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versa); or whether focusing effort on constructing parallel (equally

difficult) tests would be a better use of available resource. 
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How useful is comparative judgement of item difficulty
for standard maintaining?
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Introduction

Developing a way to accurately estimate the relative difficulty of two

tests before any students have taken them has long been a holy grail in

test development. At one time or another, various organisations have

explored how well we can discern the relative difficulties of assessments

without actually trialling them with students. Recent research on this

topic has been produced by Cito in the Netherlands (van Onna, Lampe,

& Crompvoets, 2019), EtS in the United States (Attali, Saldivia, Jackson,

Schuppan, & Wanamaker, 2014) and Cambridge Assessment in the UK

(Curcin, Black, & Bramley, 2009). Item trialling is often undesirable as 

it places some of the burden of test development upon schools and

students, and can lead to concerns over the security of items. 

If accurate predictions of item difficulty were possible then, in the

context of UK examinations, this would mean being able to accurately

set grade boundaries for this year’s GCSE exams before any students

have attempted the paper. It would also provide an alternative to the

current approach of “comparable outcomes” to awarding and its

inherent implication that (broadly speaking) the percentage of pupils

achieving high grades will not change from the previous year (Benton,

2016). Outside of the UK context, being able to accurately predict the

difficulty of items might allow “lowering the sample sizes required for

item pretesting, leading to lower costs and increased security of items”

(Attali et al., 2014, p.7).

the previous article (Bramley, 2020) has considered the extent to

which a particular form of expert judgement (the ‘mean estimation’

variant of the Angoff method) might provide sufficiently accurate

information on the relative difficulty of two tests. the present article

explores the value of expert judgements of item difficulties derived in a

different manner – by comparative judgement (CJ).

In this context, a CJ study requires expert judges to sort sets of items

according to their perceived difficulty (PD). the rationale for using CJ is

that previous research has indicated that judges tend to “be good at

predicting the relative difficulties of items but not absolute levels”

(mislevy, Sheehan, & Wingersky, 1993, p.59). Placing items in a rank

order of difficulty is conceivably a more intuitive task then estimating

the proportion of minimally competent candidates who will answer

them correctly, as must be done under the Angoff method. As such, 
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a CJ approach may be considered likely to provide better estimates of

the relative difficulty of items (Attali et al., 2014). 

One type of CJ exercise is a pairwise comparison study where judges

are shown two items at a time, and must simply decide which of the pair

is more difficult to answer correctly (see, for example, Ofqual, 2015). 

An alternative approach is rank ordering. As an example of this method,

Curcin et al. (2009) presented judges with packs of four items which

they had to place into order of difficulty. In either a pairwise comparison

or a rank ordering study, each item is typically included in multiple

different comparisons undertaken by different judges. the results from

all the judgements of all the items by all the judges are combined into 

a single data set and analysed using the Bradley-terry model (or similar)

to place all of the items on a continuous scale from the easiest to the

most difficult. the position of each item on this scale gives a value of 

PD that might then be used to allow us to infer the relative difficulty of

two tests overall.

Of course, it is possible to use a rank ordering approach to judging

item difficulty without the need to employ the Bradley-terry model. 

For example, perhaps the earliest rank ordering study of this kind (Lorge

& Kruglov, 1952) required judges to review all of the items across two

tests at once and place them into a single rank order. Having done this,

the average rank assigned to a given item across all of the judges

provides an estimate of PD.

Existing literature suggests several ways in which estimates of PD

from a CJ study might be used to infer the relative difficulty of tests.

Usually these rely on linking the estimates of PD for each item to

empirical difficulties as defined using item response theory (IRt) or

Rasch analysis. An extreme example of this approach, taken by Holmes,

meadows and Stockford (2018) and Bramley (2010), is simply to use

estimates of PD from a Bradley-terry model directly as substitutes for

empirical estimates of Rasch difficulty. there seems little justification for

this approach. the former relate to the probability of a judge considering

one item in a pair more difficult than another, whereas the latter relate

to the probability of students answering an item correctly. these are

clearly distinct concepts and there is no obvious justification for using

one as a substitute for the other. In other cases, PD is used as an input 

to a statistical model to help infer the likely location of empirical item

difficulties (e.g., mislevy et al., 1993) or to calibrate item difficulties 

that have been separately estimated for two tests onto the same scale

(van Onna et al., 2019). 

two immediate problems occur in attempting to relate estimates of

PD to IRt difficulty parameters. Firstly, from a practical point of view, 

it is not obvious how items with more than one mark available should be

treated. CJ studies will usually only provide a single value for the PD of

each item but in order to use IRt it is necessary to estimate the difficulty

of each mark within the item. Secondly, the use of IRt makes it difficult

to either calculate or communicate the likely accuracy with which such

methods can actually equate two tests.

the aim of this article is to simplify the evidence on the value of

comparative judgements of item difficulty for estimating the overall

difficulty of tests. to begin with, I will review the evidence on the

strength of the relationships between estimates of item difficulty

derived from CJ and actual empirical difficulties. After this, I will show

how we can combine perceived item difficulties with simple (non-IRt)

statistical methods to estimate the relative difficulty of two tests.

Crucially, the simple approach will also allow us to assess exactly how

accurate equating tests based purely on PD is likely to be in general. 

How strong is the relationship between
estimates of PD from paired comparisons and
empirical item difficulty?

to investigate the relationship between PD derived from a CJ study and

actual item difficulties, I used data from the Office of Qualifications and

Examinations Regulation (Ofqual, 2015). this study of the relative

difficulty of various mathematics exams included items from six legacy

GCSEs in mathematics offered by OCR. the estimates of PD of each 

item were published as part of the study (Ofqual, 2015, Appendix B,

pp.140–146) and it was possible to link them to empirical data on the

performance of students on the same questions and evaluate the

strength of the association. Each of the assessments was taken by more

than 5,000 candidates, providing ample data for empirical estimates of

item difficulty.

table 1 provides further details of the assessments included in

analysis. they each contained between 20 and 40 items. Each test

contained both single-mark (dichotomous) and multi-mark

(polytomous) items. the empirical difficulty of each item was estimated

using its facility. Item facilities are usually presented on a scale from 

0 to 100, and represent the mean score on an item expressed as a

percentage of the maximum score available. For the items in these 

six tests the mean facility was close to 50% meaning that, for a typical

item, candidates achieved about half of the available marks on average.

the standard deviations (SD) of the facilities across items are also 

shown in table 1. these show that, although the average facility was

generally close to 50% in each test, items with a wide range of

difficulties were included.

the most common way to evaluate the strength of the association

Table 1: Correlations between PD and facility for the six Mathematics GCSE papers

Unit Tier Number of items Number of marks Mean Facility SD of Facilities Correlation of PD Residual SD of 
and Facility Facilities

Unit 1 Foundation 30 60 47.9 28.2 -0.57 23.6

Unit 1 Higher 27 60 44.9 19.8 -0.44 18.1

Unit 2 Foundation 28 60 45.6 21.1 -0.50 18.6

Unit 2 Higher 22 581 50.6 20.9 -0.26 20.6

Unit 3 Foundation 39 100 58.2 23.6 -0.57 19.7

Unit 3 Higher 35 100 68.7 22.2 -0.48 19.8

1. the original test had 23 items and 60 marks available. However, one item was omitted from Ofqual’s study and so only 22 items and 58 marks are included here.
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between two quantities is to calculate a correlation coefficient. 

the (Pearson) correlations between PD and empirical facilities are also

shown in table 12. the negative sign of these correlations is expected –

items that are perceived to be more difficult are answered correctly 

less often. 

Of more interest is the size of these correlations. In table 1 the sizes 

of the correlations between PD and facility range from 0.26 to 0.57.

However, it is not immediately clear how to interpret these values.

Clearly, there is some relationship between the perceived and actual

difficulty of items. However, is the relationship strong enough to be of

any value in judging the relative difficulty of, and ultimately in equating,

two tests?

to investigate this, I compared the strength of the correlations in

table 1 to the correlations between the overall item facilities and

facilities based on very small samples of candidates. For example, for any

of the above tests, we might select just one candidate. then, for each

item, the facility (based on this one candidate) is zero if they get the

item completely wrong, 100 if they get it completely right, and

something in between if they achieve some but not all of the marks. 

the correlation between the item facilities based on this one candidate

and item facilities based on the full population can then be calculated.

the procedure was repeated 100 times3 for each of the six assessments

to get an idea of what correlation between a facility from one candidate

and the overall facility we might expect. the same method was then

repeated to estimate the predictive value of data from small samples of

two, three, four, five, six, seven, eight, nine and ten candidates.

the results are shown in Figure 1. the dotted lines represent the size 

of the correlations between PD and facility for each test (see table 1).

the boxplots show the distribution of correlations between facilities

from small samples and overall facilities for each sample size across the

replications. As can be seen, in most cases, the correlation between PD

(based on a CJ study) and facility is very similar to what we might expect

to achieve on average by using a sample of just one candidate. With 

a sample of five we can virtually guarantee that the data from even so 

few candidates will be more predictive of actual item difficulty than a 
2. Spearman correlations were of very similar magnitude and (for brevity) are not shown.

3. that is, with 100 separate candidates.
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Figure 1: Correlations between facilities calculated from small subsamples and full sample facilities for six GCSE Mathematics assessments. The dotted lines show the size
of the Pearson correlation between PD and facility in each case.
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CJ study. this immediately suggests that CJ exercises to estimate PD are

a very weak source of evidence about the difficulty of items.

An alternative to correlations – the actual accuracy of
predictions

the above analysis suggests that PD cannot be seen as a strong form of

evidence. However, it does not necessarily mean such information is

useless. Were it possible to get even a single typical student with the

correct level of exam preparation and motivation to trial a paper before

it goes live, and this could be done without any security concerns, this

would likely be considered a very useful resource to test developers.

However, in reality this is tricky. For this reason, despite the above

results, it is still of interest to explore the accuracy with which PD can

predict actual item difficulty in more detail.

Like the analysis above, most studies evaluating the predictive 

value of PD focus upon correlation coefficients. However, looking at

correlations alone can provide a misleading picture. the reason for this 

is that correlations will tend to increase along with the spread of 

values included in the study. For example, imagine that some basic

mathematics questions asking students to add two single digit numbers

had been added to the above exams. Such questions would have been

self-evidently easier than any other items in the exams and the vast

majority of students would have answered them correctly. thus,

including such questions would make it easier for experts to correctly

distinguish the relative empirical difficulty of at least some of the items,

and the correlations between PD and facility would increase. 

this same effect exists (perhaps in a less extreme form) whenever we

use correlations to assess the strength of associations. In the current

context, the greater the spread of actual item difficulties within a test,

the easier it will be for experts to discern this, and the higher the

correlation between PD and facility will be. Ultimately, a more useful

way to understand the value of PD is to actually calculate how

accurately we can predict item facilities. that is, if we were to use PD to

predict the likely facility of a new item (for the same population of

students), how close would that prediction be to the actual facility?

Because it is helpful for the calculations that follow in the next

section, rather than evaluating the average size of differences between

predicted and actual values (the mean absolute differences), we will

actually use the square root of the mean squared differences (the

residual standard deviation). Residual standard deviations are higher

than mean absolute differences but, very broadly speaking, can be

interpreted in the same way in that both give an idea of the typical

difference between predicted and actual facilities.

Residual standard deviations of facilities given PD are provided in 

the final column of table 1. they can actually be calculated from the

overall standard deviation of facilities in each test, the correlation

between facility and PD, and the number of items in the test using 

the formula below:
———————————

Residual SD of Facility = SD(Facility) � (1 – r2)(n – 1)
(n – 2) ———————— (1)

where r is the correlation between PD and facility, and n is the number

of items in the test. the terms relating to the number of items in the

above formula adjust for the fact that a regression line will be fitted to

the existing data on actual facilities. As such, without this correction, 

we would probably overestimate the likely accuracy of future predictions

in brand new data sets.

the values in table 1 indicate that PD allows empirical facilities to be

predicted to within a little under 20% on average4. Crucially, by

comparing these values to the overall standard deviation of facilities in

each test (as table 1 shows, these are around 22), we can see that this

level of accuracy is only marginally better than could be achieved by

simply guessing that all items would have a facility near the average for

that test. that is, having a value for the PD of each item only marginally

improves the accuracy with which we can predict empirical difficulty. 

We can also see that the tests displaying the highest correlation 

between PD and facility are not associated with predictions of facility

actually being more accurate. For example, the Unit 1 Foundation tier

test displayed one of the highest correlations between PD and facility

but also had the highest residual standard deviations (i.e., the worst

predictive accuracy). 

Figure 2 allows a visual exploration of the same idea. the charts show

the associations between PD and facility with a regression line shown in

blue in each case. We can see that, within each assessment there is a

clear relationship between PD and facility. However, there is nearly the

same spread in empirical facilities for any fixed value of PD as there is

overall. Around a third of the empirical facilities in Figure 2 are more than

20 percentage points away from what would be predicted based on PD.

the above results illustrate the problem of relying on correlations

alone to assess the value of PD. to illustrate this further, analysis was

also undertaken evaluating the association between PD of items and 

the percentage of candidates that answered each item fully correctly

(i.e., achieved all of the available marks). this analysis showed that the

correlations increased and now ranged between -0.39 and -0.73. 

this could be taken as indicating that PD was more predictive of the

percentage of candidates answering items fully correctly than of facility.

However, further analysis revealed that the actual accuracies of

predictions were, in fact, worse than the accuracies of predictions of item

facility (shown in table 1). Specifically, even as the correlations increased,

the residual standard deviations also increased. In other words, reporting

correlations alone may not give the most appropriate picture of the

value of PD.

The actual accuracy of predictions based on PD for previous
studies

the results above give a potentially disappointing picture of the accuracy

with which PD can predict empirical difficulty. this is in contrast to some

academic literature on this subject which presents a more positive

picture of the potential of PD. to investigate this discrepancy further,

results from a number of previous studies of this type are shown in 

table 2. these results should not be taken as representing a systematic

review of all of the articles on this issue. they simply reflect a number 

of articles that I am familiar with, presenting a range of views on the

value of PD. 

All of the studies listed in table 2 except one (Humphry, Heldsinger, 

& Andrich, 2014) made use of a CJ approach to eliciting item difficulties.

this exception was included simply to represent the fact that studies

using methods other than CJ also occasionally claim that judges can

successfully estimate the relative difficulty of items and to ensure that 

at least one such non-CJ study was subjected to some scrutiny.

For each study in table 2, I have identified the reported correlation

between PD and facility. In several cases, the authors reported Spearman

4. the mean absolute difference between predicted and actual facilities is 16%..
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(i.e., rank correlations) rather than Pearson correlations, however, this

should not make a major difference to results. Indeed, in several cases,

by analysing data within scatterplots I was able to verify that the

Pearson correlations would give similar values. the article by Humphry

et al. (2014) did not present the correlation at all and it was necessary 

to estimate its value based on data contained within a figure in the

article. As can be seen, the values of the correlations vary considerably

between studies. For example, on the one hand, the study by Attali et al.

(2014) found a correlation between PD and empirical difficulty close 

to 0.8, leading the authors to conclude that “contrary to previous

investigations, judges are able to discriminate quite well between easier

and harder items when they are given a comparative judgment task”

(p.6). At the other end of the spectrum, Curcin et al. (2009) found a

correlation of just 0.18 between PD and facility for a particular multiple

choice test and were left to “speculate why rank ordering failed to 

elicit consistently valid judgements about question difficulty” (p.6).

thus, focussing purely on correlations gives the impression of CJ

sometimes being a highly effective means to estimate item difficulty 

and sometimes being almost entirely ineffective.

table 2 also provides the standard deviations of the facilities of items

included in each study and, based on these and the formula provided

above, the estimated residual standard deviation of facilities. Note that

Figure 2: Relationship between PD and item facility for each Mathematics GCSE unit.
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Table 2: Correlations and residual SD of facilities for studies in existing literature

Author Assessments studied Method Number SD of Correlation of Residual SD 
of items Facilities PD and Facility of Facilities

Humphry et al. (2014) multiple choice Year 7 reading test Angoff procedure 35 25.3 -0.80 15.4

Lorge and Kruglov (1952) High school admissions tests in All items ranked by four judges. 86 25.1 -0.84 13.7
arithmetic Average the item rankings.

Attali et al. (2014) SAt mathematics Ranking of seven items by one judge 7 28.2 -0.795 18.9

Ofqual (2018) AS Level mathematics Formal pairwise comparisons 554 19.2 -0.49 16.8

Ofqual (2017) GCSE Biology Formal pairwise comparisons 351 23.4 -0.50 20.3

Curcin et al. (2009) multiple choice test in Administration Formal rank ordering 30 22.4 -0.34 21.4

Curcin et al. (2009) multiple choice test in Road Haulage Formal rank ordering 30 16.9 -0.18 16.9
and Passenger transport

5. median value for correlation across 825 packs of seven items each of which were assessed by a single judge.



32 | RESEARCH mAttERS /  ISSUE 29 /  SPRING 2020 © UCLES 2020

than last year’s. thus, we might expect that grade boundaries should be

about five marks higher this year than last year. Such reasoning is the

basis for a type of statistical equating (i.e., calibrating tests against one

another), known as mean equating. For grade boundaries that are

reasonably close to the mean this approach is fairly easy to justify. 

If grade boundaries are a long way from the mean then this method is

less justifiable. However, it may still provide a useful starting source of

evidence. For example, it might be used as an input to a more

sophisticated small-sample approach, such as circle-arc equating

(Livingston & Kim, 2009). Either way, exploring the accuracy with 

which we expect to be able to predict the mean test scores for a fixed

population provides a simple mechanism to help us explore the value 

of PD for equating tests.

On the basis of the above argument, we approximate how accurately

we can equate tests using PD by the accuracy with which we can predict

test means. Specifically, we want to calculate the standard error of a

predicted test mean based upon the PDs of all the items in the test –

that is, the expected root mean square error. to begin with, we note that

the mean score on a whole test is simply the sum of the mean scores on

the individual items. that is,

Predicted test mean = � Predicted item mean  (2)

Next, if we assume a best case scenario that errors in predicted item

means are independent (as opposed to consistently systematically

biased), then the squared error of the predicted test mean (technically

referred to as the “variance”) will be equal to the sum of the squared

error in the predicted item means. mathematically, we write these

concepts as:

—————————————–
SE(predicted test mean) = √Variance(test mean |PDs) =

———————————————————————��Variance(item mean |PD)
(3)

Next, we note that the mean score on an item is just its facility

(divided by 100) multiplied by the number of available marks. As such,

the squared error in the item mean will be the square of the error in the

facility multiplied by the maximum number of marks. From tables 1 

and 2 we can see that the residual standard deviation of item facilities

given PDs tends to be about 20 (20% of the item maxima). thus, the

expected squared error of the mean score on an item given PD will be

equal to (0.2 * item max)2. thus, continuing the mathematical formula

above, the standard error with which we can predict the mean score on a

test using item PDs is approximated by:

————————————————

SE(predicted test mean) ≈ �� (0.2 * item max)2 =
——————————

0.2��item max2 = RSSIM                                                    (4)———— 5
the final term in the above equating (the RSSIm) was introduced in

Benton (2019) and is just the square root of the sum of the squared item

maxima. Its occurrence in the above formula relates to the fact that we

would expect to be able to predict mean scores from item PDs more

accurately for a test consisting of many low tariff items than that for one

consisting of a few items worth many marks. this makes sense as if we

have a greater number of items there is more chance for errors in

predicted item means to cancel out. 

the above formula suggests that the accuracy with which we can

in only one of the studies (Lorge & Kruglov, 1952) was the standard

deviation of item facilities reported in the original work. In the other

cases, it was necessary to either calculate the standard deviation by

reading the empirical data for individual items from plots, or to estimate

it by careful reading of the information that was provided. For this

reason, although Curcin et al. (2009) studied eight separate tests, only

two indicative examples are included in table 2. Similarly, although

Ofqual (2017) analysed six separate Science assessments (two Biology,

two Chemistry and two Physics tests), with correlations between PD 

and facility ranging from -0.50 to -0.36 (see Ofqual, 2017, Appendix C),

it was only possible to include a single Biology test in the analysis here.

Studying the residual standard deviation of facilities given PD leads 

to a very different set of conclusions to looking at correlations alone. 

In particular, we can see that, despite the range of correlations in table 2,

there is far less difference in the actual accuracy with which PD could

predict facility in each study. In particular, we can see that the high

correlation reported by Attali et al. (2014) was associated with a 

residual standard deviation of 18.9, whereas for the study with the low

correlation reported by Curcin et al. (2009) the residual standard

deviation was 16.9. that is, contrary to what we might expect given the

tone of the conclusions, the latter study was able to produce more

accurate predictions of item facilities than the former.

the point here is not that PD is always equally predictive of actual

difficulty. It is perfectly plausible that it is easier for judges to assess the

relative difficulty of arithmetic questions aimed at pre-high school

children (Lorge & Kruglov, 1952) than it is to perform the same task for

Biology questions aimed at older teenagers (Ofqual, 2017). However, 

it is clear that previous attempts to use PD cannot be classified as

successes or failures based on the correlation between PD and facility

alone. more importantly, the actual accuracy with which PD can predict

empirical difficulty is similar enough across both previous studies 

(table 2) and the data sets we are analysing in this article (table 1), 

that the following sections regarding the accuracy with which we can

equate tests based on PD should generalise reasonably well across

contexts beyond GCSE mathematics.

How accurately can we equate tests using PD?

We have seen above that PD is not a particularly good predictor of

empirical difficulty and that the level of accuracy is fairly consistent

across different studies. However, it might be hoped that, once PDs are

aggregated across items to whole tests, the various errors will cancel out,

leading to a good way of judging the relative difficulty of assessments.

For example, Holmes et al. (2018) conclude that “providing there are 

no systematic biases in judging expected difficulty of items from

different exam boards, the median and spread of predicted item

difficulty for a paper will represent the actual difficulty of that paper

reasonably well” (p.386). 

this section considers this question in more detail. that is, given the

accuracy with which we can predict item facilities, how well can we

predict the difficulty of a whole test? For simplicity, we will imagine that

the difficulty of a test is adequately represented by the mean score that

would be achieved on it by a given population of students. For example,

imagine we knew that the mean score on last year’s test was 50 out 

of 100. then, using the PD of items and a predictive model devised using

the previous year’s empirical data, we predicted that for the same set of

students, the mean score of this year’s test would be 55 out of 100. 

We might reasonably conclude that this year’s test was five marks easier
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predict test means based on item PDs is approximated by the RSSIm

divided by five. table 3 illustrates the implications of this formula for the

six GCSE mathematics tests in analysis. For each of the tests we have

calculated the RSSIm. For example, the Unit 1 Foundation tier test

consisted of twelve 1-mark items, ten 2-mark items, four 3-mark items

and four 4-mark items. thus, the RSSIm was equal to:

——————————————————————– ——–� (12 * 12 + 10 * 22 + 4 * 32 + 4 * 42 = �152 = 12.3. 

Using the above formula, we can estimate the expected standard error of

a predicted test mean as a fifth of this value. For example, for the

Foundation tier Unit 1, we estimate that the standard error of predicted

test mean is 12.3/5=2.5 marks. For this same test, using common

statistical practice, we can infer that a 95% confidence interval for the

predicted mean would cover a range of plus or minus double this

standard error, that is plus or minus roughly five marks. thus, by

assuming that the accuracy with which we can predict the mean gives a

good approximation to how accurately we can position grade

boundaries; we infer that on the basis of PD alone, the grade boundaries

for this test might reasonably be set anywhere within a range of ten

marks. Given that this whole test has a maximum of just 60 marks, this

is only the vaguest sense of where grade boundaries should be placed.

Further illustration using split halves

this section provides an empirical illustration of the extent to which PDs

of items might allow an accurate assessment of the relative difficulty of

tests. to explore this, I used data from the Foundation tier Unit 3 paper.

this paper was chosen as it included the largest number of items and

also displayed the largest correlation between perceived and empirical

item difficulties (see table 1). 

the items within this paper were randomly split into two half-papers,

such that each half-paper consisted of 50 marks. the empirical mean

score of each half-test was calculated to indicate the actual relative

difficulty of the two tests. the weighted mean PD was also calculated for

each test with more weight given to items worth a larger number of

marks6. Giving more weight to PDs of items with more marks reflects 

the way we would use PD to predict mean test scores. the weighted

mean PD provided an indication of the overall PD of each half-test. 

this process (split items into half-tests; calculate mean scores; calculate

mean weighted PDs) was then repeated 100 times.

Across the 100 replications, Figure 3 compares the difference in PD of

half-tests to the difference in means (i.e., actual difficulty). As can be

seen, there is clearly some relationship between perceived and actual

difficulty but it could hardly be described as providing an accurate 

basis for equating. For example, it is clear that where half-tests are of

equal PD, there are instances of one half-test being around five marks

Table 3: Expected accuracies with PD 

Unit Tier Number Number RSSIM Standard Width of
of items of marks errors on 95%

predicted confidence
boundaries interval for 

boundaries

Unit 1 Foundation 30 60 12.3 2.5 9.7

Unit 1 Higher 27 60 13.4 2.7 10.5

Unit 2 Foundation 28 60 13.0 2.6 10.2

Unit 2 Higher 22 58 13.9 2.8 10.9

Unit 3 Foundation 39 100 18.2 3.6 14.2

Unit 3 Higher 35 100 18.3 3.7 14.4 6. Using the weighted median PD was also trialled but was found to make no substantial
difference to the final results.

Figure 3: The relationship between differences in mean PD of two half-papers and differences in empirical mean scores. A fitted regression line is shown in blue.
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(out of 50) easier than the other. Furthermore, PD does not even provide

a reliable idea of the direction of difference in difficulty. Specifically, 

in 28 out of the 100 cases analysed, the direction of difference in PD was

inconsistent with the direction of difference in means (i.e., a half-paper

was perceived as more difficult when it was actually easier). 

Conclusion

this article has shown that PD is not a particularly good predictor of

actual item difficulties. Specifically:

l On average, the predictive value of PD derived from a CJ exercise is

roughly equivalent to the value of empirical data from just one

student.

l For a fixed level of PD, item facilities have a standard deviation of

about 20 percentage points. In other words, items that are perceived

as equally difficult can have substantially different empirical

difficulties. 

l Broadly speaking, this level of predictive accuracy holds even for

existing studies that have reported high correlations between

perceived and empirical difficulty.

the analysis comparing the relative value of small samples of students

and expert judgement suggests the intriguing possibility that we may

generate better evidence if the subject experts involved in studies of

item difficulty were replaced with the same number of students taking

part in item trials. It may be argued that, because students would be far

less well prepared and motivated in such an exercise than in a high-

stakes exam, this would not provide an accurate idea of the actual

relative difficulty of items. However, this view is not necessarily

supported by the evidence. For example, in developing tests for use in

primary school schools in England, the Standards and testing Agency

(StA) routinely trials all items with around one thousand pupils before

they are used in live settings (StA, 2018). Estimates of item difficulty

from these low-stakes trials are very highly correlated with difficulties

estimated using live exam data. For example, for the Key Stage 2

mathematics test taken in 2017 the correlation between IRt difficulty

thresholds estimated from the two different sources of data was 0.9767. 

this article has also shown that it is not correct to assume that, when

aggregated to the level of whole test papers, PD will provide an accurate

means to judge the relative difficulty of two assessments. Equation 4

shows how to estimate the likely reliability of setting grade boundaries

based on PD. For the GCSE mathematics tests explored in this article the

formula suggested that, given item PDs, a given grade boundary could

reasonably be positioned at any score across a range covering roughly

one sixth of the maximum available. this estimated level of accuracy is

consistent with the simulations reported in Bramley (2020) for the

situation where Angoff judgements of difficulty and actual item

difficulties have a correlation of 0.6. this level of precision cannot be

described as an accurate idea of where grade boundaries should be

positioned. It should be noted that even achieving this level of accuracy

requires an assumption that the items in the tests being compared come

from the same “population” in some sense, and that there is no

systematic reason for the items in one test being harder (relative to PD)

than those in another. In practice, such systematic biases can occur. For

example, Ofqual (2017, Appendix A) provides an example where, given

equal PD, items produced by one assessment agency were

systematically harder than those produced by another. As such, the

formula provided in this article should be seen as giving a best-case 

view of the accuracy of the approach.

Finally, it is worth noting that, within each of the GCSE mathematics

tests that were analysed, variations in item facilities were barely any

lower for fixed levels of PD than they were overall. that is, simply

guessing that each item would display an average level of difficulty for

the given test provides nearly as accurate a prediction of individual item

difficulties as a full CJ exercise to elicit PDs. this, in turn, implies that

knowing the PDs of new items, and the relationship between PD and

empirical difficulty in the past, is hardly any more informative than just

knowing the average difficulty of items within a particular paper

historically.

thinking about this from a practical perspective, the issue we are

trying to solve is that we do not know how difficult the questions in

current exam papers are. However, we do know how difficult they

tended to be in the past. the results in this article indicate that PD does

not add much new useful information to this. therefore, we must

conclude that the accuracy of using PDs to set grade boundaries is

hardly any different from simply assuming that tests made to the same

design specifications will always be equally difficult over time and, thus,

that grade boundaries should remained fixed. the idea of using fixed

grade boundaries over time has been suggested before (Bramley, 2012;

Bramley, 2018). Whilst I am not necessarily recommending such an

approach, it has to be conceded that it is hard to be in favour of the use

of PDs for setting grade boundaries whilst objecting to the use of fixed

grade boundaries.

In fact, for GCSEs and A Levels in England, PD already plays some role

in the creation of test papers. Specifically, item writers are already

required to identify the target level of each item. Usually this is

expressed in terms of the grades available on the test and indicates the

expected level of skill required to answer the question. As items are

assembled into tests, a specification grid is used to ensure that the

proportion of items at each level (as well as the balance of different

topics) is kept consistent from year to year. thus, a mechanism already

exists to ensure that PD should remain reasonably constant over time,

and, as such, we might expect the grade boundaries to remain constant.

Given this, setting grade boundaries using CJ of the perceived difficulties

of items could be seen as an expensive way of deciding that we ought to

keep grade boundaries fixed over time. Whether this is a good idea is a

wider question for further research.
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