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Several branches of the potential outcome causal inference literature have

discussed the merits of blocking versus complete randomization. Some have

concluded it can never hurt the precision of estimates, and some have concluded

it can hurt. In this article, we reconcile these apparently conflicting views, give

a more thorough discussion of what guarantees no harm, and discuss how other

aspects of a blocked design can cost, all in terms of estimator precision. We

discuss how the different findings are due to different sampling models and

assumptions of how the blocks were formed. We also connect these ideas to

common misconceptions; for instance, we show that analyzing a blocked

experiment as if it were completely randomized, a seemingly conservative

method, can actually backfire in some cases. Overall, we find that blocking can

have a price but that this price is usually small and the potential for gain can be

large. It is hard to go too far wrong with blocking.

Keywords: causal inference; potential outcomes; precision; finite-sample inference; ran-

domization inference; Neymanian inference

1. Introduction

Many of us may have embraced George Box’s famous quote1 ever since it was

thrown at us during an undergraduate statistics course:

Block what you can and randomize what you cannot.

“Blocking” an experiment—the act of grouping similar units together and then

randomizing them into treatment and control within each group—is a tool for

increasing the precision of an estimate of a treatment impact. Blocking may also

be a consequence of how the units were obtained in the first place. Many of us

interpret this fragment of Box’s advice2 to suggest that we should block on

whatever characteristics and information we have. But is blocking always “worth
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it”? Could it ever be a mistake, causing more harm than good? And if so, when?

In this article, we unpack these questions, showing that their answers depend on

details often left implicit when thinking about blocking, such as whether the

blocks are formed by the researcher or are inherent to the context or to how the

experimental sample is obtained. We additionally shed light on some common

misconceptions regarding comparisons of blocked designs and completely ran-

domized (i.e., unblocked) designs.

While blocking has been investigated from many perspectives (e.g., Snedecor

& Cochran, 1989), we focus on the causal inference potential outcomes frame-

work. In this literature, there is, on the face of it, disagreement regarding the

guarantees of blocking. Imai (2008) compares the true variance for the matched-

pairs design (i.e., blocked experiments where all blocks have two units) to com-

plete randomization for two scenarios: random sampling of pairs for both designs

and random sampling of pairs for the matched design but simple random sam-

pling for complete randomization. That paper concludes that “the relative effi-

ciency of the matched-pair design depends on whether matching induces positive

or negative correlations regarding potential outcomes within each pair” (Imai,

2008, p. 4865). A similar comment is made on page 101 of Snedecor and

Cochran (1989), with both implying that the matched-pairs design may be

helpful or harmful. In contrast, Imbens (2011), assuming a stratified sampling

superpopulation model, claims that “In experiments with randomization at the

unit-level, stratification is superior to complete randomization, and pairing is

superior to stratification in terms of precision of estimation” (p. 1). Imai et al.

(2008) similarly conclude that the variance under the blocked design (with at

least two units assigned to treatment and control within each block) is never

higher than under complete randomization for a superpopulation setup.

Researchers are in more agreement regarding finite-sample inference, for which

blocking can be helpful or harmful. All of the above conclusions are correct:

Their differences stem from differences in the specific sampling frameworks

used for the respective analyses. While considerations of the finite versus super-

population distinction and of block size are important, they are not enough: How

the blocks are formed and the specific details of any sampling framework being

used also matter. This is the work of this article.

In particular, we consider multiple block types and sampling mechanisms. For

each combination of these elements considered, we derive expressions compar-

ing the variance of estimates under blocking to those under complete randomiza-

tion. This allows us to show which overall frameworks guarantee no harm from

blocking and which do not. We focus on comparing true variance rather than

delving into the problem of variance estimation (see Pashley & Miratrix, 2021,

for discussion of variance estimation). For the superpopulation contexts, we also

carefully separate out variance due to the sampling of units from variance due to

randomized treatment assignment; this gives more precise statements of the

benefits of blocking than have been given in prior literature. We generally follow
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the taxonomy of block types and sampling mechanisms discussed in Pashley and

Miratrix (2020). In particular, certain sampling mechanisms go hand in hand with

certain types of blocks, where the type of block captures how the blocks are

formed. These frameworks and associated types of blocks are as follows:

(1) Finite sample: This is the case where the units in the experiment are considered

fixed and the only source of randomness is the treatment assignment itself. Here,

blocks may be formed in any way before randomization using measured baseline

covariates, and we consider them fixed with the sample. Consider a psychology

researcher evaluating an intervention on a convenience sample of students

grouped by baseline ability.

(2) Simple random sampling: Here, we would sample units from a larger population

and then divide the units into blocks based on some covariate(s). These flexible

blocks are a consequence of the units we have such that before sampling we may

not even know how many blocks we will have or what size they will be. If our

researcher from above viewed their experimental sample of units as randomly

drawn from some target population, we would use this setting.

(3) Stratified random sampling: Here, we sample a specified number of units from

each of a prespecified set of strata and then randomize within these groups.

Consider a researcher recruiting a sample of children from each of a series of

ages and blocking by age. The blocks are inherently due to fixed aspects of the

units themselves, which also define the population strata. This setting is note-

worthy as it is often the implicit assumption made when comparing blocking to

complete randomization.

(4) Random sampling of strata: In this framework, the population is made up of an

infinite number of blocks, and entire blocks are sampled as units. This could be,

for example, a random sample of twins. The blocks themselves are structural in

that they are naturally grouped as a product of the world, not the researcher. This

setting is often assumed when comparing the matched-pairs design to complete

randomization.

(5) Two-stage sampling: In this framework, we first select a sample of strata from an

infinite population of strata, as just above, but then, within each sampled stratum,

draw a sample of individuals. We consider the selected strata to be of infinite size,

making the sampled individuals within each block a sample drawn from a

stratum-specific superpopulation. These superpopulations are not fixed as they

are in the stratified random sampling case due to the sampling of strata. Consider a

multisite trial where a sample of students is obtained for each of a random sample

of schools.

In Section 3, we, for each of these contexts, carefully compare blocking versus

complete randomization and provide closed-form formulae for how the variances

of an estimator under these approaches will differ. We also use these formulae to

provide guidance on using blocking across different contexts. We provide the

derivations for these formulae in Supplementary Material A.

Once we finish these comparisons, we broaden our scope to consider how

blocking is commonly done in practice. Our primary investigation, following
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prior literature on this tension, only pertains to the rare case when all blocks

manage to have the exact same proportion of units treated. This is not typically

the case. If we do not assume equal proportions across blocks, then units in the

same treatment arm can be weighted differently, which can reduce the efficiency

of blocking regardless of framework. We discuss this cost further in Section 4.

Next, in Section 5, we address two common misconceptions regarding block-

ing. We first examine the question of whether analyzing a blocked randomized

experiment as if it were completely randomized is in fact a safe approach. It is

not: For the same reasons that implementing blocking could potentially have a

cost, ignoring it can as well. We then discuss whether the variance estimator for a

completely randomized experiment is more stable than that of a blocked experi-

ment on the same data. This is not necessarily the case: The variance of the

variance estimator of a completely randomized experiment can either be more, or

less, stable than the variance estimator for a blocked experiment.

Finally, in Section 6, we move away from the theoretical discussion and

present a few illustrative simulations. We first present a range of scenarios from

blocking being mildly costly to blocking being very advantageous to underscore

how even slight success in the grouping of units easily offsets blocking’s cost.

We also show that, while a researcher can deliberately form blocks to reduce

precision, it is difficult, but not impossible, for a researcher to unintentionally

form blocks from a random sample of units in a way that is disadvantageous.

Throughout our article, we show that while claims of “no harm” are often

unfounded, the potential harm is generally going to be minimal. Our primary aim

is to unpack the tensions at play in order to help guide further work in the field

and help to lay to rest this apparent debate. In the end, we advise researchers to

not be afraid to block but to not bother blocking on things that are unlikely to be

related to one’s outcomes. We believe our findings will generalize to related

designs intended to reduce imbalance on covariates between the treatment and

control groups such as rerandomization (Branson et al., 2016; Li et al., 2018;

Morgan & Rubin, 2012, 2015; Schultzberg & Johansson, 2019), but we do not

explore that connection here.

2. Setup

Before delving into comparisons of blocking and complete randomization, we

first review these two experimental designs, define our notation, and review

some standard, well-known, results.

2.1. Experimental Designs and Estimands

We use the Neyman–Rubin model of potential outcomes (Rubin, 1974;

Splawa-Neyman et al., 1923/1990) and assume the Stable Unit Treatment Value

Assumption, that is, no interference and no multiple forms of treatment (Rubin,

1980). In this framework, each unit has a potential outcome under treatment and
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a potential outcome under control, denoted YiðtÞ and YiðcÞ, respectively, for unit i

(i ¼ 1; : : : ; n). We consider two experimental designs on a sample of n units:

complete randomization and blocked randomization. Under a completely rando-

mized design, nt ¼ np of the units are randomly assigned to treatment, with the

rest of the nc ¼ n� nt units assigned to control, for fixed p 2 ð0; 1Þ. Under a

blocked design, the units are split into K blocks in some manner (see Pashley &

Miratrix, 2021, for longer discussion of block types), with nk units in the kth

block (k ¼ 1; : : : ;K). Within each block, a completely randomized experiment

is performed independently of other blocks such that in the kth block, nt;k ¼ pknk

are randomly assigned to treatment for fixed pk 2 ð0; 1Þ. For most of the article,

except where noted, we assume pk ¼ p for k ¼ 1; : : : ;K.

In addition to having two experimental designs, we consider finite-sample

inference and superpopulation inference. In finite-sample inference, the units in

the sample and their potential outcomes are considered fixed, and randomness

comes solely from the treatment assignment mechanism. The estimand for the

finite sample is then the sample average treatment effect (SATE) defined as (see,

e.g., Imbens & Rubin, 2015, p. 86)

tS ¼ 1

n

Xn

i¼1

ðYiðtÞ � YiðcÞÞ:

Under blocking the SATE within block k, for k ¼ 1; : : : ;K, is

tk;S ¼ 1

nk

X
i:bi¼k

ðYiðtÞ � YiðcÞÞ;

where bi 2 f1; : : : ;Kg indicates the block that unit i belongs to.

In the superpopulation setting, we wish to make inference for some (infinite)

superpopulation rather than just the units in our experiment. We therefore need to

consider the randomness induced by sampling units from the population into the

sample. We thus have two sources of randomness: the sampling and the treatment

assignment mechanism. We write our estimand in the superpopulation setting,

the population average treatment effect (PATE), as

t ¼ E½YiðtÞ � YiðcÞ�:

The unconditioned expectation denotes a direct average for all units in the super-

population. We can similarly define the PATE within block k as

tk ¼ E½YiðtÞ � YiðcÞjbi ¼ k�:

2.2. Estimation and Variance

There is a different standard treatment effect estimator for complete rando-

mization and blocked randomization. However, the estimators are the same for

each design whether we are interested in the SATE or PATE (at least in the
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settings considered here). Let Zi ¼ t if unit i is assigned treatment and Zi ¼ c if

unit i is assigned to control so that Y obs
i ¼ YiðZiÞ is the outcome we observe for

unit i given a specific treatment Zi. For complete randomization, the estimator is

just the simple difference in means between treatment and control units,

btðCRÞ ¼ 1

nt

Xn

i¼1

IZi¼tYiðtÞ � 1

nc

Xn

i¼1

ð1� IZi¼tÞYiðcÞ;

where IZi¼t is the indicator that unit i received treatment. For blocked randomi-

zation, we can define this estimator within each block as

btk ¼ 1

nt;k

X
i:bi¼k

IZi¼tYiðtÞ � 1

nc;k

X
i:bi¼k

ð1� IZi¼tÞYiðcÞ;

k ¼ 1; : : : ;K. Then, the overall blocked randomization estimator is a weighted

average of these simple difference estimators for each block,

btðBKÞ ¼
XK

k¼1

nk

n
btk :

We will often take the expectation over the randomization of units to treat-

ment for a fixed sample. In particular, we write the expectation of estimator bt for

a given finite sample S and for some assignment mechanism P, which may be

complete randomization or blocked randomization, as E btjS;P½ �. To reduce clut-

ter, we drop the P and simply write E btjS½ � if the estimator makes the assignment

mechanism clear. For superpopulation settings, we condition on the sampling

mechanism, block type, and assignment mechanism, for example, E btjF½ �, where

F is some framework.

Both treatment effect estimators are generally unbiased (or nearly so, in the

case of random sampling of strata and two-stage sampling as discussed in the

remark below), with respect to their appropriate design, under the finite-sample

and superpopulation frameworks considered here. So, the difference in perfor-

mance between these two experimental designs and associated estimators comes

down to the differences in variance.

To discuss the true variances of our estimators btðCRÞ and btðBKÞ, we need some

additional notation (we will follow conventions found in Imbens & Rubin, 2015).

The sample variance of potential outcomes under treatment z is

S2ðzÞ ¼ 1

n� 1

Xn

i¼1

ðYiðzÞ � �Y ðzÞÞ2;

where

�Y ðzÞ ¼ 1

n

Xn

i¼1

YiðzÞ
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is the mean of the potential outcomes for the units in the sample under treatment

z. The sample variance of the individual level treatment effects is

S2ðtcÞ ¼ 1

n� 1

Xn

i¼1

ðYiðtÞ � YiðcÞ � tSÞ2 :

�Y kðzÞ, S2
k ðzÞ, and S2

k ðtcÞ are defined analogously over the units in block k.

For the finite sample, the variance of the completely randomized estimator is

known to be (Splawa-Neyman et al., 1923/1990)

varðbtðCRÞjSÞ ¼
S2ðtÞ

nt

þ S2ðcÞ
nc

� S2ðtcÞ
n

:

We can use this expression within each block to get block-level variances,

varðbtk jSÞ ¼
S2

k ðtÞ
nt;k

þ S2
k ðcÞ
nc;k

� S2
k ðtcÞ
nk

:

Summing these across the independent blocks, with the weights for block sizes,

gives an overall variance of

var btðBKÞjS
� �

¼
XK

k¼1

n2
k

n2
varðbtk jSÞ ¼

XK

k¼1

n2
k

n2

 
S2

k ðtÞ
nt;k

þ S2
k ðcÞ
nc;k

� S2
k ðtcÞ
nk

!
:

For the superpopulation, we can use a variance decomposition to obtain, under

superpopulation setting F ,

var btjFð Þ ¼ E var btjSð ÞjF½ � þ var E btjS½ �jFð Þ:

We provide simplified formulae in the following sections when possible to do so.

Remark: Under the frameworks of random sampling of strata and two-stage sam-

pling, our treatment effect estimators, for both blocking and complete randomi-

zation, are not actually unbiased for t. This bias is induced by the random

number of units in the sample creating a random denominator in our estimator.

Under the conditions given in Pashley and Miratrix (2021) to obtain variance

estimators in this setting, in particular either conditioning on the block sizes or

assuming that block sizes are independent of block treatment effects, the esti-

mators are unbiased for the PATE. With respect to comparing variances, the bias

is the same under blocking or complete randomization (which can be shown by a

simple application of the law of total expectation). Thus, these comparisons are

still relevant.

3. Blocking Versus Complete Randomization

With the tools from the previous section, we now turn to comparing complete

randomization to blocking. In the following sections, we systematically explore

the difference in variance of our two designs in the finite sample and under a
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number of superpopulation frameworks. Table 1 gives an overview of which

frameworks provide a guarantee that blocking will be as good or better in terms

of precision.

3.1. In the Finite-Sample World

The finite setting is well established. Here, we present a result similar to those

previously presented in other papers such as Imai et al. (2008) and Miratrix et al.

(2013). In particular, the difference in variance of the treatment effect estimator

between the completely randomized design and the blocked design, in the finite

sample, is

var btðCRÞjS
� �

� var btðBKÞjS
� �

¼ 1

n� 1
Vark

ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

s
�Y kðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p

s
�Y kðtÞ

0@ 1A�XK

k¼1

nk

n

n� nk

n
varðbtk jSÞ

24 35; ð1Þ

where

Vark Xkð Þ �
XK

k¼1

nk

n
Xk �

XK

j¼1

nj

n
Xj

 !2

: ð2Þ

TABLE 1.

When Blocking Is Guaranteed Not to Hurt in Terms of Precision

Framework

Equal Proportions Treated

Unequal Proportions

Treated

Blocking

can help?

Blocking

can hurt?

Blocking

can help?

Blocking

can hurt?

Finite sample Yes Yes Yes Yes

Simple random sampling,

flexible blocks

Yes Yesa Yes Yes

Stratified sampling, fixed

blocks

Yes No Yes Yes

Random sampling of strata,

structural blocks

Yes Yes Yes Yes

Two-stage sampling,

structural blocks

Yes No Yes Yes

Note. Results for equal proportions treated appear in Section 3, and results for unequal proportions

treated appear in Section 4.
aNo harm for making blocks out of irrelevant covariates. Harm is possible if deliberately

implementing a self-destructive blocking choice as discussed in the text.
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Whether this quantity is positive or negative depends on whether a particular

form of between-block variation is larger than a form of within-block variation.

Finite-sample numerical studies in Section 6 show an example where even in the

worst case for blocking, when all blocks have the same distribution of potential

outcomes, the increase in variance is not too great. A further numerical illustra-

tion in Section 7 further suggests that costs are minimal in practice.

The first term is simply how much variation in means we have across groups.

The second is driven by the average within-group variation. If the groups are

quite variable internally, but are similar in terms of averages, blocking can hurt.

Most prior work state that although the difference in the brackets can be

negative, as the sample size grows this difference will go to a nonnegative

quantity. However, this statement depends on the type of blocks we have. In

particular, if we have structural blocks such that as n grows, the number of blocks

K also grows, the difference in the brackets of Equation 1 will not necessarily go

to zero or become positive as n!1 (Miratrix et al., 2013). Consider, for

example, if nk is fixed, the above formula’s second term is simply a constant

times the mean variance. Therefore, a “bad” choice of structural blocks, in terms

of between-block variance being lower than within-block variance, could have

asymptotic consequences. This has ties to the random sampling of strata frame-

work as discussed in Subsection 3.4.

We can see the structure of Equation 1 more starkly if we consider the case of

K equal-sized blocks with nk ¼ n=K units in each, p ¼ 1=2, and no treatment

effect, with YiðcÞ ¼ YiðtÞ for all units. In this case, we obtain

var btðCRÞjS
� �

� var btðBKÞjS
� �

¼ 1

n� 1
4Vark

�Y kðcÞð Þ � 4ðK � 1Þ
n

1

K

XK

k¼1

S2
k ðcÞ

" #
:

This simplification makes the comparison of within- versus between-block varia-

bility more clear.

3.2. With Simple Random Sampling and Flexible Blocks

Given a simple random sample of units, the variance for the completely

randomized design yields the following clean and well-known result (see Imbens

& Rubin, 2015):

varðbtðCRÞjF SRSÞ ¼
s2ðtÞ

nt

þ s2ðcÞ
nc

;

where s2ðzÞ is the variance of potential outcomes in the (infinite) superpopula-

tion under treatment z 2 ft; cg.
Flexible blocking in this context would be to divide the units into groups using

any baseline covariate information we might like after the sample of units is

obtained. This common setting is what might happen in, for example, experi-

ments that have an initial recruitment drive, with the researchers then tailoring
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the design of their experiment to the obtained sample. In these cases, we might

group by some categorical covariate, aggregating those types of units too few in

number to make their own blocks into a single “leftover” block. Or we might

form blocks out of a continuous covariate by clustering units together as best we

can based on the observed sample covariate distribution. We denote this popu-

lation framework by conditioning on F SRS.

The difference of variances between blocking and complete randomization is

the expectation over Equation 1 with respect to the simple random sampling. In

this context, to understand how blocking compares to complete randomization,

we need to specify the mechanism of how the blocks are formed. Assume our

blocking procedure uses observed baseline covariate information X to group units

into blocks and is such that, given a fixed constellation of X values, we will

always end up with the same number of blocks with the same values of X within

each block. Further assume that any units with the same values of X, indistin-

guishable to the blocking algorithm, are interchangeable.3 Then, the expectation

of performance over the simple random sampling would also capture the process

of making the blocks based on X as a function of the random set of X. The overall

difference between blocking and complete randomization will then, in essence,

be the difference between how much variation we manage to keep across blocks

(as represented by block means) and how much variation is left over within

blocks, all averaged across the possible samples. In other words, Equation 1

shows that a good blocking algorithm should reduce heterogeneity in the YiðzÞ
within blocks and maximize variation of �Y kðzÞ across blocks.

To explore the possible harm of flexible blocking, we first consider a scenario

where blocking would usually be considered a “bad idea”: building blocks out of

a covariate that is independent from the outcomes.

Theorem 3.1 (Simple random sampling and flexible blocking with independent

covariates): If we have a fixed blocking algorithm and the covariates used to

form blocks are independent of potential outcomes in the superpopulation, then

varðbtðCRÞjF SRSÞ ¼ varðbtðBKÞjF SRSÞ.

See A.2 of the Supplementary Materials for proof. The core idea is that

blocking on an X independent of outcome is the same as forming random blocks,

which is equivalent to no blocking, that is, complete randomization. In these

cases, the small amount of random separation of the block means perfectly

offsets the blocking cost (these are the two terms in Equation 1).

Interestingly, however, it is possible to do worse when the independence of

Theorem 3.1 does not hold: One way to do this is to group units so their group

means of X tend to be similar while leaving the within-group variances of X high.

If X is highly predictive of Y, Equation 1 suggests that doing this grouping based

on X will result in the same grouping structure on Y, producing high within-group

variability and low between-group variability in outcomes. If we can do this type
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of grouping well enough for most samples we draw, we would get overall inferior

performance under this blocked design. This is in fact possible, as we illustrate in

Subsection 6.2. Blocking in this manner would happen due to, for example, the

occasional misconception that blocks, rather than the units within the blocks,

should be made as similar to each other as possible.

In principle, systematic blocking worsening precision could also happen inad-

vertently: even if we are systematically reducing the variation of X within blocks,

if the systematic relationship of X and Y happens to be exactly, perversely,

wrong, we could still fail. We illustrate this as well in the latter part of our

simulation Subsection 6.2, where we designed a relationship where the outcome

depended on whether the covariate X was even or odd and blocked in a manner to

ensure balance on this across blocks. This blocking mechanism substantially

reduces within-block variance in our covariate X, suggesting gains, but still

results in poor performance. Such inadvertent causing of harm seems unlikely

to happen in practice.

These two simulations show that, without further assumptions on the structural

relationship between X and the outcomes, we cannot guarantee that blocking is not

harmful. That being said, as our examples suggest, if a blocking procedure tends to

group like with like, in terms of X, then it is hard to imagine a case that could be

worse than blocking on something irrelevant. That is, it is hard to imagine a case

when blocking would cause any harm in this setting. In our view, the

“Independence” case used in Theorem 3.1 is a reasonable worst case for blocking

approaches that are not explicitly blocking to minimize cross-block heterogeneity.4

We next turn to simple random sampling for the other types of blocks. We first

note that structural blocks cannot, by design, be used in a simple random sam-

pling setting; for example, we cannot randomly sample n individuals who are

twins from an infinite population of twins and expect to find any complete pairs

of twins in our final sample. Block type is essential in determining which super-

population framework makes sense for a given experiment and therefore what

guarantees the researcher can realistically expect.

Simple random sampling with fixed blocks is similarly ill-defined: What

happens if a singleton, or no, units from a given block are sampled due to random

chance? We could extend this case to flexible blocks if we have simple rules for

how these partially sampled blocks are combined with the others; if the fixed

blocks are few in number, relative to the overall sample size, this adjustment is

likely to be only a small number of units, implying that we would obtain sub-

stantively similar results. That being said, we consider the fixed blocks case more

carefully in the next section.

3.3. With Stratified Sampling and Fixed Blocks

In stratified sampling, there is a superpopulation that contains fixed strata, and

we sample a fixed number of units from each stratum and then randomize the
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units within each stratum independently. This is the typical type of framework

associated with a predefined categorical covariate used for blocking. For exam-

ple, a medical trial may recruit a set number of individuals in groups defined by

preset age ranges and gender categories. We denote this population framework

by conditioning on F strat.

Similar to complete randomization under simple random sampling, the var-

iance of the blocking design simplifies to the following result in this setting (see

Imbens, 2011):

var btðBKÞjF strat

� �
¼
XK

k¼1

n2
k

n2

s2
k ðtÞ
nt;k

þ s2
k ðcÞ
nc;k

� �
;

where s2
kðzÞ is the population variance of potential outcomes under treatment z 2

ft; cg for units within stratum k.

In this context, it is not possible for blocking to be harmful (assuming equal

proportion treated in all blocks):

Theorem 3.2 (Variance comparison under stratified sampling): The difference in

variance between complete randomization and blocked randomization under the

stratified sampling framework is

var btðCRÞjF strat

� �
� var btðBKÞjF strat

� �
¼ 1

n� 1
Vark

ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

r
mkðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p

r
mkðtÞ

 !
� 0;

where mkðzÞ is the population mean of potential outcomes under treatment z in

stratum k and Varkð�Þ is defined as in Equation 2.

The above expression is very similar to the positive term in Equation 1 for the

finite-sample framework. Now, however, we no longer have the negative term.

Remark: Interestingly, when comparing blocking to complete randomization in an

infinite population setting, researchers have typically evaluated the completely

randomized design under the simpler sampling mechanism of simple random

sampling and analyzed the blocked design under the stratified sampling frame-

work (e.g., see Imai et al., 2008; Imbens, 2011). The found difference between

the two estimators is therefore an agglomeration of differences in the character-

istics of the samples under the two different sampling regimes as well as the

difference in doing a blocked experiment versus a completely randomized

experiment. Specifically, the difference is

varðbtðCRÞjF SRSÞ � varðbtðBKÞjF stratÞ ¼ 1

nc

XK

k¼1

nk

n
mkðcÞ � mðcÞð Þ2 þ 1

nt

XK

k¼1

nk

n
mkðtÞ � mðtÞð Þ2 :

We see that this difference is also positive, which is where the results claiming

that blocking does not cause harm under a superpopulation setting typically

comes from. However, in general, the difference varðbtðCRÞjF SRSÞ � varbtðCRÞjF strat

� �
may be positive or negative, showing that the traditional estimates
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of the benefits of blocking can either be under- or overstated in this context. The

result in Theorem 3.2 compares blocking to stratified sampling followed by

complete randomization, not simple random sampling. For further discussion,

see Supplementary Material A.4.

3.4. With Random Sampling of Structural Blocks

In this context, we sample complete blocks and then randomize the individ-

uals within the blocks into treatment and control. Here, the blocks are structural:

They are a consequence of the world, not the researcher’s choices. Examples

include twin studies or a multisite trial with random sampling of sites where each

site is then a small randomized trial. These multisite trials are common in edu-

cation and medical research where sites may be schools or hospitals. For

instance, with schools, we may select schools from an “infinite” number of

schools and then randomize treatment to classrooms within each school. We

denote this population framework by conditioning on F site.

Here, the difference between the variances is again the expectation over

Equation 1 with respect to sampling of blocks:

var btðCRÞjF site

� �
� var btðBKÞjF site

� �
¼ E

1

n� 1
Vark

ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

s
�Y kðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p

s
�Y kðtÞ

0@ 1A�XK

k¼1

nk

n

n� nk

n
varðbtk jSÞ

24 35�����F site

24 35
ð3Þ

As the blocks themselves are sampled with block membership fixed, the expec-

tation can be thought of as over all blocks in the population. As in the finite

framework, because the strata themselves are finite, it is possible that blocking

could result in higher variance. In particular, it is possible to have systematically

poor blocks if the block means do not vary. For example, if we use elementary

school classrooms as blocks, we may find that schools break up students into

classes such that the classrooms all look similar to each other, in that they have

similar proportions of high- and low-achieving students but by the same token

have higher within-classroom variability.

This framework is typically adopted under comparisons of matched pairs

(a blocked experiment with blocks of size two) and complete randomization.

Therefore, researchers studying matched-pairs designs often note that the design

can hurt in the superpopulation setting (e.g., Imai, 2008). However, we make

clear here that this harm is not due to the size of the blocks but rather the block

types and sampling scheme.
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3.5. With Two-Stage Sampling

We next extend our prior setting by letting the sampled strata be themselves

infinite in size. The two-stage sampling scheme then works as follows: first

randomly select K blocks, then randomly select nk units within the kth selected

block. We generally allow the nk to depend on the block selected such that we

may not know the total sample size beforehand. For instance, we might imagine

first selecting schools from an “infinite” population of schools and then selecting

students from an “infinite” population of students within each school. This sam-

pling scheme is popular in education research and has close ties to multilevel

modeling and how multisite experiments are evaluated. We denote this model

with F 2�stage.

If we condition on which blocks were chosen in the first stage, we can draw

on results from stratified sampling (Subsection 3.3), giving our variance differ-

ence of

var btðCRÞjF 2�stage

� �
� var btðBKÞjF 2�stage

� �
¼ E 1

n� 1
Vark

ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

s
mkðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p

s
mkðtÞ

0@ 1A�����F 2�stage

24 35
� 0:

The sampling of units within strata, as compared to taking the entire structural

block, guarantees that blocking will not be harmful with respect to variance as

compared to complete randomization. Of course, in order to obtain this guaran-

tee, the sampling mechanism and population model need to be valid for the study

at hand. That is, we must have large strata with two-stage sampling to rely on this

result. For studies where entire strata are included in the experiment, the setting

of Subsection 3.4 is the one that should be assumed.

4. The Consequences of Variable Proportion of Blocks Treated

Our comparison of complete randomization to blocking in the prior section

only applies to the small slice of possible experiments in which the treatment

proportion is equal across all blocks. In practice, however, the proportions

treated, pk, may be unequal, and in this case, the above results are not guaranteed

to hold. In particular, with blocks of variable size, it can be difficult to have the

same proportion treated within each block due to the discrete nature of units.

With varying pk, the units within each block are weighted differently than they

would be in a complete randomization when calculating a treatment effect esti-

mate. That is, in a complete randomization, the treated units are all weighted

proportional to 1=p, but here, the treated units in each block get weighted instead

by 1=pk , meaning units with low probability of treatment will “count more”

toward the overall treatment mean and their variability will have greater
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relevance for the overall variance of the estimator. This can be seen from the

estimator formulation:

btðBKÞ ¼
XK

k¼1

nk

n
btk

¼
XK

k¼1

nk

n

1

pknk

X
i:bi¼k

IZi¼tYiðtÞ � 1

ð1� pkÞnk

X
i:bi¼k

ð1� IZi¼tÞYiðcÞ

0@ 1A
¼
XK

k¼1

1

nt

p

pk

X
i:bi¼k

IZi¼tYiðtÞ � 1

nc

1� p

1� pk

X
i:bi¼k

ð1� IZi¼tÞYiðcÞ

0@ 1A:
Sävje (2015) also discussed the effect of variable proportions treated on variance,

and Higgins et al. (2015) explored estimators for blocked designs with possibly

unequal treatment proportions but also multiple treatments. The costs here are

similar to the costs of variable selection probabilities in survey sampling (see

Särndal et al., 2003).

When different blocks have different proportions of units treated, it is possible

to systematically have blocks and treatment groups with more variance to also

have more weight, which could cause blocking to be harmful even in the strati-

fied sampling setting of Subsection 3.3, where we usually have guarantees on the

benefits of blocking. In the face of unequal proportions treated, we have the

following result for the stratified sampling context:

Theorem 4.1 (Variance comparison with unequal treatment proportions):

var btðCRÞjF strat

� �
� var btðBKÞjF strat

� �
¼ 1

n� 1
Vark

ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

s
mkðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p

s
mkðtÞ

0@ 1AþXK
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ðp� pkÞnk
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s2
k ðcÞ

ð1� pkÞð1� pÞ �
s2

k ðtÞ
pkp

24 35:
The first term in the above result is exactly the usual difference in the stratified

sampling setting with equal proportions, as shown in Theorem 3.2, and is always

nonnegative. The second term, however, can be positive or negative depending

upon the proportion treated within each block and the variability of potential

outcomes under treatment and control within each block. With unequal propor-

tions treated across blocks, we do not have a setting with simple guarantees on

the benefits of blocking.

Consider the following simplification when we have constant additive treat-

ment effects within each block such that s2
k ðcÞ ¼ s2

k ðtÞ ¼ s2
k :

var btðCRÞjF strat

� �
� var btðBKÞjF strat
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The second term can be negative if, for example, either 1� pk < p < pk or pk <
p < 1� pk holds for each of the blocks. This could occur, for instance, if

p ¼ 0:5, but in some blocks, the researcher is unable to treat exactly half the

units (e.g., because of odd number block sizes). In this circumstance, if our

blocks are such that mkðcÞ ¼ mðcÞ and mkðtÞ ¼ mðtÞ for all k, the whole expression

will be negative. Without the simplification that s2
kðcÞ ¼ s2

kðtÞ ¼ s2
k , the effect

of the varying proportion treated can be mitigated or exacerbated depending

upon whether systematically more or fewer units are allocated to the more vari-

able treatment condition within the blocks.

In our simulations in Section 6, we in fact see degradation in the benefits of

blocking on weakly predictive covariates when the proportion treated is only

approximately equal, rather than precisely equal, for the finite sample. This

suggests that in many realistic scenarios, one might not want to block on covari-

ates that are only weakly predictive.

5. Misconceptions on the Comparison of Blocking and Complete

Randomization

In this section, we explore two misconceptions we have encountered regard-

ing comparisons of blocking and complete randomization. First, there is a com-

mon belief that one can simply ignore blocking that was done and analyze a

blocked experiment as a completely randomized one without consequence. This

belief is a misconception in some contexts: Implementing a blocked design and

then ignoring the blocking when calculating the variance estimator will not

necessarily be conservative for the variance of btðBKÞ. Second, there is a belief

that the completely randomized variance estimator (under a completely rando-

mized design) is guaranteed to have lower variability than the typical blocking

variance estimator (under a blocked design). This also does not hold in some

contexts.

Before exploring these misconceptions in the next two sections, we first need

to introduce the standard variance estimators. For a completely randomized

design, the standard variance estimator is

bs2
ðCRÞ ¼ cvarðbtðCRÞÞ ¼

s2ðcÞ
nc

þ s2ðtÞ
nt

;

where s2ðzÞ is the estimated sampling variance for units assigned to treatment

z 2 ft; cg. Under complete randomization, this estimator is conservative for the

finite sample, with bias S2ðtcÞ=n, and is unbiased under simple random sampling

(see, e.g., Imbens & Rubin, 2015).

Variance estimation for the blocked design is a bit more complicated. How-

ever, the usual variance estimation strategy for blocked experiments with at least

two treated and two control units in each block is to estimate the variance within

each block separately, as in the completely randomized design, with
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bs2
k ¼ cvarðbtkÞ ¼

s2
k ðcÞ
nc;k

þ s2
k ðtÞ
nt;k

:

Here, the s2
k ðzÞ are analogous to s2ðzÞ within each block k. These variance

estimators can then be combined into an overall variance estimator of

bs2
ðBKÞ ¼ cvarðbtðBKÞÞ ¼

XK

k¼1

n2
k

n2

s2
k ðcÞ
nc;k

þ s2
k ðtÞ
nt;k

� �
:

Extending results for the completely randomized variance estimator, it is well-

known (see, e.g., Imbens, 2011) that bs2
ðBKÞ is conservative in the finite sample

and unbiased under stratified random sampling. See Pashley and Miratrix (2021)

for a full discussion of variance estimation under the blocked design, including

variance estimators for designs that include blocks with a singleton treatment or

control unit, and the resulting bias in estimation under different population

frameworks.

5.1. Misconception I: Completely Randomized Variance Estimators Are

Conservative for the Blocked Design

What happens if we ignore blocking done in the design stage when analyzing

the data? First, if we do not have pk ¼ p for all k, then it is possible that ignoring

the blocking structure can cause bias, with E btðCRÞjS;Pblk

� 	
6¼ tS . btðCRÞ could be

biased, even under a constant treatment effect assumption, because the com-

pletely randomized estimator will effectively give higher or lower weight to

some units than the blocked estimator. In this case, variance comparison is less

relevant.

When pk ¼ p, although bias in the treatment effect estimator is no longer a

concern, using the standard completely randomized variance estimator under a

blocked design can cause issues. First, the correct analysis follows from the

experimental design. Therefore, if blocking was implemented, it should be taken

into account in the analysis. If standard errors based on the completely rando-

mized design are used instead, we are using standard errors that do not actually

reflect uncertainty in the design we ran. In other words, the standard errors for the

completely randomized design are irrelevant for the blocked experiment we

actually ran!

Now we turn to a more technical discussion of why researchers may believe

the blocks can be ignored and why this belief is flawed. In particular, the esti-

mated standard errors for a blocked design, when there are many blocks and/or

few units, can sometimes be unstable. This instability is separate from the true

performance of the blocked estimator; the instability is in estimating the uncer-

tainty, not the uncertainty itself. A researcher might think, therefore, to imple-

ment blocking to realize its gains, but then perform the analysis as a completely
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randomized experiment to avoid these concerns. Unfortunately, this strategy is

not guaranteed to be a good choice.

Regarding this first misconception, we have the following:

Theorem 5.1 (Completely randomized variance estimator under blocking: Finite

sample): In the finite-sample setting, analyzing a blocked experiment as if it were

completely randomized could give anticonservative estimators for variance.

That is, it is possible to have E bs2
ðCRÞjS;Pblk

h i
� var btðBKÞjS;Pblk

� �
, where

Pblk is a blocked randomization assignment mechanism. See Supplementary

Material B.1 for a derivation that proves this result (assuming pk ¼ p for all k

and with a positive correlation of potential outcomes). Subsection 6.3 illustrates

this result with a simulation.

However, in the stratified sampling framework, ignoring blocking when a

blocked design was run will always result in a conservative estimator for the

variance of btðBKÞ.

Corollary 5.1 (Completely randomized variance estimator under blocking: Strati-

fied sampling): Analyzing a blocked experiment as if it were completely rando-

mized will not give anticonservative estimators for variance if we are analyzing

for a superpopulation with fixed blocks and stratified random sampling.

In the context of stratified random sampling, ignoring the blocking in variance

estimation is “safe.” See Supplementary Material B.2 for more on this result

(assuming pk ¼ p for all k).

5.2. Misconception II: Completely Randomized Variance Estimators

Have Lower Variance

Comparisons of blocking to complete randomization often include a discus-

sion on the performance of the variance estimators in terms of their own variance

under each design. There is a misconception that the variance of the blocking

variance estimator will always be larger than that of the complete randomization

variance estimator. We next show that misconception is not necessarily true.

Assume that nz;k � 2 for all blocks k and all treatment assignments z. We focus

on the superpopulation framework with stratified random sampling. The question

is, do we have guarantees that one variance estimator will have lower variance?

If varðs2ðcÞjF strat;PcrÞ � varðs2
kðcÞjF strat;PblkÞ and varðs2ðtÞjF strat;PcrÞ �

varðs2
k ðtÞjF strat;PblkÞ for most k ¼ 1; : : : ;K, then the completely randomized

variance estimator will have lower variability than the blocking variance esti-

mator. Imbens (2011) gives such an example.5 In Imbens’s example, the potential

outcomes under control have no variation (s2
k ðcÞ ¼ 0 for all k ¼ 1; : : : ;K), and

the distribution of the potential outcomes under treatment is the same in all of the

strata (s2
k ðtÞ ¼ s2ðtÞ for all k ¼ 1; : : : ;K). Then, Imbens argues, because s2ðtÞ
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is a less noisy estimator of s2ðtÞ than any of the s2
kðtÞ, the variance of the variance

estimator would be smaller under the completely randomized design than under

the blocked design. The notion that the variance estimator for complete rando-

mization is less noisy because it is using more data may be true in many

situations.

However, this result does not hold in general. For instance, consider a popu-

lation with four strata. Within each stratum, there is zero treatment effect, and all

units are identical. Between strata, however, the potential outcomes differ. For

convenience, say in Stratum 1 YiðcÞ ¼ YiðtÞ ¼ 1, in Stratum 2 YiðcÞ ¼ YiðtÞ ¼ 2,

in Stratum 3 YiðcÞ ¼ YiðtÞ ¼ 3, and in Stratum 4 YiðcÞ ¼ YiðtÞ ¼ 4. Now assume

that four units are sampled from each of the strata. In a blocked design, our

variance estimate would always be 0. But in a completely randomized design,

the variance estimate would change based on which units were assigned to

treatment and control. Thus, the blocking variance estimator would have 0 var-

iance, whereas the completely randomized variance estimator would have non-

zero variance.

To further explore this question, we compare the variances of the standard

variance estimators (under their respective designs) in a simulation in Subsection

6.3. We find that as the blocking estimator gets more precise, relative to complete

randomization, the precision of the associated variance estimator also improves.

In the case where blocking is not beneficial, we do see a slight increase in the

instability of the variance estimator. Overall, we see the relative uncertainty of

the blocking estimator is proportional to the true variance of the blocking esti-

mator, and so, when the true variance goes down, the uncertainty of estimating

that variance goes down as well. In general, we do not find this additional

instability, when blocking is ineffectual, to be a concern; more serious, perhaps,

would be the impact of degrees of freedom adjustment when doing inference in

the case of experiments with a small number of small blocks.

6. Simulations

We underscore the findings and arguments in our theoretical work with a few

illustrative simulations. Our first set of simulations illustrate the general value of

blocking along with its potential cost as a function of how successful the

researcher is in separating out relatively homogenous sets of units. The second

set of simulations unpacks the difficulties in obtaining overall theoretical results

on flexible blocking by showing a range of scenarios including one that might

deceptively look beneficial, but where flexible blocking can hurt. The third set of

simulations illustrate the misconceptions discussed in the previous section.
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6.1. Cost and Benefit of Blocking as a Function of Block Variation

Following our theoretical results, we compare actual variances of the treat-

ment effect estimators to avoid complications of any costs or differences in

estimating these variances. We examine a series of scenarios ranging from a

collection of blocks where there is little variation from block to block (causing

blocking to be less beneficial) to scenarios where the blocks are well separated

and blocking is critical for controlling variation. In our first numerical study, we

treat 20% of units in all of the blocks, with specific block sizes of 10, 15, and 20.

We had a total of eight blocks. In the second numerical study, we keep the sizes

and number of blocks the same but allow the proportion treated to vary from

block to block, from 0.1 to 0.3, with no block having exactly 20% treated. We

keep the overall proportion treated the same so that the completely randomized

design was the same in both numerical studies. Because the number of treated

units is forced to be a positive integer, the small blocks of size 10 have more

disparate proportions (.1 or .3), the blocks of size 15 have slightly less disparate

proportions (2/15 or 4/15), and the blocks of size 20 have the least disparate

proportions (0.15 or 0.25). Different setups for these unequal proportions may

yield different results.

Our data-generating mechanism generally follows the one presented in Pash-

ley and Miratrix (2021). The simulations are for the finite sample. Data were

generated once from normal distributions for each setting in a manner to ensure

that the empirical averages and variances for each block match the theoretical

values set for that simulation. This avoids possible pitfalls of odd behavior from a

single random finite sample. The block means and treatment effects were set

such that they had a negative correlation with block size; larger blocks had lower

potential outcomes and smaller treatment effects than small blocks. Through the

simulation, we varied how close the blocks were in terms of control means and

treatment effects. We also varied the correlation of potential outcomes within

blocks as r ¼ 0; 0:5; and 1. Correlation of 1 corresponds to additive treatment

effects within each block. The variances (and variance ratios) were calculated

based on the full schedule of potential outcomes using the formulas presented in

Subsection 2.2.

The first numerical study corresponds to the mathematical argument pre-

sented in Subsection 3.1 and examines how much blocking can hurt. The second

numerical study illustrates what changes when proportions treated are not the

same across blocks as discussed in Section 4.

We see on the x-axis of Figure 1 an R2-like measure of how predictive blocks

are of the outcome, calculated for each finite data set investigated. The R2

measure was varied by manipulating the spread of block means under control

and the spread of block treatment effects. That is, the x-axis tells us how “good”

our blocking is. If we were blocking based on a covariate value, this would

measure how predictive that covariate is of the outcome (higher R2 means more
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predictive). The y-axis is the ratio of variances of blocking versus complete

randomization; values above 1 (dashed horizontal line) indicate a cost to block-

ing, and values below 1 indicate a benefit to blocking.

Generally, as expected, in most scenarios, we find blocking to be helpful. We

see large gains in blocking for moderate-to-large R2 and only a slight penalty to

blocking when the R2 is relatively small. That is, even in the extreme case where

blocks are formed in a (unrealistically) poor manner such that all blocks have

exactly the same average potential outcomes but there is variability within in

each block, we observed at most an increase in the variance of about 7% for using

blocking with equal proportions. On the other hand, the benefits of blocking go to

an almost 92% reduction in variance in the most extreme scenario considered.

When we vary the proportions treated, the gains of blocking are muted. The

maximum variance increase using blocking in this case is 30%, which occurs in

the “worst-case” blocking scenario. This additional cost of blocking is due to the

inability to weight all units equally because of the variable proportions treated

within each block. This is analogous to the additional cost of incorporating

weights in, for example, survey experiments (Miratrix et al., 2018). The maxi-

mum benefit of blocking was similar to the equal proportion case, with an

approximately 89.8% reduction in variance using blocking.

These results provide some practical guidance: If our blocking factor is even

moderately predictive of outcomes, we expect blocking to be beneficial. With

equal proportions treated across all blocks, even if we have poor blocks, the cost

of blocking will not be too large. When we move away from equal proportions
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FIGURE 1. Numerical study to assess completely randomized versus blocked design in

finite-sample context when pk ¼ 0:2 (equal proportions) or unequal proportions across

blocks. The y-axis is VarðbtðBKÞjSÞ=VarðbtðCRÞjSÞ.

Pashley and Miratrix

89



being treated, the story gets a bit murkier in terms of exactly how harmful

blocking can be, but we still expect gains from blocking as long as our blocking

factor is reasonably predictive of outcomes.

6.2. Costs and Perils of Flexible Blocking

To illustrate the benefits and perils of flexible blocking, we designed three

data-generating scenarios, “linear,” “indep,” and “odd,” dictating the relationship

between X and Y. In all the three, X ranges as an integer from 1 to 16. For linear, Y

is linearly related to X, making X a good thing to block on. For indep, Y is

independent of X, making X a useless thing to block on. Finally, for odd, Y is

high if X is odd and low if X is even; blocking on X in this case has unclear

benefit.

We also examined three methods for blocking. Our most principled, “flex,”

divides the units up by X, after sorting X, in a manner that ensures each block has

an even number of units. “Interleave” makes blocks by interleaving units, trying

to make a collection of blocks that are as similar to each other as possible; this is

doing blocking the exact wrong way. Finally, “peevish” is our perverse,

existence-proof blocking method where we group units by similar values of X

but also ensure there is the same number of odd and even units in each block.

For each of these nine combinations, we repeatedly (10,000 times) generated

data and analyzed it via a simulated blocked experiment and a simulated com-

pletely randomized experiment. Thus, this corresponds to the simple random

sampling setting. We impose a strict zero treatment effect for all units in the

experiment, meaning we can measure within- versus between-block variance on

outcomes without worrying about the treatment assignment (as the variance is

equal in the two treatment groups). We then looked at the relative standard error

of the blocking approach compared to complete randomization. Numbers above

100% mean blocking performs worse than doing nothing. Numbers below 100%
show blocking to be beneficial.

Results are given in Table 2. When X is independent, how we block does not

matter. Blocking neither harms nor helps. Interleaving (deliberately making

heterogeneous blocks with respect to X) can cause harm if X matters: When X

is linearly related to Y, we have a variance increase. And finally, as a proof of

concept, we show that for our peevish blocking approach, even though we are

reducing the within-block variance of X, we are doing it in a manner that exactly

fails, given the odd data-generating process (DGP) we consider: While this seems

unlikely to happen in practice, this demonstrates that, in principle, one could get

hurt by a blocking algorithm even while it looks like things are improved. This

combined with our odd DGP shows that we cannot get any mathematical guar-

antees on blocking causing no harm without further assumptions on the DGP or

restrictions on the blocking variance estimator approach.
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6.3. Illustration of the Misconceptions of Section 5

We next extend the analysis of our simulations to briefly illustrate our two

misconceptions in Section 5. The simulation setting is the same as Subsection

6.1, but we only look at the case with equal proportions treated across blocks.

Because both of the misconceptions dealt with variance estimation, for each

finite population, we simulated 5,000 randomizations and calculated the various

variance estimators for each randomization. For the first misconception consid-

ered in Section 5, we explore the results of using the completely randomized

variance estimator as an estimator for the blocked design. For the second mis-

conception considered in Subsection 5.2, we compare the variance of the stan-

dard Neyman variance estimator used with the completely randomized design to

the standard extension of the Neyman variance estimator to blocking with the

blocked design. Note that we have at least two units in each block with equal

proportions treated, allowing the usual blocking variance estimator to be used

here.

The results are shown in Figure 2. The graphs are restricted to low values of R2

to showcase where the more interesting results occur. In the left graph, we see

that, for some scenarios considered with a very low R2 value, using the com-

pletely randomized variance estimator with a blocked experiment can result in

underestimation (in expectation) of the true variance of the blocked experiment;

this is illustrated by points falling below the line at 1. This demonstrates that it is

possible for this approach to be anticonservative (although only slightly so).

More seriously, this estimator rapidly becomes substantially conservative; we

do not advise analyzing a blocked experiment as if it were completely rando-

mized. For comparison, the standard blocking variance estimator is also shown.

The blocking variance estimator is conservative if there are additive effects

TABLE 2.

Flexible Blocking Simulation Results

Blocking Method

Relative Variance Variance Ratios

Indep Linear Odd X Y (Indep) Y (Linear) Y (Odd)

Flex 100.5 8.2 98.9 0.5 76.4 0.5 75.4

Interleave 99.3 110.4 99.7 93.8 76.1 93.8 76.2

Peevish 100.9 31.4 110.4 7.6 76.2 7.6 93.6

Note. For first three columns, numbers are relative percent of the average size of the standard error of

the blocking approach versus complete randomization. Each column corresponds to a data-generating

process dictating the relationship of X to Y. Each row corresponds to a form of blocking. The final

four columns show the ratio of average variance of X within block to overall and the ratio of average

variance of Y within block to overall for each DGP considered. DGP, data-generating process; Indep

¼ independent.
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within each block, but the completely randomized variance estimator quickly

becomes more conservative at an R2 less than 0.1.

On the right-hand side of Figure 2, we compare the variability of the standard

complete randomization and blocking variance estimators for a series of experi-

ments. We see that while it is possible, when blocks are relatively homogeneous,

for the complete randomization estimator to have less instability, it is generally

substantially more unstable. The relative instability of the completely rando-

mized variance estimator increases as R2 increases, and thus, the blocking var-

iance estimator has lower true variance.

7. Teacher Professional Development, an Applied Example

To further explore the benefits and costs of blocking in a more natural context,

we used a data set from a previous randomized trial of a teacher professional

development program (Heller et al., 2012) to explore a few hypothetical scenar-

ios of how blocking might work or fail to work in practice. In the actual experi-

ment, the blocks of teachers were defined by geographic area and were thus

outside the control of the researcher. We have 15 cohorts (blocks) of teachers

with 52%–87% of units treated. Cohort sizes ranged from eight to 29 teachers.

Here, cohort membership explained only about 10% of the variance in the base-

line test. Furthermore, due to different pragmatic considerations, the proportion

treated in each block varied considerably.6 This is a good example of the worst

sort of blocking one might have in a natural context (the blocking was externally

forced, hence the nonideal design).

This experiment provides an opportunity in that three tests—a pretest and two

follow-up tests—were given to the teachers; we use these outcomes to investigate

how different hypothetical blocking strategies may have worked differently. In

these investigations, we evaluate how well blocking would work for different

hypothetical experiments on units with the same covariates and outcomes as the

real units. We initially use the second test as the baseline and the third test as a

final outcome and assume no actual treatment impact, using the third test as both

the potential outcome for control as well as treatment. This gives us a fully

“observed” set of potential outcomes on which we can calculate the impacts of

different hypothetical design decisions. That is, we ignore the treatment assign-

ment of units that actually occurred, merely using these data to provide realistic

values for an outcome–covariate relationship we might see in practice. Thus, this

is a numerical illustration based on practical data values rather than a valid

reanalysis of the original study. We consider several different (hypothetical)

blocking decisions, constraining ourselves by the block sizes and treatment pro-

portions actually used. We then use the formulae from this work to calculate what

the standard errors would be under the different blocking strategies considered,

holding the schedule of potential outcomes (the third test) and our assumed

baseline test (the second test) fixed.
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The different explored blocking strategies, and the relative costs and benefits of

those strategies, are given in Table 3. The second and third sets of columns show the

same exercise but using different tests as baseline and outcome. We report on the
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FIGURE 2. Relationship of estimated variance to actual and precision in the estimated

variance. Panel A: Ratio of estimated variance estimators to the actual blocking variance.

Panel B: Variance of variance estimators. Note. At top, we see the variance estimator for

complete randomization can be lower, on average, than the true blocking variance in

some circumstances. At bottom, we see the complete randomization variance estimator

can be less or more variable than the blocking variance estimator.
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second and third tests, as in this case, there is no actual treatment delivered between

tests, arguably making the relationship between baseline and outcome more natural.

That being said, the trends are nearly identical for alternate configurations.

We first compare the existing design (blocking on geography) versus a

hypothetical complete randomization across all units. Under the finite-sample

context, we find a modest 4% increase in the standard error due to having blocked

in this haphazard fashion.

In the positive direction, for an experiment where we use the same set of block

sizes and proportions treated as our original experiment, but group the teachers

into these blocks by their similarity on their baseline test, we find massive

benefits to blocking, with the blocked estimator having standard errors 67% of

the size of complete randomization; this type of blocking (on a baseline test)

would be a natural choice for experimenters with control over their design. For

reference, the R2 measure of our baseline test on the outcome was about 60%.

Near the limit, if we were somehow able to obtain and block on a baseline test

that was perfectly correlated with the outcome, our standard errors fall to a

quarter of the size of complete randomization.

In the other direction, blocking randomly, using the given pattern of blocks

and proportions treated, gives around a 5% increase in the standard errors com-

pared to complete randomization, with some variation depending on how lucky

or unlucky we are in grouping similar units by chance. The 99th percentile worst

allocation, out of 1,000 random allocations tried, was an 8% increase. Identifying

the worst of a collection of blocking schemes is similar to the minimax analysis

of Nordin and Schultzberg (2020), where they investigate how various restric-

tions on randomization can lead to the risk of higher variance experiments when

one has no covariates predictive of outcome.

Differential rates of treatment can have a cost. To explore this, we examine the

case of using the blocks as given, randomizing as equal a proportion of units to

treatment as possible across blocks (here 71% with some variation due to needing

to treat integer numbers of units). This case gives a slight benefit to the original

blocking structure, with standard errors around a half percentage points smaller.

Even in this nonideal context, the cohorts were still different enough from each

other to offset the potential penalty of blocking. Randomly blocking with equal

assignment can still be worse than no blocking but not much worse; even the 99th

percentile of 1,000 trials was only a 2.5% increase.

Overall, for the hypothetical experiments motivated by these data, the worst

blocking choices were not so bad, and the best were quite good. This reinforces

our overall findings: While it is not true that blocking is always beneficial (here

for a finite-sample context), it appears difficult to make it substantially harmful.

The main concern appears to be when the harm of uninformative blocking is

amplified by substantially varying proportions assigned to treatment within

blocks. With (roughly) equal proportions of units treated across blocks, the harm

of blocking was minimal despite blocks that had little relationship to the
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outcome. We note that these explorations are all scenarios with no impact on any

unit. More generally, unequal proportions alone would not necessarily be pro-

blematic; as discussed in Section 4, with treatment effect heterogeneity, unequal

proportions treated could actually help if we happen to assign more units to more

variable treatment arms.

8. Conclusion

Different types of blocks and sampling frameworks can change the answer to

the question “Is blocking always beneficial in terms of the precision of my

estimators?” We argue that these varying factors are why the current literature

can seem confusing and contradictory. Overall, our answer is that blocking is

often beneficial, but there are many nuances.

We carefully compared complete randomization to blocking, identifying that

prior literature has often collapsed the sampling step and randomization step.

Overall, we show that blocking often, but not always, improves precision and that

guarantees about blocking depend on the framework adopted. Blocking will not

reduce precision, compared to a complete randomization, when working in the

stratified sampling framework with equal proportion of units treated across

blocks, no matter how small the blocks are or how poorly they separate the units.

Similarly, we find that in the simple random sampling setting, given a fixed

algorithm for creating flexible blocks, if one makes blocks out of covariates

independent of the potential outcomes (the “bad idea” scenario), the blocking

estimator will also be no worse than complete randomization. In the other two

main frameworks considered, however, blocking is not guaranteed to reduce

TABLE 3.

Applied Example: Numerical Illustration Results

Scenario
Relative Standard Error

Scenario T3 (T2) T2 (T1) T1 (T3)

Actual design 104.0% 102.1 99.5

Balanced assignment proportions 99.6 99.6 98.0

Randomly blocking units 104.8 (108.4) 104.8 (108.0) 104.9 (109.1)

Random with balanced assignment 100.9 (102.5) 100.9 (102.6) 100.8 (102.6)

Blocked by baseline test 67.1 93.7 88.9

Blocked by max inform baseline test 25.4 18.5 27.7

Note. Relative size of standard error for blocked vs. complete randomization under a variety of

blocking strategies applied to the Heller et al. (2012) example data. Numbers in parenthesis are the

upper 99% of 1,000 random assignments. First pair of columns used Test 2 for baseline values and

Test 3 for hypothetical outcome, second pair used Test 1 for baseline and Test 2 for outcome, and

third pair used Test 3 as baseline and Test 1 as outcome.
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variance. We also show that the variance estimators for blocked experiments do

not, as is sometimes believed, generally have higher instability than with com-

plete randomization.

These results assume that the blocks have equal proportions of units treated; if

the proportions treated differ, we lose all guarantees that blocking will reduce

variance regardless of framework. That being said, the simulations and numerical

example show the potential for large gains of blocking even with unequal pro-

portions. While the cost of blocking on a weakly predictive covariate in this

context can be larger, we still did not see substantial losses of precision.

Even when blocking is unlikely to be helpful in terms of precision, there are

several reasons an experimenter might block. First and foremost, an experimen-

ter may simply be forced to block, given the context or constraints of the experi-

ment; our work suggests that little sleep should be lost when this occurs. As the

numerical example shows, the negative impact is likely to be small. The simula-

tions further show that blocking can lead to very large gains and only a small

potential cost in finite-sample settings with equal proportion treated. Blocking

can also guarantee that one has a good balance on those covariates used to make

one’s blocks; this can increase the credibility of an experiment regardless of any

documented relationship between the covariates used and outcomes. In general,

experiments with observed systematic differences in the treatment and control

group are viewed with greater skepticism. Blocking is good insurance against

this concern.

Overall, we advocate for the advice “thoughtfully block when you can” to

emphasize that blocking is usually beneficial but must be applied with some

thought to avoid edge cases such as inadvertently creating blocks that are equal

in distribution. Where possible, researchers should form blocks out of covariates

predictive of outcome. They might consider blocking on multiple such covariates

to increase the likelihood of obtaining a beneficial blocking. Unless one can

predict how the variation in the treated and control units will differ for different

blocks, we advise keeping the proportion of units treated similar across blocks. In

terms of analysis, we show that one should analyze as a blocked experiment if

blocking was done: Completely randomized variance estimators are not neces-

sarily conservative for the blocked design.

In future investigations, it would be useful to assess other practical concerns

with blocked designs. Two such concerns are (1) degrees of freedom concerns

due to the larger number of parameters that need estimation and (2) further

assessment of the stability of variance estimators, which we touched on in Sub-

section 5.2. The trade-off between decreased precision and reduced degrees of

freedom by using blocked or matched-pairs designs has been noted by others

(e.g., Box et al., 2005, p. 93; Imbens, 2011; Snedecor & Cochran, 1989, p. 101)

and is an important practical limitation to consider when using these designs.

Future work should investigate how the real costs of degrees of freedom loss and
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instability in variance estimation depend on the experimental design within these

frameworks.
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Notes

1. Typically, the quote is attributed to Box and appears on page 103 of Box et al.

(1978).

2. Box actually provided more nuanced advice regarding the advantages and

disadvantages of blocking than is shown in this popular quote.

3. We believe algorithms that will end up with random sizes of blocks, even for

the same array of units, should follow this argument with a further condition-

ing step. Formal justification of this is beyond the scope of this work.

4. Sävje (2015) came to similar conclusions in an investigation of a specific form

of flexible blocking called threshold blocking (see Higgins et al., 2016). In

particular, Sävje (2015) discussed how the blocking may help or harm,

depending on the true relationship between the covariates used to block and

the outcome and provided a useful decomposition of the true variance in terms

of aspects of the blocking algorithm. However, threshold blocking allows for

unequal proportions of units treated within each block, which causes the

additional complications we consider in Section 4. Sävje (2015) showed no
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harm of another form of flexible blocking that does have equal proportions

treated across blocks, fixed-size blocking (which here would be forming

matched pairs), in a specific setting with a single binary covariate and block-

ing in a sensible way to match units with the same covariate values together,

to the extent possible.

5. We note, however, that we disagree with the generalization made in that paper

about the variability of the variance estimators as explained in this discussion.

6. The original experiment was also a trial of multiple versions of treatment that

varied by site, which we have collapsed, creating further imbalance in the

block sizes and proportions treated. We also imputed some missing values.
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