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Abstract 

The purpose of this study was to investigate what factors third-grade students took into consideration when 
posing problems for their peers and how these factors affected the mathematical complexities of the problems. 
Free and semi-structured problem-posing tasks were given to 27 third-grade students, and the problems they 
created for their peers were analyzed in terms of their semantic structure and arithmetic complexity. According 
to the findings of the study, there was a statistically significant difference between the semantic structures of the 
problems in both tasks created for the more mathematically proficient student, but there was no difference 
between their arithmetic complexities. In addition, according to the qualitative findings of the study, the 
magnitude of the numbers, the operation types, the number of operations used, and the interests of the students 
were taken into consideration in posing problems for students with low and high levels of mathematical ability. 

Keywords: Arithmetic complexity, Arithmetic operations, Problem-posing, Semantic structure, Word problem 

Introduction 
Problem posing, also referred as problem finding, problem formulating, and problem creating (Singer & Voica, 
2013), has recently taken interest of mathematics education researchers. Problem posing is an open-ended 
cognitive activity and is considered to be an important component of inquiry-based learning (Silver, 1997); 
therefore, it solidifies its importance within mathematics education. Whether problem posing is considered as a 
means of instruction (to engage students in learning important concepts and skills and to enhance their problem-
solving competence) or as an object of instruction (to develop students’ proficiency in posing mathematics 
problems), it should be included in the classroom assessment activities in both situations (Silver & Cai, 2005). 
This is because the problems that students pose reveal significant information about their mathematical 
understanding (Xie & Masingila, 2017). 
 
In some problem-posing studies (e.g., Bonotto & Santo, 2015; Cai, 2003; Ellerton, 1986) participants are 
expected to pose complex/difficult problems. These kinds of directives have important potential for students’ 
learning (Chen, Van Dooren, Chen & Verschaffel, 2007). Problem posing improves students’ problem solving 
and creative thinking skills (Silver, 1997) because participants are questioning deeply mathematical structure of 
the tasks (Kar, Özdemir, Öçal, Güler & İpek 2019; Xie & Masingila, 2017) and think about the solution of the 
problem (Cai, 2003) during this process. In this context, expecting the students to pose complex problems 
contributes to their active use of the thinking, reasoning, and justification skills emphasized in the documents of 
National Council of Teachers of Mathematics (NCTM, 2000), and giving them opportunities to think in-depth 
about the mathematical structures in the proposed tasks. At the same time, these skills are among the 
components of mathematical proficiency. As such, it is recommended to conduct an in-depth investigation of a 
problem situation to improve them (Kilpatrick, Swafford & Findell, 2001). 
 
One of the questions that Cai, Hwang, Jiang and Silber (2015) asked for investigating problem posing was as 
follows: ―How do different characteristics of problem situations affect subjects’ problem posing?‖ (p. 9). The 
conducted studies indicated that problem-posing performance (i.e., mathematical validity and solvability) differs 
according to the special conditions of the problem-posing tasks (e.g., being in free, semi-structured, and 
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structured forms), even though they aimed at measuring the same skill (Christou, Mousoulides, Pittalis, Pitta-
Pantazi & Sriraman, 2005; Çetinkaya & Soybaş, 2018; Kılıç, 2013; Silber & Cai, 2017; Stickles, 2011). 
Therefore, the task format should be taken into consideration while making evaluation about students’ problem-
posing performances or other skills such as problem solving related to the problem posing. In addition, it is an 
important question to be answered whether there are other factors affecting the quality of the problems posed by 
students. In this context, previous studies have included directives such as ―pose a problem for your friend‖ (e.g., 
Cankoy, 2014; Kopparla et al., 2019; Lowrie, 1999). Do such directives effectively allow addressing the 
students’ complex problem-posing performances? More specifically, when third-grade students are asked to 
―pose a problem for your friend,‖ does the particular friend’s mathematical ability affect the complexity of the 
problem posed? This study aimed to investigate what factors third-grade students took into consideration when 
posing problems based on such directives and how these factors affected the mathematical complexities of the 
problems.  
 
Theoretical Framework 
 
Problem Posing and the Classification of Problem-Posing Tasks 
 
Problem posing is defined as the generation of new problems or the reformulation of existing problems (Silver, 
1994). In the literature (Christou, et al., 2005; Silver, 1994; Stoyanova & Ellerton, 1996), various criteria were 
taken into consideration for developing different problem-posing frameworks. Stoyanova and Ellerton (1996) 
described the widely accepted classifications within these frameworks as free, semi-structured, and structured 
situations in which students are asked to pose problems that are appropriate for the given situation. These 
questions can be posed without any limitations in free situations (e.g., ―pose a difficult problem for your 
friends‖). In semi-structured situations, students are given open-ended scenarios (e.g., ―pose a problem using 
data from a graph‖). In structured situations, well-structured tasks are presented (e.g., ―pose a problem 
appropriate for the following equation: (25 + 12) ‒ 17 = ?‖).  
 
Bonotto and Santo (2015) stated that free and semi-structured problem-posing tasks encourage creative thinking 
and thus stimulate students’ problem posing. In addition, Lowrie (1999) emphasized that free problem-posing 
tasks increase students’ motivation, while Stoyanova and Ellerton (1996) indicated that students are more likely 
to reflect their own experiences through these tasks. Thus, in line with these views, our activities were designed 
with the assumption that they would allow students to reflect their own knowledge and creativity while posing 
problems. In the light of these explanations, more data will be available related to these types of activities and 
how students think about them when posing problems for their friends. 
 
Mathematical Complexity of Word Problems 
 
Responses to problem-posing tasks are evaluated in different ways depending on the purpose and the scope of 
the study. One of the most common approaches used in the evaluation of problems is mathematical complexity 
(e.g., Marshall, 1995; Silver & Cai, 1996, 2005). Mathematical complexity refers to the kinds of cognitive 
demands required to solve a problem; the problems whose solutions are more difficult are considered to be more 
complex (Lee & Heyworth, 2000). As such, complexity is one of the crucial features of posed problems and it 
reflects students’ mathematical understanding and cognitive processes (Kwek, 2015). In the problem-posing 
process, the concepts in the task are analyzed in-depth and are linked to different mathematical concepts. 
Furthermore, the validity of the problem is questioned mathematically (Kar et al., 2019; Xie & Masingila, 2017). 
In this context, the attempts to pose complex problems can make students more active in terms of mathematical 
thinking and reasoning and, at the same time, they develop their problem-solving skills. Additionally, the 
attempts to pose more complex problems foster students’ creative thinking skills (Silver, 1997) and give students 
opportunities to make connections between mathematics and their interests, which is often not the case in 
solving routine problems (Cai et al., 2020). Therefore, expecting students to pose complex problems makes an 
important contribution to their mathematics learning. 
 
The complexities of the problems that students pose can be determined using many different perspectives. One 
way to determine the complexity of a word problem is changing the type and the number of operations included 
in it. This kind of approach is defined in the literature as arithmetic complexity (Leung & Silver, 1997; Silver & 
Cai, 1996). Although the number of steps gives an idea of the arithmetic complexity of the problem, it has a 
significant limitation. Leung and Silver (1997) reported that multi-step problems are more difficult than single-
step problems, but a problem with five steps does not necessarily have to be more difficult than a problem with 
four. This is because, due to the absence of solutions, we cannot determine which problem (the one with four 
steps or the one with five steps) is more difficult than the other. Therefore, the single-step and multi-step 
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distinction is taken into consideration in the analysis of arithmetic complexity. For example, Bonotto and Santo 
(2015) examined the problems posed in a situation requiring the use of real-life artefacts. They analyzed valid 
problems posed by fifth-grade students according to their arithmetic complexity. The researchers found that 
more than three-fourth of the problems posed by the students were multi-step problems. In another study, Chen 
et al. (2007) asked Chinese fourth- grade students to pose easy, moderately difficult, and difficult problems 
related to an open-ended story and they analyzed the arithmetical complexity of their responses according to 
whether they were single or multi-step. Students posed more complex problems in cases where they were 
expected to pose difficult problems. The results of this study suggested that the application of the activity had an 
influence on the mathematical complexity of the problems.  
 
Another common approach taken for determining the complexity of word problems is semantic structures which 
refers to the relations among the quantitative data in the problem’s text. These structures influence problem-
solving performance (Bernardo, 1999; Marshall, 1995; Mulligan & Mitchelmore, 1997; Yeap & Kaur, 2001).  
Due to the way of mathematical relationships presented in the problems may make it difficult for students to 
form mental representations for the mathematical structure of the problem, it may increase the possibility of 
making mistakes in selecting solution strategies (Bernardo, 1999). Marshall (1995) divided word problems into 
five semantic structures—change, group, compare, restate, and vary—according to the relationship among the 
numeric quantities rather than their context or synthetic features. This classification of word problems is 
situation-based rather than operation-based (Yeap & Kaur, 2001). According to this classification, problems 
involving more semantic structures are thought to be more complex than those involving fewer structures 
(Marshall, 1995; Silber & Cai, 2017; Silver & Cai, 1996). The sample problems reflecting Marshall’s (1995) five 
sematic structures were presented in Table 1.  
 

Table 1. Examples for semantic structures in Marshall’s (1995, p. 72) classification 
Types Sample problem 

Change Stan had 35 stamps in his stamp collection. His uncle sent him 8 more as a birthday present. 
How many stamps are there in his collection now? 

Group In Mr. Harrison’s third-grade class, there were 18 boys and 17 girls. How many children are 
there in Mr. Harrison’s class? 

Compare Bill walks a mile in 15 minutes. His brother Tom walks the same distance in 18 minutes. Which 
one is the faster walker? 

Restate At the pet store there are twice as many kittens as puppies in the store window. There are 8 
kittens in the window. How many puppies are there also in the window? 

Vary Mary bought a package of gum that had 5 sticks of gum in it. How many sticks would she have 
if she bought 3 packages of gum? 

 
Change refers to a difference in the quantity of a single item over a period of time. Marshall (1995) stated that 
there are three important numbers in this situation: the amount prior to the change, the extent of the change, and 
the resulting amount after the change has occurred. In the first problem shown in Table 1, Stan’s 35 stamps at the 
beginning represent the amount prior to the change and the 8 additional stamps sent to him as a birthday gift 
represent the extent of the change. Accordingly, the total number of stamps in the collection represents the 
resulting amount after the change. In a group situation, there is a meaningful combination of small groups within 
a larger group. Marshall (1995) stated that there must be three or more numbers in this situation: the size of each 
subgroup and the size of the group as a result of their combination. In the second problem shown in Table 1, the 
18 boys and 17 girls in the classroom represent the small groups, while total classroom size represents the 
bringing together of these groups to form a larger group. A compare situation exists whenever two things are 
contrasted to determine which of them is larger or smaller (Marshall, 1995). The third problem in Table 1 is 
about determining the faster person by comparing how long Bill and his brother take to walk a length of one-
mile. Restate refers to the relationship between two items at a specific point in time. This relationship occurs at a 
certain time of the story, but a wider context cannot be generalized. Marshall (1995) emphasized that these 
relations should be expressed with numerical values as well as statements like existence of twice as great as, 
three more than, or one half of. In the fourth problem in Table 1, the expression ―there are twice as many kittens 
as puppies in the store window‖ represents this condition. In a vary situation, the relationship between two things 
does not dependent on a specific time. In this structural relationship, although the numbers of the variables 
decrease or increase, the relationship is preserved. The situation derives its name from the fact that if one varies 
the amount of one thing, the amount of the second changes systematically as a function of the known 
relationship (Marshall, 1995). The last problem in Table 1 represents the functional relationship between one 
package of gum and the sticks of gum it holds with the expression: ―a package of gum that had 5 sticks of gum 
in it.‖ In this problem, there are fixed five sticks of gum for each package. The number of the sticks of the gums 
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increase depending on the increase in the number of the packages. Therefore, the relationship between the 
numbers of the packages and sticks of the gums will be preserved. 
 
Silver and Cai (1996) asked primary school students to pose three problems for an open-ended story and 
analyzed the problems according to Marshall’s (1995) classification of semantic structures. It was determined 
that more than 60% of the posed problems contained at least two semantic structures, and the problems posed as 
a second response were more complex than the first ones. Yeap and Kaur (2000) investigated the relationship 
between third- and fifth-grade students’ problem-solving and -posing performances according to grade levels 
and activity types. The posed problems were also analyzed using Marshall’s (1995) classification. The findings 
of this study indicated that fifth-grade students posed more complex problems than third-grade students did, and 
that the problem-posing activity types affected the problems’ semantic structures. Papadopoulos and Patsiala 
(2019) asked fourth grade students to pose problems for open-ended tasks (e.g., ―Peter has 75 cents…‖, p. 4) 
without any external intervention in the first phase and benefitting from the what-if technique in the second 
phase; they noted the issues to which teachers called attention in the last phase. The mathematical complexities 
of the problems were analyzed according to Marshall’s (1995) schema. It was determined that less than half of 
the posed problems in the first and second phases involved two or three semantic relations, while this rate 
increased to more than 60% in the last phase. This study reveals that systematic teaching on problem posing 
contributes to the development of the mathematical complexity of problems.  
 
In this study, Marshall’s (1995) situation-based classification was used. One of the strengths of this classification 
is that it enables the analysis of problems posed in free and semi-structured activities as were used in this study. 
Another strength is the opportunity to make statistical comparisons (e.g., Silver & Cai, 1996; Yeap & Kaur, 
2001). This is because this classification focuses on the nature of the relations among the mathematical quantities 
rather than on the operation types. For example, a change in the semantic structure refers to a difference in the 
quantity of a single item over a period of time in this schema (Marshall, 1995). If an operation-oriented 
classification is taken into consideration, this would be classified as a separate semantic structure if there was a 
decrease over time and as a join semantic structure if there was an increase. Although the arithmetical operations 
are different, the relations between mathematical quantities have a similar structure. Therefore, Marshall (1995) 
classified both of these two situations under the category of a change in semantic structure. 
 
The Factors Affecting Posing Complex Problems 
 
One of the factors affecting the complexity of problem-posing performance is the task format (e.g., Geçici & 
Aydın, 2020; Leung & Silver, 1997; Silber & Cai, 2017; Silver & Cai, 1996). Participants posed mathematically 
more complex problems in structured problem-posing activities compared to those in free activities (e.g., Silber 
& Cai, 2017) and in the tasks containing specific numbers compared with those without specific numbers (e.g., 
Leung & Silver, 1997). Another factor that affects the complexity of problem-posing performance is the manner 
in which the activities are applied. For example, Chen et al. (2007) determined that when fourth-grade Chinese 
students were asked to pose easy, moderately difficult, and difficult problems for an open-ended story, the 
arithmetic complexity of the problems was greater in the case of posing difficult problem. Chapman (2012) 
indicated that the extent to which problem-posing is perceived as sense-making influences the complexity of the 
problems posed. For example, from the paradigmatic perspective, problem-posing is the creation of a problem 
with a universal interpretation, a particular solution, and an existence independent of the problem solver 
(Chapman, 2012). This perspective results in posing simple problems.  
 
Students were asked to pose a problem for a particular person (e.g., for a friend, for a student with high 
mathematics ability) in a limited number of studies. In these studies, students were directed, for example, to 
―pose a (difficult) problem for your friend‖. This type of directive is seen as an important way both to motivate 
students and to understand their mathematical abilities (Cankoy, 2014; Lowrie, 1999, 2002). Winograd (1997), 
working with primary school students, indicated that students were highly motivated to pose interesting and 
difficult problems for their classmates, and they did not lose interest in the process of sharing their problems in 
the classroom environment. Ellerton (1986) stated that asking students to ―pose a difficult problem for your 
friends‖ may affect students’ success in performing the problem-posing task because the students’ focus may be 
shifted to external factors. When using these directives, students do not always pose problems for their close 
friends, but they also pose problems for those who like to solve difficult problems (Lowrie, 1999). These results 
indicate that, during the problem-posing process, problem posers also focus on how the person who will solve 
will perceive the components of the problem. 
 
Although there are studies that direct students to pose problems for their friends (e.g., Cankoy, 2014; Kopparla et 
al., 2019; Lowrie & Whitland, 2000; Yeap & Kaur, 2000), there has thus far not been a study examining the 
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situation that is explored here. For example, two activities in Yeap and Kaur’s (2000) study directing third- and 
fifth-grade students to pose problems were as follows:  ―…Your problem must have the numbers 3, 5 and 36. 
You can use more numbers, if you like‖ and ―…The answer to the question in the problem must be 10.‖ In both 
activities, students were given the following instruction: ―Write a mathematics word problem for a friend to 
solve‖ (p. 606). The complexity of the problems posed for these activities were determined by means of 
Marshall’s (1995) classification of semantic structures. The students posed more complex problems by using the 
numbers 3, 5, and 36 in the problem-posing activity. Although the reasons behind the success difference were 
not explored in the study, the presentation of the activity might be a factor. Additionally, students could pose 
problems in each activity by considering the different mathematical abilities of their friends, which might also 
result in differences in the complexities of the problems.  
 
Lowrie and Whitland (2000) asked third-grade students to pose problems for second and fourth graders. They 
found that the third-grade students considered number magnitude, operation complexity, the type of mathematics 
concepts, and students’ interests while posing problems. Students decreased the magnitude of the numbers for 
second graders and tended to use numbers with higher magnitudes for fourth graders in their problems. The 
researchers also found that some students posed problems using the content of the third-grade mathematics 
curriculum with the aim of helping the second graders improve their ability. The results of this study indicate 
that there might be differences between the problems posed for different grade levels in terms of arithmetical 
complexity. On the other hand, this result was not determined via quantitative approaches and, additionally, this 
study did not focus on the semantic structures of the problems. Thus, this study does not provide data on the 
factors that students consider in posing problems for their classmates. Cankoy (2014) conducted a five-week 
study investigating the effect of interlocked and traditional problem-posing instructions on fifth-grade students’ 
problem-posing performance. A free problem-posing activity was used in the study and students were expected 
to pose problems for their friends. The posed problems were analyzed according to the dimensions of solvability 
(whether they were solvable or unsolvable), reasonability (whether they were reasonable or unreasonable), and 
mathematical structure (whether they were result unknown or start unknown). The results indicated that 
interlocked problem-posing instruction improved students’ problem-posing performance more than traditional 
instruction. 
 
When examining the aforementioned studies, some (Cankoy, 2014; Kopparla et al., 2019) did not focus on the 
mathematical complexities of the posed problems. In the studies focusing on the complexities of the problems, 
on the other hand, the performances of student groups were compared according to activity types (Yeap & Kaur, 
2000), or students were asked to pose problems for different students in different grade levels (Lowrie & 
Whitland, 2000). Such studies do not provide explanations about the factors that students consider when posing 
problems for their classmates. Moreover, Lowrie (1999) pointed out that students could pose problems not only 
for their close friends but also for their friends who like to solve difficult problems. This explanation implies that 
students can adjust the complexity of the problems by considering the friend for whom the problem is posed. 
However, the literature reviewed reveals that whether students adjusted the complexities of the problems for 
their friend was not tested by means of quantitative approaches. As Silver (2009) indicated, complex problems 
sharpen students’ mathematical thinking and reasoning skills. In this regard, quantitative approaches can provide 
strong results about students’ tendencies in posing more complex problems for their friends having higher 
mathematics success. Therefore, this approach can provide experimental data based suggestions for their use in 
learning environments. In addition, students were asked to pose problems for their friends in the experimental 
studies on problem posing (e.g., Cankoy, 2014; Kopparla et al., 2019). In the pre-test and post-test stages of such 
experimental studies, the fact that the student wrote problems by taking into account his/her different friends 
may have affected the complexity of the posed problems. Therefore, the results of the present study may deepen 
our understanding of an important variable to be considered in creating experimental designs and interpreting 
students' problem-posing performance. 
 
Although students are capable of posing problems, we have very limited in-depth understanding about how they 
think and what type of situations they take into consideration while posing problems (Cai, et al., 2015; Cai & 
Leikin, 2020). For example, the results of Lee’s (2020) study showed that only a small portion were related to 
problem posing (62/17456 about 0.4%) among the research published in 13 academic journals particularly 
related to mathematics education, and only four studies were interested in the students’ thinking processes. 
Supporting this study with qualitative approaches as well as quantitative approaches will give insight into what 
factors students take into account when writing problems for their friends, the role of the complexity of the 
problem as one of these factors, and what kind of arrangements they make to adjust the complexity of the 
problem. Therefore, the results of this study will deepen our understanding about how students think when they 
pose problems for their friends. This study is aiming to fill this gap in the literature. 
 



59 
 

IJCER (International Journal of Contemporary Educational Research) 

Research Questions and Hypotheses  
 
The present study attempted to answer the following research questions: 
 

1. Is there any statistical difference among the arithmetical and semantic complexities of the problems that 
third-grade students pose for their classmates?  

2. How do third-grade students think when posing problems for their classmates?  
 
When students pose problems, besides focusing on the mathematical structures of the activity (e.g., number 
magnitude, number and types of operations) (Lowrie & Whitland, 2000), they also consider many other factors 
including the interests of the person or the group to be posed for (Chapman, 2012; Lowrie & Whitland, 2000) 
and the association of the problem with daily life (Rosli et al., 2015; Winograd, 1997). According to the 
hypothesis of this study, therefore, it is assumed that there will be no difference in the semantic complexity of 
the problems that students pose for different classmates. A similar assumption is made about the arithmetical 
complexity of the problems. 
 
Method 
 
Sample 
 
This study was carried out with a primary school teacher working in a public school in Turkey and 27 third-
graders. The students were 9–10 years old. The teacher had 13 years of teaching experience while the study was 
implemented and was studying for his master’s degree at the time. All the students were educated in their native 
language, and their school was one of the popular schools in the city center. The socio-economic and educational 
levels of the students’ parents were relatively similar and were medium or high in general.  
 
The Problem-Posing Experience of the Teacher and Student Selection  
 
One of the authors of this study and the teacher had been discussing the teaching of primary school mathematics 
in regular meetings for more than a year. In these meetings, they discussed methods for teaching primary school 
mathematics, problem-solving and problem-posing skills, and the meaning of mathematical understanding.In 
some meetings, they discussed the definition and the importance of problem posing, the classification of 
problem-posing tasks, and the types of analytical schemas used. In addition, some problem-posing tasks were 
carried out by the teacher in his classes, and his observations were discussed in the meetings. Thus, it was 
ensured that the teacher conducting this study had experience in problem-posing activities. In these meetings, 
some studies (e.g., Cai & Ding, 2017; Kilpatrick et al., 2001) related to the nature of mathematical understanding 
and its components were discussed. For example, Kilpatrick et al. (2001) identified five components of 
mathematical proficiency: conceptual understanding, procedural fluency, strategic competence, adaptive 
reasoning, and productive disposition. Thus, the primary school teacher conducting this study had knowledge 
about mathematical understanding. 
 
Undoubtedly, students’ abilities are best recognized by the teacher who is with them daily. Furthermore, there 
are no written exams at the third-grade level. Therefore, the primary school teacher was expected to divide the 
students into four groups according to their mathematical understanding. Then, he was expected to choose two 
students from the four groups: the one from the group with the highest mathematical understanding and the one 
from the group with the lowest mathematical understanding. He considered criteria such as conceptual 
understanding, procedural fluency, and strategic competence in selecting the students. The teacher chose Kerem 
from the group with the highest mathematical understanding and Ecrin from the group with lowest mathematical 
understanding (pseudonyms have been used). The teacher explained the mathematical understanding of Ecrin 
and Kerem as follows: 
 

For Kerem: The most important characteristics of Kerem are being capable of mental processing and 
solving problems in different ways. He makes the operations faster and establishes the connections between 
the mathematical expressions in the problems and the necessary operations better, compared to his peers. 
He is also the head of the math club of our class. 
 
For Ecrin: She is a third-grade student, but lacks some mathematics knowledge related to first- and second-
grade mathematics content. She is far behind in rhythmic counting compared to her friends, she forgets the 
mathematics subjects she has learned in previous years, she is very weak in mental processes, and she often 
makes mistakes in arithmetic operations. She especially has difficulty in solving two-step problems. 
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Student Background 
 
A free problem-posing (FPP) task was implemented in the fall period. At the time of the implementation, the 
teacher stated that he taught addition and subtraction with three-digit numbers and included problem-solving 
activities that required the use of these operations. Furthermore, he stated that the problems were limited to what 
students learned in second grade in terms of multiplication and division, such as multiplying numbers up to 10 
by one, two, three, four, and five, and dividing numbers up to 20 without remainders. The teacher emphasized 
that more complex multiplication and division operations are mainly included in the third- and fourth-grade 
curricula, and noted that he had not yet started teaching multiplication and division with two-digit and larger 
numbers at the time of the FPP task. A semi-structured problem-posing (SSPP) task was implemented 
approximately one month after the FPP task. During the implementation of the task, the teacher had just started 
teaching multiplication. At this stage, he stated that he conducted activities by reminding students of the 
multiplication subjects found mainly in the second-grade curriculum. 
 
Problem-Posing Activities and Administration Procedure  
 
In this study, FPP and SSPP tasks (see Figure 1) were given to students. The students were asked to pose a 
problem for their two friends, determined by their teacher, and each of the problem-posing tasks was completed 
in about 20 minutes. The teacher gave the students the impression that Ecrin and Kerem were randomly selected 
and their mathematics success was not mentioned to the class during the process. The teacher stated that students 
could find it difficult to follow the written directions so the teacher suggest that it would be more appropriate to 
explain what students have to do verbally before the implementation. In line with these opinions, no instructions 
were included in the tasks; instead, the teacher gave explanations to the students during the implementation 
process. The explanation given during the FPP task was as follows:  

 
In this lesson, you will pose problems for each other. I will randomly select two of your friends, 
and you’ll pose a problem for each of them. Then, we will continue to practice our activity for 
different friends. I want you to pose one problem each for Kerem and Ecrin. You can start with 
whomever you want. 

 
In the SSPP task, students were given an open-ended task associated with daily life (see Figure 1). This problem-
posing task was derived from the study by Silver and Cai (2005), who stated that this activity can be used for 
classroom assessment of activities involving the addition and subtraction of two-digit numbers. Considering the 
purpose of this study, there were many reasons for choosing this task. First, because the teacher was still in the 
early stages of teaching multiplication and division, he stated that it would be more appropriate to use a data set 
unrelated to multiplication. Second, expanding the amount of data in the open-ended task would limit the 
problems to be posed. This would create obstacles to flexible thinking in differentiating problems. During the 
implementation phase, the students were given the following instruction:  

 
I’ll give you an incomplete problem sentence. Imagine that you wrote the problem up to this point. 
You will write math problems for your friends by completing them as you wish. I want you to 
write one math problem each for Ecrin and Kerem. You can start with whomever you want. 
 

 
Figure 1. Problem-posing tasks and instructions given to the students. 

 
The FPP and SSPP activities were not limited to posing problems only for Ecrin and Kerem. If that were the 
case, the other students in the classroom might conjecture that Ecrin and Kerem were not randomly selected. As 
a result of the discussions among the authors and the classroom teacher, it was decided that it would be more 
appropriate to have other students be involved in the activities, too. Therefore, before posing problems for Ecrin 
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and Kerem in the FPP activity, similar processes were carried out for different students. In the SSPP activity, 
students were asked to pose problems for Ecrin and Kerem first and then to pose problems for some other 
randomly selected students. Thus, this process aimed to prevent students’ from conjecturing that Ecrin and 
Kerem were deliberately selected.  
 
Semi-Structured Interview Process 
 
Semi-structured interviews with six students were carried out after each activity to better understand how 
students were thinking when they were posing problems. The teacher’s opinions were taken into account in the 
selection of the students. The teacher was expected to identify six students reflecting the mathematical success of 
the classroom using the same selection criteria used for selecting Ecrin and Kerem. In the selection of Ecrin and 
Kerem, the teacher had divided the students into groups. Using a similar approach, the teacher was asked to 
think of the students as three groups with low, medium, and high levels of mathematical understanding and 
choose two students from each group. It was emphasized that the selected students should be open to 
communication to allow an in-depth investigation and enable the researcher to gather rich data in the interviews. 
Using this approach, the teacher chose six students.  
 
The classroom teacher routinely organizes short meetings with some students at the end of the day to talk about 
their activities during the day. It was decided that the semi-structured interviews would be conducted at these 
meetings to hopefully prevent the other students from developing possible prejudices against the students 
interviewed. The interview process was shaped around the students’ explanations of how each problem was 
posed. In the interviews, students were not asked any questions indicating or implying Ecrin or Kerem’s 
mathematics success. It was thought that the students might emphasize Ecrin and Kerem’s mathematics 
successes when explaining how they posed their problems. In such cases, it was decided that students would be 
asked only to explain their thoughts in more depth. It was also predicted that some students would pose problems 
for the other student based on the problem posed for either Ecrin or Kerem. This is because in the literature, it is 
emphasized that students give chained responses to problem-posing activities (e.g., Silver & Cai, 1996). It was 
also taken into consideration that third-grade students could write systematically complicated problems for their 
friends and provide explanations about the differences between these problems in interviews. In these cases, it 
was decided to ask the student for a more detailed explanation to understand the differences between the posed 
problems. We decided to use the following questions in this regard: Are these two problems different? If so, 
what are the differences? What are the factors that are effective in posing different problems?   
 
Data Analysis 
 
Since it would not be appropriate for Ecrin and Kerem to pose problems for themselves, their responses were not 
included in the analysis. Thus, the responses of 25 students were analyzed for both tasks. The problems that the 
students had posed were analyzed first for mathematical viability. Problems that could not be solved or that 
contained errors were evaluated as non-viable problems. The viable problems were then analyzed according to 
their semantic structures and arithmetic complexities (see Figure 2). 
 

 
Figure 2. Schema related to the analysis of the problems posed by the students. 
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According to Figure 2, the mathematical complexity of the all valid problems was first analyzed according to 
semantic structures developed by Marshall (1995): change, group, compare, restate, and vary (a detailed 
description is presented in the section on the mathematical complexity of word problems). Compare and vary 
situations were not observed in the problems posed by the students. In this context, semantic structures of the 
posed problems were analyzed according to the change, group, and restate situations, and the number of 
semantic structures in each problem posed was determined. For example, if there were three semantic structures 
in the form of change/change/group, the semantic complexity of the problem would be coded by receiving three 
points. In this way, the complexity score of the problems that each student posed for Ecrin and Kerem was 
calculated. S11 posed the following problem for Kerem in SSPP task: Teacher asks these three students to find 
their total amount of marbles and, then give him 43 of them. Accordingly, how many marbles do three friends 
have left? In this problem, the total number of marbles corresponds to the group semantic structure, and 
removing 43 marbles from the total number of marbles corresponds to the change semantic structure. Since there 
are two semantic structures for this problem, its semantic complexity was coded with 2 points. Sample responses 
and explanations for these semantic structures are presented in the findings section.  
 
Secondly, the problems were analyzed according to their arithmetic complexity and whether they were single-
step or multi-step problems (see Figure 2). Regardless of the type of operation, problems that could be solved in 
one step were coded with one point, and multi-step problems were coded with two points. In addition, single-
step and multi-step problems in the analytical process were also classified according to the types of operations 
they contained. In FPP task, S4 wrote the following problem for Kerem: Kerem has 987 marbles. He lost 567 of 
them. Then, his father bought 333 marbles for him. At the end, how many marbles does Kerem have? The 
solution to this problem can be reached by the following operations respectively; 987-567=420 and 
420+333=753. This problem is considered to be a multi-step problem and coded with 2 since it contains more 
than one arithmetic operation. 
 
In order to determine whether there was a difference in complexity between the problems posed for Kerem and 
Ecrin, a Wilcoxon signed-rank test was applied, as the data were not distributed normally. In addition, the effect 
size was calculated when there were statistically significant differences between the posed problems. According 
to Cohen’s (1988) interpretation of effect size, anything greater than .5 is large, .5–.3 is moderate, .3–.1 is small, 
and anything smaller than .1 is trivial. The students’ responses to the problem-posing tasks were analyzed 
separately by two researchers. The researchers compared their analyses and reached a consensus on the 
classifications that differed. In addition, the findings include a presentation of direct quotations from students’ 
responses to the questions asked during the interviews in order to explain possible differences between the 
problems posed for Ecrin and Kerem. These findings can provide evidence for the statistically determined 
results. 
 

Findings 
 
General Distribution of Problems the Students Posed 
 
All students posed problems for Ecrin and Kerem. Taking into consideration the mathematical viability of the 
problems, one problem written for Ecrin was evaluated as non-viable. The non-viable problem of student S22 is 
as follows: There are 500 liras in my coin bank. If I collected this money in a day, how much would I have on the 
second day? The problem does not include any data on the amount of money in the coin bank on the second day. 
S22 wrote 500 + 500 next to the problem. Therefore, it seems that he tried to write a problem about how many 
liras he would have if he saved 500 liras in his coin bank on the second day. However, it was considered non-
viable due to the fact that the operation was not mentioned in the wording of the problem. 
 
Semantic Structure  
 
One or more of the change, group, and restate situations were present in the students’ problems in the viable 
category. The maximum number of semantic situations identified were three in the FPP task and five in the 
SSPP task. Sample problems in these categories are given in Table 2. 
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Table 2. Mathematical problem samples and their semantic structures 

Ecrin Kerem 
There are 29 students in class 3/A, 30 students in 
class 3/C, and 32 students in class 3/D. What is the 
sum of the students in the three classes? 
[S9: Group, FPP] 

There are exactly 199 sheeps in Ali Baba’s farm. Ali 
Baba’s neighbor also has 100 sheeps. Accordingly, 
what is the total number of sheeps Ali Baba and his 
neighbor have? [S9: Group, FPP] 

There are 20 sheeps in a farm. 10 sheeps in the farm 
got sick, how many sheep are left? [S2: Change, 
FPP] 

Kerem has 10 sheep, 9 geese, and 8 chicks. Five of 
the chicks get lost. How many animals are left? 
[S2: Change/Group, FPP] 

Ali and his family collected 200 kilograms of tea 
leaves in the first day. In the second day, they 
collected 600 kilograms of tea leaves and gave 100 
kilograms to his uncle. Accordingly, how many 
kilograms of tea leaves do they have at the end?  [S7: 
Change/Group, FPP] 

Ömer raised a total of 304 TL on feast day. After the 
feast day, his father gave Ömer 50 TL. His mother 
gave him 4 TL more money than his father did. 
Accordingly, how many TL does Ömer have? 
 [S7: Change/Restate/Group, FPP] 

Accordingly, what is the total number of marbles 
Ayşe, Burak and Zeynep have?  [S3: Group, SSPP] 

Ayşe has 34 marbles, Burak has 27 marbles, and 
Zeynep has 23 marbles. Zeynep loses 7 marbles. 
Burak loses 3 marbles. What is the total number of 
marbles between them? 
[S3-Change/Change/Group, SSPP] 

The number of Görkem’s marble is equal to the total 
number of Ayşe, Burak, and Zeynep’s marbles. 
Accordingly, how many marble does Görkem have?  
[S14: Restate/Group, SSPP] 

If we find Ayşe, Burak, and Zeynep’s total number 
of marbles and multiply it by 5, what will be the 
total number of marbles? Please find.  [S14: 
Restate/Group, SSPP] 

 
According to Table 2, the problem written by S9 for Ecrin in the FPP task is to combine three different groups to 
form a larger group. Thus, the problem only has a group situation. Since the problem that S9 wrote for Kerem is 
to bring 199 and 100 sheeps together, it includes group situation. The problem written by S2 for Ecrin in the FPP 
task includes the change situation since a certain part of the group is separated from it. In the problem that S2 
wrote for Kerem, the expression 5 of the chicks get lost emphasizes change; in the last case, the total number of 
chicks, sheep, and geese emphasizes the group situation. In the problem written by S7 in the FPP task for Ecrin, 
it includes group situation since it is about combining 600 kilograms and 200 kilogram of tea leaves. The 
problem includes the change situation due to the separation of 100 kilograms from the total amount of tea leaves. 
In the problem that S7 wrote for Kerem, the expression after the feast day, his father gave Ömer 50 TL 
emphasizes change; the expression his mother gave him 4 TL more money than his father did emphasizes 
restate, as it denotes the relationship between quantities at a certain time. In the final case, the amounts of money 
are combined, thus emphasizing a group situation. 
 
According to Table 2, S3’s problem for Ecrin in the SSPP task, which asks to calculate the total number of 
marbles between three people, is a group situation. In the problem written for Kerem by S3, the loss of marbles 
by Zeynep and Burak emphasizes a change and the question of the total number of marbles the three have 
emphasizes a group situation. Lastly, in the problem written by S14 for Ecrin, the total number of marbles for 
Ayşe, Burak, and Zeynep includes the group situation and since Görkem’s number of marbles is expressed over 
the total number of marbles, it includes restate situation. Since S14 used the same structure as the problem 
structure he wrote for Ecrin, the problem again includes both the group and the restate situations. The 
distribution of the problems posed for Ecrin and Kerem according to the number of semantic structures is given 
in Table 3. 
 

Table 3. Distribution of posed problems according to the number of semantic structures 
Number of Semantic Structures  FPP Task SSPP Task 

 Ecrin Kerem Ecrin Kerem 
Zero 1(4)* - - - 
One 21(84)** 17(68) 17(68) 4(16) 

Two 3(12) 6(24) 6(24) 15(60) 
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Three - 2(8) 2(8) 5(16) 

Four - - - - 

Five - - - 1(4) 

Total 25(100) 25(100) 25(100) 25(100) 
* Since one student could not write a viable problem for Ecrin, the number of semantic structures is considered to be zero. 
** The data was calculated in frequency (percentage) over the number of students 

 
According to Table 3, in the FPP task there were no more than two semantic structures in the problems written 
for Ecrin and no more than three semantic structures in the problems written for Kerem. In addition, only one 
semantic relation was observed in 84% of the problems posed for Ecrin, and this rate decreased to 68% for 
Kerem. In the SSPP task, up to five semantic structures were observed in the problems posed for Kerem. When 
the distributions are compared, 68% of the problems written for Ecrin included one semantic structure and 60% 
of the problems written for Kerem contained two semantic structures. Furthermore, according to the distributions 
in the table, more problems involving three or more semantic structures were written for Kerem. 
 
According to the data in Table 3, students tended to produce more semantically complex problems for Kerem 
compared to Ecrin. According to the results of the Wilcoxon signed-rank test conducted to determine whether 
there was a statistically significant difference between the complexities of the problems, it was determined that 
there was in fact a significant difference on behalf of Kerem in free and semi-structured tasks (see, Table 4). The 
effect size of the differences in both problem-posing tasks was large. 
 

Table 4. Wilcoxon signed-rank test results for the semantic complexity scores 
Ecrin-Kerem  n Rank mean Rank total z p r 

SSPP task       

 Negative ranks 1 6.00 6.00 
-3.343 .001 .67 

 Positive ranks 15 8.67 130.00 

FPP task       
 Negative ranks 0 .00 .00 

-2.530 .011 .51 
 Positive ranks 7 4.00 28.00 

   *p<.05 
 
Arithmetic Complexity 
 
The classification of the problems written for Ecrin and Kerem according to their arithmetic complexity is 
presented in Table 5.  
  

Table 5. Distribution of arithmetic complexity of posed problems 
Arithmetic Complexity FPP Task SSPP Task 
 Ecrin Kerem Ecrin Kerem 
Zero-step 1(4)* - - - 
Single-step     

Addition 3(12)** 5(20) 1(4) 1(4) 
Subtraction  17(68) 12(48) 1(4) - 

Multi-step     
Only addition 1(4) 1(4) 18(72) 9(36) 
Only subtraction 1(4) 1(4) 1(4) - 
Addition and subtraction 2(8) 6(24) 4(16) 12(48) 
Addition and multiplication - - - 2(8) 
Addition, Subtraction and 
multiplication 

- - - 1(4) 

Total 25(100) 25(100) 25(100) 25(100) 
* Since one student could not write a viable problem for Ecrin, arithmetic complexity is considered to be zero. 
** The data was calculated in frequency (percentage) over the number of students 
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According to Table 5, 80% and 68% of the FPP task problems written for Ecrin and Kerem, respectively, are 
single-step problems. In the FPP task, more than two thirds of the problems written for Ecrin and about half of 
the problems written for Kerem involve single-step subtraction. Considering the distribution of multi-step 
problems, four problems were written for Ecrin and eight problems were written for Kerem. In the SSPP task, 
one and two of the problems written for Kerem and Ecrin, respectively, are single-step problems. Regarding the 
distribution of multi-step problems, while the problems written for Ecrin included addition and subtraction only, 
the problems written for Kerem also included multiplication. In addition, multi-step problems including only 
addition were written at a rate of 72% for Ecrin, whereas multi-step problems including addition and subtraction 
were written at a rate of 48% for Kerem. 
 
According to the results of the Wilcoxon signed-rank test conducted to determine whether there is a statistically 
significant difference between the arithmetic complexities of the problems, it was determined that there is no 
significant difference in the FPP task and the SSPP tasks (see, Table 6). 
 

Table 6. Wilcoxon signed-rank test results for the arithmetic complexity scores 
Ecrin-Kerem  n Rank mean Rank total z p r 

SSPP task       
 Negative rank 1 2.00 2.00 

-0.577 .564  
 Positive rank 2 2.00 4.00 

FPP task       
 Negative rank 1 4.00 4.00 

-1.890 .059  
 Positive rank 6 4.00 24.00 

   *p<.05 
 
 

Findings Related to The Factors Students Took into Consideration When Posing Problems  
 
The data obtained from the semi-structured interviews show that students considered Ecrin and Kerem’s 
mathematical understanding when writing problems. Five of the students stated that they were trying to write 
easy problems for Ecrin and difficult problems for Kerem. It was determined that they changed the number and 
type of operations or the magnitude of the numbers in order to make the problems more difficult for Kerem. For 
example, while S6 asked Ecrin for the total number of marbles, he wrote the following problem for Kerem. 
 

Ayşe has 34 marbles, Burak has 27 marbles, and Zeynep has 23 marbles. The number of marbles Mert 
has is 2 times the number of marbles Zeynep has. Then, Mert gives Zeynep 11 marbles, since he had 
more. How many marbles do Mert and Ayşe have? [S6: Restate/Change/Group] 

 
S6 stated that he took into consideration the mathematical understanding and changed the operation type 
accordingly: 
 

Researcher (R): How did you think while writing problems for Ecrin? 
S6: Ecrin is not good at operations. I wrote her an easier, simple, and quick 

problem. 
R: How did you think while writing problems for Kerem? 
S6: Kerem is very good at mathematics. He does all the operations very fast. I 

wrote more difficult questions for him.  
R: Are there any differences between the problems you wrote? 
S6: There are differences, but there are a few things that are the same. There is 

addition in both problems. As for the difference, there is multiplication in 
Kerem’s problem. 

S15 asked for the total number of marbles in a problem posed for Ecrin, while doubling the total number of 
marbles for Kerem in the SSPP task. The solution to the problem written for Ecrin can be reached with two 
addition steps (34 + 27 + 23 = 84). However, the solution to the problem written for Kerem is reached with two 
addition steps (34 + 27 + 23 = 84) and one multiplication step (2 × 84 = 168). Both problems were considered to 
be multi-step, as they included more than one arithmetic operation. However, the types of operations they had 
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were different. The student’s explanation for this difference was as follows: Because Ecrin is bad at addition, I 
asked her an addition problem to improve herself. Kerem is the president of mathematics club. He does 
operations fast. I added multiplication to make his question harder. 
 
S21 took the number magnitudes and numbers of operations into account in both problems posed for Ecrin and 
Kerem. But she chose one of them according to the task type. For example, the problems posed for Ecrin and 
Kerem in SSPP task were as follow: 
 

If Ayşe, Burak and Zeynep combine their marbles, how many marbles will there be?  (for Ecrin) 
 
If Ayşe losts her 18 marbles, how many marbles will they all have?  (for Kerem) 

 
S21 wrote a problem for Ecrin that can be solved by addition operation. The problem she wrote for Kerem 
requires subtraction as well as addition. In this respect, it increased the number of operation types in the problem 
written for Kerem. In her explanations, S21 pointed out that Ecrin's mathematics knowledge was weak and 
Kerem's mathematics knowledge was good. Thus, while writing a problem, she emphasized that she wrote an 
easy problem for Ecrin and a difficult problem for Kerem. In addition, she stated that she increased the number 
of operations in order to make the problem more difficult. The interview with S21 is as follows: 
 
R: How did you think while posing the problem for Ecrin? 
S21: Ecrin is not good in mathematics. For this reason, I wrote a simpler problem for Ecrin. . 
R: How did you think while writing the problem for Kerem?  
S21: Kerem is very good in mathematics. For this reason, I wrote a difficult problem for Kerem.  
R: Can you explain the difficulty differences?  
S21: I posed a simpler problem for Ecrin. But I posed a harder problem for Kerem. Ecrin’s problem 

involves less operation, while the Kerem’s problem involves more operations.  
 
Similarly, in the FPP task, S21 took into account the difference in mathematics successes between the students. 
Unlike the SSPP task, the magnitude of the numbers changed in this task instead of increasing the number of 
operations. In addition, S21 emphasized that she likes marbles and, therefore, creates the story of the problem by 
taking into account the situations she likes. The two problems posed by S21 and the interview conducted was as 
follows: 
 

Yaprak had 29 marbles. She gave 18 of them to her friend Öykü. How many marbles did Yaprak have 
left?   (for Ecrin) 
 
There were 999 cows in Ali Baba’s farm. Ali Baba sold 786 cows. How many cows left were there for 
Ali Baba?  (for Kerem) 

 
R: What did you think when posing problem?  
S21: In the problems I wrote, the quality and whether it can really be solvable.  
R: You paid attention. So, was there any difference between the problems you posed for Kerem and 

Ecrin?  
S21: Yes, there is.  
R: What is it?  
S21: I asked Kerem’s problem harder. This is because Kerem is good at mathematics. But, since Ecrin is 

somehow worse, I asked simpler problem.  
R: So, what was the difference for you?  
S21: I asked only from two-digit numbers for Ecrin. The reason why I asked from marbles is that I like 

marbles. But, I asked problem for Kerem from three-digit numbers.  
 
S1 stated that he only took into account the magnitude of the numbers while differentiating the problems in the 
FPP task. He posed a problem with two-digit numbers for Ecrin, but posed a problem with three-digit numbers 
for Kerem because of his higher mathematical ability level. The problems written by the student and his 
explanation were as follows: 
 

My friend has 55 marbles. He gave me 44 of 55 marbles. How many marbles does my friend have 
now? (for Ecrin)  
 
I have 650 toy cars. I gave Kerem 499 toy cars. How many toy cars do I have left? (for Kerem)  



67 
 

IJCER (International Journal of Contemporary Educational Research) 

 
Explanation: Ecrin cannot do addition very well, so I wrote the problem with small numbers. 
Kerem does addition and subtraction fast.  

 
In the interviews, it was determined that S23 took Ecrin’s and Kerem’s interests into consideration in addition to 
the mathematical structures while writing the problems. He posed a problem for Kerem about reading a book 
which used three-digit numbers and was solved by subtraction. He made the following statement about the 
problem: Kerem likes reading books very much, so I wrote the question about reading books. On the other hand, 
S24 took only Ecrin’s and Kerem’s interests into account while writing problems. She wrote problems including 
subtraction for both Ecrin and Kerem. The explanations she gave for the problems he wrote were as follows: I 
asked Ecrin the number of hairgrips as she likes hairgrips. … I asked Kerem this question because he likes cars. 
 
Discussion and Conclusions 
 
The worldwide recommendations for the reform of school mathematics suggest that problem posing has an 
important role (Chen, Van Dooren & Verschaffel, 2015). Studies on problem posing have not been yet one of the 
main subject of mathematics education research, and that more research is needed about students’ cognitive 
processes (Cai et al., 2015). The purpose of this study was to expand the field’s knowledge about students’ 
understanding related to problem posing by examining what factors third grade students took into consideration 
when posing problems for their peers, and how these factors affected the complexities of the problems. 
 
It was determined that all third grade primary school students wrote problems for Ecrin and Kerem for both tasks 
and almost all of the problems written were valid problems. These results indicate that students' performance of 
writing valid problems is high. Only one problem written for Ecrin at the FPP task was considered to be 
mathematically invalid. The student was unable to express the addition operation in the story of the problem. 
However, he was able to express the addition operation in the problem he wrote for Kerem. These data indicate 
that the student had difficulty in verbally expressing mathematical expressions. Problem-posing performance is 
also affected by writing ability (e.g., Çetinkaya & Soybaş, 2018; Kwek, 2015; Özgen, Aydın, Geçici & Bayram, 
2019). For example, Kwek (2015) found that seventh-grade students were not generally aware of the difference 
between writing for a problem and writing for a solution. He concluded that the resulting unsolvable 
mathematical problems on inequality reflected the students’ difficulties with enriching the content of the 
problem statements. Similarly, Özgen et al. (2019), who investigated eight grade students’ performances to 
different problem posing tasks, indicated that students' inability to write and explain what they think significantly 
affected their success in problem posing. However, in our study, there was only one invalid problem resulting 
from a student’s writing ability, indicating that this is not an important issue. Stickles (2011) indicated that the 
complexity of data used in the activity has an effect on problem-posing performance. Thus, not presenting 
complex relational data in the problem-posing activities might be the reason that invalid problems did not arise 
from the students’ writing skills. In addition, students might have given up writing some problems due to 
possible difficulties experienced when expressing their thoughts. Although no such explanation was encountered 
in the interviews conducted with six students, this situation might have been encountered by some other students. 
This should be investigated in more detail with qualitative approaches. 
 
The studies (e.g., Kar, 2015; Kılıç, 2013; Luo, 2009) investigating the semantic structures of the problems posed 
by students shows that some semantic structures were more prominent than others. For example, Kılıç (2013) 
determined that fourth and fifth grade students had tendencies to pose problems regarding the meaning of the 
combining for addition and the meaning of separation for subtraction. This study, parallel to the results in the 
related literature, found that some semantic structures were used more compared to the others. In both problem-
posing tasks, the problems posed for Ecrin and Kerem were observed to utilize the change, group, and restate 
semantic structures. In this study, the limited mathematical background of the students might be the main reason 
why they could not write problems that involved the compare and vary structures. According to Marshall (1995), 
compare situations require determining whether the larger or smaller value is expected when expressions such as 
―quicker,‖ ―longer,‖ ―better buy,‖ or ―less costly‖ are used, and vary situations require functional thinking. 
Accordingly, compare situations can be created by means of addition and subtraction operations. Although 
students received instructions for addition and subtraction operations, the reason why they did not pose problems 
involving compare situations could be due to the fact that these kinds of semantic structures are not sufficiently 
included in their learning environment. It is not possible to explain this situation with the findings of this study. 
Therefore, further studies should investigate the semantic structures of the problems that are posed in 
mathematics lessons and found in textbooks. However, the fact that the vary situation is expressed through 
multiplicative relations and the students were still at the beginning stage of learning multiplication reveals why it 
was not seen in the problems. Furthermore, Yeap and Kaur (2001) stated that it is more difficult for third- and 
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fifth-grade students to solve problems of restate situations compared to group situations for one-step problems. 
In this study, although the mathematics backgrounds of the third-grade students were quite limited, the fact that 
they wrote problems including the restate situation indicates their flexible thinking skills. 
 
It was determined that there was a difference between the semantic structures of the problems posed for Ecrin 
and Kerem in both problem-posing tasks, and their effect size was at the large level. These results suggest that 
students write more semantically complex problems for peers that they consider to be more mathematically 
proficient. In addition, the students posed problems including more semantic structures in the SSPP task 
compared to the FPP task. Presenting open-ended stories in the SSPP task increased the number of semantic 
structures by further encouraging the linking of data. 
 
Considering the arithmetic complexities of the problems posed for Ecrin and Kerem, it was found that there were 
more similarities than differences between the problems. The fact that a large percentage of the problems written 
for Ecrin and Kerem were single-step problems in the FPP task and multi-step problems in the SSPP task 
resulted in no statistically significant differences in arithmetic complexity. The main reason for changing the 
number of operations in the FPP and SSPP tasks was the format of the tasks. The fact that the number of marbles 
of each of the three persons was given in advance in the SSPP task directed the students to ask for the total 
number of marbles. This type of problem was preferred in the problems written for Ecrin; therefore, they were 
multi-step problems. The students’ tendency to write problems that were more difficult for Kerem because of his 
success caused them to further develop the problems they wrote for Ecrin. Therefore, the problems written for 
Kerem were also multi-step problems. In addition, although the statistical test results did not show a significant 
difference between the arithmetical complexities of the problems posed for Kerem and Ecrin, problems 
involving multiplication operation were posed only for Kerem. These results indicate that the students did take 
into consideration the mathematical understanding of their classmate when posing problems. 
 
According to the qualitative findings of this study, some results were obtained from the explanations regarding 
the problems posed for Ecrin and Kerem. First, the difference in mathematical success between Ecrin and Kerem 
was a dominant criterion during the problem-posing process. Moreover, Ecrin’s and Kerem’s interests were 
another common aspect that students took into consideration. Some students wrote problems after considering 
both factors. In such situations, the idea of posing more complex problems for Kerem was preserved and the 
context of the problem was determined according to the students’ interests. In this aspect, the humanistic 
perspective (Chapman, 2012), in which the interests of the problem posers were taken into account, was utilized 
while posing the problems. Secondly, while posing complex problems, the students mainly considered the type 
and the number of operation and the magnitude of the numbers. In addition, changing the operation type was 
taken into consideration more than increasing the number of operations in posing more complex problems. 
While writing a problem for Kerem, the students tried to add a new type of operation to the operations required 
for solving the problem written for Ecrin. In this respect, it was understood from the students' perspective that 
the more complex problem meant the problems involving more and different types of operations.  
 
Furthermore, Chapman (2012) indicated that producing problems should have a purpose of contributing to the 
students’ learning (the utilitarian perspective). This perspective was also observed in third-grade students’ 
problems posed for Ecrin and Kerem. Pointing out the operation type that Ecrin struggles with, some students 
wrote problems that included it in order to help her improve. Similarly, since Kerem was better in mathematics, 
students wrote problems with more operation types or larger numbers for him. In this way, the students pointed 
out that Kerem could practice more to improve further. Finally, unlike the perspectives that Chapman (2012) 
discussed, a new understanding was determined among third-grade students. According to this understanding, 
some students posed simpler problems for their friends in order for them not to experience feelings of failure 
while solving them. This was evident in the problems posed for Ecrin, because the students understood that her 
mathematics success was low. 
 
This study can offer many potential contributions to the use of problem posing in mathematics education. If the 
problems and exercises posed are too easy, then opportunities for students to develop more sophisticated 
approaches are delayed (Downton & Sullivan, 2017). Students’ posing of problems with different numbers and 
types of semantic relations for their friends can be turned into opportunities by teachers to enrich the learning 
environment, exposing students to many different word problems. Analyzing problems involving many more 
semantic relations gives opportunities to make more inquiries among the data provided by problems in the 
classroom environment. Additionally, in his famous book, How to Solve It, Polya (1957) indicates that ―the 
student should also be able to point out the principal parts of the problem, the unknown, the data, the condition‖ 

(p. 6). In this context, students’ sharing of problems involving different semantic relations can help them to 
understand word problems and, therefore, contribute to their problem-solving ability.  
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Teachers should think about not only the mathematical aspects but also the pedagogical aspects of the activities 
they use. Problems or activities should help teachers to learn about their students’ mathematical thinking (Crespo 
& Sinclair, 2008). Teachers can use the activities of this study to determine students’ mathematical 
understanding and the contexts in which they are interested. The semi-structured interviews indicated that 
students changed the magnitude of the number and the number and type of operations for students with different 
mathematical understanding. Thus, the problems written by students for their friends will give teachers an idea 
about the kinds of problems that students perceive as easy or difficult. Moreover, some students stated in the 
semi-structured interviews that they posed problems about topics in which their friends were interested. By 
means of such activities, teachers will be able to determine their students’ interests and benefit from this 
knowledge in their teaching agenda.  
 
This study may also aid researchers who are working in the field of problem posing. In this study, the 
complexities of the problems posed by the students for their friends differed. Therefore, it was understood that 
the activity directives were also effective in influencing the students’ problem-posing performance in addition to 
the designed instructional methods or activity format. Students have been asked to pose problems for their 
friends in experimental (e.g., Cankoy, 2014; Kopparla et al., 2019) and correlational studies on problem posing 
(e.g., Silver & Cai, 1996; Yeap & Kaur, 2000). However, no explanation was given for situation (i.e., posing 
problems for their friends) that might have an effect on the problem-posing performance difference. Therefore, 
mathematics education researchers are advised to consider the effect of the ―pose problems for your friends‖ 
directive on the complexity while designing problem-posing studies or interpreting the results of similar studies. 
 
Any generalizability of the results of the current study will be limited for several reasons. The study was 
conducted with 27 third-grade students. Increasing the sample size would provide more reliable results for 
statistical analysis. In this study, it was determined that students mainly utilized the humanistic and utilitarian 
perspectives—as mentioned in Chapman’s (2012) study—when posing problems. In future studies, conducting 
interviews with more students will be able to provide more information about the perspectives that students 
utilize when posing different problems. In this study, one of the students was chosen by the teacher from the 
students with high mathematical performance while the other was chosen from those with low performance. This 
situation is another limitation of this study. There is a need to investigate whether there is a difference between 
the complexities of the problems posed for those whose mathematical performance is similar and for those 
whose mathematical performance is dissimilar. Additionally, having the teacher make the determination about 
Ecrin’s and Kerem’s mathematical understanding can be seen as another limitation of the study. Determining 
students’ mathematical understanding using a more objective assessment tool may make a stronger contribution 
to the validity of the results of the study. Finally, this study included two problem-posing tasks in free and semi-
structured formats. Three non-relational numerical data figures were included in the SSPP task, taking into 
consideration the students’ mathematical level. Problem-posing tasks that can be amended by changing the 
amount of data will be able to provide more enlightening information about how problems are posed for students 
of different ability levels. 
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