
Article

Gain Scores Revisited:
A Graphical Models
Perspective

Yongnam Kim1 and Peter M. Steiner1

Abstract

For misguided reasons, social scientists have long been reluctant to use gain
scores for estimating causal effects. This article develops graphical models
and graph-based arguments to show that gain score methods are a viable
strategy for identifying causal treatment effects in observational studies. The
proposed graphical models reveal that gain score methods rely on a bias-
removing mechanism that is quite different to regular matching or covariance
adjustment. While gain score methods offset noncausal associations via dif-
ferencing, matching or covariance adjustment blocks noncausal association
via conditioning. Since gain score estimators do not rely on conditioning, they
are immune to measurement error in the pretest, bias amplification, and
collider bias. The graph-based arguments also demonstrate that the key
identifying assumption for gain score methods, the common trend assump-
tion, is difficult to assess and justify when the pretest causally affects treat-
ment assignment. Finally, we discuss the distinct role of pretests in the
context of Lord’s paradox.
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Pretest or baseline measures of the outcome or simply pretests have gained

much attention in the literature in the social sciences (e.g., Campbell and

Stanley 1963; Cook and Steiner 2010; Shadish, Cook, and Campbell 2002).

The corresponding literature and empirical evidence from meta-analyses

suggest that pretest measures are the most important covariates for removing

confounding bias in observational studies (Cook, Shadish, and Wong 2008;

Hallberg et al. 2018; Wong, Valentine, and Miller-Bains 2017). Such pretests

can be used to compute and analyze gain scores, also called change or

difference scores, which represent the differences between the posttest and

pretest scores (Allison 1990; Kenny 1975; Maris 1998). Nonetheless, gain

score methods have long been criticized and frequently avoided by applied

researchers and methodologists. Campbell and Erlebacher (1970:197) wrote

that “gain scores are in general such a treacherous quicksand,” and Cronbach

and Ferby (1970:80) even recommended researchers to “frame their ques-

tions in other ways.” This negative view is still widespread among research-

ers even until recently (Smolkowski 2013; Thomas and Zumbo 2012).

Instead, researchers have preferred covariance adjustment or matching

methods that control for or match on the pretest (or a corresponding propen-

sity score) in order to estimate the causal effect of an intervention (e.g.,

Imbens and Wooldridge 2009). We refer to these methods as conditioning

methods because the causal effects are obtained “conditional” on the pretest

(and other covariates or the corresponding propensity score). Causal identi-

fication using conditioning methods relies on the unconfoundedness assump-

tion, also called strong ignorability or conditional independence assumption

(Imbens 2004; Rosenbaum and Rubin 1983). Meeting the unconfoundedness

assumption requires that researchers know all the confounding covariates (or

a sufficient set of covariates that blocks all backdoor paths; Pearl, Glymour,

and Jewell 2016) and measure them reliably (Steiner, Cook, and Shadish

2011). Since this is rarely the case, the use of conditioning methods in

observational studies frequently results in biased effect estimates.

We argue that gain score methods are a viable alternative to identify

causal effects when the unconfoundedness assumption is violated. Although

the causal assumption underlying gain score methods, the common trend

assumption, might not be fully met either, gain score estimators have at least

three advantages over conditioning estimators (e.g., matching or covariance

adjustment estimators): They are immune to (i) unreliability of the pretest,

(ii) bias amplification, and (iii) collider bias. Particularly, gain score estima-

tors’ robustness to bias amplification and collider bias has never been dis-

cussed in the literature despite the long-standing discussions about gain

scores, particularly in the context of Lord’s (1967) paradox. As we will
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graphically show, these comparative advantages originate from the differ-

ence in the bias-removing mechanism of gain score and conditioning esti-

mators. While conditioning methods remove bias via blocking noncausal

associations, gain score methods remove bias via offsetting noncausal asso-

ciations by differencing rather than conditioning.

We use graphical models to discuss the identification strategy of gain

scores and their advantages in estimating causal effects. A graphical model

is a visual representation of the structural causal model of the presumed data

generating process of the data at hand. This approach has been developed in

computer sciences (Pearl 1988) and epidemiology (Robins 1987) and is now

becoming more popular also in the social sciences (e.g., Elwert 2013;

Morgan and Winship 2015; Steiner et al. 2017). With respect to causal

identification, the use of graphical models has two major advantages over

algebraic formulations. First, graphical models allow us to discuss causal

assumptions and bias-removing mechanisms in an intuitively appealing but

nonetheless formally rigorous way. With graphs and graph-based arguments,

we can literally see the common trend assumption and the bias-offsetting

mechanism of gain score methods. Second, graphical representations of

subject-matter theory provide an indispensable tool for assessing the com-

mon trend assumption’s plausibility in practice. This enables researchers to

better defend (or reject) the rather abstract common trend assumption.

In this article, we consider a nonrandomized two-group pretest–posttest

design, where the outcomes of the treatment and control groups are measured

at two points in time, before and after the intervention. Given the pretest

measure, researchers have two main choices to identify and estimate the

treatment effect. They can use conditioning methods like matching or covar-

iance adjustment, or gain score methods—the classic setting of Lord’s (1967)

paradox. To ease exposition, we restrict our discussion to linear data-

generating models with constant effects across all units (extensions to non-

linear or nonparametric settings is a topic for future research). In discussing

gain score and conditioning estimators, we focus our attention exclusively on

bias and do not discuss any efficiency or power issues relevant for signifi-

cance testing. This does not mean that efficiency and power can be ignored in

practice, but our major aim here is to guide researchers in choosing an

identification and estimation strategy that results in the least possible bias.1

This article is organized as follows. In the next section, we provide a brief

introduction to graphical models for observational studies and gain scores

and discuss the assumptions and mechanisms necessary for identifying cau-

sal treatment effects. In the following section, we highlight the three advan-

tages of gain score estimators over conditioning estimators. The section is
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followed by an in-depth discussion of the common trend assumption. We

discuss scenarios and conditions under which the assumption is hard to assess

with subject-matter knowledge. We conclude with a discussion of the distinct

role of pretests in observational studies.

Graphical Models Perspectives on Observational
Studies and Gain Scores

Graphical Models for Observational Studies

It is well-known that causal inference with observational data is challenging

because the treatment and control groups are frequently not comparable at

baseline (Shadish et al. 2002). In the absence of randomly assigned treatment

and control conditions, the observed group difference in the outcome reflects

not only potential causal effects but also spurious associations due to con-

founding (i.e., differential selection of units into the treatment and control

groups). However, if researchers succeed to reliably measure a set of covari-

ates that meets the unconfoundedness assumption, then the causal effect is

identified and can be estimated via matching or covariance adjustment (if

technical assumptions for matching and covariance adjustment are met in

addition, e.g., correct specification of the functional form).

The above rationale can be visualized by causal graphs. They facilitate our

intuitive understanding without sacrificing formal rigor. Consider an exam-

ple where we are interested in evaluating the effect of participating in a

summer math camp (Z) on students’ math achievement (Y). Assume that

participation in the math camp was not randomized, instead students or their

parents decided whether to enroll or not. Further assume that we know, from

subject-matter theory and empirical investigations, that students’ true but

latent math ability (A) is the sole confounding variable that affects both

Figure 1. Graphs for observational studies. (A) Graph for an observational study
without pretest. (B) Graph for an observational study with pretest.
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treatment Z and outcome Y. Figure 1A shows the corresponding graphical

model consisting of three nodes and three arrows. The nodes represent the

variables and the arrows the causal relationships between the nodes. For

instance, the arrow A ! Z indicates that students’ math ability causally

affects participation in the math camp (e.g., high-ability students might more

likely enroll than low-ability students). Since math ability A also affects math

achievement Y (A ! Y), A is referred to as a confounding variable or con-

founder because A confounds the relation between treatment Z and outcome

Y. Since A is unmeasured, its node is vacant; observed nodes are filled. It is

important to note that the causal graph describes how the data were actually

generated, regardless of whether a variable has been measured. Thus, a

graphical model is a graphical representation of the presumed data-

generating process, and it typically contains all observed but also unobserved

variables that directly or indirectly affect both treatment and outcome.

Given the graphical model in Figure 1A, we see that treatment Z and

outcome Y are connected or associated via two different paths2:

(i) Z ! Y,

(ii) Z A ! Y.

The first path represents the causal relationship of interest, while the

second path represents a noncausal relationship between Z and Y. Both paths

are naturally open and thus transmit association. The paths are “naturally”

(i.e., without any other conditioning) open because they do not contain a

collider (Elwert and Winship 2014; Pearl et al. 2016). A collider is a node at

which two arrows from its adjacent nodes collide (e.g., C in A! C B is a

collider variable). A path with a collider does not transmit association with-

out any other conditioning because any association terminates at the collider

node, that is, the path is naturally blocked. Therefore, the overall association

between Z and Y in Figure 1A is a mixture of the causal and noncausal

associations. Unless the noncausal association via path (ii) is stripped out,

the observed marginal association between Z and Y does not correspond to

the causal relationship between Z and Y via path (i).

The naturally open noncausal paths can be blocked by conditioning on any

middle node in the paths unless it is a collider. Since A is the sole middle

node and not a collider on path (ii), conditioning on A via matching or

regression blocks the transmission of noncausal association. Conditional

on A, the association between Z and Y is then only determined by the causal

association transmitted via path (i), Z ! Y. Thus, the causal effect is iden-

tified conditional on A. Pearl (1993) developed a simple graphical criterion,
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the backdoor criterion, to test whether a set of observed variables is suffi-

cient to identify causal effects via conditioning. The backdoor criterion states

that causal effects are identified if all noncausal (or backdoor) paths can be

blocked. For our graph in Figure 1A, however, the noncausal path Z A!
Y cannot be blocked because the ability A is latent and thus unavailable for

conditioning. Thus, the causal effect of attending the math camp on math

scores is not identifiable via matching or covariance adjustment.

Although the confounder A is unmeasured, researchers may have a pretest

measure of the outcome that may serve as a proxy for A. For example, one

may measure students’ math achievement before the math camp starts. Let P

denote such a pretest measure. Then, both pretest and posttest are likely

affected by students’ math ability. Figure 1B shows the graph with the added

pretest: A affects both P and Y, but Z does not affect P (because P is measured

before Z). Since P is measured (filled node), we can condition on it (e.g.,

matching on P or regressing Y on Z and P). However, conditioning on P does

still not identify the causal effect because P is not a middle node on the non-

causal path Z A! Y and thus cannot block the path. Due to the pretest’s

correlation with ability, conditioning on P may reduce the confounding bias

but it cannot eliminate all the bias (Steiner and Kim 2016). As the graphical

model in Figure 1B demonstrates, conditioning on a pretest measure is hardly

sufficient to identify causal effects in observational studies.

Graphical Models for Gain Scores

In the presence of unmeasured confounding, gain score methods can be an

alternative strategy to identify causal effects. Gain score methods first

require computing the gain score: G ¼ Y � P. In Figure 2A, the gain score

G is added as a new node to the graph. Since G is determined by both Y and P,

we add two arrows: P ! G and Y ! G. Moreover, since the gain score is

computed as a linear combination of P and Y with fixed coefficients of �1

andþ1, respectively, we also add the corresponding structural coefficients to

the graph in Figure 2A (see Pearl [2016] for a similar graphical representa-

tion of gain scores; Shahar and Shahar 2012).3 Assuming linear relationships

and constant effects, we now label all arrows with Greek letters, which

represent the unknown structural coefficients of the underlying data-

generating process. For example, t on the causal path Z! Y represents the

constant causal effect of Z on Y.

Gain score methods investigate the causal effect of Z on the gain score G

rather than the original outcome Y. That is, we regress G on Z or, equiva-

lently, compare the group mean difference in the gain score G using a two-
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sample t test. This is justified because the causal effect of Z on G is the

mediated effect via the causal path Z! Y!G, which is given by the product

of the two path coefficients, t� ðþ1Þ ¼ t, and thus identical to the causal

effect of Z on Y.4

However, with regard to the causal relationship between Z and G in Figure

2A, we now have three noncausal paths:

(i) Z A! P ! G,

(ii) Z  A ! Y ! G,

(iii) Z ! Y  A ! P! G.

Since the noncausal paths (i) and (ii) are naturally open (they do not

contain any collider variable), they transmit associations and confound the

relation between Z and G. In contrast, path (iii) is naturally blocked by the

collider Y and thus does not transmit any association. According to the back-

door criterion, the causal effect of Z on G is identified when the two open

noncausal paths (i) and (ii) are blocked. Although conditioning on both P and

Figure 2. Graphs for gain scores. (A) Simple gain score graph. (B) Graph showing
how the independent measurement error e affects the pretest. (C) Graph with two
confounders but the pretest is only affected by confounder A. (D) Graph with a
common measurement error that affects both the pretest and posttest.
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Y would block the noncausal paths (note that A is unmeasured),5 conditioning

on Y would also block the causal path Z! Y!G. Since the causal path must

remain unblocked, conditioning on both P and Y is not a viable

identification strategy.

Gain score methods eliminate the confounding bias by offsetting rather

than blocking the noncausal associations. The association transmitted via the

noncausal path (i) can be quantified by the product of the corresponding

structural path coefficients on the path: a� b1 � ð�1Þ ¼ �ab1.6 Analo-

gously, we can quantify the associations via the other noncausal paths:

(i) Z  A! P! G : �ab1;
(ii) Z  A! Y ! G : þab2;

(iii) Z ! Y  A! P! G : 0:

Note that path (iii) transmits no association because this path is naturally

blocked by collider Y. If the sum of all the noncausal associations is zero,

ab2 � ab1 ¼ aðb2 � b1Þ ¼ 0;

the noncausal associations offset each other, and all the confounding bias is

eliminated. Because a is assumed to be nonzero,7 the confounding bias

cancels out if the unmeasured math ability A affects the pretest math score

P and the posttest math score Y to the same extent, b1 ¼ b2. This equality

condition is frequently referred to as the common trend (Lechner 2011) or

time-invariant confounding assumption.8 If the common trend assumption

holds, the relation between the treatment and the gain score is free of any

confounding and the overall association between Z and G is solely due to the

causal effect of Z on G. Importantly, the bias-removing mechanism of off-

setting confounding bias does not require any conditioning to block noncau-

sal paths. Therefore, the causal effect can be identified by gain score methods

despite the presence of unmeasured confounders (i.e., violation of the

unconfoundedness).

It is interesting to investigate what happens if we were to condition on the

pretest P in a gain score analysis, regressing G on Z and P. As the gain score

graph directly reveals, conditioning on P blocks the noncausal path (i) Z A

! P! G while the noncausal path (ii) Z A! Y! G remains open. This

results in losing the bias offsetting effect of gain score methods and we have

the same bias as in a standard matching or covariance adjustment with

respect to Y (Allison 1990; Jamieson 2004; Kenny 1975; Laird 1983; Lech-

ner 2011). This is so because the association transmitted via the remaining

open path (ii) Z A! Y! G is identical to the noncausal association via Z
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 A! Y. Thus, conditioning on the pretest in a gain score analysis turns the

analysis into a standard conditioning method.

Advantages of Gain Score Estimators

Unreliability of Pretest

In practice, pretests are often contaminated with random measurement error.

To highlight the impact of measurement error on both conditioning and gain

score estimators, we now explicitly add an independent error term e to the

graph in Figure 2B (by convention, such random disturbance terms are

usually omitted from graphs). The new structural parameter le represents

the impact of the measurement error e on the pretest P (e ! P).

Given the graph in Figure 2B, conditioning on P will remove a major part

of the confounding bias if P closely resembles A, which is the case whenever

measurement error is very small. However, as measurement error e increases,

P becomes a weaker proxy for A, resulting in more bias in conditioning

estimators. This intuition is confirmed when we consider the regression of

Y on Z and P and express the expectation of Z’s partial regression coefficient,

bYZ�P, in terms of the structural parameters in the graph in Figure 2B (for

derivations of all estimator formulae hereafter, see the Appendix):

bYZ�P ¼ tþ ab2ð1� rÞ
VarðZÞ � a2r

; ð1Þ

where r denotes the reliability of P, r ¼ b2
1

b2
1þl2

e

.9 The regression estimator

consists of the true causal effect (t) and an additive bias term. The bias term

shows that the regression coefficient varies with the impact of the measure-

ment error, le. For example, if measurement error is large (i.e., jlej is large in

comparison to jb1j), the reliability r decreases and the bias term jab2ð1� rÞj
increases. That is, ð1� rÞ% of the confounding bias induced by A (i.e., ab2)

is remaining. In addition, the remaining bias is amplified by the factor
1

VarðZÞ�a2r
(we discuss bias amplification in the next section). If the pretest

is measured without error (i.e., le ¼ 0 and r ¼ 1), then the partial regression

estimator is unbiased, bYZ�P ¼ t. Thus, measurement error attenuates the

bias-removing potential of the pretest (see Aiken and West 1991; Steiner

et al. 2011).

In comparison to conditioning estimators, gain score estimators are insensi-

tive to measurement error in the pretest (Maris 1998). This is so because the

association transmitted via the noncausal path Z A!P!G does not involve

le. According to the path-tracing rule, the association along the path is simply
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given by the product of the three path coefficients ofa,b1, and�1. In regressing

the gain score G on the treatment indicator Z, we can write the expectation of the

gain score estimator, bGZ , in terms of structural parameters t, a, b1, and b2:

bGZ ¼ tþ aðb2 � b1Þ
VarðZÞ : ð2Þ

The formula clearly shows that the gain score estimator is not a function

of le (or the reliability r), revealing its insensitivity to measurement error

in the pretest.10 Suppose that the math pretest is a highly unreliable

measure of students’ true math ability. In this case, conditioning methods

are not able to remove all the bias. Depending on the unreliability, only a

minor fraction of the bias might be removed. However, gain score meth-

ods’ accuracy is unaffected by measurement error and, as long as the

common trend assumption holds, b1 ¼ b2, they estimate the causal effect

without any bias.

Bias Amplification

Steiner and Kim (2016) showed that any remaining bias in conditioning

estimators is amplified (also see Pearl 2010, 2011). Bias amplification is a

phenomenon that occurs with conditioning methods whenever the condition-

ing covariates (a) fail to remove the entire bias and (b) causally determine

treatment selection. The denominator in the bias term of equation (1) con-

tains the amplification factor 1
VarðZÞ�a2r

, which is always greater than the

factor without conditioning on P, 1
VarðZÞ. Thus, the subtraction of a2r in the

denominator determines the extent of bias amplification due to controlling

for P in the conditioning estimator. The stronger the ability’s effect on

treatment selection and the higher the pretest’s reliability, the stronger the

bias-amplifying effect. However, the term �a2r does not occur in the

denominator of the gain score estimator in equation (2).

To better see this, consider two unobserved confounders A and S as

depicted by the graph in Figure 2C. In addition to the confounder A,

the variable S also confounds the relation between the treatment Z and the

outcome Y. Since the relations S ! Z and S ! Y are described by the

structural parameters as and bs, respectively, the confounding bias induced

by S is given by asbs. The graph also shows that the pretest P is affected by A

while unaffected by S, indicating that P can serve as a proxy for A but not for

S. Hence, conditioning on P does not eliminate any bias induced by the

confounder S; on the contrary, it amplifies the bias due to S.
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Given the graph in Figure 2C, the expected partial regression coefficient

bYZ�P (i.e., conditioning estimator) is

bYZ�P ¼ tþ ab2ð1� rÞ
VarðZÞ � a2r

þ aSbS

VarðZÞ � a2r
: ð3Þ

The first bias term represents, as already discussed, the remaining bias due to

Ps unreliability with respect to A, while the second bias term shows the

hidden bias due to S, asbs, which is amplified by the factor 1
VarðZÞ�a2r

. In

order to see that bias amplification only occurs if we condition on the pretest

P, compare equation (3) to the expected regression estimator without con-

ditioning on P (i.e., regression of Y on Z):

bYZ ¼ tþ ab2

VarðZÞ þ
aSbS

VarðZÞ : ð4Þ

It becomes clear that, without conditioning on P, the hidden biases due to A

and S are not amplified because a2r is not subtracted from Var(Z) in the

denominators.

Since bias amplification is a phenomenon that only occurs if one condi-

tions on covariates, gain score estimators are immune to bias amplification

(provided one does not condition on any other covariates).11 Regressing G on

Z, the expectation of the gain score estimator is given by:

bGZ ¼ tþ aðb2 � b1Þ
VarðZÞ þ

aSbS

VarðZÞ : ð5Þ

Note that the third term, the bias due to S (i.e., aSbS=VarðZÞ), is identical to

the third term in equation (4), which is the bias in the unadjusted effect

estimate of Z on Y. Although gain score methods do not eliminate the bias

due to S, at least they do not amplify the remaining bias.

Collider Bias

Since pretest and posttest are typically measured with the same or a very

similar instrument (e.g., same or same type of test or questionnaire items, or

interviewers) in the same or a similar setting (e.g., lab or classroom, lab

personnel, or teachers), the error terms of the pretest and posttest are very

likely correlated. Zimmerman and Williams (1982:153, emphasis added)

wrote, “correlated errors [between pretests and posttests] are probably the

rule rather than the exception in pretest-posttest measurements.” The graph

in Figure 2D represents such a correlated error structure. The exogenous

variable E represents a common source of the correlated measurement errors,
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that is, E simultaneously affects the pretest and posttest with structural para-

meters l1 and l2 for the causal relations E ! P and E ! Y, respectively.

Given the data-generating model in Figure 2D, conditioning methods now

face the issue of collider bias. Compared to the graph in Figure 2A, where the

error terms are independent, the correlated error structure in Figure 2D

creates an additional noncausal path between Z and Y:

Z  A! P E! Y :

Since this path contains the collider P, it is naturally blocked at the collider

node P. However, once we condition on P, the path becomes unblocked and

transmits spurious association (Ding and Miratrix 2015; Elwert and Winship

2014). This spurious association between Z and Y is referred to as collider

bias. Thus, with correlated errors, conditioning estimators are biased due the

unreliable measurement of A and the collider bias induced by conditioning on

the collider P.

The graph in Figure 2D reveals that the correlated error structure via E

creates three additional noncausal paths between Z and G:

(i) Z A! P  E ! Y ! G,

(ii) Z  A ! Y  E ! P ! G,

(iii) Z ! Y  E ! P! G.

However, gain score methods are robust against collider bias because all new

noncausal paths via E are naturally blocked either at P or Y because one of

them is always a collider on the paths. Thus, no noncausal association is

transmitted through these three noncausal paths. Since gain score methods

condition neither on P nor on Y, the noncausal paths remain naturally blocked

such that collider bias is not an issue for gain score estimators.

This can also be seen from algebraic expressions of the conditioning and

gain score estimators. According to the data-generating model in Figure 2D,

the expectation of the conditioning estimator is given by:

bYZ�P ¼ tþ ab2ð1� rÞ
VarðZÞ � a2r

� ab1l1l2

fVarðZÞ � a2rgVarðPÞ : ð6Þ

Compared to equation (1), the correlated error structure results in an addi-

tional subtractive bias term—the collider bias. This new bias term corre-

sponds to the unblocked collider path Z  A ! P  E ! Y, given by the

product of the four structural path coefficients of the path: a, b1, l1, and l2.

In comparison to conditioning methods, gain score methods are unaf-

fected by collider bias. The expectation of the gain score estimator for the
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graph in Figure 2D is identical to equation (2). Although the common cause

E generates a correlated error structure, it does not affect the bias in gain

score estimators.

The Common Trend Assumption under Different
Data-Generating Models

When the Pretest Affects Treatment Selection

The common trend assumption requires that the pretest–posttest change

in the outcome Y does not differ between the treatment and control

groups in the absence of a treatment effect. Given the previous data-

generating models (except for Figures 1A and 2C), the common trend

assumption implies that the impact of the unmeasured confounder A on P

and on Y is identical, b1 ¼ b2. However, whether the equality establishes

the common trend assumption strongly depends on the actual data-

generating model. The models thus far assumed that the pretest P has

no causal effect on treatment Z and posttest Y. This might often be

unrealistic in practice. For example, the math pretest score may be

known to students and their parents before they decide whether to attend

the math camp or not. Then, parents of students with a low pretest score

may encourage their children to take the camp, that is, the pretest cau-

sally affects treatment selection (P ! Z).

The graph in Figure 3A describes this scenario. The graph has four natu-

rally open noncausal paths between Z and G with the following transmitted

associations:

(i) Z A! P ! G: �ab1,

(ii) Z  A ! Y ! G: þab2,

(iii) Z  P ! G: �g1VarðPÞ,
(iv) Z P A ! Y ! G: þg1b1b2.

Note that the association transmitted via path (iii) depends on Var(P) because

P is the “root” node of this path (see Note 6). To obtain an unbiased estimate

of the causal effect using gain score methods, the common trend assumption

requires that the sum of the four noncausal associations must be zero. Using

VarðPÞ ¼ Varðb1Aþ ePÞ ¼ b2
1 þ VarðePÞ, where eP is the independent

(measurement) error of P, the common trend assumption is met if

aðb2 � b1Þ þ g1fb1b2 � VarðPÞg ¼
ðaþ g1b1Þðb2 � b1Þ � g1VarðePÞ ¼ 0:
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One obvious case that meets this condition is b1 ¼ b2 and VarðePÞ ¼ 0,

that is, the unmeasured confounder A affects P and Y to the same extent and

the pretest is measured without error. However, since the pretest is rarely

measured without error, the common trend assumption only holds if the first

bias term ðaþ g1b1Þðb2 � b1Þ and the second bias term g1VarðePÞ perfectly

offset each other. But, it is not clear under which conditions such an

offsetting can happen. Consequently, when the pretest affects treatment

assignment, the common trend assumption is generally hard to assess on

subject-matter grounds. Also note, since the association via the noncausal

path (iii) depends on the variance of the pretest, and thus on the measurement

error in the pretest, the gain score estimator is no longer robust to measure-

ment error in the pretest. For this reason, some authors have advocated

against the use of gain scores when the pretest causally determines treatment

selection (Allison 1990; Imai and Kim 2019; Maris 1998).

When the Pretest Affects the Posttest Measure

The graph in Figure 3B describes a situation where the pretest causally affects

the posttest (P! Y). Such a situation occurs if the pretest scores are unknown

prior to camp enrollment, but after students and parents learn about the pretest

score, it may stimulate students’ motivation or parents’ engagement to orga-

nize private tutoring, for instance. With respect to the gain score G, we have

three naturally open noncausal paths and corresponding associations:

(i) Z  A! P! G : �ab1;
(ii) Z  A! Y ! G : þab2;

(iii) Z  A! P! Y ! G : þab1g2:

In order to identify the causal effect, the common trend assumption

requires that

Figure 3. Graphs where the pretest directly affects (A) the treatment or (B) the
posttest.
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afb2 þ b1ðg2 � 1Þg ¼ 0:

Given a 6¼ 0, the equality holds when b1 ¼ b2 þ b1g2. Note that b2 þ b1g2

represents the total effect of A on Y (except for the effect via Z): the direct

effect of A on Y (A! Y) plus the mediated effect via P (A! P! Y). Thus,

the common trend assumption requires that the impact of A on P is the same

as the total impact of A on Y (again, not via Z).

In contrast to the previous case where the pretest affects treatment

selection, the implication of the common trend assumption has a clearer

substantive interpretation here. Researchers need to assess whether the

impact of the unmeasured confounder on the pretest is identical to the

cumulative impact of the same confounder on the posttest (i.e., the direct

and indirect effect via the pretest). If the two impacts are identical, gain

score methods identify the causal effect (and are insensitive to measure-

ment error in P). Note that we do not claim that the common trend

assumption is more likely met if the pretest does not affect treatment

selection. Rather, we argue that the common trend assumption is easier to

assess because the causal graphs of data-generating processes that do not

have an effect of P on Z (Figure 2A or Figure 3B) allow for a more

meaningful interpretation of the assumption.

Discussion

The widespread reservations about gain scores are partly due to the lack of

understanding about how gain score methods actually remove bias. A few

methodological articles argued that gain score methods can be effective for

causal inference with observational studies (e.g., Allison 1990; Maris 1998;

Van Breukelen 2006). However, most of these articles rely exclusively on

algebra, which is not easily accessible to many applied researchers. This

article revisited the topic with a graphical models approach. The graphical

representations visualize the process of how gain score methods identify

causal effects and help in understanding and assessing the common trend

assumption. For example, our graphical discussion of the common trend

assumption provides a clear explanation for why the assumption is hard to

assess when the pretest directly affects treatment selection. Corresponding

graphical discussions can be easily extended to more complex data-

generating models, for instance, when the pretest simultaneously affects both

treatment selection and the posttest. Also, if there are multiple unmeasured

confounders, more noncausal paths between treatment Z and gain score G
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need to be considered, and the common trend assumption holds only if the

noncausal associations transmitted along these paths offset each other.

In this article, we also showed that gain score estimators are robust against

the unreliability of pretests, bias amplification, and collider bias—issues that

may strongly affect conditioning estimators. Nonetheless, gain score methods

do not always work and not necessarily remove more bias than conditioning

methods like regression or matching adjustments. It is possible that condition-

ing on the pretest yields less biased or even unbiased effect estimates while

gain score estimators might be seriously biased. One of the main messages of

this article is that researchers need subject-matter knowledge about the data-

generating process to select an appropriate method. Without strong subject-

matter knowledge, an informed choice of an appropriate identification strategy

and the corresponding estimator is impossible despite the long-standing dis-

cussions and investigations since Lord’s (1967) seminal article. However, if

subject-matter knowledge is available, graphical models are a useful tool to

incorporate such knowledge into causal investigations and to choose an iden-

tification strategy that has the best chances to remove confounding bias. Gra-

phical models help in understanding gain score methods and Lord’s paradox,

just as they are useful for discussing missing data problems (Thoemmes and

Mohan 2015) and quasi-experimental designs (Steiner et al. 2017).

This article suggests a distinct role of pretests in observational studies.

Although the literature has emphasized the importance of pretests (Cook and

Steiner 2010; Shadish et al. 2002), it has been unclear what a good pretest is. Our

comparison of gain score and conditioning estimators revealed that different

methods exploit different characteristics of the pretests. For conditioning esti-

mators, a good pretest must be a close proxy of the unmeasured confounders,

that is, the pretest and the unobserved confounders should be nearly perfectly

associated. For gain score estimators, however, a good pretest is affected by the

unobserved confounders to nearly the same extent as the posttest. When plan-

ning an observational study, researchers need to assess whether it is easier to

meet the unconfoundedness or common trend assumption with pretest mea-

sures. If they think that the pretest may be a good proxy for all unobserved

confounders, then they need to put considerable effort into the reliable measure-

ment of a single or multiple pretests. Moreover, in taking repeated measures

they should try to avoid correlated errors because of the possibility of collider

bias. In contrast, if researchers believe that the unobserved confounders affect

the pretest and posttest to almost the same extent, the reliable measurement and

independent error structure are less important. Instead, researchers might put

more effort into using the same instrument at the pretest and posttest, or into an

adequate calibrating or equating of scores from different instruments.
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Finally, the graphical discussion of gain scores in this article is a first step

in developing graphical models for a broader class of methods including

fixed effects models and comparative interrupted time series designs. They

belong to the same class of methods as gain score methods because they rely

on the bias offsetting mechanism of differencing instead of the bias-blocking

mechanism of conditioning methods like matching or covariance adjustment.

This distinction (conditioning methods vs. differencing methods) has not

been clearly made in the previous literature. For example, it is not rare to

find a comparative interrupted time-series design with an additional regres-

sion adjustment for or matching on multiple pretests (e.g., St. Clair, Cook,

and Hallberg 2014; Wong et al. 2017; also see Abadie, Diamond, and

Hainmueller (2010), for synthetic control methods). Our graphs show that

conditioning on the pretest when using a gain score regression automati-

cally turns into standard covariance adjustment, which then relies on the

unconfoundedness rather than the common trend assumption. More

research is needed to reveal similarities but also differences among those

methods.

Appendix

Regression Estimator Formula

The linear structural causal model corresponding to the graph in Figure 2D

is given by A ¼ eA, Z ¼ aAþ eZ , Y ¼ tZ þ b2Aþ l2E þ eY , P ¼ b1Aþ
l1E þ eP, and G ¼ Y � P, where eA, eZ , eP, and eY are mutually independent

random disturbance terms (omitted from the graph). Without loss of general-

ity, we assume VarðAÞ ¼ VarðEÞ ¼ 1. Then, the expectation of the partial

regression coefficient of Z, bYZ�P, from the regression of Y on Z and P can be

written in terms of bivariate correlations as bYZ�P ¼ rYZ�rYPrZP

1�r2
ZP

� SDðY Þ
SDðZÞ, where

the correlation coefficients are given by

rYZ ¼ CovðtZ þ b2Aþ l2E þ eY ; aAþ eZÞ=fSDðY ÞSDðZÞg
¼ fVarðZÞ tþ ab2g=fSDðY ÞSDðZÞg;

rYP ¼ CovðtZ þ b2Aþ l2E þ eY ; b1Aþ l1E þ ePÞ=fSDðY ÞSDðPÞg
¼ ðtab1 þ b1b2 þ l1l2Þ=fSDðY ÞSDðPÞg;

rZP ¼ CovðaAþ eZ ; b1Aþ l1E þ ePÞ=fSDðZÞSDðPÞg
¼ ab1=fSDðZÞSDðPÞg:
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Plugging the population correlations into the formula for bYZ�P, we obtain

equation (6), bYZ�P ¼ tþ ab2ð1�rÞ
VarðZÞ�a2r

� ab1l1l2

fVarðZÞ�a2rgVarðPÞ, where r is the relia-

bility of the pretest P, r ¼ b2
1=VarðPÞ.

Because the structural causal model for Figure 2B is a restricted model of

the structural causal model in Figure 2D, we obtain equation (1) by setting

either l1 ¼ 0 or l2 ¼ 0: bYZ�P ¼ tþ ab2ð1�rÞ
VarðZÞ�a2r

:

The structural causal model corresponding to Figure 2C is given

by A ¼ eA, S ¼ eS , Z ¼ aAþ aSS þ eZ , Y ¼ tZ þ b2Aþ bSS þ eY , P ¼
b1Aþ eP, and G ¼ Y � P. The correlation coefficients, based on this model,

are given by:

rYZ ¼ CovðtZ þ b2Aþ bSS þ eY ; aAþ aSS þ eZÞ=fSDðY ÞSDðZÞg
¼ fVarðZÞ tþ ab2 þ aSbSg=fSDðY ÞSDðZÞg;

rYP ¼ CovðtZ þ b2Aþ bSS þ eY ; b1Aþ ePÞ=fSDðY ÞSDðPÞg
¼ ðtab1 þ b1b2Þ=fSDðY ÞSDðPÞg;

rZP ¼ CovðaAþ aSS þ eZ ; b1Aþ ePÞ=fSDðZÞSDðPÞg
¼ ab1=fSDðZÞSDðPÞg:

Plugging the correlation terms into bYZ�P ¼ rYZ�rYPrZP

1�r2
ZP

� SDðY Þ
SDðZÞ, we obtain

equation (3)

bYZ�P ¼ tþ ab2ð1� rÞ
VarðZÞ � a2r

þ asbs

VarðZÞ � a2r
:

Relying on the same structural causal model, we can also obtain equations

(2), (4), and (5). First, equation (4) is the regression coefficient of Z of the

regression of Y on Z, bYZ . Since the coefficient can be written as

bYZ ¼ CovðY ; ZÞ=VarðZÞ and using

CovðY ; ZÞ ¼ CovðtZ þ b2Aþ bSS þ eY ; aAþ aSS þ eZÞ
¼ VarðZÞ tþ ab2 þ aSbS ;

we obtain bYZ ¼ tþ ab2

VarðZÞ þ
aSbS

VarðZÞ. Similarly, for equation (5), using

CovðG; ZÞ ¼ CovðtZ þ b2Aþ bSS þ eY � b1A� eP; aAþ aSS þ eZÞ;
¼ VarðZÞ tþ aðb2 � b1Þ þ aSbS ;

we obtain the regression coefficient for Z of the regression of G on Z,

bGZ ¼ tþ aðb2�b1Þ
VarðZÞ þ

aSbS

VarðZÞ (equation [5]). Since the structural causal model
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in Figure 2A is a restricted model of the structural causal model in Figure 2C,

we obtain equation (2) by setting aS ¼ 0 and bS ¼ 0, that is, bGZ ¼
tþ aðb2�b1Þ

VarðZÞ .
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Notes

1. Van Breukelen (2006) discusses efficiency issues of gain score estimators.

2. A path is a sequence of adjacent nodes without visiting a node more than once.

The directions of the arrows do not matter.

3. An alternative graphical representation, called the latent change score (LCS)

model, describes the change score as a latent variable that is affected by the

pretest but directly causes the posttest: P! C! Y (together with P! Y), where

C is the latent change score (Coman et al. 2013; McArdle 2009). Although the

LCS model can represent statistical relations among variables, we think that it is

limited in representing causal relations. For example, since the LCS model

requires that P directly affects Y, but also indirectly via C, it cannot correctly

represent the causal model we present in Figure 2A which assumes that the

pretest does not causally affect the posttest. Other critical aspects of the LCS

model are discussed in Shahar and Shahar (2012).

4. The path-tracing rules, developed by Wright (1921), are applicable to all our

graphs because we assume linear causal relationships. For more information

about Wright’s path-tracing rules in linear models, see Pearl (2013).
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5. Conditioning on Y alone would open path (iii) because Y is a collider on the path.

However, the additional conditioning on P blocks the open path and thus does not

transmit any association conditional on Y and P.

6. To be precise, the product should be multiplied by the variance of the “root” node

of the path, such that �ab1 � VarðAÞ. Throughout this article, we assume that

unmeasured confounders (i.e., vacant nodes) such as A have a unit variance,

VarðAÞ ¼ 1.

7. If a ¼ 0, we would have no arrow A! Z, implying that A is not a confounder.

8. Note that we present here the common trend assumption for linear data-

generating models with constant effects. For models with nonlinear relations

or effect heterogeneity, the common trend assumption refers to the overall effects

transmitted via Z  A! P and Z  A ! Y.

9. Note that we assume VarðAÞ ¼ VarðeÞ ¼ 1.

10. However, the gain score estimator’s variance will be affected by the unreliability

in P.

11. It is possible to condition on covariates (other than the pretest) in a gain score

analysis. This may be desirable because the common trend assumption can be

met only after conditioning on some covariates. Although this strategy may

introduce bias amplification in gain score estimators, in this article, we consider

the basic gain score estimator, which does not require any other conditioning.
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