heaton, R. 
M., & Lewis, W. J. (2016). Examining change in K-3 teach-
ers’ mathematical knowledge, attitudes, and beliefs: The case 
of primarily math. Journal of Mathematical Behavior, 21, 147–
177.https://doi.org/0.1007/s10857-016-9355-x

Kutaka, T. S., Smith, W. M., Albano, A. D., Edwards, C. P., Ren, 
L., Beattie, H. L., Lewis, W. J., Heaton, R. M., & Stroup, W. W. 
(2017). Connecting teacher professional development and stu-
dent mathematics achievement: A 4-year study of an elementary 
mathematics specialist program. Journal of Teacher Education, 
68(2), 140–154. https://doi.org/10.1177/0022487116687551

Lehrer, R. (2003). Developing understanding of measurement. In 
J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research 
companion to principles and standards for school mathematics 
(pp. 179–192). National Council of Teachers of Mathematics.

Loehr, A. M., Fyfe, E. R., & Rittle-Johnson, B. (2014). Wait for 
it . . . delaying instruction improves mathematics problem solv-
ing: Classroom study. Journal of Problem Solving, 7(1). https://
doi.org/10.7771/1932-6246.1166

MacDonald, A., & Lowrie, T. (2011). Developing measurement 
concepts within context: Children’s representations of length. 
Mathematics Education Research Journal, 23(1), 27–42. 
https://doi.org/10.1007/s13394-011-0002-7

Maloney, A. P., Confrey, J., & Nguyen, K. H. (Eds.). (2014). 
Learning over time: Learning trajectories in mathematics edu-
cation. Information Age.

Murata, A. (2004). Paths to learning ten-structured understanding 
of teen sums: Addition solution methods of Japanese Grade 1 

students. Cognition and Instruction, 22, 185–218. https://doi.
org/10.1207/s1532690xci2202_2

National Governors Association Center for Best Practices, Council 
of Chief State School Officers. (2010). Common Core State 
Standards. http://corestandards.org/

National Mathematics Advisory Panel. (2008). Foundations for 
success: The final report of the National Mathematics Advisory 
Panel. U.S. Department of Education, Office of Planning, 
Evaluation and Policy Development. https://www2.ed.gov/
about/bdscomm/list/mathpanel/report/final-report.pdf

National Research Council. (2007). Taking science to school: 
Learning and teaching sciences in grades K-8. National 
Academies Press. https://www.nap.edu/catalog/11625/taking-
science-to-school-learning-and-teaching-science-in-grades

National Research Council. (2009). Mathematics learning in 
early childhood: Paths toward excellence and equity. National 
Academies Press. https://doi.org/10.17226/12519

Purpura, D. J., Baroody, A. J., & Lonigan, C. J. (2013). The transition 
from informal to formal mathematical knowledge: Mediation 
by numeral knowledge. Journal of Educational Psychology, 
105(2), 453–464. https://doi.org/10.1037/a0031753

R Core Team. (2019). R: A language and environment for statisti-
cal computing. https://www.R-project.org/

Sarama, J., & Clements, D. H. (2009). Early childhood mathemat-
ics education research: Learning trajectories for young chil-
dren. Routledge. https://doi.org/10.4324/9780203883785

Sarama, J., Clements, D. H., Barrett, J. E., Cullen, C. J., & Hudyma, 
A. (2021). Length measurement in the early years: Teaching 
and learning with learning trajectories. Mathematical Thinking 
and Learning. Advance online publication. https://doi.org/10.1
080/10986065.2020.1858245

Sarama, J., Clements, D. H., Barrett, J. E., Van Dine, D. W., & 
McDonel, J. S. (2011). Evaluation of a learning trajectory 
for length in the early years. ZDM-The International Journal 
on Mathematics Education, 43(5), 667–680. https://doi.
org/10.1007/s11858-011-0326-5

Shepard, L. A., & Pellegrino, J. W. (2018). Classroom assess-
ment principles to support learning and avoid the harms of 
testing. Educational Measurement, 37(1), 52–57. https://doi.
org/10.1111/emip.12195

Spaepen, E., Gunderson, E. A., Gibson, D., Goldin-Meadow, S., & 
Levine, S. C. (2018). Meaning before order: Cardinal principle 
knowledge predicts improvement in understanding the succes-
sor principle and exact ordering. Cognition, 180, 59–81. https://
doi.org/10.1016/j.cognition.2018.06.012

Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid inter-
pretations of learning progression level diagnoses. Journal of 
Research in Science Teaching, 46(6), 699–715. https://doi.
org/10.1002/tea.20308

Steffe, L. P., & Cobb, P. (1988). Construction of arithmeti-
cal meanings and strategies. Springer-Verlag. https://doi.
org/10.1007/978-1-4612-3844-7

Szilagyi, J., Sarama, J., & Clements, D. H. (2013). Young children’s 
understandings of length measurement: Evaluating a learning tra-
jectory. Journal for Research in Mathematics Education, 44(3), 
581–620. https://doi.org/10.5951/jresematheduc.44.3.0581

Tullis, P. (2011). The death of preschool. Scientific American 
Mind, 22(5), 36–41. https://doi.org/10.1038/scientificamerican-
mind1111-36

https://doi.org/10.2307/749485
https://doi.org/10.2307/749485
https://doi.org/10.1207/s15327833mtl0102_4
https://doi.org/10.1207/s15327833mtl0102_4
www.savap.org.pk/journals/ARInt./Vol.2(3)/2012(2.3-47).pdf
www.savap.org.pk/journals/ARInt./Vol.2(3)/2012(2.3-47).pdf
https://doi.org/10.1037/a0018177
https://doi.org/10.1037/a0018177
https://doi.org/10.1037/a0029018
https://doi.org/10.1007/s11251-009-9093-x
https://doi.org/10.1007/s11251-009-9093-x
https://doi.org/0.1007/s10857-016-9355-x
https://doi.org/10.1177/0022487116687551
https://doi.org/10.7771/1932-6246.1166
https://doi.org/10.7771/1932-6246.1166
https://doi.org/10.1007/s13394-011-0002-7
https://doi.org/10.1207/s1532690xci2202_2
https://doi.org/10.1207/s1532690xci2202_2
http://corestandards.org/
https://www2.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf
https://www2.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf
https://www.nap.edu/catalog/11625/taking-science-to-school-learning-and-teaching-science-in-grades
https://www.nap.edu/catalog/11625/taking-science-to-school-learning-and-teaching-science-in-grades
https://doi.org/10.17226/12519
https://doi.org/10.1037/a0031753
https://www.R-project.org/
https://doi.org/10.4324/9780203883785
https://doi.org/10.1080/10986065.2020.1858245
https://doi.org/10.1080/10986065.2020.1858245
https://doi.org/10.1007/s11858-011-0326-5
https://doi.org/10.1007/s11858-011-0326-5
https://doi.org/10.1111/emip.12195
https://doi.org/10.1111/emip.12195
https://doi.org/10.1016/j.cognition.2018.06.012
https://doi.org/10.1016/j.cognition.2018.06.012
https://doi.org/10.1002/tea.20308
https://doi.org/10.1002/tea.20308
https://doi.org/10.1007/978-1-4612-3844-7
https://doi.org/10.1007/978-1-4612-3844-7
https://doi.org/10.5951/jresematheduc.44.3.0581
https://doi.org/10.1038/scientificamericanmind1111-36
https://doi.org/10.1038/scientificamericanmind1111-36


Testing a Theoretical Assumption of Learning Trajectories

15

van Hiele, P. M. (1986). Structure and insight: A theory of math-
ematics education. Academic Press.

vanMarle, K., Chu, F. W., Mou, Y., Seok, J. H., Rouder, J., & 
Geary, D. C. (2018). Attaching meaning to the number words: 
Contributions of the object tracking and approximate number 
systems. Developmental Science, 21(1), e12495. https://doi.
org/10.1111/desc.12495

Votruba-Drzal, E., & Miller, P. (2016). Reflections on quality and 
dosage of preschool and children’s development. Monographs 
of the Society for Research in Child Development, 81(2), 100–
113. https://doi.org/10.1111/mono.12244

Vygotsky, L. S. (1978). Mind in society: The development of higher 
psychological processes. Harvard University Press. (Original 
work published 1935)

Wang, A. H. (2010). Optimizing early mathematics experiences 
for children from low-income families: A study on oppor-
tunity to learn mathematics. Early Childhood Education 
Journal, 37(4), 295–302. https://doi.org/10.1007/s10643-
009-0353-9

Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). 
Changing the precision of preschoolers’ approximate number 
system representations changes their symbolic math perfor-
mance. Journal of Experimental Child Psychology, 147, 82–99. 
https://doi.org/10.1016/j.jecp.2016.03.002

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross vali-
dation and widely applicable information criterion in singular 
learning theory. Journal of Machine Learning Research, 11, 
3571–3594.

Wertsch, J. V. (1984). The zone of proximal development: Some 
conceptual issues. In B. Rogoff & J. V. Wertsch (Eds.), 
Children’s learning in the “Zone of Porximal Development” 
(Vol. 23, pp. 7–18). Jossey Bass.

Wilson, P. H., Mojica, G. F., & Confrey, J. (2013). Learning tra-
jectories in teacher education: Supporting teachers’ under-
standings of students’ mathematical thinking. The Journal 
of Mathematical Behavior, 32(2), 103–121. https://doi.
org/10.1016/j.jmathb.2012.12.003

Wright, R. J., Stanger, G., Stafford, A. K., & Martland, J. 
(2006). Teaching number in the classroom with 4-8 year 
olds. Sage.

Wu, H.-H. (2011). Understanding numbers in elementary school 
mathematics. American Mathematical Society.

WWC. (2000). Baseline equivalence. What Works Clearinghouse. 
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_
brief_baseline_080715.pdf

Authors

JULIE SARAMA, Kennedy Endowed Chair and Distinguished 
University Professor, has taught high school mathematics, com-
puter science, middle school gifted mathematics and early child-
hood mathematics. She directs six projects funded by the National 
Science Foundation, Institute of Education Sciences, and others (30 
total) and has authored over 80 refereed articles, seven books, 60 
chapters, and over 100 additional publications.

DOUGLAS H. CLEMENTS is Distinguished University Professor 
and Kennedy Endowed Chair at the University of Denver, 
Colorado. Clements has published over 166 refereed research 
studies, 27 books, 100 chapters, and 300 additional works on the 
learning and teaching of early mathematics; computer applica-
tions, research-based curricula, and taking interventions to scale.

ARTHUR J. BAROODY is a professor emeritus of curriculum and 
instruction, College of Education, University of Illinois at Urbana-
Champaign. His research focuses on the teaching and learning of 
early number, counting, and arithmetic concepts and skills.

TRACI S. KUTAKA is a research associate at the Marsico Institute 
for Early Learning at the University of Denver. Her research inter-
ests center on early childhood care and education, with an emphasis 
on mathematics teaching and learning.

PAVEL CHERNYAVSKIY is an assistant professor of biostatis-
tics at the University of Virginia in the Department of Public Health 
Sciences. His research interests include methods for the analysis of 
correlated data, as well as Bayesian computational methods.

JACKIE SHI is a PhD candidate in research methods and statistics 
at University of Denver. Her research interests include applying 
advanced models in institutional research and public opinions.

MENGLONG CONG is a PhD candidate of the Department of 
Research Methods and Statistics, Morgridge College of Education, 
University of Denver. His research interests include child develop-
ment and mixed-method research.

https://doi.org/10.1111/desc.12495
https://doi.org/10.1111/desc.12495
https://doi.org/10.1111/mono.12244
https://doi.org/10.1007/s10643-009-0353-9
https://doi.org/10.1007/s10643-009-0353-9
https://doi.org/10.1016/j.jecp.2016.03.002
https://doi.org/10.1016/j.jmathb.2012.12.003
https://doi.org/10.1016/j.jmathb.2012.12.003
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_brief_baseline_080715.pdf
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_brief_baseline_080715.pdf

