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Abstract  

Cognitive Diagnostic Assessment (CDA) is a type of educational assessment that is designed to 
measure specific knowledge structures and processing skills in students so as to provide 
information about their cognitive strengths and weaknesses (Leighton & Gierl, 2007). CDA has 
been instrumental in turning the attention of practitioners to more diagnostic, descriptive, and 
fine-grained levels of feedback. Different statistical, psychometric models, called Cognitive 
Diagnostic Models (CDMs), have been proposed to extract this kind of information from both 
diagnostically and non-diagnostically designed tests. These models provide two sets of 
information to the test users: information on mastery/non-mastery patterns of sub-skills for test-
takers and information on the diagnostic power of test items. Due to its novelty and relative 
complexity of its procedures, cognitive diagnostic assessment is still far from achieving its 
proper place in educational assessment. This paper aims at providing an easy-to-grasp account of 
CDA's theoretical foundation and its procedures of test analysis. The present paper first focuses 
on what and why of CDA in education and second language acquisition. In this part, theoretical 
underpinnings of CDA, psychometric models of practicing the analyses, model selection, and 
studies in SLA are presented. The second section presents how these foundations are put into 
practice in a stepwise manner. Four main steps are delineated in conducting a CDA analysis. The 
procedural steps are then exemplified using real data for analysis. The paper concludes with an 
account of the limitations and untapped areas in CDA.  

Keywords: cognitive diagnostic assessment, educational measurement, high stakes testing, Q-
matrix, reading comprehension 

1. Introduction 

 

With the burgeoning studies on the impact of testing on society, education system, and 
individuals (Messick, 1989; Shohamy, 1992), the educational testing community has 
increasingly felt the limitations of the output of the current testing practices, which rank order 
test-takers based on their test performance. Score reporting of current testing was rightly 
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challenged in the mid-1980s. Splolsky (1990), for instance, recommended using profiles in 
which multiple sub-skills are reported in more than one way. In the same vein, Shohamy (1992) 
called for detailed and diagnostic method of feedback reporting and some other arguments were 
also made in favor of more descriptive test information in order to improve instructional design 
and guide students’ learning. Consistent with these arguments, Cognitive Diagnostic Assessment 
(CDA) was introduced as a new method in educational measurement that can provide fine-
grained diagnostic information about test-takers’ degree of mastery of some domain sub-skills 
(Lee & Sawaki, 2009). Sub-skills are defined as domain-specific knowledge and skills that are 
required to indicate mastery in a specific cognitive domain (Leighton & Gierl, 2007). Taking 
reading skill as a cognitive domain, one needs to have knowledge of vocabulary, grammar, 
making inferences and so on in order to comprehend a text completely. These are considered the 
sub-skills of the reading domain, which are called attributes as well. Throughout this paper, these 
two terms are used interchangeably. The most conspicuous characteristic of this approach is that 
it is the point where cognitive psychology and psychometric modeling meet within a single 
framework, therefore it aims to assess the test-takers'' knowledge and underlying cognitive 
processing sub-skills (DiBello, Roussos, & Stout, 2006; Leighton & Gierl, 2007).  

The demand for CDA can partly be explained by the fact that the traditional forms of 
assessment have failed to satisfy the expectation of diagnostic feedback. Both Classical Test 
Theory (CTT) and Item Response theory (IRT) locate test-takers on a trait scale by providing 
only an overall score of their proficiency level in the target domain (Choi, Rupp, & Pan, 2012). 
According to Rupp, Templin, & Henson (2010), the score that is reported in this way is 
inadequately beneficial in supporting formative interpretations for qualitative diagnostic 
purposes. In comparison, a test designed based on CDA principles is capable of specifying the 
test taker’s latent proficiency level score along with an indication of its underlying knowledge 
structures. This specification allows for possible intervention to address individual and group 
needs and improve instruction for students’ effective learning and progress (Lee, 2009). 

Due to the diagnostic nature of CDA, it not only can reveal more precise and detailed 
information to the users of a test, but also can disclose the test-takers’ weaknesses and strengths 
on the pre-specified sub-skills of the target domain (Leighton & Gierl, 2007; Rupp et al., 2010). 
CDA can be considered as a step forward regarding the feedback that educational measurement 
has always strived to provide. This goal cannot be achieved unless CDA is operationalized and 
practiced both in classroom assessment and large scale testing. The major hurdle in the way of 
achieving this goal is the fact that CDA is still in its infancy and although its foundational 
theories are well-established, its operationalization is still on the way. The complexity of the 
statistical methods and the interpretation of their outputs have limited the expansion of CDA into 
mainstream assessment.  

Therefore, the main purpose of this article is to provide an easy-to-grasp scheme for the 
practice of CDA for those who are new to the area or are interested in this approach to 
assessment. Attempts have been made to sketch CDA without reference to mathematical jargon 
as to make the concepts and procedures more accessible to practitioners. This paper includes two 
major parts. In the first part, theoretical underpinnings of CDA are presented. This section 
includes a short historical background of diagnostic assessment, limitations of traditional 
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approaches, statistical models of analysis in CDA, and CDA in second language acquisition 
(SLA). In the second part, four main steps in conducting experimental cognitive diagnostic 
analysis are described in extensive detail. The steps are then exemplified using real data. Some 
limitations of CDA practice and untapped areas come next. 

2. Theoretical Underpinnings of CDA 

2.1. Historical background 

CDA can be traced back to the writings of scholars such as Messick (1989) on test validity and 
Snow and Lohman (1989) on cognitive psychology. Not directly mentioning CDA, Messick 
(1989) highlighted the significance of inferring information about test-takers' mental processes 
from the scores they get on a test. Nichols (1994) and Mislevy, Nichols, Chipman, and Brennan 
(1995) thereafter coined the term cognitively diagnostic assessment to refer to implementing 
cognitive diagnosis in the context of education (Leighton & Gierl, 2007).  CDA, identified at the 
inter-section of cognitive psychology, which studies mental representations of human's 
observable behaviors, and psychometrics, which is devoted to measuring skills, knowledge, 
abilities, and attitudes, has attracted the attention of researchers and educational measurement 
students since the mid-1980s. In the last two decades, contributors from both research 
communities of cognitive psychology and psychometric theory have started to lay the ground for 
the new approach to assessment with the hope of compensating for the failure of item response 
theory (IRT) and classical test theory (CTT) to provide diagnostic information to supplement test 
results. 

The mission of these traditional psychometric measurement models has been rank-
ordering test-takers on an underlying latent trait (construct) and locating them in a group of 
examinees. In IRT, for example, the relationship between an examinee’s responses to test items 
and a latent variable is specified by a mathematical function, and the test result for the examinee 
produces a single score as a measure of an underlying latent variable (Hambleton, Swaminathan, 
& Rogers, 1991). Although these test results are valuable for ranking and comparing examinees, 
Snow and Lohman (1989) conclude that they lack a substantive psychological theory in order to 
explain item responses through explicit demonstration of the psychological processes that 
underlie the test constructs. Furthermore, these models reflect the investigators' expectations of 
how students will come to an answer in test situations. The actual thinking procedures on the part 
of the students are not empirically examined (Nichols, 1994). As Jang (2005) mentions, in these 
assessment approaches, understanding and interpreting the meaning of an examinee’s score per 
se is not an easy job. No information on test-takers' strengths and weaknesses is provided in the 
test summary results. In order to provide more detailed information on instruction and student 
learning, CDA seems more appealing (Lee, de la Torre, & Park, 2012). 

2.2. Cognitive diagnostic assessment 

A test, informed by CDA, can specify the potential knowledge structures underlying the overall 
test score. This specification can function as feedback that can be used in addressing individual 
and group needs through remedial instruction and making improvements in instruction with the 
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aim of enhancing learning and advancement (Lee, 2009). The definition provided by Kubinger 
(2006) as translated by Rupp et al. (2010) offers a conceptual elucidation of CDA potential 
referred to above:  

Diagnostic assessment is a systematic process that seeks to obtain specific information about 
psychological characteristics of a person by using a variety of methods. Its objective is to justify, 
control, and optimize decisions and their resulting actions. This process includes (a) the 
specification of the diagnostic question, (b) the selection of the diagnostic methods, (c) the 
application and evaluation of the data from the diagnostic methods, (d) the interpretation of the 
data and the development of a diagnostic report, (e) the design of an intervention, (f) the 
evaluation of the effectiveness of the intervention (p.11).  

The main focus of this definition is on the systematic procedure that CDA practitioners 
should follow from defining the purpose of assessment to categorizing participants according to 
their underlying abilities.  

As CDA is fundamentally diagnostic, statistical models, called cognitive diagnostic 
models (CDMs), are utilized in order to provide discrete attribute profiles for test-takers, which 
are a series of attributes or sub-skills and their related probabilities(Rupp, et al., 2010, p. 83). 
The purpose of CDMs is to classify examinees as masters or non-masters of the predetermined 
sub-skills/attributes based on their observed response patterns (von Davier, 2005). Different 
definitions and classifications are provided for CDMs, nowhere, though one can find a more 
detailed definition than the one provided by Rupp and Templin (2008). To them CDMs are 
probabilistic, confirmatory multidimensional latent-variable models. CDMs allow for a simple or 
complex loading structure. They include observable categorical response variables and also 
unobservable (i.e., latent) categorical predictor variables. The latter are combined in 
compensatory and non-compensatory ways to generate latent classes. 

This definition highlights the distinctive features and classification of CDMs. On the 
grounds that CDMs rely on multiple latent variables to classify the test-takers, they are 
considered multidimensional models and hence are similar to multidimensional IRT models and 
also multidimensional factor analysis models. The departure line between CDMs and these 
models is the nature of the latent variables in each model. In traditional IRT and FA models, the 
latent variables are continuous, however CDMs utilize categorical latent variables. To put it 
another way, continuous latent variables are capable of only rank-ordering the test-takers and 
also they do not lead to statistical classifications. In addition, FA /confirmatory FA use 
continuous data and IRT/multidimensional IRT use discrete data. CDMs, though, tends to be 
defined for categorical data. Loading structure is another distinction of CDMs and MIRT and 
CFA. The latter models use a simple leading structure, that is to say each item loads on one latent 
dimension. CDMs, on the other hand use more complex loading structure, in which each item 
loads on multiple dimensions (Rupp et al., 2010). 

2.3. Cognitive diagnostic models (CDMs) 
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Chronologically speaking, CDMs have been developed and progressed since the introduction of 
diagnostic assessment. Tatsuoka (1983) developed the rule-space methodology that was applied 
to mathematics assessment. It is a widely-known model in educational research which was firstly 
applied to a set of subtraction and addition data and afterwards was utilized to examine other 
content areas, including second language acquisition. Embretson’s (1985) Multicomponent latent 
trait model, the tree-based regression method (Sheehan, 1997), the hybrid model of latent class 
analysis (Yamamoto & Gitomer, 1993), the cognitive design system (Embretson, 1998), 
thedeterministic inputs, noisy and gate (DINA) model and the noisy inputs, deterministic and 
gate (NIDA) model (Junker & Sijtsma, 2001), the Fusion Models (Hartz, 2002; Roussos et al., 
2007), the attribute hierarchy method (Leighton, Gierl, & Hunka, 2004), the general diagnostic 
model (GDM, von Davier, 2005) were introduced subsequently. Table 1 depicts some well-
known and most frequently applied cognitive diagnostic models. 

 

Table 1 

Some Cognitive Diagnostic Models and their Statistical Packages 

Based on the features that CDMs share, some classifications are suggested. In one 
classification, CDMs fall into two categories: non-compensatory and compensatory (DiBello et 
al., 2007; Roussos et al., 2007). In non-compensatory models success in an attribute does not 
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compensate for the deficiency in another attribute in order to correctly respond to an item. DINA 
model, NC-RUM/RUM models, and NIDA model fall into this category. In compensatory 
models on the other hand, a high level of competence in one attribute can compensate for a 
deficiency or low level of competence in another attribute by means of the interaction of 
attributes required by that task. DINO model, NIDO model, and GDM are examples of this 
category.  

Conjunctive and disjunctive models are another grouping of CDMs. This classification 
prescribes how attributes are combined to produce a latent response (Rupp, et al., 2010). 
Conjunctive models assume that all attributes leading to a positive response should be taken 
correctly (Rupp & Templin, 2008). The implication is that a missing attribute cannot be 
compensated for by the mastery of otherattributes. Conjunctive models are mostly used for 
mathematical tests which require all attributes to perform successfully on an item (Tatsuoka, 
1990). In disjunctive models though successful performance on an item only requires that a 
subset (in some cases only one) of the probable strategies is effectively applied (DiBello, et al., 
2007). Disjunctive models are appropriate when multiple strategies exist to solve the item. The 
DINA model, for example, is viewed as a non-compensatory model that uses a conjunctive 
condensation function. However, the DINO (deterministic inputs, noisy or gate) model is 
classified as a non-compensatory, disjunctive model.  

The type of the data, that is to say the test-takers' ' scored items, is another critical factor 
in selecting a specific CDM. Data to be analyzed can be either dichotomous or polytomous. Most 
educational achievement/proficiency assessments are dichotomously scored, that is 1 for a 
correct answer and 0 for an incorrect one. The most common example of a dichotomous item is a 
multiple-choice test item, which typically has 4 to 5 options, but only two possible scores (0 or 
1) can be assigned to a response to such an item.  True/False or Yes/No items are other binary 
examples. For the very obvious reason, almost all CDMs are developed to handle these types of 
scored tests. Polytomous responses (either nominal or ordinal) have more than two possible 
scores.  The most common examples are Likert-type items (rated on a scale of 1 to 5) and partial 
credit items (scores on an essay item ranging from 0 to 5 points). Some of CDMs have been 
constructed to handle both dichotomous and polytomous data. The Generalized Diagnostic 
Model (GDM; von Davier, 2005), the Rule Space model (RSM; Tatsuoka, 1985, Tatsuoka & 
Tatsuoka, 1989), and the reduced non-compensatory reparameterized unified model (NC-RUM; 
DiBello et al., 1995; Hartz, 2002) are among these models.  

How to choose among a list of CDMs for a particular study is not always an easy 
decision. The theories on the target domain might make it obvious which models would be of 
help. For instance, in the application of CDMs in mathematics, where the solutions involves 
some specific steps in a row, it is argued that non-compensatory models are the most appropriate 
ones (Roussos et al., 2007). Regarding some other domains that are compensatory in nature, such 
as reading comprehension, some scholars believe that compensatory models would work better 
(Li & Lei, 2015). Another consideration in model selection is model complexity. Compared to 
the use of a complex saturated model, the use of simpler constrained models may offer much 
more meaningful interpretations (Rojas, de la Torre, & Olea, 2012). However, Li and Lei (2015) 
suggest that whenever the relationships among cognitive sub-skills are not entirely known, it is 
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more rational to use a saturated CDM, which is flexible to report different kinds of relationships 
among the related sub-skills. The log-linear CDM (Henson, Templin, & Willse, 2009), the 
general diagnostic model (GDM; von Davier, 2005), and the G-DINA (generalized deterministic 
inputs, noisy and gate)model (de la Torre, 2011) all offer a general framework that include some 
other constrained CDMs. 

To provide assessment-related diagnostic information through CDA, one can assume two 
different approaches to study design: diagnostically and non-diagnostically-constructed designs. 
These two types of designs are presented below: 

2.4. Approaches to research design 

2.4.1. Diagnostically-constructed designs 

The most desirable form of cognitive diagnostic assessment is the one that is diagnostically 
designed, constructed, and scored from the very first step. In this approach cognitive sub-skills 
are explicitly defined to be targeted in the test construction phase. These predetermined attributes 
should be in line with the instructional goals. When the sub-skills are set, the data are to be 
analyzed with an appropriate CDM. The scores, afterwards, are to be reported in a fine-grained 
diagnostic system. Although the fine grained cognitive diagnostic assessment was intended to 
inform instructional settings in this way, the diagnostically constructed designs have hardly been 
discussed in the literature. A few tests, though, have been designed in order to fulfill the needs of 
diagnostic analysis (e.g. DIALANG by Alderson 2005, Alderson & Huhta 2005; DELNA 
(www.delna.auckland.ac.nz/uoa); DELTA by Urmston, Raquel, & Tsang, 2013). The problems 
which prevent practicing this design will be discussed later.  

 

2.4.2. Non-diagnostically-constructed designs 

The literature is replete with reports of this design which has assumed a reverse engineering 
approach. It is mainly retrofitted to a set of existing proficiency/achievement tests with the 
intention of extracting and reporting cognitive sub-skills assumed to be measured through the 
test. Contrary to the previous design, sub-skills are not recognized and written down by test 
developers, but extracted post hoc by means of a set of tools; such as test-takers' think-aloud 
protocols and experts' judgements. In the next step, with the help of a selected CDM, fine-
grained information on mastery classification of the test-takers is inferred. Using CDA methods 
in the field, researchers have reported the cognitive diagnostic results from non-diagnostically 
designed tests (Jang, 2005, 2009; Li, 2011). One may question the value of this type of analysis. 
It is, though, believed that such retrofitting efforts could serve as a critical step in advancing 
diagnostic second language assessment research. Before delving into an expensive, time-
consuming process of designing a new diagnostic test, it is worth investigating the extent to 
which useful diagnostic information could be extracted from existing assessments (Lee & 
Sawaki, 2009).  
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Bearing in mind its relative new status, CDA and its corresponding statistical models 
have not yet found their way into educational settings. The research studies, meager in number 
though, have targeted both the theoretical foundations of diagnostic measurement and also the 
real data set analysis in order to address the practical aspects. Delving into the theoretical 
dimension of the CDA’s literature, one can find a number of all-inclusive reviews scrutinizing 
CDA, CDMs, the applications, and the challenges ahead. von Davier (2009) and Rupp and 
Templin (2008) are the most remarkable and noteworthy among them. Some others have taken a 
close look at the Q-matrix, its construction methods, validation process, and also uncertainties in 
its application (e.g., Alderson, 2010; Chiu, 2013; DeCarlo, 2012; Li & Suen, 2013; Liu, Xu, & 
Ying, 2012; Sawaki, Kim, & Gentile, 2009). Taking the experimental dimension into 
consideration, Jang's (2005, 2008, 2009) analysis of the diagnostic capacity of the reading 
comprehension section of LanguEdge™ test items and Li's (2011) research about MELAB 
(Michigan English Language Assessment Battery), both using the Fusion Model (or non-
compansatory reparametrized unified model) are the most-cited ones. Other studies include 
Kasai (1997), Lee & Sawaki (2009), von Davier (2005), Kim (2011), Aryadoust (2011), Ravand, 
Barati, and Widhiarso (2012) to name a few in educational measurement.  

As a burgeoning area of research in educational measurement, CDA has been examined 
in relation to other lines of inquiries as well. Computerized Adaptive Testing (CAT) is one of 
these combinations, which takes advantage of the feedbacks provided by CDA (for instance, 
Cheng, 2010; Liu, Ying, & Zhang, 2013; McGlohen & Chang, 2008). Differential Item 
Functioning (DIF) is another domain which has been recently furnished by the advantages of 
CDA (Li, 2011; Li & Suen, 2013). Although the studies done so far have taken the educational 
assessment a long step forward, CDA is not practiced to the fullest yet. Bringing the theories 
more into light and also highlighting the procedural steps in an easy and straightforward fashion 
to be grasped even by unprofessional stakeholders in psychometric models might make CDA a 
promised area.   

In addition to the studies which have dealt with different aspects of CDA's theory and 
practice, there are very few studies which have tried to make the application of CDA to existing 
tests more accessible. Some empirical studies clarify the steps to be taken in a CDA research. 
Jang's (2005) is considered a study guide in this regard. She has utilized the Fusion model as the 
CDM and scrutinized a reading comprehension test's cognitive diagnostic information.  Li (2011) 
and Ravand and Robittzch (2015) are other studies in this line, which applying CDMs, have 
focused on the procedures of CDA experimental analyses. Yet, some other studies have focused 
most on the procedures of CDA. Lee and Sawaki (2009), in a comprehensive descriptive review, 
explained the application of CDA to language assessment. The major steps in data analysis and 
the final diagnostic score reporting have been presented in their paper. In one section of their 
paper, DiBello et al. (2006) also describe CDA from design to scoring for dichotomous data. 
These articles are very influential, not ample in number though, in leading non-professional 
CDA researchers.  Following the same order, we present the steps of a CDA analysis in the 
following section.  

3. Practical Aspects of CDA 
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Before presenting the procedural steps of analysis, we should acknowledge that the application 
of CDA to assessment measures is not a linear process. Each individual step needs to be taken in 
combination with the other steps (DiBello et al., 2007). CDA application, irrespective of the 
selected approach includes four main steps: 

1. Extracting/defining the target attributes 

2. Constructing and validating the Q-Matrix 

3. Analyzing data with a CDM 

4. Report mastery classification pattern 

Each step is looked upon briefly as follows: 

3.1. Extracting/defining the target attributes 

Based on the approach chosen, the target sub-skills are extracted or defined. The term sub-skill, 
which is named attribute in some studies, refers to unobservable or latent characteristics of 
students (Choi et al., 2011). Sub-skills in CDA are defined as cognitive processes, strategies, and 
skills that underly the test items (Lee & Sawaki, 2009; Rupp et al., 2010). For the first design, 
that is to say the diagnostically-constructed one, attributes are defined precisely by test 
developers based on the instructional goals of the course or the assessment. These attributes, as 
the baselines of Q-Matrix construction and CDA, need to be defined precisely and thoroughly.  

One important issue in attribute specifications is the number of attributes for a specific test. 
Attributes in CDA should be defined in a detailed, fine-grain size. The grain-size of an attribute 
is the level of specificity with which a researcher intends to dissect a cognitive response process 
and describe its constituent components (Rupp et al., 2101). Coarse-grained descriptions of 
attributes and cognitive processes are often used in tables of specifications or blueprints for 
educational assessments. Fine-grained attribute descriptions, on the other hand, are used in 
standards-based assessments with the purpose of providing descriptive feedback for instruction 
and assessment (Leighton & Gierl, 2007). The  proper grain-size depends on the objective of the 
diagnostic assessment and the level of specificity with which one would like to make statements 
about respondents (Rupp et al., 2010). There is no solid regulation for the number of attribute 
labels for a specific test. Although in a mathematical sense, CDMs can measure an unlimited 
number of attributes; in a practical sense an upper limit of 10 attributes makes good sense, due to 
the number of possible combinations of items possible (DiBello et al., 2007). It is suggested that 
every attribute should be assessed by at least three items. It would make the results much more 
interpretable. 

For the second design, that is to say the non-diagnostically-constructed design, various 
sources in combination might inform attribute extraction. The sources as mentioned in Rupp et 
al. (2010) are as follows: 
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3.1.1. Verbal reports or test-takers think-aloud protocols 

In this source of information, test-takers either concurrently (i.e., while they are responding to 
the items) or retroactively (i.e., after they have responded to the items) reveal the underlying 
knowledge they need in answering each item.  

3.1.2. Expert panel's judgment 

Another useful source of information in specifying underlying attributes comes from expert 
panel discussion. Truly knowledgeable experts are asked to describe the processes involved 
based on their research and experience in the target domain's assessment.    

Not mentioned in Rupp et al. (2010), test specifications (blueprints) and concurrent 
literature, that is content domain theories on the target domain are considered and utilized in 
attribute specifications (Buck & Tatsuoka, 1998; Leighton & Gierl, 2007). These methods can be 
used separately or in combination with each other. To add to the validity and reliability of the 
tool (Q-matrix), scholars suggest that more than one method be used in each study.  

3.2. Constructing a Q-matrix 

When the attributes are recognized, the next step is constructing a tentative Q-Matrix. The Q-
matrix along with examinees’ scored item responses would make the input for CDM data 
analysis. Q-matrix, described as “a mapping structure that indicates the sub-skills required for 
successfully answering each individual item” (Li & Suen, 2013, p. 5). It is considered as ‘the 
quintessential component” of all CDMs (Rupp et al., 2010. p. 49). In other words, the 
particularization of which attributes are measured by each item is done numerically in a table 
called the Q-matrix (Tatsuoka, 1983, 1990). A Q-matrix traditionally maps the items in the rows 
and the attributes or sub-skills underlying the answer to an item in the columns. 1s and 0s are the 
entries of the table, which indicate if an attribute is measured by an item or not. A correct answer 
to an item may depend on one or more sub-skills. From a statistical perspective, though, the Q-
matrix is the loading matrix that illustrates which item is associated with which latent variable. 
Table 2 illustrates a sample of a Q-matrix for 10 items and 6 attributes (taken from Rupp et al., 
2010).  

 

            Table 2 

The Q-Matrix for 10 Items and Attributes 
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3.3. Analyzing the data and the outputs 

The initial Q-matrix and the test-takers' scores are to be inserted into the statistical model data 
analysis tool which, based on what was previously discussed about the CDM selection, would be 
the most appropriate one for the study (Figure 1). 

3.3.1. CDM outputs 

Two main elements of any CDM statistical model: the tentative Q-matrix made based on the 
underlying attributes and the scored items. Different models, based on their complexities, 
provide various diagnostic information on both test items' diagnostic capacity and test-takers' 
mastery/competency level on a number of cognitive attributes. Regarding the mastery 
classifications, some statistical models divide the test-takers into two groups of masters and non-
masters, some others, on the other hand, report three groups of masters, non-masters, and 
indeterminate (e.g., the Fusion Model; Hartz et al., 2002). Generally speaking, every CDM is 
expected to offer all or some of the following types of information: 

3.3.1.1. Model fit 

As it was mentioned earlier, choosing the best model has always been a challenge for CDA 
practitioners. Selecting an inaccurate model and/or constructing a mismatched Q-matrix heavily 
impacts the classification accuracy of attribute mastery (Li & Lei, 2015; Rupp & Templin, 
2008). In this regard, model-fit indices are supposed to help in selecting the most appropriate 
model  for a set of data and Q-matrix. 

Model-fit indices in CDA are classified into relative fit (comparing the model with other 
existing and rival models) and absolute fit (checking fit of the model to the data). Relative fit 
index is used for the sake of model comparisons. It is critical to estimate a relative fit index 
before checking the absolute one as it eliminates certain candidate models (Rupp et al., 2010). 
Akaike Information Criterion (AIC; Akaike, 1974) and Bayesian Information Criterion (BIC; 
Schwarzer, 1976) are two main criteria for this model fit. Models that yield the smallest value for 
each of these relative fit indices are preferred (Li & Lei, 2015; Rupp et al., 2010). Although it is 
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very important to touch upon relative fit index, scholars warn against the use of relative fit index 
as the sole measure of model-data fit, because they do not reveal whether or not a model actually 
fits the data in an absolute sense (Rupp et al., 2010).  

Absolute fit indices, on the other hand, aim to measure the magnitude of overall 
discrepancy between observed and model-predicted values and are typically functions of 
residuals (Li & Lei, 2015). Some techniques are suggested for estimating absolute model fit; 
posterior predictive model checking (PPMC), limited-information goodness-of-fit statistics, 
mean absolute difference (MAD), and root mean square error of approximation (RMSEA) are 
among them. For detailed information on the differences among these techniques and how they 
are applied, readers are directed to Kunina-Habenicht, Rupp, & Wilhelm (2012), DiBello et al. 
(2007), and Rupp et al. (2010). Besides model fit indices, some models such as G-DINA (de la 
Torre, 2011) provide item-level fit statistics. With item fit, the statistical software programs 
allocate the best models to individual items.  

3.3.1.2. Q-matrix validation 

Validating the initially-constructed Q-matrix, which is arguably subjective, is another integrative 
part of the majority of CDMs. As the Q-matrix plays a significant role in the interpretations one 
wants to make about the test and test-takers , some indices are proposed by the scholars (e.g. de 
la Torre & Chiu, 2016 for the G-DINA model; de la Torre & Douglas, 2008 for the DINA 
model) to empirically identify and replace misspecified entries in the Q-matrix. The modified Q-
matrix is also subject to some further modifications by the researcher/field experts since 
statistical packages by themselves are not capable of finding and modifying misspecifications. 

 3.3.1.3. Participants' parameters/mastery status 

 The main goal of all CDMs is providing diagnostic information on test-takers'' underlying 
cognitive abilities in a target domain. So it is obvious that the main output of all CDMs have to 
be allocated to parameters on participants' knowledge. Not all models have the same way of 
reporting this output. The G-DINA model for instance, provides latent classes (the skill mastery 
patterns into which respondents are assigned) to deliver information about mastery status of 
participants. Mastery probability of each attribute for all individuals is reported in R 
programming package. The Fusion model, as another example, uses EMstats for examinee 
mastery statistics by means of Arpeggio software. EMstats produces evaluation statistics on an 
examinee-by-examinee basis, as well as summary statistics over all examinees (Roussos et al., 
2007). Depending on the chosen model, the mastery status is reported. 

3.3.1.4. Item parameters 

Besides participants' parameters, delivering statistics on the features of items in a test is another 
target of all CDMs. To take the above mentioned examples again, for the G-DINA model in R 
programming software, a list of probability of success of each latent class for each item is 
handed over (Ma & de la Torre, 2016). In the Fusion model, IMstats (item mastery stats) 
describes how well, on an item-by-item basis and on average over all items, the Arpeggio 
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MCMC estimates of examinee mastery of each skill correspond to the actual observed 
performance of the examinees on each item (Roussos et al., 2007). 

Figure 1. An overall CDA analysis and the outputs  

The typical procedure of CDA application, presented in the four main steps, included 
defining the attributes, developing the Q-matrix, applying a CDM to the Q-matrix and test 
results, and finally reporting the diagnostic information. To make this procedure more tangible, 
the procedure of applying a CDM to the data collected from a high stakes test is presented in the 
next section.  

 

4. A Case Study 

In order to illustrate the procedural steps in CDA, we present a case study of applying the G-
DINA model on a high-stakes reading comprehension test very briefly. As the sub-skills of 
reading comprehension tests interact with each other, the selection of the G-DINA model seems 
logical (for more and detailed information about the model's assumption, refer to de la Torre 
(2011). The sample test-takers include 2500 randomly selected candidates, both males and 
females, who sat the university entrance exam in Iran to pursue their MA programs in various 
fields of Human Sciences in February 2013. The general English reading comprehension section 
of this exam, which includes 3 passages on different topics and 20 multiple-choice items, was 
selected for the analysis (the test package number 613 can be retrieved from www.sanjesh.org).  

4.1. Extracting attributes 

As the study retrofits an existing-non-diagnostically-constructed test, we needed to extract the 
underlying attributes from the test items.  Three main sources were utilized: concurrent literature 
(Jang, 2005; Gao, 2006; Swaki, Kim & Gentile, 2014; Ravand, 2015; Anani & Javidanmehr (in 
press)), expert panel's judgment (three PhD candidates of applied linguistics working on 
educational measurements), and test-takers' think-aloud protocols (10 MA students who had 
taken the test previously). As the result of this triangulation, four main attributes were defined: 

1. Understanding vocabulary meaning: Recognizing the meanings of vocabulary items 
with or without reference to the text. 
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2. Making inferences: Making inferences using explicit information given in the text.  

3. Understanding explicit information: Recognizing information explicitly mentioned in 
the text.  

4. Connecting and synthesizing:  Organizing and synthesizing information across parts of 
the text and understanding the relationship among ideas. 

4.2. The Q-matrix: Initial, validated, and final version 

The experts decided on the Q-matrix entries (1 for the presence and 0 for the absence of the 
attributes) first individually and then in a panel discussion session and came to an agreement on 
the initial Q-matrix. This Q-matrix was validated by the G-DINA package in R programming 
and the suggested version was provided. As it is suggested by the researchers in the area (e. g., 
Jang, 2005), this version was scrutinized by the expert panel again to make sure that suggested 
attributes are truly put in place. The final version of the Q-matrix got prepared, applying experts' 
suggestions, for the subsequent CDM analysis (Table 3).  

 

Table 3  

Initial, Suggested and Final Q-matrices 

 Voc Inf Exp Conn  Voc Inf Exp Conn  Voc Inf Exp Conn 

41 0 1 1 0 41 0 1 0* 0 41 0 1 0 0 

42 0 0 1 1 42 0 0 1 1 42 0 0 1 1 

43 1 1 0 1 43 1 1 0 1 43 1 1 0 1 

44 1 1 0 1 44 1 1 0 1 44 1 1 0 1 

45 1 0 1 1 45 1 0 1 1 45 1 0 1 1 

46 0 0 1 1 46 0 0 1 1 46 0 0 1 1 

47 0 0 1 0 47 1* 1* 1 0 47 1 1 1 0 
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48 1 1 0 1 48 1 1 0 1 48 1 1 0 1 

49 0 0 1 0 49 1* 1* 1 1* 49 0 1 1 1 

50 1 0 1 0 50 1 1* 1 1* 50 1 0 1 1 

51 0 1 0 1 51 0 1 0 1 51 0 1 0 1 

52 1 1 0 1 52 1 1 0 1 52 1 1 0 1 

53 0 0 1 1 53 0 0 1 1 53 0 0 1 1 

54 1 0 1 0 54 1 0 1 0 54 1 0 1 0 

55 0 0 1 0 55 1* 0 1 1* 55 0 0 1 0 

56 0 0 1 0 56 0 0 1 0 56 1 0 1 0 

57 1 0 0 1 57 1 0 0 1 57 1 0 0 1 

58 0 0 1 0 58 0 0 1 0 58 0 0 1 0 

59 0 0 1 0 59 1* 0 1 1* 59 0 0 1 0 

60 1 0 1 0 60 1 0 1 0 60 1 0 1 0 

Initial Q-matrix         Suggested Q-matrix       Final Q-matrix 

         *denotes suggested elements  highlighted cells are changed 

4.3. Data analysis 

The data were analyzed in R-programming software, "GDINA" package, version 1.2.1 (Ma & de 
la Torre, 2017). The estimations in the "GDINA" package are done by MMLE/EM algorithm (de 
la Torre, 2009; 2011). With the 4 Q-matrix attributes (K=4), 16 latent classes ( ) were 
identified. What follows are the data analysis results regarding fit statistics, items and cognitive 
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attributes' parameters as examples of the analysis. Based on the objectives of each individual 
study, some other outputs, such as DIF analysis, can also be extracted from the model analysis.   

4.3.1. Fit statistics 

Absolute fit statistic. As it was discussed earlier, fit statistic is conducted at two levels: absolute 
model fit statistic, which examines the fitness of the model to the data under absolute sense and 
relative fit statistic, which uses a comparative lens to choose the best model from among a bunch 
of models. The absolute model fit is the prerequisite for subsequent analyses.  

 

Table 4 

           Item Fit Statistics 

 

                        mean[stats] max[stats] max[z.stats] p-value adj.p-value 

Proportion correct     0.00        0.03        3.60       0        0.01 

Transformed correlation       0.04       0.27        13.34      0        0.00 

Log odds ratio                0.27       2.02        14.93      0        0.00 

 

Note: p-value and adj.p-value are associated with max[z.stats]. 

      adj.p-values are based on the bonferroni method. 

 

To consider model-data fit, maximum Z-score of each statistic is evaluated. The rejection 
of Z-score is the indication of model-data misfit. The significance level of Z-score can be 
adjusted by means of the Bonferroni correction. For α=0.01, 0.05, and 0.1, critical Z-scores are 
4.17, 3.78, and 3.61 respectively. As Table 4 shows, the G-DINA model provide a good test-
level fit to the data (Max Z=3.60, α=0.01).  

Relative fit statistics. In the G-DINA package different reduced CDMs such as the 
additive CDM (ACDM; de la Torre, 2011), the reduced reparameterized unified model (RRUM, 
Hartz, 2002), the DINA, and DINO models can be calibrated as well. In every CDA, the best 
fitted model needs to be selected for the data analysis. In this regard relative fit statistics, using 
different indices, illustrate the best model for the specific data and the Q-matrix. In the current 
study the same procedure was conducted and rival models were compared with the G-DINA 
model. Table 5 illustrates relative fit indices of conventional Akaike Information Criterion (AIC, 
Akaike 1973), Bayesian Information Criterion (BIC, Schwarz 1978), and observed log-
likelihood ratio test (LRT). The model that reports the least information criteria is considered the 
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best model to fit the data. As columns 1 and 3 in Table 5 read, G-DINA model with the least log 
likelihood ratio and AIC indices fits the data significantly better than the other three models. The 
RRUM comes next on the list. The DINA model though presents the worst model fit.  

 

Table 5 

           Relative Fit Statistics 

Models #par  logLik deviance AIC BIC Chisq Df p-value 

GDINA 119  -14831.34 29662.69 29900.69 30586.19    

DINA 55  -14995.20 29990.41 30100.41 30417.24 327.72 64 <0.001 

ACDM 79  -14940.39 29880.78 30038.78 30493.86 218.09 40 <0.001 

RRUM 79  -14899.41 29798.81 29956.81 30411.89 136.12 40 <0.001 

 

4.3.2. Attribute prevalence 

The estimate of attribute prevalence is provided in Table 6.  The indices show both the whole 
sample's mastery probability of each attribute and the relative difficulty levels of reading 
comprehension's cognitive sub-skills. As the results show vocabulary knowledge, mastered by 
82% of the test-takers , was the easiest attribute and understanding explicit information attribute, 
mastered by 66% of the tets-takers was considered as the most difficult attribute to master. 

 

Table 6.  

The Estimate of Attribute Prevalence 

Reading comprehension cognitive attributes Attribute Prevalence 
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A1. Vocabulary knowledge 0.8276 

A2. Making inferences 0.6924 

A3. Understanding explicit information 0.6691 

A4. Connecting and synthesizing 0.8097 

 

4.3.3. Latent classes' profiles and the posterior probabilities 

CDMs categorize test-takers into latent classes, which represent specific mastery/nonmastery 
profiles for the set of attributes specified in the Q-matrix (von Davier, 2005).Table 7 
demonstrates 16 latent classes' profiles and their posterior probabilities. As it is read, the latent 
class '1111' had the highest class probability (0.340), which means about 34% of the test-takers  
are expected to have mastered all attribute presented in the Q-matrix. The latent classes '0000' 
comes second (0.237), which says 23% of the test-takers, were non-masters of all of the 
attributes. Another latent class which is dominant is '1010', to which 15% of the test-takers 
belong. This latent class is master of the first and the third defined attributes (vocabulary and 
explicit information). 

 

Table 7 

Latent Classes' Profiles and the Posterior Probabilities 

# Latent class Posterior probability 

1 

2 

3 

4 

5 

0000 

1000 

0100 

0010 

0001 

0.2373 

0.0373 

0.0107 

0.0061 

0.0428 
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6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

 

1100 

1010 

1001 

0110 

0101 

0011 

1110 

1101 

1011 

0111 

1111 

0.0426 

0.154 

0.0079 

0.0476 

0.1149 

0.0459 

0.0301 

0.0401 

0.0454 

0.0461 

0.3408 

 

 

4.3.4. Items' probability of success 

The probability of answering a certain item correctly having different attribute mastery patterns 
is another output of the G-DINA model. P(1) is the probability of success for those test-takers 
who have mastered all the required attributes in an item, which involve '1', '11', '111', '1111' in a 
4-attribute test. P(0), including '0', '00', '000', '0000' in the current test, is the probability of 
success for those  test-takers  who have mastered none of the required attributes by means of 
guessing. P(1) of 0.40 or lower indicates difficult items. In this specific test, items 52 to 60 (the 
last 9 items) seem to be the most difficult ones. P(0) above 0.45, on the other hand, indicates 
answering by guessing. Item 59 (P(0)=0.56), which is considered a difficult question as well 
(P(1)=0.0001), is guessed to a large extent. 

4.3.5. Item plots  

Items' probability of success can also be shown graphically. The plots of items 60 and 49 are 
shown in Figure 2.  
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Figure 2. Items' probability of success  

The two-attribute item (item 20 in the figure) is a difficult item as the probability of 
success for the masters of the two attributes (11)  is very low (0.06). The probability of getting 
the item correct for the second class (10), those who were masters of the first attribute is 
extremely high (P(10)= 0.80). The item is not that easy to be guessed by those who have not 
mastered any of the attributes (P(00)= 0.18). On the other hand, the three-attribute item (item 9 
in the figure) is not a difficult question as the probability of success for masters of the three 
presented attributes in getting the item correct is extremely high (0.85). Non-masters (000) do 
not have the high chance of guessing the item (0.03).  

5. Limitations and Drawbacks of CDA 

In spite of the advantages and potentials of CDA in advancing educational measurement, some 
limitations, both theoretical and practical, are in order.  

5.1. Subjectivity of attribute definitions and the Q-matrix content 

Q-matrix, as the main ingredient of CDA analysis, is constructed based on the defined attributes 
which are extracted from theories in the literature, test's blueprint, expert panel's judgments, and 
students' think-aloud; each method alone or in combination. Although the combinations of all 
methods and statistical Q-matrix validation add to the level of refinement, in the end it cannot be 
claimed that the results are devoid of subjectivity. As the sources of data in Q-matrix 
development are human beings, construct under-representation and construct irrelevance 
variables (Messick, 1995) may threaten the validity of the results. Construct under-representation 
can be caused by an inappropriate emphasis on particular evidence and arguments and construct 
irrelevance may define the attributes that are not related to the conceptual framework and the 
construct in the literature. Accordingly, by misrepresentations of the domain framework, a 
different Q-matrix with different entries may be handed down for one set of data, and as a result, 
different outputs are resulted.  

5.2. Selection of the most appropriate CDM 

Another issue that challenges the CDA application is choosing the most appropriate model from 
among the different models of analysis for a selected set of data. Some factors such as model-fit 
evaluation in both absolute and relative terms, sample size, and number of parameters are critical 
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in data analysis (Torre & Lee, 2013; Li & Lei, 2015). Accordingly, selecting a specific CDM 
over another might result in various mastery classifications even with the same set of data and 
participants. Whether the best fitted model, at item level or test level, is selected or not, whether 
the sample size is large enough to provide accurate results for that specific data, and whether the 
most appropriate grain size is defined for the number of attributes, various outputs are expected. 
Highlighting the importance of the best model selection, de la Torre and Lee (2013), for instance, 
discuss the limitation of their study as even with the same test, set of attributes, and group of 
examinees, different results may be reported if a different CDM is employed. 

5.3. Retrofitting to existing non-diagnostic tests 

The result of a CDA study should firstly target the test developers and secondly enhance the 
process of teaching and learning. Taking into consideration the strengths and weaknesses of the 
participants and the remedial feedback on the attributes of the target domain, test developers 
need to review their subsequent tests' blueprints. In this way, the reverse engineering process in 
CDA is a step forward in educational measurement; however some are worried about the validity 
of the interpretations. Jang (2008) argues that the non-diagnostic, norm-referenced tests include 
items that are in line with the psychometric principle essential for creating a bell-shaped score 
distribution by including a wide range of item difficulty levels. Such a psychometric principle 
may not conform to the principles that inform diagnostic assessment. Alderson, Brunfaut, and 
Harding (2014) consider diagnostic assessment as different from achievement tests, placement 
tests, and proficiency tests as they are designed for purposes other than diagnosis of test-takers’ 
strengths and weaknesses. From their perspective, this process applies ex post facto to tests that 
have not necessarily been designed with diagnosis in mind. 

5.4. Statistical/psychometric knowledge 

CDA has been developed in order to enhance educational measurement regarding the fine-
grained information it provides, however the level of statistical and psychometric knowledge that 
it demands impedes its all-inclusive practice. Xie (2016) argues that the need for intensive data 
processing and computation includes sophisticated psychometric and statistical sub-skills which 
are not typically available to a university language enhancement program. Every user of CDA 
needs to know or start learning how to apply a software program linked to a CDM, which is not 
an easy task. To apply the Fusion model and the G-DINA model, for instance, one needs to run 
the Arpeggio software and the R-programming package respectively. Not only does the practice 
needs the statistical knowledge for analysis, but also the interpretation of the CDA jargon in the 
final reports is not without problems as far as test developers and users are concerned.  

5.5. Time issue 

Time is another demanding concern. Going through the Q-matrix construction procedure is a 
very time-consuming task. In both designs, that is to say designing and analyzing cognitive 
diagnostic tests and reverse engineering existing non-diagnostic tests, the researcher or the users 
need to triangulate the sources of information to define the attributes, construct the Q-matrix, and 
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then assign the entries respectively. Sometimes the expectations are far beyond the allocated time 
frames and the available resources.  

5.6. Large samples needed 

The data (scored tests) that any CDM statistical package demands is far beyond the classroom 
scale. Most of the computational tools are designed in such a way that a large sample of 
participants is needed in order to provide the desirable outputs (Aryadoust, 2011).  Large scale 
assessments are the main targets of cognitive analysis till date.  

6. Concluding Remarks 

Considering the limitations presented and the further research suggested by scholars in the field, 
interested researchers are encouraged to go deeper into the following untapped or scarcely 
tapped areas: First and foremost is the preciseness of the Q-matrix. The validity, reliability, and 
preciseness of the Q-matrix based on the aforementioned methods need to be examined. Other 
methods can be designed as well in order to minimize the Q-matrix subjectivity. Introducing 
cognitive diagnosis assessment into all stages of test construction from the very beginning, 
instead of only ex post facto CDA design, could be the second mission and a step forward in 
providing desired feedbacks in educational measurement. Computational statistics could be the 
third target. Making CDA applicable to almost all educational contexts by means of simpler 
statistical programs could be addressed as well. How to bring CDA into the borders of 
classrooms as the most significant assessment context could be tapped by psychometricians and 
educationists as well. In this way, CDMs can be developed, which do not need that large samples 
and at the same time present the tangible feedbacks on mastery levels in different sub-
skills/attributes for each and every test taker.  
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