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In educational and psychological research, feedback has 
been examined for its ability to inform, identify, and correct 
errors (Whyte et al., 1995). Assessment for learning (Wiliam, 
2011) emphasizes the importance of feedback to promote 
learning. Specifically, it considers that students’ learning sta-
tus should be promptly evaluated, and corresponding feed-
back is given in the teaching process to promote learning.

With the development of psychometrics, cognitive diag-
nostic assessments (CDAs; Leighton & Gierl, 2007) or 
learning diagnostic assessments (Zhan, 2020a, 2020b), 
which objectively quantify students’ current learning status 
of knowledge and skills (collectively known as latent attri-
butes) and provide the corresponding cognitive diagnostic 
feedback (CDF), have drawn increasing interest. In CDAs, a 
latent attribute can either correspond to a concrete knowl-
edge point or refer to a more abstract latent construct. CDAs 
offer researchers a framework of formative assessments that 
are capable of providing educators with detailed information 
about student mastery status (e.g., mastery or nonmastery) 
of latent attributes in a given subject area, with examples 
including (a) fraction subtraction (Tatsuoka, 1983), (b) ratio-
nal number operations (Tang & Zhan, 2020), (c) voltage and 
current (Ohm’s law) (Zhan et  al., 2019), (d) geometric 
sequences (Shute et  al., 2008), (e) buoyancy (Gao et  al., 
2020), and (f) proportional reasoning (Tjoe & de la Torre, 
2013). Researchers have applied CDAs more broadly in the 
psychological and behavioral sciences, such as for learning 
mode (H. Li et  al., 2020), spatial rotation (S. Wang et al., 
2018), problem-solving competence (Zhan & Qiao, 2020), 

situational judgment (Sorrel et al., 2016), and psychological 
disorders (Templin & Henson, 2006).

Currently, several cognitive diagnosis models (CDMs) or 
diagnostic classification models (for review, see von Davier & 
Lee, 2019)—such as the most popular deterministic-inputs, 
noisy “AND” gate (DINA) model (Junker & Sijtsma, 2001) 
and its generalization (de la Torre, 2011)—have been proposed 
to provide theoretical support for CDAs. CDMs are a family of 
restricted latent class models that model relationships between 
discrete latent attributes and observed item responses. CDMs 
have the potential to provide richer individual-level diagnostic 
information (i.e., CDF) than traditional psychometric models 
(e.g., item response theory models; Ma & de la Torre, 2020). A 
previous survey has shown that teachers are eager to obtain 
detailed individual-level diagnostic information and corre-
sponding remedial strategies (Huff & Goodman, 2007).

Figure 1 shows an example of how CDF can be presented 
in the form of a diagnostic feedback report, which was used 
in this study. This report’s data come from a test containing 
18 dichotomous scoring items, which was developed to 
diagnose whether students were masters or nonmasters of 
six latent attributes related to knowledge in rational number 
operations (Tang & Zhan, 2020). This report provides feed-
back on the correct or incorrect item responses as well as 
feedback on the mastery status of each attribute. Specifically, 
this student correctly answered nine out of 18 items, and he 
or she has a high probability/certainty of mastering the latent 
attribute associated with A1 (97%), A2 (94%), and A4 
(76%). This student is almost certainly not a master of A3 
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and A6 because his or her mastery probability for those 
latent attributes is 11% and 33%, respectively. Finally, for 
A5, he or she has a probability of 57% of being a master, 
making his or her diagnosis on that latent attribute uncertain. 
It can be found that, for each student, in addition to the tradi-
tional correct–incorrect response feedback (CIRF) (Part I), 
CDF can provide additional information about his or her 
mastery status of latent attributes (Part I and Part II). The 
former is a simple item- or task-level feedback, while the 

latter introduces additional attribute-level feedback; namely, 
the latter provides more information than the former.

In the field of learning science, feedback can be divided 
into different levels according to the complexity of the infor-
mation it provides (Whyte et al., 1995), such as (a) knowl-
edge of response (KOR), which informs the respondent 
whether his/her response was correct; (b) knowledge of cor-
rect response (KCR), which informs the respondent of the 
correct response; and (c) knowledge of correct response plus 

Figure 1.  Example of a cognitive diagnostic feedback card.
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additional information (KCRI), which not only informs the 
respondent of the correct response but also details why the 
correct answer was correct or why the incorrect answer was 
not correct. At present, most feedback-related studies con-
sider KCR to be the most basic feedback mode to promote 
learning (Bangert-Drowns et al., 1991; Butler et al., 2013; 
Kluger & DeNisi, 1996). Correspondingly, in this study, the 
CIRF (Part I in Figure 1) and the CDF (Part I and Part II in 
Figure 1) belong to KCR and KCRI, respectively.

However, adding more information to feedback does not 
necessarily promote learning, as we subconsciously assume. 
There is debate as to whether informational feedback (i.e., 
KCRI) is more effective than simple feedback (i.e., KOR or 
KCR) in promoting learning. Some researchers believe that 
informational feedback can promote students’ learning (e.g., 
Corbett et al., 1997; Gibbons & Fairweather, 1998). Some 
studies even suggest that the more information feedback 
provides, the greater the effect on promoting learning (Dunn 
et al., 2012; Maddox et al., 2008). For example, Shute et al. 
(2008) compared the effect of KOR and KCRI in promoting 
learning and found that KCRI was more effective for student 
learning than KOR. By contrast, some researchers argue that 
increasing the complexity of feedback is detrimental to 
learners (e.g., Bangert-Drowns et  al., 1991). Some studies 
on how feedback affects learning have found that KCRI has 
no significant advantage over KOR or KCR (e.g., Andre & 
Thieman, 1988; Kulhavy et al., 1985; Peeck, 1979; Whyte 
et al., 1995). For example, Butler et al. (2013) found no sig-
nificant difference between KCR and KCRI in promoting 
students’ performance on repeated questions, but that the lat-
ter is more beneficial in promoting students’ performance on 
new inference questions.

For the existing studies related to feedback, in addition 
to the lack of a unified conclusion on whether increased 
information in the feedback is beneficial to promoting 
learning, some other issues might affect their conclusions. 
First, in most studies, the dependent variable used to reflect 
learning performance is the observed raw score rather than 
latent constructs, such as latent ability or cognitive attri-
butes. The raw scores contain a lot of noise information, 
and the latent variable models can estimate the true abili-
ties, which might be more informative. Second, some stud-
ies used tests with repeated measure design or discrete, 
unlinked tests. The former cannot exclude the practice/
memory effect, and the latter cannot ensure the compara-
bility of test results. Third, most studies used a pretest–
posttest design involving only two time points, which may 
not reflect the interaction effect between feedback modes 
and test times. Studies that include more test time points 
can better map how the effect of feedback on learning 
changes over time. To this end, it may be better to use a 
longitudinal CDM to analyze the data from a longitudinal 
CDA involving more than two time points to explore the 
impact of feedback on promoting learning.

In contrast to cross-sectional CDAs, which fail to assess 
students’ learning development (e.g., Chen, 2012; Liu et al., 
2013), longitudinal CDAs evaluate students’ latent attributes 
and identify their strengths and weaknesses over a period of 
time (Zhan, 2020a). The data collected from longitudinal 
CDAs have provided researchers with opportunities to 
develop models for learning tracks, which can be used to 
diagnose individual developmental trajectories over time 
and evaluate the effectiveness of CDF and corresponding 
remedial teaching. In recent years, several longitudinal 
CDMs have been proposed (for reviews, see Zhan, 2020b), 
such as the longitudinal higher order DINA (Long-DINA) 
model (Zhan et  al., 2019), the latent transition analysis-
DINA model (F. Li et al., 2016), and some extensions (e.g., 
Huang, 2017; Kaya & Leite, 2017; Madison & Bradshaw, 
2018; Pan et al., 2020; S. Wang et al., 2018; Zhang & Chang, 
2020). The results of these studies suggest that longitudinal 
CDMs as a methodology can diagnose each student’s devel-
opmental trajectory.

Several studies have attempted to explore the effectiveness 
of CDF in promoting learning; however, their results do not 
seem to be satisfactory. For example, Wu (2019) compared 
the learning facilitation effects of online individualized reme-
dial teaching and traditional group-based remedial teaching; 
the former utilizing the attribute-level feedback without KOR 
(i.e., only Part II in Figure 1), the latter utilizing the class-level 
information provided to teachers to illustrate students’ mas-
tery proportion of each attribute. The results indicated that, in 
remedial teaching, individualized remedial teaching is more 
effective than group-based remedial teaching. L. Wang et al. 
(2020) compared the learning facilitation effects of two types 
of individualized remedial teaching: explaining the meaning 
of students’ nonmastered attributes (i.e., CDF) and narrating 
the correct problem-solving procedures (i.e., KCRI with task-
level information). The results indicated that utilizing CDF in 
individualized remedial teaching is more effective in promot-
ing learning than utilizing KCRI with task-level information. 
Ren et al. (2021) compared the learning facilitation effects of 
targeted and nontargeted intervention materials; the former 
included students’ poorly mastered attributes (i.e., only Part II 
in Figure 1), and the latter contained all the attributes involved 
in the tests (i.e., control group with untargeted feedback). The 
results of this study indicated that providing attribute-level 
feedback is more effective in promoting learning than provid-
ing untargeted feedback. However, the findings cannot answer 
whether attribute-level feedback is more effective than any 
other traditional feedback (e.g., KOR or KCR). Overall, these 
existing studies have some commonalities. First, they all 
adopted the pretest–posttest design with parallel tests. Second, 
they all repeatedly used the cross-sectional CDM for data 
analysis in pretest and posttest. Third, they all performed sta-
tistical hypothesis testing only on the raw scores and not the 
latent variables. Fourth, since CDF (or attribute-level feed-
back without KCR) is a necessary but not sufficient condition 
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for remedial teaching, Wu’s (2019) and L. Wang et al.’s (2020) 
studies confounded the effects of CDF and remedial teaching 
on promoting learning. It can be argued that there is still a lack 
of research to explore the effectiveness of CDF (without 
remedial teaching) in promoting learning; more importantly, 
there is also a lack of research that has attempted to use longi-
tudinal CDA to explore the effectiveness of feedback in pro-
moting learning.

This study aims to explore the effectiveness of CDF in 
promoting learning by using longitudinal CDA. To this end, 
this study conducts a quasi-experiment (Hacker et al., 2000) 
by utilizing a longitudinal CDA to compare the effect of 
three feedback modes on promoting learning, including 
CDF, CIRF, and no feedback. As a quasi-experiment study, 
this study attempts to find evidence that CDF can promote 
learning and has a more significant facilitation effect on 
learning than CIRF. The results of this study help us under-
stand whether adding attribute-level information to KCR 
helps promote learning, namely, whether KCRI with attri-
bute-level information is more effective than KCR in pro-
moting learning.

Method

Instrument

A developed longitudinal CDA of rational number opera-
tions (Tang & Zhan, 2020) is used to carry out this study. As 
the repeated measure design is not always feasible in longi-
tudinal educational measurement, especially for high-stakes 
tests, the developed instrument in this study used the design 
of the parallel test, which consists of three parallel tests, 
namely Formal Test A, Formal Test B, and Formal Test C. A 
part of the data underlying this longitudinal instrument has 
been used as an empirical example in previous methodologi-
cal studies (e.g., Zhan, 2021; Zhan & He, 2021).

Since the development process is not the focus of this 
study, we only give a brief introduction to it, and more 
details about it can be found in Tang and Zhan (2020). The 
development process contains three main phases: (a) the 
Q-matrix (Tatsuoka, 1983) construction and item develop-
ment, (b) the pilot test for item quality monitoring (the pre-
liminary screening of the items is conducted mainly 
according to item difficulty and discrimination based on 

classical test theory), and (c) the formal test for test quality 
control (including the Q-matrix validation [de la Torre, 
2008], reliability and validity testing [W. Wang et al., 2015], 
differential item functioning checking [Hou et  al., 2014], 
and parallel tests checking). The results indicated that the 
reliability and validity of the developed instrument are high 
and that the three tests included in it meet the requirements 
of parallel tests. Overall, the developed instrument can be 
used for longitudinal CDA to track students’ learning.

The three parallel tests have the same Q-matrix (see 
Figure 2), which means they contain the same number of 
items and the same number of attributes. Each test contains 
18 dichotomous items, including 12 multiple-choice items 
and six calculation items. Note that, as parallel tests, each 
test contains a different set of items than the others. Six attri-
butes of rational number operations are required: (A1) ratio-
nal numbers, (A2) related concepts of rational numbers, 
(A3) axis, (A4) addition and subtraction of rational numbers, 
(A5) multiplication and division of rational numbers, and 
(A6) mixed operation of rational numbers. These six attri-
butes followed a hierarchical structure (Leighton et  al., 
2004; see Figure 3), in which A1 to A3 are structurally inde-
pendent, and A4 and A5 are both needed to master A6. A 

Figure 2.  Q-matrix of the instrument of rational number operations.
Note. Blank means “0” and gray means “1”; A1 = rational numbers; A2 = related concepts of rational numbers; A3 = axis; A4 = addition and subtraction 
of rational numbers; A5 = multiplication and division of rational numbers; A6 = mixed operation of rational numbers.

Figure 3.  Attribute hierarchy of the rational number 
operations.
Note. A1 = rational numbers; A2 = related concepts of rational numbers; 
A3 = axis; A4 = addition and subtraction of rational numbers; A5 = mul-
tiplication and division of rational numbers; A6 = mixed operation of ratio-
nal numbers.
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reachability matrix1 was contained in the Q-matrix, and at 
least two items assessed each attribute to make the Q-matrix 
complete and make the model identifiable (Ding et al., 2010; 
Gu & Xu, 2020).

Research Design and Analysis

As a classroom study or field experiment, in order not to 
interfere with the regular teaching progress and to ensure 
that the results have high ecological validity, this study 
adopted a quasi-experimental design. Researchers cannot 
and should not strictly control some extraneous variables 
that may affect the research results in the actual teaching 
situation. For example, students cannot be forbidden to learn 
other relevant knowledge outside the research time, to ensure 
minimal interruption of students’ learning and for equity and 
humanitarian reasons. Hence, we assume that everything the 
students do outside of the research time is naturally occur-
ring and in line with real-life situations. Although the quasi-
experimental design cannot strictly control extraneous 
variables, it may be the best choice when studying behavior 
and cognition in the natural environment (Hacker et  al., 
2000). We need to be cautious when making causal infer-
ences based on the results from quasi-experiments (Shadish 
et al., 2002).

This study followed a 3 × 3 design. The independent 
variables were the feedback mode (with three levels, namely 
the CDF, CIRF, and no feedback) and the test time (with 
three levels, namely the first time, the second time, and the 
third time), with the former as the between-subject variable 
and the latter as the within-subject variable. The dependent 
variable was the mathematical performance, reflected in the 
raw scores and model-based diagnostic results on the three 
parallel tests.

To select a suitable model, three longitudinal CDMs with 
different condensation rules (i.e., conjunctive, disjunctive, 
and compensatory condensation rules [Maris, 1995, 1999]) 
were used to fit this data (see Section A1 in the Supplemental 
Appendix, available in the online version of this article, for 
details). The results indicated that the simplified Long-
DINA (sLong-DINA) model (Zhan et al., 2019) was the best 
fitting model among those evaluated.2 The sLong-DINA 
model assumes that the correct item response requires that 
the attributes obey the conjunctive condensation rule, which 
was verified during the instrument development phase (Tang 
& Zhan, 2020).

There are two main data analysis strategies in longitudi-
nal assessments: simultaneous estimation strategy using the 
longitudinal model and separated estimation strategy by 
repeatedly using the cross-sectional model (Zhan, 2020a). 
The former requires students to wait until all the tests are 
complete before an analysis of the results becomes avail-
able, whereas the latter can provide students with timely 
feedback after each test. Timely feedback on students’ 

performance has generally been shown to support student 
learning (Kluger & DeNisi, 1996; Shute et  al., 2008). 
However, considering that the simultaneous estimation strat-
egy provides more accurate parameter estimation than the 
separated estimation strategy (Zhan, 2020a), in this study, 
the former is used, together with the sLong-DINA model, to 
obtain the final model-based diagnostic results. In contrast, 
the latter is used with the cross-sectional DINA model to 
provide students with timely feedback after each test (e.g., 
Wu, 2019).

Participants

The participants are students in the first semester of junior 
high school, Grade 7 (around 13 years old). By adopting 
convenience sampling, 289 students from six parallel classes 
of a similar academic level (according to students’ admis-
sion scores) participated in this quasi-experiment.3 The six 
classes were divided into three groups (i.e., two classes in 
each group), including the group with CDF (denoted as the 
diagnosis group), the group with CIRF (denoted as the tradi-
tional group), and the group with no feedback (denoted as 
the control group). These six classes have two math teachers 
(each teacher teaches three classes). To balance the impact 
of teachers’ teaching styles on students, the three classes 
taught by each teacher were randomly assigned into three 
different groups. It should be noted that, as a classroom 
study, students were randomly assigned at the class level 
rather than the individual level. For ease of exposition, we 
renumbered the six classes, as shown in Table 1.

Students were excluded according to the following rules: 
missing more than five items in three tests, missing any of 
three tests, and not answering carefully (e.g., off-topic). 
After data cleaning, 90, 92, and 94 valid students (276 stu-
dents in total) were collected in the diagnosis, traditional, 
and control groups, respectively. According to the results of 
previous studies (e.g., Zhan, 2020a; Zhan et al., 2019), such 
numbers of students meet the parameter estimation require-
ments of the sLong-DINA model.

Procedure

Figure 4 illustrates the research flowchart. We began by 
handing out the learning materials on knowledge of rational 

Table 1
Assignment of Six Classes in Different Groups

Group Teacher 1 Teacher 2

Diagnosis group Class 1 Class 2
Traditional group Class 3 Class 4
Control group Class 5 Class 6

Note. The class number in the table is not the original class number.
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Figure 4.  Research flowchart.
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number operations to all three groups of students (a sample 
of the learning material for attribute one can be found in the 
online Supplemental Figure S1). Students were asked to 
study the learning materials and take the first test 2 days 
later. Then, at the first test time point, all three groups of 
students took Formal Test A. Twenty-four hours after the end 
of the first test (Butler et al., 2007), CDF (i.e., Part I and Part 
II in Figure 1) and CIRF (i.e., Part I in Figure 1) were pro-
vided to the students in the diagnosis group and the students 
in the traditional group, respectively. After receiving the 
feedback report, students voluntarily pursued self-remedia-
tion by using the initial learning materials. They did not 
receive any targeted instruction (e.g., remedial teaching) 
other than the feedback reports. In addition, to prevent stu-
dents in the control group from proofreading their answers, 
they did not receive feedback or instruction until all three 
tests were completed.

Subsequent tests were performed 1 week after the initial 
test. The procedure for the second test time point and the 
third test time point was the same as that for the first test 
time point. All classes administered the three parallel tests in 
the same order. Finally, to understand how often students use 
feedback reports and their subjective feelings about whether 
the feedback was helpful to their learning, students in the 
diagnosis group and the traditional group were required to 
complete a questionnaire survey after all tests (see Section 
A2 in the online Supplemental Appendix). The results show 
that most students used their feedback reports and believed 
that feedback helped their learning.

In addition, for humanitarian reasons, the students in the 
control group and the traditional group also received their 

CDF after the experiment. No financial compensation was 
provided for completing the experiment.

Results

Figure 5 illustrates the developmental trend of the aver-
age raw scores of the three groups (more details can be found 
in the online Supplemental Table A2). The average raw 
scores of all three groups increased over time. The largest 
increase was seen in the diagnosis group, followed by the 
traditional and control groups.

A two-factor mixed-design analysis of variance (ANOVA) 
was performed, using feedback mode and test time as the 
independent variables and the raw score as the dependent 
variable. The results of the normality test, the homogeneity 
test of variance, and Mauchly’s test of sphericity on the raw 
scores are reported in Section A3 in the online Supplemental 
Appendix. As shown in the results presented in Table 2, a 
significant interaction was found between feedback mode 
and test time. After performing a simple effect analysis 
(Tables 3 and 4), no significant difference was found between 
the three groups of students at the first test time; however, a 
significant difference between the diagnosis group and the 
control group was found at the second and third test times, 
and a significant difference between the three groups was 
found at the third test time. In addition, the diagnosis group 
and traditional group did not show significant differences 
until the third test time (i.e., after two times of feedback), 
indicating that the pretest–posttest design in most previous 
studies that included only one intervention may not fully 
demonstrate the advantages of CDF over CIRF.

Meanwhile, there were significant differences between 
the three time points for the cognitive and traditional groups, 
indicating that CDF and CIRF may have a continuous pro-
moting effect on learning. By contrast, there were significant 
differences between the third test time and previous test 
times for the control group. Overall, it was clear that the 
learning progress of the traditional and control groups was 
not as good as that of the students in the diagnosis group.

Figure 6 illustrates the developmental trend of the aver-
age general latent abilities of the three groups (more details 
can be found in online Supplemental Table A3). Overall, the 
increase was the greatest in the diagnosis group, followed by 
the traditional group and control group. Compared with 
Figure 5, it can be seen that the developmental trend of the 
average general latent ability of each of the three groups of 
students was roughly but not the same as that of their aver-
age raw score.

A two-factor mixed-design ANOVA was performed, 
using feedback mode and test time as the independent vari-
ables and general latent ability as the dependent variable. 
The normality test, the homogeneity test of variance, and 
Mauchly’s test of sphericity on the general latent ability are 
reported in Section A3 in the online supplemental appendix. 
As shown in the results in Table 5, a significant interaction 

Figure 5.  Developmental trend of average raw scores in 
different groups over time.
Note. t = test time point; CDF = cognitive diagnostic feedback; CIRF = 
correct–incorrect response feedback; NO = no feedback.
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was found between feedback mode and test time. After per-
forming a simple effect analysis (Tables 6 and 7), it can be 
seen that although most of the results were consistent with 
the raw score results, there were a few inconsistent results. 
For example, no significant difference was found between 
the traditional and control groups across all three test times, 
indicating that providing CIRF may not be effective in pro-
moting learning compared with no feedback. Meanwhile, 
for the control group, there was no significant difference 
between the three test times, indicating that the general latent 
abilities of students do not show significant changes over 
time.

As stated earlier, students were randomly assigned at the 
class level. To investigate whether the effects of different 
feedback modes on two classes within the same group are 

similar, Figure 7 shows the developmental trend of the aver-
age raw scores and general latent abilities of the six classes 
(more details can be found in online Supplemental Table 
A4). It can be seen that the two classes within the same 
group have roughly the same developmental trend in both 
raw scores and general latent abilities; from another perspec-
tive, the difference between the effects of the different feed-
back modes is robust to the classes taught by the two 
teachers.

Figure 8 shows the developmental trend of the mastery 
proportion of the six attributes of the three groups over 
time. According to the mastery proportion on the first test 
time, it can be seen that the six attributes differ in difficulty, 
which is related to the hierarchical structure between them 
(see Figure 3). For example, attribute A1 is the easiest, 

Table 2
Mixed-Design Analysis of Variance of Different Feedback Modes and Test Times for Raw Score

df F p η2 Partial η2 BF
10

Feedback mode 2 5.69 .004 0.04 0.04 9.141
Test time 1.84 493.58 <.001 0.54 0.64 >100
Feedback mode * Test time 3.67 70.74 <.001 0.16 0.34 >100

Note. The assumption of sphericity had been violated, the Greenhouse–Geisser correction adjusted the degrees of freedom (df) for the within-subject effect; 
the Bayes factor (BF

10
) was calculated using the JASP software based on the Bayesian estimation. For example, BF

10
 = 9.141 means that the current data 

are 9.141 times more likely to occur under the alternative hypothesis (H1) being true than under the null hypothesis (H0) being true. Dienes (2014) suggested 
that BF

10
 less than 1, 1/3, and 1/10 represents weak, moderate, and substantial evidence for the H0, respectively. By contrast, BF

10
 greater than 1, 3, and 10 

represents weak, moderate, and substantial evidence for the H1, respectively.

Table 3
Simple Effect Analysis of Feedback Modes for Raw Score

t = 1 t = 2 t = 3

  B BF
10

T D B BF
10

T D B BF
10

T D

CDF–CIRF .989 0.161 1.000 1.000 .209 0.216 .455 .454 .003 17.759 .005 .005
CDF–NO .344 0.243 .718 .717 .001 12.654 .004 .004 <.001 >100 <.001 <.001
CIRF–NO .349 0.237 .723 .731 .043 0.537 .152 .151 .004 4.958 .020 .020

Note. CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; t = test time point; B = p value of Bonferroni 
test; BF

10
 = Bayes factor; T = p value of Tamhane’s T2 test; D = p value of Dunnett’s T3 test.

Table 4
Simple Effect Analysis of Test Times for Raw Score

CDF CIRF NO

  B BF
10

T D B BF
10

T D B BF
10

T D

(t = 1)–(t = 2) <.001 >100 .034 .034 <.001 >100 .560 .559 .466 0.148 .999 .999
(t = 1)–(t = 3) <.001 >100 <.001 <.001 <.001 >100 .006 .006 <.001 >100 .469 .468
(t = 2)–(t = 3) <.001 >100 <.001 <.001 <.001 >100 .143 .143 <.001 >100 .564 .563

Note. CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; t = test time point; B = p value of Bonferroni 
test; BF

10
 = Bayes factor; T = p value of Tamhane’s T2 test; D = p value of Dunnett’s T3 test.
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while attribute A6 is, comparatively, the most difficult. In 
the diagnosis group, the mastery proportion of each attri-
bute improved over time; in the traditional group, although 
the mastery proportion of each attribute also improved over 
time, the improvement was smaller than that in the diagno-
sis group. By contrast, there was a slight improvement in 
the mastery proportion of each attribute in the control group, 
especially for the relatively tricky attributes.

A two-factor mixed-design ANOVA was performed, 
using feedback mode and test time as the independent vari-
ables and the mastery status of each attribute as the depen-
dent variable. The results are presented in Table 8, which 
allows us to compare the effects of different feedback meth-
ods at a deeper and more advanced attribute level. Combining 
the results of general latent ability, it can be seen that the 
facilitation effects of the different feedback modes for each 
attribute were generally consistent with those for general 
latent abilities, but some differences remained. For example, 
although for general latent abilities, there were no signifi-
cant differences between the traditional and control groups 
at any of the three time points, there were significant differ-
ences between the two groups for some attributes (e.g., attri-
butes A2 and A3) at the third test time (i.e., after two times 
of feedback). In addition, based on the results for raw scores 
and general latent ability, it was found that the diagnosis and 
traditional groups did not show significant differences until 
the third test time; this result is corroborated by the degree of 
change in each attribute. Specifically, for relatively easy 
attributes (e.g., attributes A1 and A2), both CDF and CIRF 
can effectively promote students to master these attributes. 

At the same time, the relative advantage of CDF gradually 
emerged as the difficulty of the attributes increased and the 
amount of feedback increased.

In summary, for the research questions in this study, the 
results of this quasi-experimental study provided some evi-
dence for the two conclusions:

1.	 CDF can effectively promote student learning com-
pared with no feedback; and

2.	 CDF is more effective than CIRF in promoting stu-
dent learning, especially for relatively tricky attri-
butes.

Discussion

To explore whether CDF can promote learning and 
whether it is more effective than CIRF in promoting learn-
ing, this study conducted a quasi-experiment using a longi-
tudinal CDA of rational number operations to compare the 
effectiveness of three feedback modes: CDF, CIRF, and no 
feedback. The results of this quasi-experimental study pro-
vided some evidence for the conclusions that CDF can pro-
mote students’ learning and that it is more effective than 
CIRF in promoting learning, especially for difficult knowl-
edge areas.

The findings of this study support those of some previous 
studies. For example, the finding that CDF is significantly 
better than CIRF in promoting students’ mathematical per-
formance supports the idea that the more information the 
feedback provides, the more helpful it is in promoting learn-
ing (Dunn et al., 2012; Maddox et al., 2008). In other words, 
the results of this study support the view that KCRI is more 
beneficial than KCR in promoting learning. Therefore, this 
study’s results also help clarify some of the controversies 
surrounding the effectiveness of informational feedback in 
promoting learning. In CDAs, increasing the complexity of 
feedback (i.e., providing additional information about latent 
attribute mastery status) was more beneficial in promoting 
students’ learning. The conclusions of this study add some 
insight into how informational feedback affects learning.

In addition, the results of this study cannot fully support 
the view that CIRF can effectively promote learning. 
Specifically, the analysis of raw scores showed that CIRF 
was more effective in promoting student learning than no 
feedback, which supported the view of some previous stud-
ies that CIRF can promote learning (e.g., Butler et al., 2007; 
Mullet et al., 2014); however, the analysis of general latent 
ability showed no significant difference between CIRF and 
no feedback in promoting learning. By looking at the 
response data of individual students in the traditional group, 
we found that some students showed an increase in raw 
scores but almost no change in general latent ability. Further 
observation revealed that the number of correct responses 
for these students increased at subsequent test times for 

Figure 6.  Developmental trend of average general latent 
ability in different groups over time.
Note. t = test time point; CDF = cognitive diagnostic feedback; CIRF = 
correct–incorrect response feedback; NO = no feedback.
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items that tested accessible attributes, but the number of cor-
rect responses for items that tested difficult attributes 
remained almost unchanged. One possible explanation of 
this phenomenon is that CIRF promotes mastery of rela-
tively easy attributes but has little to no facilitation effect on 
relatively tricky attributes. It is challenging to promote the 
development of general latent ability. In short, given that the 
effectiveness of CIRF in promoting learning is still incon-
clusive, the results of this study suggest that providing stu-
dents with informational feedback (e.g., CDF) in subsequent 
practice teaching may be a superior option.

Despite its promising results, this study still has some 
limitations that may affect the accuracy of our conclusions. 
First, to examine whether cognitive diagnosis has its claimed 
function to promote learning, this study explored whether 
CDF promotes learning and whether it promotes learning 

more effectively than traditional feedback. In essence, this 
study explored whether KCRI with attribute-level informa-
tion is more effective than KCR, rather than other types of 
KCRI (e.g., KCRI with correct problem-solving proce-
dures), in promoting learning. However, providing model-
based feedback is difficult for practitioners, who may still 
prefer other types of KCRI that are relatively easy to imple-
ment. Therefore, it is still necessary to explore whether CDF 
promotes learning more effectively than other types of KCRI 
in further studies.

Second, since the quasi-experimental design cannot 
strictly control extraneous variables, the results of this 
study can only provide evidence to support the idea that 
CDF is more effective than CIRF in promoting learning, 
and no causal inference can be drawn that the use of CDF 
led to a better academic performance of students in the 

Table 5
Mixed-Design Analysis of Variance of Different Feedback Modes and Test Times for General Latent Ability

df F p η2 Partial η2 BF
10

Feedback mode 2 4.470 .012 0.032 0.032 4.411
Test time 1.57 562.274 <.001 0.496 0.673 >100
Feedback mode * Test time 3.14 148.706 <.001 0.263 0.521 >100

Note. The assumption of sphericity had been violated; the Greenhouse–Geisser correction adjusted the degrees of freedom (df) for the within-subject effect. 
The Bayes factor (BF

10
) was calculated using the JASP software based on the Bayesian estimation. For example, BF

10
 = 4.411 means that the current data 

are 4.411 times more likely to occur under the alternative hypothesis (H1) being true than under the null hypothesis (H0) being true. Dienes (2014) suggested 
that BF

10
 less than 1, 1/3, and 1/10 represents weak, moderate, and substantial evidence for the H0, respectively. By contrast, BF

10
 greater than 1, 3, and 10 

represents weak, moderate, and substantial evidence for the H1, respectively.

Table 6
Simple Effect Analysis of Feedback Modes for General Latent Ability

t = 1 t = 2 t = 3

  B BF
10

T D B BF
10

T D B BF
10

T D

CDF–CIRF 1.000 0.161 1.000 1.000 .683 0.311 .551 .550 <.001 >100 <.001 <.001
CDF–NO 1.000 0.164 .994 .994 .008 11.951 .007 .007 <.001 >100 <.001 <.001
CIRF–NO 1.000 0.161 .998 .998 .212 0.732 .200 .199 .344 0.461 .344 .342

Note. CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; t = test time point; B = p value of Bonferroni 
test; BF

10
 = Bayes factor; T = p value of Tamhane’s T2 test; D = p value of Dunnett’s T3 test.

Table 7
Simple Effect Analysis of Test Times for General Latent Ability

CDF CIRF NO

  B BF
10

T D B BF
10

T D B BF
10

T D

(t = 1)–(t = 2) .004 19.570 .004 .004 .145 0.816 .176 .175 1.000 0.158 1.000 1.000
(t = 1)–(t = 3) <.001 >100 <.001 <.001 .063 3.756 .028 .028 1.000 0.230 .753 .751
(t = 2)–(t = 3) .021 3.024 .037 .037 1.000 0.168 .983 .983 1.000 0.211 .818 .817

Note. CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; t = test time point; B = p value of Bonferroni 
test; BF

10
 = Bayes factor; T = p value of Tamhane’s T2 test; D = p value of Dunnett’s T3 test.
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Figure 7.  Developmental trend of average raw score and average general latent ability in different classes over time.
Note. t = test time point; CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; the class number in the 
figure is not the original class number.

Figure 8.  Developmental trend of mastery proportion of attributes over time.
Note. A1 = rational numbers; A2 = related concepts of rational numbers; A3 = axis; A4 = addition and subtraction of rational numbers; A5 = multipli-
cation and division of rational numbers; A6 = mixed operation of rational numbers; t = test time point; CDF = cognitive diagnostic feedback; CIRF = 
correct–incorrect response feedback; NO = no feedback.
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diagnosis group than in the traditional group. For example, 
during the experiment, students still receive regular teach-
ing, and other newly learned mathematical knowledge may 
have an impact on the knowledge of rational number oper-
ations; in addition, factors such as learning motivation may 
also affect the results of this study in the form of a mediat-
ing variable: when students get more information, they 
may become more interested or more motivated in specific 
knowledge and thus study more. In further studies, 
researchers can measure some extraneous variables, for 
example, using surveys or questionnaires to collect extra 
learning information (not due to the experiment) from 

participants. If such information can be collected, then a 
more valid conclusion can be drawn.

Third, to ensure the comparability of the results at each 
time point, the adopted longitudinal instrument was devel-
oped based on the design of the parallel test. However, in 
practice, perfectly parallel tests do not exist. Thus, the varia-
tion in results at different time points may be partly due to 
the nonparallelism error of the instrument. In addition, alter-
nate-form items in parallel tests may not eliminate practice/
memory effects, which may also affect the results of this 
study. In further studies, a longitudinal instrument with the 
anchor-item design could be adopted.

Table 8
Mixed-design Analysis of Variance of Different Feedback Modes and Test Times for Latent Attributes and Corresponding Simple Effect 
Analyses

Attribute

Difference between test times Difference between feedback modes

Feedback mode p Simple effect analysis Test time p Simple effect analysis

A1 CDF .016 (t = 1)–(t = 3)* t = 1 .598  
CIRF .007 (t = 1)–(t = 3)** t = 2 .043  
NO .314 t = 3 .007 CDF–NO*

CIRF–NO†

A2 CDF <.001 (t = 1)–(t = 2)** (t = 1)–(t 
= 3)***

t = 1 .185  

CIRF .001 (t = 1)–(t = 3)*** t = 2 <.001 CDF–NO***
CIRF–NO***

NO .357 t = 3 <.001 CDF–NO***
CIRF–NO***

A3 CDF .008 (t = 1)–(t = 3)**
(t = 2–(t = 3)†

t = 1 .569  

CIRF .786 t = 2 .134  
NO .906 t = 3 .007 CDF–NO***

CDF–CIRF†

CIRF–NO**
A4 CDF .004 (t = 1)–(t = 3)** (t = 2)–(t 

= 3)*
t = 1 .632  

CIRF .477 t = 2 .446  
NO .956 t = 3 .002 CDF–NO***

CDF–CIRF†

A5 CDF .037 (t = 1)–(t = 3)* t = 1 .658  
CIRF .381 t = 2 .050  
NO .794 t = 3 .017 CDF–NO*

CDF–CIRF†

CIRF–NO†

A6 CDF <.001 (t = 1)–(t = 2)†

(t = 1)–(t = 3)***
(t = 2)–(t = 3)†

t = 1 .110  

CIRF .903 t = 2 <.001 CDF–CIRF†

CDF–NO***
NO 1.000 t = 3 <.001 CDF–CIRF***

CDF–NO***

Note. CDF = cognitive diagnostic feedback; CIRF = correct–incorrect response feedback; NO = no feedback; t = test time point.
†p < .08 (marginally significant). *p < .05. **p < .01. ***p < .001.
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Fourth, for ease of operation and to balance the impact of 
teachers’ teaching styles on students, only a class-level ran-
dom assignment was used in the current study. Even though 
the results suggested that the difference between the effects 
of the different feedback modes is robust to the classes 
taught by the two teachers, the relatively small number of 
classes may not completely exclude the influence of within-
group similarity on the results. From this perspective, the 
current study’s findings are still preliminary findings; thus, a 
much larger sample and/or a design with individual-level 
random assignment are still needed in the future to permit 
meaningful inferences and further verify the findings of the 
current study.

Fifth, the students in the control group were not given 
feedback reports until the end of the three tests, which is 
unusual in a practical test situation. This difference could 
have affected the ecological validity of the conclusions of 
this work (fortunately, the comparison between the diagno-
sis group and the traditional group is not affected).

Sixth, when performing ANOVA on general latent ability 
and latent attributes, the current study ignores the impact of 
standard errors of estimates, affecting the analysis results to 
a certain extent. In further studies, we can try to incorporate 
the feedback mode as a covariate for change over time and 
directly test the significance of the coefficient of this covari-
ate. Of course, since the current sLong-DINA model does 
not have this function, an extended model needs to be devel-
oped in the future.

Last but not least, some readers may be concerned about 
whether the accuracy of the model-based estimated classi-
fication will affect the effectiveness of CDF. To our under-
standing, this influence may indeed exist. First, the 
classification accuracy is related to the reliability and 
validity of the measurement instrument and the degree of 
the model-data fitting. Therefore, it is recommended that 
practitioners should ensure that the instrument has suffi-
cient reliability and validity and should have some data 
analysis capabilities (e.g., using specific readily available 
software) before applying this type of method. Second, it is 
true that the CDF as reference information still cannot be 
guaranteed to be 100% correct under the premise of ensur-
ing the instrument has sufficient reliability and validity and 
the appropriate model. However, students or teachers can 
refer to the degree of certainty of classification in CDF to 
make further self-judgments. Third, in practice, we should 
not be limited to a specific feedback mode but try to com-
bine multiple feedback modes (e.g., KCRI with attribute-
level information and correct problem-solving procedures) 
to promote learning.

Open Practices

The data and analysis files for this article can be found at https://
doi.org/10.3886/E153061V1

Acknowledgments

This work was supported by the MOE (Ministry of Education in 
China) Project of Humanities and Social Sciences (Grant No. 
19YJC190025) and the National Natural Science Foundation of 
China (Grant No. 31900795).

ORCID iD

Peida Zhan  https://orcid.org/0000-0002-6890-7691

Notes

1. A reachability matrix specifies the direct and indirect rela-
tionships among the hierarchical attributes.

2. In contrast to the complete version, the special dimensions 
used to account for local item dependence (e.g., the practice/mem-
ory effect) among anchor/repeated items at different time points 
are ignored in the simple version to reduce model complexity and 
computational burden. Since the parallel tests design rather than the 
anchor-item design was used in this study, this made the simplified 
model more suitable than the complete model.

3. These students are not the same as those in the instrument 
development phase.
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