
education 
sciences

Article

Smartphone Handwritten Circuits Solver Using Augmented
Reality and Capsule Deep Networks for Engineering Education

Marah Alhalabi 1,† , Mohammed Ghazal 1,*,† , Fasila Haneefa 1, Jawad Yousaf 1 and Ayman El-Baz 2

����������
�������

Citation: Alhalabi, M.; Ghazal, M.;

Haneefa, F.; Yousaf, J.; El-Baz, A.

Smartphone Handwritten Circuits

Solver Using Augmented Reality and

Capsule Deep Networks for

Engineering Education. Educ. Sci.

2021, 11, 661. https://doi.org/

10.3390/educsci11110661

Academic Editors: Kendall Hartley

and Alberto Andujar

Received: 29 September 2021

Accepted: 12 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical, Computer and Biomedical Engineering Department, College of Engineering, Abu Dhabi University,
Abu Dhabi 59911, United Arab Emirates; marah.alhalabi@adu.ac.ae (M.A.);
1032497@students.adu.ac.ae (F.H.); jawad.yousaf@adu.ac.ae (J.Y.)

2 Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; ayman.elbaz@louisville.edu
* Correspondence: mohammed.ghazal@adu.ac.ae
† These authors contributed equally to this work.

Abstract: Resolving circuit diagrams is a regular part of learning for school and university students
from engineering backgrounds. Simulating circuits is usually done manually by creating circuit
diagrams on circuit tools, which is a time-consuming and tedious process. We propose an innovative
method of simulating circuits from hand-drawn diagrams using smartphones through an image
recognition system. This method allows students to use their smartphones to capture images instead
of creating circuit diagrams before simulation. Our contribution lies in building a circuit recognition
system using a deep learning capsule networks algorithm. The developed system receives an image
captured by a smartphone that undergoes preprocessing, region proposal, classification, and node
detection to get a Netlist and exports it to a circuit simulator program for simulation. We aim
to improve engineering education using smartphones by (1) achieving higher accuracy using less
training data with capsule networks and (2) developing a comprehensive system that captures
hand-drawn circuit diagrams and produces circuit simulation results. We use 400 samples per class
and report an accuracy of 96% for stratified 5-fold cross-validation. Through testing, we identify
the optimum distance for taking circuit images to be 10 to 20 cm. Our proposed model can identify
components of different scales and rotations.

Keywords: smartphones and learning; engineering education; circuit diagrams; augmented reality;
capsule networks; deep learning; Netlist

1. Introduction

Circuit simulations are a standard part of engineering education as well as professional
environments. Simulations are required to find the results of the circuit sketch, either drawn
or printed. Different desktop software are available such as Multisim, Simulink, PSPICE,
CircuitLAB, etc., often with mobile-suited versions. However, the convenience of a tool
using smartphones that can capture circuit images and instantly simulate the circuit is
immense for education and professional fields, as shown in Figure 1.

Educators continue to devise novel strategies to enhance students’ engagement and
motivation for learning especially in STEM disciplines [1,2]. One way is using smartphones.
The development of smartphones has altered how individuals interact, work, and study,
particularly in higher education settings [3]. Smartphones were deemed key technologies to
boost and foster innovation within teaching by 49% of Consortium for School Networking
advisers [4]. Smartphones are becoming more popular in teaching due to their flexibility.
Using cellphones to help students learn in higher education, although novel [5,6], is a
method to boost students’ motivation [7]. When the use of smartphones is accompanied by
artificial intelligence and machine learning, better higher education strategies ensue. These
breakthroughs have a big impact on teaching and learning [8].

Educ. Sci. 2021, 11, 661. https://doi.org/10.3390/educsci11110661 https://www.mdpi.com/journal/education

https://www.mdpi.com/journal/education
https://www.mdpi.com
https://orcid.org/0000-0001-8190-5263
https://orcid.org/0000-0002-9045-6698
https://orcid.org/0000-0002-7937-3007
https://orcid.org/0000-0001-7264-1323
https://doi.org/10.3390/educsci11110661
https://doi.org/10.3390/educsci11110661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/educsci11110661
https://www.mdpi.com/journal/education
https://www.mdpi.com/article/10.3390/educsci11110661?type=check_update&version=1


Educ. Sci. 2021, 11, 661 2 of 21

Figure 1. Mobile application for real-life circuit simulation (a) sketch of a hand-drawn circuit
(b) detected circuit by developed application.

The use of smartphones can be productive or distracting depending on the learner’s
perception [9,10]. Regardless of all the challenges it could pose to educators [10], we em-
phasize the importance of smartphones in our proposed system as educational technology
in learning environments [7,10,11]. According to instructors, using digital resources in
their teaching methods was substantial and strengthened the education system [12]. Not
only can mobile learning improve students’ learning, but it can also assist in the training of
educators [7].

Mobile applications are being developed to assist in education and students’ learning
processes such as in [13]. Thus, we propose developing a mobile app that recognizes the
hand-drawn circuits and simulates them in real-time. The students would draw a circuit
and instantly see the simulation results to understand circuits better. One of the limitations
with existing tools is that they consume time and effort as most of the tools have to be
installed on workstations. Students would need to go to the lab and simulate the circuit
or access a laptop with excellent simulating software that is mostly paid. As such, there
is a need to address such limitations, which is possible through the use of smartphones.
The portable nature of smartphones and their ease of use allows for the perfect platform for
learning. We consider that in our proposed mobile application system. Developing such an
app would require machine learning techniques to recognize and detect the circuit elements.
Other computer vision techniques are needed to identify the nodes and connections and
create a computer-readable description that can then be fed into a circuit simulation tool to
produce the output, as shown in Figure 1.

Several studies have been conducted on circuit recognition due to its essential ap-
plications. Printed electric circuit images often have fewer variations than hand-drawn
circuit images and can achieve better results than printed images. Hand-drawn symbol
recognition has always been an exciting field of study as they are more susceptible to
variances. Various computer vision techniques in machine learning have been used in
hand-drawn circuit recognition in the past two decades [14–17]. Each reported study has
used different machine learning and computer vision techniques to accurately identify the
connections and nodes to create a Netlist, a computer-readable format for electric circuits.

Machine learning has been evolving in the past few years, especially with the im-
provements made in deep learning techniques. One of the essential machine learning
applications is in computer vision using neural networks, especially Convolutional Neural
Networks (CNNs). Some standard machine learning techniques include CNNs for classifi-
cation and Recursive (R)-CNNs used for object detection applications. Object detection
refers to the classification and localization of several object classes in an image. Currently
used machine learning techniques often require many training data sets to achieve high
classification accuracy. However, with different forms of electric circuit images available
with every possible rotation, tilt, and variation to circuit elements, the training set should
include all possibilities and thus increases the overall training data set size.



Educ. Sci. 2021, 11, 661 3 of 21

In this study, we propose using a novel technique in deep learning called capsules
networks [18] to design an efficient mobile application for the rapid analysis of a drawn
electric circuit. The authors of [18] proposed a slightly varied technique invariant to the
object viewing angle, which mimics how humans actually recognize objects. The capsule
network tries to preserve the spatial information between the object parts, identifying an
item with its features within an object compared to an object with its parts scattered around
yet still in the image. For example, a face with eyes, nose, and mouth in its place, and a
face image with locations switched for eye, nose, and mouth will yield a high probability
of detecting a face in CNNs as all the features exist in the object. However, CNNs often
require huge training data sets to classify objects accurately as they are unaware of the
spatial relationship between the objects. Images with different lighting, skewness, position,
tilt, rotation, etc. need to be trained individually before the network can recognize objects
with variations. Implementing capsule-network or caps-net to detect hand-drawn circuit
images will significantly reduce the training data requirement.

The rest of the paper is organized as follows. Section 2 presents a comprehensive
review of recent techniques for circuit image recognition. Section 3 details the proposed
work in terms of materials and methods, while Section 4 presents and discusses the results
for our proposed work. Finally, we sum up our findings in Section 5.

2. Literature Review

Object detection has improved in the past few decades with the evolution of machine
learning techniques for computer vision. The localization and classification both combined
are referred to as object detection, which is the core of our proposed work. The pioneering
study in [14] utilized some of the available computer vision techniques to identify the nodes
and separate the circuit components. The corner points are detected and identified as nodes,
connection points are established, and a moment invariant algorithm is used for the object
classification [14]. The authors of [14] used a pixel-based algorithm, and thus scaling to
large-scale circuits with more components will be impractical. One of the most widely used
machine learning approaches for object detection with a fast and robust technique is the
viola-jones-based framework introduced in [19]. They train a detector using positive and
negative images sets to create a classifier that has feature-based detection rather than pixel-
based. This face detector can be implemented with less processing power. The training
data set consisted of images with faces and without a face. The set also included vertically
mirrored images of the face set. Multiple of these classifiers are positioned in cascaded
architecture, with each having a different number for feature sets.

A similar approach as in [14] using multiple image analysis techniques is discussed
in [15]. This study considers hand-drawn circuits with recognition limited to nine electrical
components as inputs. After preprocessing the input images with binarization, noise
cancellation, and thinning, segmentation is used to separate the connection wires’ nodes
and components. The nodes are then identified using pixel tracking. The components are
classified using features extracted from moment invariant, geometric features, and vector
features. As the work in [14], this research also has limitations in scaling to new components
and complicated circuit diagrams as they are pixel-based approaches. They achieve an
accuracy of 86% for component classification.

Another famous image classification technique uses Support Vector Machine (SVM),
where both positive and negative datasets are used to train the classifier. The studies
of [16,17] described the use of SVM-based classification for hand-drawn digital logic circuits.
As with other studies, the images are pre-processed before segmentation and classification.
They use region-based segmentation techniques to segment as components and connections.
Feature extraction is performed by the Fourier descriptor, a boundary-based technique as it
is invariant to scale, rotation, and translation. The features are then used by SVM, which is
a supervised learning algorithm that is trained to classify the circuit elements. The training
was conducted on 60 training images. The drawback of the system lies in the average



Educ. Sci. 2021, 11, 661 4 of 21

accuracy of 83% recognition rate. Several works highlighting the algorithms mentioned
above are still common today due to the possibility of the rapid detection rate [20].

Neural networks started gaining momentum by this time, and an approach to hand-
drawn optical circuit recognition was reported in [21] using Artificial Neural Networks
(ANN). The system used feature extraction based on shape, followed by ANN with a
backpropagation method for classification. The system only identifies the symbols, units,
numbers, and alphabets in this study. However, it is possible to scale the system also to
classify circuit elements.

Another category of neural networks with the state of art results is CNNs and their
improved RCNN, Fast-RCNN, and faster-RCNN. CNNs are multilayer deep learning
techniques used initially in the image processing field [22]. At the time, CNN achieved the
best results compared to other algorithms as they reduce computations significantly for
images [22]. CNN uses convolution to identify features that will be done in multiple layers.
The actual location of the feature is not relevant once the feature is detected [22]. CNNs are
the backbone of some of the most commonly used artificial intelligence systems globally, in-
cluding face detection systems, object identifications, natural language processing [23], etc.
They are being used in many different applications, such as enhancing Natural language
processing by using pre-trained word vectors to train CNN for sentence classification [23].
The authors in [23] also experimented with static word vector and nonstatic word vector
fine-tuned using backpropagation. Due to feature extraction using pre-trained vectors, they
have better results, as explained in [24]. The study conducted in [25] found better results
with CNNs than SVMs in detecting an object with invariance to lighting and pose. CNNs
are similar to general neural networks in that they have neurons that are given weights [26].
The study [27] published in 2012 was able to achieve the state of art accuracy, which was
made possible because of the ability to run computations on Graphical Processing Units
(GPU) for computations rather than CPUs. Moreover, CNNs had great depth with eight
layers, including convolutional layers and fully connected layers.

We intend to implement capsule networks in hand-drawn circuit recognition with
a reduced training dataset with our proposed system. The reported work [18] described
the caps-net implementation only for datasets of MNIST and Cifar10. It has achieved
good results in an affine test set of MNIST and equivalent results with the MNIST data set.
However, the reported results achieved 10.6% error on average with its implementation
on Cifar-10, probably due to background clutter. In this study, we attempt to improve the
caps-net algorithm to enhance its performance on datasets other than MNIST.

3. Materials and Methods
3.1. System Overview

We propose a smartphone system that can identify, simulate, and display the results
of a hand-drawn circuit image. It will capture a circuit image, process the image to create
a digital description of the circuit, and build the simulation circuit. Figure 2 shows the
overall architecture of the proposed system.

Figure 2. System architecture.



Educ. Sci. 2021, 11, 661 5 of 21

The user can capture a picture that is then uploaded to the system, which processes
the image and outputs the circuit creating an engaging tool for students to learn from.
There are three parts to the program: region proposals, component detection, and node
analysis. Figure 3 shows the image processing pipeline, which includes character detection
and component detection.

Figure 3. Image processing flow chart.

Once an image of the circuit is captured, it is preprocessed to remove white spaces so
that the image looks zoomed into the maximum. The character recognition is performed
by identifying characters and classifying them using capsule networks. Next, the image
features are extracted by identifying the component location using the Mean Shift Algorithm
and place bounding boxes over components. The components are then extracted and
classified using trained capsule networks. Finally, after extracting the components and
removing small regions, nodes are identified to create a Netlist. The netlist is a way of
representing a circuit structure in text format. We use a circuit simulation tool that takes
netlist as an input and provides the results. The results are then overlaid on the circuit
image, which is returned to the user. With this implementation, we attempt to achieve
state-of-the-art results with reduced training data set size. Furthermore, with CNNs, due
to a lack of spatial relationship analysis, we need to train the network on both vertical and
horizontal data sets of the components [19]. However, with capsule networks, we can train
components of different orientations as a single class.

3.1.1. Data Collection

We gathered hand-drawn circuit diagrams with different stroke sizes and rotations
on plain paper for training and testing. A mobile phone camera captured the images. All
the training images will be normalized; thus, it can be captured using different devices.
All the images will be labeled using an image labeler. We will focus on classifying resistor,



Educ. Sci. 2021, 11, 661 6 of 21

inductor, capacitor, DC voltage source, and Current source as circuit components. We
received over 800 circuit images, with each circuit image having at least 7–9 components.
Once the images are labeled and ready for training, we split the data into a training set,
validation set, and testing set. The sets are prepared randomly so that we do not overfit
the data.

3.1.2. Preprocessing

Preprocessing images before training helps in getting better training results as we
reduce the clutter in the image. First, the image is thresholded and then converted into
grayscale. The normalization of all the images is done to a size of 780 × 1080 to get unified
training images. First, to run the region proposal algorithm, small regions are detected,
mainly text or characters, and are removed from the image before applying the region
proposal algorithm to reduce the error rate of detecting circuit components.

3.1.3. Region Proposal Algorithm

To locate circuit components in the image, feature detection algorithms are employed
as their background has less noise and hence less susceptible to false-positive object location.
The following steps describe our used Region Proposal Algorithm:

• Preprocess the image before performing a feature analysis. We convert the image to
binary, filter text and symbols from the image, and dilate it.

• Perform edge and corner detection using SURF, Eigen, and FAST methods to identify
capacitor, inductor, and resistor. Circuit images consist of background with less noise
enabling feature detection to identify components as a concentrated set of points.

• Dilate the detected feature points to create locations for the components and filter
to remove relatively small regions. Bounding boxes are placed over the remaining
detected regions.

• Detect circles using Hough transform to identify Voltage and Current sources. All
circles with a radii range of 20 to 500 px are accepted. Next, we identify and re-
move overlapping circles. Given two circles with Center (x1, y1), radii (r1), Cen-
ter (x2, y2), and radii (r2). The distance between the two circles is calculated by
Distance = (x1 − x2)

2 + (y1 − y2)
2 & Radius = r1 + r2. If Distance > Radius, then

circles overlap and vice versa. We merge both circles into one to confirm the circular
component is fully localized instead of partially.

• Any bounding box overlapping a circle is removed.
• Bounding boxes are created over circles and added to the existing list of bounding

boxes, creating our final list of localized components.

3.1.4. Object Classification

The components located through our region proposal algorithm is passed through our
capsule network classifier. It is a new deep learning approach introduced in [18]. CNNs
traditionally have a single neuron capable of giving a scalar output of probability for an
object. However, in capsule networks, they propose to combine a group of neurons into
capsules that will detect a particular feature for an object encoded with various other
information for the object parameters such as size, thickness, skewness, rotation, etc.
The traditional neural network has a scalar probability value with one neuron. It does
not contain any information regarding the features of the object. However, the output of
a capsule network is a vector, and the length of the vector determines the probability of
the image being a particular object. The 2D vector also contains information about the
rotation of the object. This resolves the issue faced in CNN with objects in different poses
and rotations. In a CNN, flipped or rotated images are not detected unless the network has
been trained with these variances.

The capsule networks also differ in terms of how they route the information from
low-level to high-level features. They only send information to high-level entities that
can process the information rather than sending it to all the classifiers in the final layer.



Educ. Sci. 2021, 11, 661 7 of 21

The capsule network does this intelligently by agreeing with the low-level features that the
capsule sends the information to. This is termed as routing by agreement [18]. For example,
suppose the low-level capsule identifies a nose, mouth, and eyes. In that case, we multiply
it with a transformation matrix, which then identifies if eyes, nose, and mouth are part
of the face, and their location aligns with that of a trained face. Only then a face capsule
is activated. Thereby, capsule network overcomes the issue of CNNs in identifying the
spatial relationship between object parts shown in Figure 4.

Figure 4. A false positive classification by CNN.

Compared to traditional neural networks, capsule networks deal with vectors’ inputs
and outputs to carry information on various object parameters. We have multiple capsule
layers within one architecture that are capable of detecting from low to high features.
For example, when detecting a circuit component such as a diode, the higher level capsule
detects the diode while the lower layer detects different lines making up the diode. We have
a transformation weight matrix Wij for the object built with backpropagation to encode the
diode’s position details and parts.

Routing in the capsnet is done via dynamic routing, while in CNN, it is done via
max-pooling [18]. Using this methodology, a capsule in the previous layer can identify
which capsules to provide the information. This happens between the primary caps layer
and the circuit caps layer. Reconstruction loss is calculated by reconstructing the image
after the circuit caps layer and is added to the total loss to add lost information back into
the input parameters. The results in [18] show a clear improvement in classification using
reconstruction as a regularization method, which is used to avoid overfitting.

3.1.5. Identify Display Locations for Results

This process is to identify coordinates on the input image to place circuit simulation
results. We determine which of their sides has the least pixel concentration for each
component to hold the simulation results. The algorithm is designed so that the location
chosen does not overlap with the location chosen by another component.

3.1.6. Node Detection

Once circuit components are detected using the capsule-network, we need to perform
circuit node detection to identify the nodes, locations, and circuit component connection.
The nodes are identified using the following procedure:

1. We increase the bounding box of detected components by 2% around all four sides
and get a list of all the region’s pixels.

2. We remove the initially detected component, and we are left with the wires in the
circuit. Each wire is counted as a node, and we retrieve all pixel locations in each wire
after filtering any relatively small objects.

3. We loop over all components to identify the nodes it belongs to by comparing the
pixel information.

4. Each component can only have two connecting points, and thus only two nodes.



Educ. Sci. 2021, 11, 661 8 of 21

5. We will be requesting user input to get the component values.

3.1.7. Circuit Simulation Results

We now have a list with all components, nodes, location, and prediction probability
with all processes. We use this information to create a netlist, a digital format of a circuit di-
agram used by circuit simulation engines that takes circuit description as input and outputs
the resulting values of power, current, voltage, resistance, etc. for all circuit elements.

3.2. Convolutional Neural Networks

CNN layers are a convolutional layer, a Rectified Linear Unit (ReLU) layer, a Pooling
layer, and a fully connected layer. The convolutional layer calculates a gradient for the
input image by multiplying the input image with a filter. ReLUs are nonlinear activation
functions applied to the convolutional layer output without changing its volume [18].
Given that f is the output of the neuron and x is the input, the neuron can be modeled as the
nonlinearity function f (x) = max(0, x) [27]. The pooling layer is used for downsampling a
convolutional layer to capture higher-level features in the next layer. Given (Mx, My) the
dimensions of the convolution layer, then with a kernel size of Kx and Stride S, we can
find the dimension of the subsampled layer as the following with the depth remaining
the same:

f (Mx) =
Mx − Kx

S
+ 1 (1)

The final layer in a CNN is the fully connected layer, which, as the name suggests,
is fully connected to the previous layer of CNN. This layer classifies while the earlier
layers of convolution, ReLU, and pooling are feature learning parts. The fully con-
nected layer outputs a K-dimensional vector where K refers to the number of classes for
object classification.

3.3. Challenges with CNN

Although CNNs are the go-to deep learning methodology in computer vision for
the past few years, it has some limitations. In this section, we will highlight some of the
drawbacks faced by convolutional neural networks. One of the main issues with CNN
is that they pose invariant to objects. For example, if trained to recognize a face, it will
fail to classify an upside-down face. The CNN is invariant to rotation and tilt in images
unless the training data includes all the possible transformations for an object. For example,
in Figure 5, we train a resistor image using CNN. Given a resistor image similar to the
training set as input, CNN will correctly classify it as a resistor as it recognizes the learned
features. However, if a rotation is applied to the resistor, then CNN will classify it as non-
resistor, as shown in Figure 5. In a circuit image, resistors could come in different rotations,
vertical, horizontal, diagonal, etc. However, we need to gather an extensive training data
set containing all the possible options to identify a resistor correctly. This is a fundamental
concept tackled in [18]. They build an equivariant network that can identify an object with
any transformation. This would help considerably reduce the training data set.

Another drawback for the CNNs is its lack of spatial relationship data for its object
parts. A CNN will correctly classify an image as a current source as long as all its features
are in the same image regardless of the image parts’ location within the current source,
as shown in Figure 4. Therefore, it is easy to trick a CNN network and create false positives.
Once the low-level features are classified in the CNNs, the next activation layer is fired
based on the probability of having certain low-level features; however, the relative position
of the parts w.r.t to the object itself is lost with CNNs. A Resistor neuron should only be
activated if the parts identified result in the same pose matrix for the resistor. Figure 6
refers to how the CNN works in classifying a diode image. CNN’s initial layer will find the
probable lines (horizontal, vertical, diagonal) that make up the diode’s image and match
it to both diode and transistor properties. This form of routing to all possible networks



Educ. Sci. 2021, 11, 661 9 of 21

is computationally expensive and can cause errors. This could be resolved by using a
selective routing mechanism.

Figure 5. CNN resistor classification.

Figure 6. Feature detection in neural networks.

The main disadvantage of CNN is that it loses the spatial relationship between features
in the image. A CNN uses convolution to extract features from the input source, and for
each of the features, a weight is added, which is then summed to identify the high-level
feature. Each layer extracts a particular set of features, hence is combined into multiple
layers. A max-pooling function is used in each layer to reduce input size by extracting the
maximum features. At this point, it starts losing the spatial information for the different
parts of objects. This means CNNs do not perform well when the spatial positions of



Educ. Sci. 2021, 11, 661 10 of 21

object parts are changed within the image. They do not perceive the components and their
location that make the image but just the basic features. In the next section, we introduce
capsule networks built to overcome the shortcoming of CNNs or any other traditional
neural networks.

3.4. Capsule Network
3.4.1. Capsule Network’s Architecture

We perform classification on the region proposals using a capsule-network algorithm.
Figure 7 shows a 3-layer capsule network architecture. It consists of an initial convolution
network followed by two layers of capsule network:

Figure 7. Capsule network architecture based on the work in [18].

• Convolution takes a 28× 28 image, which is convolved with a 9× 9 kernel and stride
of 1. We convolve with 256 different feature maps. This layer will extract all the basic
features from the input image, such as edges. This layer’s output, a 20× 20× 256
image, is taken as input to the Primary capsule layer. ReLU nonlinear activation
function was used where f (x) = x > 0 => x or x < 0 => 0. Output image size
changes from 28× 28 to 20× 20 based on the size calculation of:

(simg − sKernel) +
1

sstride
(2)

• Layer 2 consists of a primary capsule network that implements convolution with
a 9 × 9 kernel and stride 2. We also rearrange the output to resemble a capsule
network; the convolution results in a 6× 6 image. The 256 feature maps output is
divided into 32 capsules sets with a dimension of 8. Therefore, each capsule has a
dimension of 8. The output image size changes from 20× 20 to 20× 20 based on the
size calculation given in Equation (2). The primary capsule has three functions, first is
to detect higher-level features than edges and curves. Second, it reshapes the output of
32 blocks of eight dimensions into a flatted matrix of size (6× 6× 32) = 1152 capsules
of 8 dimensions. Third, it predicts each capsule’s output, which is used to route the
capsules to a higher capsule. The primary capsule ui is multiplied by the weight matrix
Wij to receive a prediction for the diode’s spatial location, as shown in Equation (3).
If υ̂j|i, the prediction vector turns out to be similar to the weight multiplication for
other low-level features, then the probability of diode detected is higher. This is how
dynamic routing is implemented in capsule networks.

υ̂j|i = Wijui (3)



Educ. Sci. 2021, 11, 661 11 of 21

• The third layer represents the circuit-caps layer, which takes the inputs specified by
the dynamic routing algorithm and provides a classification along with instantiating
parameters measuring 16 dimensions per class.

3.4.2. Dynamic Routing Algorithm

Other than convolutional layers, CNN often uses pooling layers to reduce the repre-
sentation’s size, speed up computation, and improve feature detection. However, capsule
networks use a dynamic routing algorithm to send information to the next layer specified
in Figure 8.

Figure 8. Routing algorithm process [18].

An initial value of routing weight bij is initialized to 0 for all layer l capsules under
each layer l + 1 capsule. Cij is a probability value as it is a softmax function of bij known as
coupling coefficients. Therefore, the sum of all Ci vectors is 1. The coupling coefficient is
built using the iterative dynamic routing process. The coupling coefficients decide which
capsule j in layer K + 1 needs to be chosen as a parent by capsule i in layer K. If υ̂j|i has
a high value, then the coupling coefficient for that parent is increased. This method of
routing is more efficient compared to max-pooling on CNN. In step 5, a weighted sum is
calculated Sij by summing all feature vector υ̂j|i with a coupling coefficient cij, as shown in
Equation (4).

sj = ∑
i

cijυ̂j|i (4)

Usually, in CNN we have a ReLU as an activation function. However, the capsule
networks use a squashing function as in Equation (5). A squashing function is applied to
weighted sum sj to reduce its length to less than 1, but it still keeps its direction intact. This
is assigned as the output prediction vj. Routing weights are updated with the following
equation: bij+ = uj|i.vj. The value of bij will be high if the prediction value is strong

vj =
‖ sj ‖2

1+ ‖ sj ‖2

sj

‖ sj ‖
(5)

uj|i.vj in step 7 refers to the agreement between the output prediction of the primary
capsule and circuit capsule layer. We use an adapted version of the Capsnet code provided
by the authors of [28].

4. Results & Discussions
4.1. Circuit Recognition System

Figure 9 shows the full cycle of object detection and circuit simulation for a hand-
drawn circuit. The system takes an image as input, locates the components, classifies the
detected components, identifies nodes, builds the netlist, runs the simulation, and finally
overlays the input image results.



Educ. Sci. 2021, 11, 661 12 of 21

Figure 9. Full circuit simulation system.



Educ. Sci. 2021, 11, 661 13 of 21

Once the input image is received, we perform the following pre-processing steps before
performing feature detection: remove white spaces, reduce the image size to 720× 1080,
identify relatively small regions and remove them from the image resulting in Figure 10.

Figure 10. Image preprocessing for the input image on the left resulting in the image on the right
after removing small regions.

We then proceed to use a region proposal algorithm composed of two sections. First,
we detect components: resistors, capacitors, and inductors, and second, we detect circular
components voltage and current source. We perform feature detection for the former, which
locates edges and corner points, providing approximate locations of the circuit components,
as shown in Figure 11a. We filter unwanted regions by dilating points removing relatively
small regions. The final detected regions are plotted in Figure 11c.

Figure 11. (a) Feature detection using Eigen, SURF, and FAST methods, (b) feature points after
dilation, (c) the detected points after filtering, and (d) bounding boxes added.



Educ. Sci. 2021, 11, 661 14 of 21

To detect voltage and current sources, we use the Hough transform to identify cir-
cles. Our region proposal algorithm hence allows creating a bounding box around the
components. Once the component locations are identified, we perform the following.

• Object classification using capsule network, as illustrated in Figure 12. An additional
class called ‘Node’ was added to identify wrongly localized components, e.g., wires
or corners that do not fall under the circuit component category.

Figure 12. (a) Bounding boxes around the located components. (b) Components classified using
capsule networks.

• Identify coordinates to display the final circuit simulation result shown in Figure 13a.
• Node detection is shown in Figure 13c.
• The netlist is automatically built based on the previous detection results and user

input for the component values, as shown in Figure 13d. The netlist is then passed to
the circuit simulator tool to obtain results.

• Results are overlaid on the input circuit image shown in Figure 13e.

Figure 13. Node detection and circuit simulation (a) identifying coordinates to display the simulation
result, (b) identify nodes in the image, (c) confirming the nodes, (d) building netlist, and (e) circuit
simulation results projected on input image.

Figure 14 shows the analysis of more complex circuits in various stages. All images
pass through the initial stages of feature extraction for object detection. Circles of Current



Educ. Sci. 2021, 11, 661 15 of 21

and Voltage sources are detected separately using Circular Hough Transform [29]. Once
circles are identified, we overlay a rectangle bounding box to extract the circle component
and identify any overlap between feature detection and circle detection. The components
are then passed for classification, after which the node extraction is performed to create a
netlist. The netlist is built using the node numbers rather than coordinate points, allowing
a better netlist creation approach.

Figure 14. Complex circuit analysis: node analysis and simulation results.

4.2. Validation Results

We test our model with different scales and rotations, and the results are shown in
Figure 15. Our model can provide a good recognition rate for images taken between 10 cm
to 25 cm. However, the optimum distance to take images is between 10 cm to 20 cm from
our testing. Our model is also able to identify components of different rotations.

To validate our capsule networks classifier, we performed stratified 5-fold cross-
validation. We kept 5% of the data for testing, and the remaining were used for the
cross-validation split. Figure 16 shows the results of our cross-validation. All training was
performed using a batch size of 50, a learning rate of 0.0001, and 30 epochs. The model
converges faster due to less training samples.

We use 400 samples per class, and we receive an accuracy of 96%. Figure 17 shows the
training accuracy and training loss per step during the capsule network training.

To compare the results, we use a baseline CNN model and only receive 80% accuracy
for the same set of parameters. We compare the accuracy rates across different sample sizes,
as shown in Figure 18. We train both capsule networks and CNN with 100 to 1400 samples,
with the former performing better. This validates that capsule networks provide better
accuracy with a low number of training samples than untrained CNN. Although several
papers have tested capsule networks on different image sets, the accuracy tends to be lower
as the image complexity increases. Circuit component images are similar to MNIST dataset
as the images have less background noise.



Educ. Sci. 2021, 11, 661 16 of 21

Figure 15. Capsnet model tested with different rotations and scales, respectively, from left to right.

Figure 16. 5-Fold cross-validation results.

Figure 17. Training accuracy and loss, respectively, from left to right.



Educ. Sci. 2021, 11, 661 17 of 21

Figure 18. Test accuracy comparison at different sample sizes.

To analyze our multi-class classification system accuracy, we calculate the confusion
matrix shown in Figure 19. It was computed with 100 images per class. Table 1 shows the
scores per class and the overall accuracy of = 0.96 and loss of = 0.05497217.

Figure 19. Confusion matrix.



Educ. Sci. 2021, 11, 661 18 of 21

Table 1. Confusion matrix scores.

Precision Recall F1-Score Support

Capacitor 1.00 1.00 1.00 100
Current 0.92 0.91 0.91 100
Resistor 0.99 1.00 1.00 100
Voltage 0.92 0.89 0.90 100

Inductor 0.97 1.00 0.99 100
Micro Avg. 0.96 0.96 0.96 500
Macro Avg. 0.96 0.96 0.96 500

Weighted Avg. 0.96 0.96 0.96 500

We use mean average precision to measure the accuracy of our object localization
and classification algorithm. Figure 20 shows the average precision (AP) for each class
capacitor, current, inductor, voltage, and resistor for 0.3 Intersection over the union thresh-
old. The system is trained with 400 samples per class that are real-time augmented to
provide good accuracy. To compare the results to an existing algorithm, we run the Cap-
sule networks and RCNN with a pretrained VGG16 architecture comprising 38 layers on
400 samples without augmentation. Table 2 shows the summary of AP value per class for
both 0.3 and 0.5 thresholds.

Figure 20. Precision–recall plot for object detection algorithm with 0.3 IoU for classes (a) Capacitor
(AP 94.74%), (b) Current (AP 92.02%), (c) Inductor (AP 88.97%), (d) Voltage (AP 95.08%), and (e) Re-
sistor (AP 97.38%).

Table 2. Average precision values for 0.3 and 0.5 threshold values.

Class

Capsule Network Capsule Network RCNN
(with Data Augmentation) (without Data Augmentation) (without Data Augmentation)

0.3 IOU 0.5 IOU 0.3 IOU 0.5 IOU 0.3 IOU 0.5 IOU

Capacitor 94.74% 82.40% 86.09% 78.63% 99.93% 57.41%
Current 92.02% 92.02% 73.06% 73.06% 54.07% 16.58%
Inductor 88.97% 52.53% 83.03% 58.84% 81.20% 23.83%
Resistor 97.38% 82.64% 94.61% 80.95% 86.55% 48.90%
Voltage 95.08% 93.47% 71.38% 69.20% 77.31% 51.11%

mAP 93.64% 80.61% 81.63% 72.14% 79.81% 39.56%



Educ. Sci. 2021, 11, 661 19 of 21

With capsule network results for 0.5 IOU, we see that inductor has the least precision.
Our object detection model sometimes detects circles inside inductors. As per our object
detection algorithm, we prioritize circles. This reduces the area captured to identify
inductors. However, the capsule network can perform classification with limited data.
The inductor value change is evident as it increases by 30% when we reduce the IoU value.
The current and voltage values have less change as the object is localized similarly to the
ground truth bounding box, given its circular shape. For a resistor, object localization is
slightly shifted than the ground truth bounding box resulting in a 4% difference between
both thresholds. Average precision is checked on unseen data.

To compare the results of Capsnet with RCNN, we plot the precision-recall curve for
RCNN trained and tested on the same dataset without augmentation. Figure 21 shows the
results of the comparison. The graphs of RCNN shows lower precision and recall value
for all components compared to our model. This shows the effect of low training samples
on the RCNN based object detection model. The RCNN model, which classifies five
different classes with a training sample of 200 circuit images, containing 400 samples per
class, produces results similar to Capsnet in terms of classification. Our object localization
algorithm is far better than the object localization algorithm of RCNN; however, in terms
of classification, it is producing results similar to the Capsule network.

Figure 21. Average precision values for 0.5 thresholds values for RCNN and Capsnet.

Overall, the results verify that our object detection algorithm with capsule networks
performs slightly better in circuit component detection than RCNN. We can provide sat-
isfactory results based on the theory that capsnet can achieve high accuracy with a low
sample size due to its algorithm. However, we need to note that we compare a 3-level



Educ. Sci. 2021, 11, 661 20 of 21

architecture to a 38-layer pretrained architecture that deduces that capsule networks have
great potential to perform better than the current state of the art programs. This would
require considerable research into optimizing the algorithm. We have successfully imple-
mented circuit data to capsule networks in this work, where we achieved high accuracy
using less training data compared to all current research based on MNIST and CIFAR10.

5. Conclusions

Although several tools are available to sketch and simulate the circuits, the first draft of
any circuit diagram is hand-drawn on paper. The availability of a smartphone educational
technology helps students and professionals convert the sketch into a digital format directly
using a mobile app instead of redrawing the circuit on simulating tools, especially given
the large-scale drawings in professional environments. Once a tool can successfully create
a computer-readable description of the diagram, it can be used for instant identification of
unknown parameters in the circuit that can be useful for the students for learning purposes.
However, difficulty in scaling to complex circuits, classification accuracy, and the need
for a large training data set has been a setback in making progress with hand-drawn
circuit recognition. In this work, we proposed the implementation of a smartphone hand-
drawn circuits solver using augmented reality and capsule deep networks for engineering
education. We used capsule networks as they have been theorized to require less training
data while still achieving high accuracy. This is because they can overcome some of the
common issues with CNNs, such as lack of equivariance and more training data. However,
our test results show that Capsnet outperforms RCNN in object detection although it
provides similar classification results. Capsnet is still a novel technology and requires a lot
more research before reaching its full potential. In the future, we aim to improve the object
localization algorithm to capture circuits of all scales as size variations such as too large or
too small components can cause issues in locating the object.

Author Contributions: Conceptualization, M.A., M.G., F.H., J.Y. and A.E.-B.; Formal analysis, M.A.,
M.G., F.H., J.Y. and A.E.-B.; Funding acquisition, M.G. and A.E.-B.; Investigation, M.A., M.G., F.H., J.Y.
and A.E.-B.; Methodology, M.A., M.G., F.H., J.Y. and A.E.-B.; Project administration, M.G. and A.E.-B.;
Software, M.A., M.G., F.H., J.Y. and A.E.-B.; Supervision, M.G., J.Y. and A.E.-B.; Validation, M.A.,
M.G., F.H., J.Y. and A.E.-B.; Visualization, M.A., M.G., F.H., J.Y. and A.E.-B.; Writing—original draft,
M.A., M.G., F.H., J.Y. and A.E.-B.; Writing—review and editing, M.A., M.G., F.H., J.Y. and A.E.-B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported, in part, by ASPIRE Award for Research Excellence under the
Advanced Technology Research Council—ASPIRE.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rehmat, A.; Hartley, K. Building Engineering Awareness: Problem Based Learning Approach for STEM Integration. Interdiscip. J.

Probl.-Based Learn. 2020, 14, n1. [CrossRef]
2. Ullah, A.; Anwar, S. The Effective Use of Information Technology and Interactive Activities to Improve Learner Engagement.

Educ. Sci. 2020, 10, 349. [CrossRef]
3. Oliveira, D.; Pedro, L.; Santos, C. The Use of Mobile Applications in Higher Education Classrooms: An Exploratory Measuring

Approach in the University of Aveiro. Educ. Sci. 2021, 11, 484. [CrossRef]
4. CoSN Tech Driving. Cosn.org. 2019. Available online: Https://www.cosn.org/ (accessed on 27 September 2021)
5. Mella-Norambuena, J.; Cobo-Rendon, R.; Lobos, K.; Sáez-Delgado, F.; Maldonado-Trapp, A. Smartphone Use among Undergrad-

uate STEM Students during COVID-19: An Opportunity for Higher Education? Educ. Sci. 2021, 11, 417. [CrossRef]
6. Iqbal, S.; Bhatti, Z. A qualitative exploration of teachers’ perspective on smartphones usage in higher education in developing

countries. Int. J. Educ. Technol. High. Educ. 2020, 17, 29. [CrossRef]
7. Gómez-García, G.; Hinojo-Lucena, F.; Alonso-García, S.; Romero-Rodríguez, J. Mobile Learning in Pre-Service Teacher Education:

Perceived Usefulness of AR Technology in Primary Education. Educ. Sci. 2021, 11, 275. [CrossRef]
8. Ilić, M.; Păun, D.; Šević, N.P.; Hadžić, A.; Jianu, A. Needs and Performance Analysis for Changes in Higher Education and

Implementation of Artificial Intelligence, Machine Learning, and Extended Reality. Educ. Sci. 2021, 11, 568. [CrossRef]

http://doi.org/10.14434/ijpbl.v14i1.28636
http://dx.doi.org/10.3390/educsci10120349
http://dx.doi.org/10.3390/educsci11090484
Https://www.cosn.org/
http://dx.doi.org/10.3390/educsci11080417
http://dx.doi.org/10.1186/s41239-020-00203-4
http://dx.doi.org/10.3390/educsci11060275
http://dx.doi.org/10.3390/educsci11100568


Educ. Sci. 2021, 11, 661 21 of 21

9. Hartley, K.; Bendixen, L.; Olafson, L.; Gianoutsos, D.; Shreve, E. Development of the smartphone and learning inventory:
Measuring self-regulated use. Educ. Inf. Technol. 2020, 25, 4381–4395. [CrossRef]

10. Hartley, K.; Bendixen, L. Smartphones and self-regulated learning: Opportunities and challenges. In Proceedings of the 15th
International Conference on Mobile Learning 2019, Utrecht, The Netherlands, 11–13 April 2019. [CrossRef]

11. Andujar, A.; Salaberri-Ramiro, M.; Martínez, M. Integrating Flipped Foreign Language Learning through Mobile Devices:
Technology Acceptance and Flipped Learning Experience. Sustainability 2020, 12, 1110. [CrossRef]

12. Alberola-Mulet, I.; Iglesias-Martínez, M.; Lozano-Cabezas, I. Teachers’ Beliefs about the Role of Digital Educational Resources in
Educational Practice: A Qualitative Study. Educ. Sci. 2021, 11, 239. [CrossRef]

13. Tavares, R.; Vieira, R.M.; Pedro, L. Mobile App for Science Education: Designing the Learning Approach. Educ. Sci. 2021, 11, 79.
[CrossRef]

14. Boraie, M.T.; Balghonaim, A.S. Optical recognition of electrical circuit drawings. In Proceedings of the 1997 IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, PACRIM, 10 Years Networking the Pacific Rim, 1987–1997,
Victoria, BC, Canada, 20–22 August 1997; Volume 2, pp. 843–846. [CrossRef]

15. Edwards, B.; Chandran, V. Machine recognition of hand-drawn circuit diagrams. In Proceedings of the 2000 IEEE International
Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000; Volume 6, pp. 3618–3621. [CrossRef]

16. Liu, Y.; Xiao, Y. Circuit Sketch Recognition; Department of Electrical Engineering Stanford University: Stanford, CA, USA, 2013.
17. Patare, M.D.; Joshi, M.S. Hand-drawn Digital Logic Circuit Component Recognition using SVM. Int. J. Comput. Appl. 2016, 143,

24–28. [CrossRef]
18. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Advances in Neural Information Processing Systems 30;

Guyon, I., Luxburg, U.v., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates, Inc.:
New York, NY, USA, 2017; pp. 3859–3869.

19. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume 1,
pp. I-511–I-518. [CrossRef]

20. Xu, Y.; Yu, G.; Wang, Y.; Wu, X.; Ma, Y. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV
Images. Sensors 2016, 16, 1325. [CrossRef] [PubMed]

21. Rabbani, M.; Khoshkangini, R.; Nagendraswamy, H.; Conti, M. Hand Drawn Optical Circuit Recognition. Procedia Comput. Sci.
2016, 84, 41–48. [CrossRef]

22. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

23. Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882.
24. Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA,
23–28 June 2014. [CrossRef]

25. LeCun, Y.; Huang, F.J.; Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting.
In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004),
Washington, DC, USA, 27 June–2 July 2004; Volume 2, p. II-104. [CrossRef]

26. Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/convolutional-networks/
(accessed on 20 December 2020).

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2012; pp. 1097–1105.

28. Neveu, T. A Tensorflow Implementation of CapsNet(Capsules Net) Apply on German Traffic Sign Dataset. GitHub. 2017.
Available online: https://github.com/thibo73800/capsnet-traffic-sign-classifier (accessed on 14 November 2020).

29. Yuen, H.; Princen, J.; Illingworth, J.; Kittler, J. Comparative study of Hough Transform methods for circle finding. Image Vis.
Comput. 1990, 8, 71–77. [CrossRef]

http://dx.doi.org/10.1007/s10639-020-10179-3
http://dx.doi.org/10.33965/ml2019_201903r001
http://dx.doi.org/10.3390/su12031110
http://dx.doi.org/10.3390/educsci11050239
http://dx.doi.org/10.3390/educsci11020079
http://dx.doi.org/10.1109/PACRIM.1997.620391
http://dx.doi.org/10.1109/ICASSP.2000.860185
http://dx.doi.org/10.5120/IJCA2016910058
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.3390/s16081325
http://www.ncbi.nlm.nih.gov/pubmed/27548179
http://dx.doi.org/10.1016/j.procs.2016.04.064
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/cvprw.2014.131.
http://dx.doi.org/10.1109/CVPR.2004.1315150
http://cs231n.github.io/convolutional-networks/
https://github.com/thibo73800/capsnet-traffic-sign-classifier
http://dx.doi.org/10.1016/0262-8856(90)90059-E

	Introduction
	Literature Review
	Materials and Methods
	System Overview
	Data Collection
	Preprocessing
	Region Proposal Algorithm
	Object Classification
	Identify Display Locations for Results
	Node Detection
	Circuit Simulation Results

	Convolutional Neural Networks
	Challenges with CNN
	Capsule Network
	Capsule Network's Architecture
	Dynamic Routing Algorithm


	Results & Discussions
	Circuit Recognition System
	Validation Results

	Conclusions
	References

