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Making Sense of Geometry Education 

Through the Lens of Fundamental Ideas: 

An Analysis of Children’s Drawings 

Ana Kuzle and Dubravka Glasnović Gracin 

For many decades, the amount of geometry curriculum worldwide has 
been cut, mathematics curricula have lacked diversity of geometrical 
phenomena, and geometry teaching has been reduced to a somewhat 
eclectic mix of activities. Recently, new trends have begun to counteract 
these tendencies by framing new curricula around fundamental ideas. The 
goals of this paper are threefold: (a) to present the structural elements of 
a coherent geometry curriculum through the lens of fundamental ideas, (b) 
to develop an analytical tool to determine the fundamental ideas of 
geometry in children’s drawings, and (c) to provide insight into the images 
primary grade students have of geometry. The results are discussed not 
only with regard to the latter of these goals, but also with regard to their 
theoretical and practical implications.   

Geometry is one of the earliest established branches of 
mathematics; it went through a period of significant growth, 
particularly during the 19th and 20th centuries, becoming well-
known for its internal diversity, coherence, and richness (Jones, 
2000). Nonetheless, geometry education did not parallelly 
undergo the changes and growth in its content and structure. On 
the contrary, in the past several decades, geometry seems to have 
lost its position in school mathematics developing the reputation 
of being the “problem child” of mathematics teaching (Backe-
Neuwald, 2000). At the same time the overall amount of 
geometry has been reduced in many national curricula (e.g., 
Backe-Neuwald, 2000; Glasnović Gracin & Kuzle, 2018; 
Mammana & Villani, 1998). Furthermore, some researchers 
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(e.g., Franke & Reinhold, 2016; Mammana & Villani, 1998; Van 
de Walle & Lovin, 2006) have made an observation that many 
geometry curricula have been an eclectic mix of activities 
without a clear and systematic structure in curriculum, and 
curriculum focusing on learning terminology. Such trends affect 
a quality geometry curriculum as it provides the structure for the 
provision of quality teaching practices and students’ learning. 

Despite the acknowledged necessity of teaching geometry 
and its anchoring in the curricula (Franke & Reinhold, 2016; 
Mammana & Villani, 1998; Van de Walle & Lovin, 2006), there 
are still great differences in the actual implementation. Those 
discrepancies can still be found in the classrooms today. For 
instance, Willson (1977) observed “very wide differences of 
opinion about what is appropriate subject matter for school 
geometry and about how to approach it” (p. 19). Hansen (1998) 
suggested that the geometry curricula should encompass various 
geometrical phenomena, such as knowledge of plane and space, 
applications of geometry, presenting milestones in the 
development of geometry as well as strengthening logical 
thinking, and deductive reasoning. This diversity of topics in 
geometry curricula had been especially advocated during ICME-
7 (1992) in Québec, which resulted in designing new curricula 
in many countries worldwide (e.g., Croatia, Germany, and the 
United States) that reflected the multi-dimensional view of 
geometry applied to all grade levels (e.g., Franke & Reinhold, 
2016; Glasnović Gracin & Kuzle, 2018; Kuzle et al., 2018; Van 
de Walle & Lovin, 2006). 

However, the diversity of topics still does not necessarily 
guarantee linking the learned objects. Hansen (1998) discussed 
the problem of lack of coherence in geometry curricula by listing 
the isolated fragments that are being taught in geometry classes: 
“small bits of polygon classification, some formulas to measure 
various shapes, some incidence geometry, a little mentioning of 
transformations, a few constructions, selected loci, introduction 
to vectors, and finally dome analytic geometry” (p. 238). Thus, 
geometry, as a mathematical discipline, offers huge 
opportunities for diversity and richness in its teaching programs, 
but these opportunities are still significant challenges to 
geometry education. The author concluded that in students’ eyes 
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the geometry they should learn might look as a “kind of 
inconsistent ‘bazaar’” (Hansen, 1998, p. 238). However, these 
assumptions should be studied more in depth. 

 One of the trends to counteract the issues mentioned above 
focuses on the idea of a coherent geometry curriculum by 
framing it in terms of “overarching ideas” or fundamental ideas 
(e.g., Van de Walle & Lovin, 2006; Wittmann, 1999). The value 
of this idea resides upon having a coherent content framework, 
which is characterized by a high degree of inner richness of 
relationships, and by gradual and continuous development in 
every grade (Rezat et al., 2014; Van de Walle & Lovin, 2006). 
Consequently, having a coherent geometry framework makes it 
easier to do research that might answer the following questions: 

• What geometrical concepts are being taught in geometry 
lessons nowadays, and to what extent? 

• What meanings do students assign to geometry? 
• How do these develop over the course of schooling? 

The main goal of the inquiry presented in this paper was to 
provide insight into the images1 primary grade students have of 
geometry by using participant-produced drawings. In order to 
achieve this goal, the study first sought to identify the 
fundamental ideas of geometry, and to develop an analytical tool 
to determine the fundamental ideas of geometry in students’ 
drawings before focusing on students’ images of geometry. 

Theoretical Framework 

In this section, we first present the construct of fundamental 
ideas and introduce different models of fundamental ideas of 
geometry, with a special focus on the model of Wittmann 
(1999). Mental images and image-based research using 
drawings are then discussed. The section ends with the three 
research questions that guided the study. 

 
1 Here, we do not refer to an ordinary informal meaning of the word “image.” 
Moreover, we do not use the terms “image” and “drawing” as synonyms. The 
term image is defined later on in the paper. 
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Fundamental Ideas 

As early as the late 1970s, researchers (e.g., Schweiger, 
1992, 2010; Vollrath, 1978) were advocating structuring 
mathematics curriculum around fundamental ideas, sometimes 
called overarching ideas. For instance, Freudenthal (1973) 
claimed that “Our mathematical concepts, structures, and ideas 
have been invented as tools to organize the phenomena of the 
physical, social and mental world” (p. 41). This term can be 
interpreted in many different ways (e.g., Rezat et al., 2014). 
Winter (1976) defined fundamental ideas as ideas that have 
strong references to reality and can be used to create different 
aspects and approaches to mathematics. Schweiger (1992) 
defined a fundamental idea as a set of actions, strategies, or 
techniques that (a) can be found in the historical development of 
mathematics, (b) appears viable to structure curriculum 
vertically, (c) seems suitable to talk about mathematics, and 
answers the question what mathematics is, (d) makes 
mathematical teaching more flexible and transparent, and (e) 
possesses a corresponding linguistic or action-related archetype 
in everyday life. In addition, fundamental ideas are characterized 
by a high degree of inner richness of relationships, and by 
gradual and continuous development in every grade (e.g., Rezat 
et al., 2014; Van de Walle & Lovin, 2006). In other words, each 
fundamental idea represents an independent axis along which 
competencies build up in a cumulative way. 

One of the trends counteracting the decrease in geometry in 
school mathematics, and the lack of both coherence and 
diversity of geometry topics in school mathematics focuses on 
the idea of structuring geometry curricula around fundamental 
ideas as a means of curriculum development (e.g., Mammana & 
Villani, 1998; Van de Walle & Lovin, 2006; Wittmann, 1999). 
For instance, Mammana and Villani (1998) listed several 
different overarching ideas for the geometry curriculum for the 
21st century, such as the idea of measurement, mapping, 
projection and topology, the idea of geometric figures, simple 
motions, and transformations, and the idea of connections to 
arithmetic. Principles and Standards for School Mathematics 
(National Council of Teachers of Mathematics, 2000), on the 
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other hand, provided a content framework for geometry 
organized around shapes and properties, transformation, 
location, and visualization (Van de Walle & Lovin, 2006). 
Similarly, Wittmann (1999) proposed that school geometry be 
organized around the following seven fundamental ideas: (a) 
geometric forms and their construction, (b) operations with 
forms, (c) coordinates, (d) measurement, (e) patterns, (f) forms 
in the environment, and (g) geometrization (see Table 1). While 
the fundamental ideas F1–F3 and F6 are specifically assigned to 
geometry, the fundamental ideas F4, F5, and F7 are intended to 
illustrate the connection to the content area of measurement, 
algebra, and number and operations (Backe-Neuwald, 2000). 
 
Table 1 
Wittmann’s Fundamental Ideas of Geometry 

Fundamental idea Description 
F1: Geometric 
forms and their 
construction 

The structural framework of elementary geometric 
forms is three-dimensional space, which is populated 
by forms of different dimensions: 0-dimensional 
points, 1-dimensional lines, 2-dimensional shapes, 
and 3-dimensional solids. Geometric forms can be 
constructed or produced in a variety of ways through 
which their properties are imprinted. 

F2: Operations 
with forms 

Geometric forms can be operated on; they can be 
shifted (e.g., translation, rotation, and mirroring), 
reduced or increased, projected onto a plane, shear 
mapped, distorted, split into parts, combined with 
other figures and shapes to form more complex 
figures, and superimposed. In doing so, it is necessary 
to investigate spatial relationships and properties 
changed by each manipulation. 

F3: Coordinates Coordinate systems can be introduced on lines, 
surfaces, and in space to describe the location of 
geometric forms with the help of coordinates. They 
also play an important role in the later representation 
of functions and in analytical geometry. 

F4: Measurement Each geometric form can be qualitatively and 
quantitatively described. Given units of measure, 
length, area or volume of geometric forms as well as 
angles can be measured. In addition, angle 
calculation, formulae for perimeter, area, and volume, 
and trigonometric formulae also deal with 
measurement. 
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F5: Patterns In geometry, there are many possibilities to relate 
points, lines, shapes, solids, and their dimensions in 
such a way that geometric patterns emerge (e.g., 
frieze patterns). 

F6: Forms in the 
environment 

Real-world objects, operations on and with them as 
well as relations between them can be described with 
the help of geometric forms. 

F7: 
Geometrization 

Plane and spatial geometric facts, theorems, and 
problems, but also a plethora of relationships between 
numbers (e.g., triangular numbers) can be translated 
into the language of geometry and described 
geometrically, and then translated again into practical 
solutions. Here, graph theory and descriptive 
geometry (e.g., parallel projection) play an important 
role. 

 
Wittmann’s (1999) fundamental ideas of geometry are 

aligned with ICME-7 study recommendations for new geometry 
curricula (Mammana & Villani, 1998), which have been adopted 
by many national curricula. Although mathematics curricula 
worldwide have been reexamined due to various curricular 
reforms (e.g., Glasnović Gracin & Kuzle, 2018), it is not clear 
what influence this may have on images students have of 
geometry, and whether students recognize the multi-
dimensionality of geometry and to what degree. 

Drawings, Mental Images, and Image-Based Research 
Using Drawings 

In image-based research, visual methods, such as drawings 
and photographs, are one of the crucial data collection tools. 
With visual methods—opposed to surveys and interview 
contexts which have shown not to be always reliable due to 
participants’ young age (e.g., Einarsdóttir, 2007; Pehkonen et 
al., 2016)—participants can express things that cannot be easily 
verbalized (Hannula, 2007; Thomson, 2008), as visual 
representation requires little or no language mediation. In 
particular, drawings as a data tool in visual research have been 
recognized as an alternative form of expression for young 
students. Drawings can be understood as “visual data that can 
give insight into how children view things” (Einarsdóttir, 2007, 
p. 201). For young students, drawing is much more than a simple 
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representation of what they see before them; rather, students use 
drawings—amongst other—“as a tool for understanding and 
representing important aspects of their own personal, lived 
experiences of people, places and things” (Anning & Ring, 
2004, p. 26). Thus, drawings are not only effective because of 
the richness of produced data, but also because of the quality and 
uniqueness of the data providing a holistic insight into students’ 
everyday lives, lived experiences and their conceptions of 
mathematics, and mathematics teaching (Einarsdóttir, 2007). 
Additionally, Kearney and Hyle (2004) found that participant-
produced drawings appear to lead to a more succinct 
presentation of participant experiences, as they inhibit viewing 
drawings with adult eyes, and enable data triangulation. Still, a 
drawing as a graphic representation is a construction which 
cannot be mistaken for the real object, but rather stands for an 
aspect of reality (Golomb, 1994). 

According to Luquet (1927/2001), an image (“internal 
model”) is the starting point of drawing imitation. Here, the 
presence of a model cues the use of a child’s internal model to 
produce a drawing. Furthermore, Luquet contends that the object 
of interest must necessarily pass through the mind in “the form 
of a visual image” before it can be translated onto a paper as a 
drawing. In other words, a drawing is an expression of the 
mental image. The extent to which it is similar or different from 
the external model condition indicates how influential the 
mental image is. A mental image can be defined in many 
different manners depending on the theory. In cognitive science, 
for instance, a mental image is defined as a representation of the 
physical world (e.g., an object, an event, or a situation) in a 
person’s mind (Eysenck, 2012) whose features are spatially and 
temporarily organized (Kosslyn, 1988). From the perspective of 
the theory of imagery, mental images are short-term memory 
representations generated from long-term memory 
representations that may be stored in a depictive (pictorial) or 
propositional (symbolic, language-like) format, regardless of the 
content (Kosslyn, 1980; Pearson & Kosslyn, 2015). In this 
paper, the term “image” refers to mental representations of a 
cognitive structure associated with a particular concept (i.e., 
geometry), built up over the years through various experiences, 
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which can be stored in both depictive and propositional format, 
and possess different functional characteristics. 

In the last two decades, drawings have been successfully 
used to access students’ beliefs about mathematics (e.g., Rolka 
& Halverscheid, 2006, 2011), the emotional atmosphere in 
mathematics lessons (e.g., Laine et al., 2013; Tuohilampi et al., 
2016), and students’ conceptions of mathematics lessons with 
respect to social and communicative aspects (e.g., Ahtee et al., 
2016; Pehkonen et al., 2016). Only a few studies (e.g., Glasnović 
Gracin & Kuzle, 2018; Picker & Berry, 2000) focused on 
students’ images of mathematical content, and mathematics 
teaching and learning. For instance, Glasnović Gracin and Kuzle 
(2018) conducted an explorative multiple case study with four 
students (one student per grade level from Grades 2–5) focusing 
on students’ fundamental ideas of geometry using Wittmann’s 
model (1999). The results showed that the four primary grade 
students mostly depicted the fundamental idea of geometric 
forms and their construction. Independent of the grade level a 
square, triangle, and circle disc were presented as the strongest 
representatives of geometric shapes. Three participants also 
illustrated several properties of geometric objects. In three cases, 
the idea of measurement (i.e., length of a line segment, 
perimeter, area, and volume) was also associated with the 
participants’ image of geometry. The fundamental idea of 
operations with forms (specifically, line symmetry) as well as 
the fundamental idea of forms in the environment was depicted 
by one participant only. The fundamental ideas of patterns and 
coordinates were not present in the data. During the interview, 
one participant’s drawing was shown to depict the idea of 
geometrization. Thus, the results of the multiple case study 
showed that the images the participants have of geometry are 
strongly related to the fundamental idea of geometric objects and 
their construction, while the fundamental ideas of operations 
with forms, coordinates, patterns, and geometrization were 
minimally represented, if at all. Glasnović Gracin and Kuzle 
(2018) also reported on the utility of Wittmann’s model (1999) 
when analyzing fundamental ideas in the children’s drawings. 
Though different subcategories of some fundamental ideas 
emerged, the sample was too small to develop a comprehensive 
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analytical tool. Furthermore, the framework showed weaknesses 
with respect to clearly categorizing each drawn object to a 
specific fundamental idea, and to reflecting new developments 
in geometry curriculum. Thus, the general utility of the model as 
a research tool appeared to be insufficient with respect to gaining 
a thorough insight into images students have of geometry. 

To summarize, drawings as a data tool in visual research 
have made an alternative and complementary contribution to 
conventional research approaches by providing researchers with 
a less invasive technique when working with young students 
(e.g., Einarsdóttir, 2007). They opened a nonverbal channel to 
students’ images of mathematics, and mathematics teaching and 
learning (Ahtee et al., 2016; Glasnović Gracin & Kuzle, 2018) 
in a multi-dimensional and holistic manner. However, studies 
focusing on the mathematical content in general as well on a 
specific mathematical content, such as geometry, using drawings 
are limited. 

Research Questions 

In order to gain insight into young students’ understanding 
of geometry, coherent and viable models and techniques are 
paramount. Wittmann’s framework (1999) illuminated students’ 
fundamental ideas of geometry on a global level (Glasnović 
Gracin & Kuzle, 2018). However, this kind of classification does 
not provide a comprehensive and thorough picture of students’ 
images of geometry. What concepts are students relating to each 
fundamental idea of geometry, and to what extent? Thus, we first 
needed to create an approach to analyze young students’ 
drawings in a comprehensive and holistic way. With this 
achieved, it is possible to address the question of students’ 
images of geometry through the lens of fundamental ideas taking 
Wittmann’s framework (1999) as a foundation, but at the same 
time expanding on it on the basis of both the students’ data and 
literature. With these goals in mind, the following research 
questions guided the study: 
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1. How can an analytical tool be developed that would 
provide insight into students’ images of geometry from 
the perspective of fundamental ideas of geometry? 

2. What fundamental ideas of geometry can be seen in the 
primary Grade 3–6 students’ drawings? 

3. What similarities and differences in students’ drawings 
exist among elementary Grades 3–6 from the perspective 
of fundamental ideas of geometry? 

Method 

Research Design and Subjects 

For this study, an explorative qualitative research design 
using participant-produced drawings was chosen. The study 
participants were Grade 3 to 6 students. This age group was 
optimal for the purposes of the study as this is an important 
period for the development of geometric thinking (e.g., 
Mamanna & Villani, 1998; van Hiele, 1959/1984). In total 114 
primary grade students2 from multiple urban schools in the 
federal states of Berlin and Brandenburg (Germany) participated 
in the project (see Table 2). Typical case sampling as a type of 
purposive sampling was utilized as a way of collecting rich and 
in-depth data (Patton, 2002). 

 
Table 2 
Participant Sample 

Grade Participants 
3 25 
4 33 
5 28 
6 28 

  

 
2 In the federal states of Berlin and Brandenburg, primary education covers 
Grades 1 to 6. 
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Data Collection Instruments 

The research data consisted of (a) audio data, (b) document 
review, and (c) a semi-structured interview. The audio data were 
comprised of the students’ unprompted verbal reports during the 
drawing process, and prompted verbal reports after the drawing 
process. For the document review, an adaptation of the 
instrument from the work of Rolka and Halverscheid (2006, 
2011) was used. It involved drawing an individual image of 
geometry. The students were given a blank piece of paper and 
instructed to draw their image of geometry. In addition, the 
students answered three questions, which were on the reverse 
side of the sheet: 

• In what way is geometry present in your drawing? 
• Why did you choose these elements in your drawing? 

Why did you choose this kind of representation? 
• Is there anything you did not draw, but still want to say 

about geometry? 

Depending on the age of the student, these questions were 
answered either orally or in written form. When answers were 
given orally, the student answers were audio-taped, otherwise 
the students wrote down their answers. After the student had 
finished drawing, the drawing was used as a catalyst for a semi-
structured interview in accordance with participant-produced 
drawing methodology (Kearney & Hyle, 2004). Multiple data 
sources (i.e., data triangulation) were used to assess the 
consistency of the results and to increase the validity of the 
results (Patton, 2002). 

Procedure and Data Analysis 

The research data were collected in a one-to-one setting 
between a student and the first author of the paper. It was briefly 
explained to each student that we were interested in geometry. 
Each student was given a blank piece of A4 paper with the 
following assignment: “Imagine you are an artist. A good friend 
asks you what geometry is. Draw a picture in which you explain 
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to him or her what geometry is for you. Be creative in your 
ideas.” The students took as much time as needed, usually about 
10 to 15 minutes. Afterwards, the student was asked to answer 
the questions on the reverse side of the sheet. If a student had 
difficulties reading the questions or writing his or her answers 
down, this was done by the researcher or the student answered 
them orally and the answers were audio-recorded. Lastly, the 
drawings were used as an entry to a semi-structured interview. 
Each student was asked to describe what he or she had drawn. 
This procedure gave each student the opportunity to frame their 
own experiences, and interpret their drawing. This last part 
lasted about 15 minutes in total. 

The drawings were analyzed after all the data had been 
collected. The analysis of the drawings was understood as 
interpreting the meanings that the students had given to the 
situations and objects they had presented (Blumer, 1969). As 
suggested by Patton (2002), multiple stages of the analysis using 
an analytic approach were performed. In the first step, the first 
author of the paper and another expert in geometry focused on 
developing an inventory to determine the fundamental ideas of 
geometry in the students’ drawings. This process contained the 
following steps: (a) transcribing audio data, (b) analysis of 
drawings with respect to Wittmann’s (1999) model of 
fundamental ideas of geometry, (c) confirmation of the 
interpretation and coding of other conceptions included in the 
students’ oral or written data, and interviews, and (d) developing 
subcategories for each fundamental idea by clustering similar 
concepts. The first researcher transcribed the audio data. We 
both analyzed the drawings separately using Wittmann’s (1999) 
model (see Table 1). Wittmann’s (1999) model provided 
descriptions of each fundamental idea as well as different 
aspects pertaining to each fundamental idea. Moreover, it 
offered specific examples that are typical for geometry lessons. 
This allowed us to assign a particular fundamental idea to items 
that were present in the students’ data. However, taken the 
generality of the model—as reported by Glasnović Gracin and 
Kuzle (2018), we revised his framework by structuring and 
expanding it with the goal of developing a multi-faceted 
inventory. Concretely, each category as well as description of 
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each fundamental idea of geometry was reexamined, refined, or 
expanded, if necessary, and subcategories of each fundamental 
idea were developed, refined and/or defined on the basis of 
students’ data taking into account different expression forms, 
which allowed us to get a rich insight into images primary grade 
students have of geometry.  

Specifically, we first assigned one of Wittmann’s (1999) 
categories to each item taking into account any form of 
expression chosen by the child (i.e., drawing, written and/or oral 
data, or interviews). If a descriptor was not given, the researchers 
discussed the nature of the descriptor before assigning a 
particular fundamental idea to the item. The interrater reliability 
was high (97% agreement). Nevertheless, we discussed the 
differences in coding taking into consideration both the students’ 
products as well as the mathematics curriculum 
(Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015). In that manner, the fundamental idea descriptors 
were reexamined and refined. Adjustments were subsequently 
made to our coding, after which the interrater reliability was 
100%. Afterwards, the same researchers focused on separately 
developing an inventory with subcategories for each 
fundamental idea by going through all the drawings starting with 
Grade 3 and ending with Grade 6. The inventories were 
discussed (89% agreement) to obtain full agreement. Concretely, 
the nature of each subcategory was discussed, which allowed to 
refine each subcategory descriptor, and new subcategories were 
developed on the basis of data to allow for a more fine-grained 
analysis of the data. Consequently, this allowed developing a 
very detailed and refined inventory to analyze students’ 
fundamental ideas. All procedures and decisions were recorded 
in an audit trail, which also ensured trustworthiness and rigor 
(Patton, 2002). This procedure was used to answer the first 
research question. 

To answer the second and third research questions, we used 
the developed inventory and coded the drawings once again. We 
assigned codes to each drawing separately using the inventory, 
followed by a discussion of the results. For the within analysis, 
each grade level was treated as a comprehensive case, whereas 
cross-analysis was used to compare the particular cases against 
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each other. The interrater reliability was high (100% agreement). 
Thus, analyst triangulation contributed to the verification and 
validation of qualitative analysis (Creswell & Miller, 2000; 
Patton, 2002). Afterwards the descriptive statistics were 
calculated. 

Figure 1 illustrates the coding. The drawing does not 
represent a prototypical drawing, but rather has been selected on 
the basis of data richness and versatility. In the description of the 
drawings we used the coding presented in the Appendix. For 
instance, F6 refers to the fundamental idea of geometric forms 
in the environment. Here, each real-world object was coded as a 
whole (F6). Given that three real-world objects (i.e., a snowman, 
a house, and a tree), F6 was coded three times. Additionally, the 
real-world objects are composed of 1- (F1b; e.g., curved and 
straight-line segments) and 2-dimensional figures (F1c; e.g., 
circles, squares, rectangles, and triangles), which reflect the 
fundamental idea of geometric forms and their construction (F1). 
If the same geometric object (e.g., squares in Figure 1) was 
drawn several times, it was coded once. Different 2-dimensional 
figures were coded once for each object. The number in brackets 
gives the absolute frequency of the category and the 
subcategory. 

Figure 1 
Grade 3 Student’s Image of Geometry With Codes  

 

The child drew three real-
world objects, namely a house, 
a snowman, and a tree, 
consisting of different 
geometric forms. 
 
Coding:  
F1b: curved line segment; 
straight line segment 
F1c: circle; square; rectangle; 
triangle 
F6: snowman; house; tree 
 
Summary of the coding: 
F1(6): F1b(2), F1c(4) 
F6(3) 



Ana Kuzle and Dubravka Glasnović Gracin 

21 

Results  

This section is divided into two parts. The first part focuses 
on the development of the analytical tool that would provide 
insight into students’ images of geometry from the perspective 
of fundamental ideas of geometry. The second part focuses on 
the evaluation of the distribution of fundamental ideas in the 
learning groups by using drawings. 

Fundamental Ideas of Geometry: An Analytical Tool 

The inventory that emerged from the students’ drawings, 
oral or written responses, and interviews is explained here (for 
more details see Appendix). The first category is related to 
Wittmann’s fundamental idea of geometric forms and their 
construction (F1), which refers to both basic and composite 
figures of different dimensions, their properties, and their 
constructions. From the data nine subcategories emerged: 0-, 1-, 
2-, 3-dimensional objects, geometric properties, drawing and 
drawing/construction tools, non-geometrical tools for creating 
geometrical objects, angles, and composite figures. All 
subcategories except for non-geometrical tools for creating 
geometrical objects and angles were listed in Wittmann’s 
framework (1999). 

When differing between 2- and 3-dimensional objects, other 
data (i.e., students’ oral and written responses or data from the 
interviews) was needed. As shown in Figure 2, the student 
named each solid as well as surface shapes, whereas in Figure 3 
depth of a rectangular prism was shown by using dashed lines. 
With respect to Figure 2 the student wrote: “Living and funny 
bodies are geometry for me. Spheres, cones, cubes, cylinders, 
and surfaces are represented.” With respect to Figure 3 the 
student said: 

I drew a compass, a circle, a protractor, a ruler, a rectangular 
prism, and a cube, because I think that these things belong 
to a geometry lesson. When I think of geometry, I think of 
exactly these things and that is why I drew them. 
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Figure 2 
Grade 4 Student’s Drawing With 2- and 3-Dimensional Figures (3D 
Solids: Sphere, Cone, Cube, Cylinder; 2D Shapes: Square, Rectangle, 
Circle, Triangle) 

 
Figure 3 
Grade 6 Student’s Drawing With 2- and 3-Dimensional Figures and 
Drawing Tools 
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With respect to properties of geometric figures, the students 
either described the figure by writing down “A square has 4 right 
angles,” or four right angles were illustrated in the drawing of a 
square. When a student drew a geometric tool, it was important 
that the function of the tool has been explicitly mentioned or 
implicit from the data. With respect to the former, a student 
wrote, “In geometry we use a ruler, compass or protractor to 
draw figures,” or a student in the interview referred to a ruler as 
a drawing tool as opposed to a measurement tool, whilst with 
respect to the latter the tool was present in the figure with which 
the forms were drawn, and no aspects related to measurement 
were present (see Figure 3). Other than in Wittmann’s (1999) 
framework, the students also used non-geometrical tools (e.g., 
wooden shapes or modelling clay) to create composite figures 
by using different techniques (e.g., building or printing). 
Additionally, the first category was expanded by the “Angles” 
subcategory, as the students’ drawings, written data, or 
interviews revealed a figurative angle aspect (e.g., angle as a turn 
or angle as a wedge). 

The second category is related to Wittmann’s (1999) 
fundamental idea of operations with forms (F2), which refers to 
different types of geometric mappings and manipulations with 
forms, and the properties which are influenced by these. From 
the data nine subcategories emerged as follows: translation, 
rotation, dilation, point symmetry, line symmetry, congruence, 
composing and decomposing, folding and unfolding, and 
tessellation (see Figures 4 and 5). All subcategories were 
consistent with Wittmann’s framework except for the last two 
subcategories, namely folding and unfolding, and tessellation. 
For instance, the student in Figure 5 said: “In geometry lessons 
we played with different figures, which have different 
symmetries. Here you can see a figure with rotational symmetry 
[points at pink ‘windmill’], and two figures with line symmetry 
[points at red circle and blue wind kite].” Even though the 
students rarely illustrated properties of a particular 
transformation, for the sake of completeness with respect to the 
mathematics curriculum for primary grades (Senatsverwaltung 
für Bildung, Jugend und Wissenschaft Berlin, 2015) each 
subcategory of the inventory was expanded with respect to this 
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aspect. The activities of folding and/or unfolding were most 
often supported by additional data (e.g., “We folded a paper into 
a Christmas star” as shown in Figure 4) or information (e.g., 
arrows). 

 
Figure 4 
Grade 5 Student’s Drawing Illustrating the Activity of Folding 
(“Folding and Cutting-Out a Christmas Star”) 

 
Figure 5 
Grade 4 Student’s Drawing of a Figure With Rotational Symmetry 
(“Drehung”) and of Two Figures With Line Symmetry 
(“Spiegelung”) 
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The third category is related to Wittmann’s (1999) 
fundamental idea of coordinates (F3), which was broadened to 
reflect both curricular trends (e.g., Franke & Reinhold, 2016; 
Senatsverwaltung für Bildung, Jugend und Wissenschaft Berlin, 
2015; Van de Walle & Lovin, 2006) as well as the students’ 
drawings and interviews. The subcategories that emerged were 
as follows: coordinate system, positional relationships, 
orientation and orientation tools, and spatial visualization, 
relation, and orientation. In that manner, not only location but 
also position (e.g., above or below) and positional relationship 
of a geometric object or between geometric objects (e.g., a 
square lies right from a circle, two lines are parallel to each other 
as shown in Figure 6) in the plane or space was regarded, which 
reflected more young students’ understanding of the 
fundamental idea. In addition, the drawings and, especially, 
interviews included activities that dealt with different aspects of 
spatial manipulation, such as making a view plan or a building 
plan of a geometrical composite figure or a cube building, 
folding a net of a solid mentally. With respect to the latter, one 
student wrote, “I have a lot of fun making nets of solids or 
cutting them out and then folding them into solids. But I could 
not draw that now,” which was often reported by the students 
either in written or oral form. As such, we renamed the 
fundamental into “coordinates, spatial relationships, and 
reasoning” to allow for a broader understanding of the 
fundamental idea than given by Wittmann who limited this 
fundamental idea to describing location of geometric objects 
using different type of coordinate systems. 

The fourth category is related to Wittmann’s (1999) 
fundamental idea of measurement (F4), which refers to 
qualitative and quantitative properties used to describe 
geometric forms as well as calculations of these using different 
formulae. The subcategories that emerged were as follows: 
length, perimeter, surface area, volume, angle measurement, 
measuring tools, estimation, conversion of measuring units, and 
scaling. Whereas the first five subcategories were also part of 
Wittmann’s framework, the subcategory “measuring tools” 
often emerged in the students’ data (i.e., drawings, oral or 
written responses, or interviews). The last three subcategories, 
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namely estimation, conversion of measuring units, and scaling 
were present in the data in a limited manner. Furthermore, these 
aspects are an important part of the mathematics curriculum 
(Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015), and were likewise revealed in a similar study 
conducted by the authors. Hence, the inventory was expanded 
with respect to these three subcategories. In Figures 4, 5, and 6 
different subcategories can be seen, namely the activity of 
measuring the length of line segments (“Miss!”, |𝐴𝐵̅̅ ̅̅ | = 9 cm), 
and formula for the area of a right-angled triangle, respectively. 
Similar to our discussion earlier, when a child drew a geometric 
tool, it was important that the function of the tool had been 
explicitly mentioned by the student, either in their written 
responses or in the interviews (e.g., “I measured the length of a 
line segment with a ruler”) or implicit from the data (e.g., length 
of a segment is measured which implies that a drawn tool is 
understood as a measuring tool). 

 
Figure 6 
Grade 6 Student’s Drawing With a Parallel Projection of a Cube 
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Figure 7 
Grade 3 Student’s Drawing of a Robot Head and a Six-Petal Rosette 
Pattern 

 
The fifth category is related to Wittmann’s fundamental idea 

of patterns (F5), which was renamed into “geometric patterns” 
since the data reflected patterns created by using simple 
geometric forms. For instance, a Grade 3 student said when 
asked to describe her drawing: “That in the middle is a pattern. 
It is made of a square, a triangle, and a circle. And then I repeated 
them creating a funny pattern.” Even though different patterns 
were illustrated in the drawings, such as frieze pattern and six-
petal rosette pattern, patterns formed of geometric shapes (see 
Figure 7), its small percentage did not allow creating different 
subcategories. 

The sixth category is related to Wittmann’s (1999) 
fundamental idea of forms in the environment (F6), which refers 
to the description of real-world objects, and operations on and 
with them by using simple geometric forms. In order to 
emphasize the core idea of this fundamental idea, we renamed it 
into “geometric forms in the environment.” Figures 1 and 7 
illustrate some of the motifs that could be seen in the students’ 
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drawings. The student drawing Figure 7 said, “Here is a robot 
head. It is made of different forms: circle for eyes and head, 
rectangle for ears and mouth, triangle for his nose.” Despite 
creative motifs in the students’ drawings (e.g., snowman, tree, 
house, robot, disco ball, and tent), written responses, oral data, 
or the interviews pertaining to this fundamental idea, the nature 
of the fundamental idea did not allow creating different 
subcategories. Often when students’ drawings included several 
motifs, the students mentioned other ones in their written 
responses or interviews. 

Lastly, the seventh category is related to Wittmann’s (1999) 
fundamental idea of geometrization (F7), which refers to 
translation of geometric facts and problems into the language of 
geometry, their handling with the help of geometric approaches, 
followed by interpretation of the solution. The subcategories that 
emerged were as follows: geometric facts, parallel projection, 
and geometrical problems. In one case only, a geometric fact 
was revealed during the interview, whereas in all other cases the 
items were part of students’ drawings (i.e., in Figure 6). With 
respect to the former, a Grade 6 student said when asked if there 
is anything she did not draw but still want to say about geometry, 
“Probably the best-known construction is the construction of the 
Euler line. There the intersection points of the angle bisectors, 
the medians, the altitudes, and the side bisectors are located on 
a straight line.” For the sake of completeness with respect to the 
mathematics curriculum for primary grades (Senatsverwaltung 
für Bildung, Jugend und Wissenschaft Berlin, 2015), the 
inventory includes the subcategory “figurate numbers“ 
(Wittmann, 1999), but excludes graph theory (Wittmann, 1999) 
as this is not part of the mathematics curriculum for primary 
grades (Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015). In Figures 3 and 6 parallel projections of a cube 
and a rectangular prism are drawn. 

Fundamental Ideas of Geometry in Primary Education 
Through Students’ Lenses: Similarities and Differences 

Here, the focus was to evaluate the distribution of 
fundamental ideas by using participant-produced drawings on 
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the basis of the developed inventory. As shown in Table 3, the 
fundamental idea of geometric forms and their construction (F1) 
was the most frequently coded fundamental idea of geometry 
(76.6%). This was independent of the grade level, where all the 
students’ drawings included at least one aspect regarding this 
fundamental idea. The second most frequently coded 
fundamental idea was geometric forms in the environment (F6) 
with 8.7%. This was followed by the fundamental ideas of 
measurement (F4), and coordinates, spatial relationships, and 
reasoning (F3), with 4.8% and 4.2%, respectively. The 
fundamental ideas of operations with forms (F2), geometric 
patterns (F5), and geometrization (F7) were the three least coded 
fundamental ideas with 3.2%, 1.3%, and 1.2%, respectively. 

With respect to the fundamental idea of geometric forms and 
their construction (F1), no increase is discernible (see Table 3), 
even though one might expect a more comprehensive picture 
from Grade 6 students than appeared in the data. According to 
the mathematics curriculum (Senatsverwaltung für Bildung, 
Jugend und Wissenschaft Berlin, 2015), Grade 6 students have 
covered all of the subcategories listed in the inventory, and 
should have reached the level of informal deduction (van Hiele, 
1959/1984). This was, however, not reflected in the data, since 
only Grade 4 and 5 students’ data exhibited all of the aspects 
pertaining to F1 (see Table 4). Grade 6 students’ data, on the 
other hand, revealed 7.3 codes on average pertaining to F1, 
whereas Grade 3 students 4.4 codes, Grade 4 students 6.4 codes, 
and Grade 5 students 5.8 codes on average. Thus, Grade 6 
students’ data revealed a deeper and more thorough insight into 
each subcategory’s aspect. 

Nonetheless, there were some patterns in the students’ 
answers pertaining to different aspects of this fundamental idea. 
In all grades, different plane surfaces (F1c) dominated in the data 
with 36.5%, 38.7%, 42.5%, and 46.9% of codes pertaining to F1 
in Grade 6, Grade 5, Grade 4, and Grade 3, respectively. F1c was 
an aspect mentioned by most students: 97 students (85.1%) gave 
answers pertaining to 2-dimensional figures (see Table 4). In 
each grade more than 76% of students mentioned this aspect 
independently, with a growing tendency from Grade 3 on. The 
second most often depicted aspect was solids (F1d), ranging 
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from 21.2% (Grade 6) to 27% (Grade 3) of codes pertaining to 
F1. In total, 70 students (61.4%) illustrated or mentioned this 
aspect (see Table 4). As in the case of F1c, a growing tendency 
with respect to F1d was observed, and F1d was illustrated the 
most by Grade 6 students (75%; see Table 4). Various drawing 
tools (F1f; e.g., drawing stencil, ruler, protractor, or compass) 
were the third most frequently coded aspect of F1, ranging from 
9% in Grade 3 to 16.6% of codes in Grade 5, and were illustrated 
or mentioned by every second student (50% of drawings; see 
Table 4). Likewise, a growing tendency from lower into higher 
grades was observed, as the topic of 1-dimensional objects 
becomes more important and diverse (Senatsverwaltung für 
Bildung, Jugend und Wissenschaft Berlin, 2015). 

The fourth most often illustrated aspect was 1-dimensional 
objects (F1b), which was present in 22.8% of drawings (n = 26; 
see Table 4). The students most often drew line segments, rays, 
and lines. In few cases, curved and broken lines were illustrated 
likewise. The data also reflected a growing tendency from lower 
into higher grades. Starting with Grade 4, the angle concept 
(F1h) was present in the drawings in a figurative manner. While 
Grade 4 and 5 students most often drew a right angle, Grade 6 
students mostly drew an arbitrary angle. Furthermore, a growing 
tendency was observed from lower into higher grades, as the 
topic of angles becomes more important and diverse 
(Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015). 

Most notably, the students differed with respect to the 
properties of geometric forms (F1e). Though one may expect 
that properties of geometric forms gain the importance as 
primary grade students progress into higher grades, this was not 
reflected in the data. Concretely, this aspect was seen in all 
students’ drawings besides in Grade 3 drawings with 7.6%, 
9.2%, and 5.9% of codes pertaining to F1 in Grade 4, Grade 5, 
and Grade 6, respectively. From another perspective, almost 
every fourth Grade 4 (24.2%), almost every fifth Grade 5 
(21.4%), and almost every third Grade 6 (28.6%) student 
illustrated or mentioned this aspect (see Table 4). Even though 
Grade 6 students did not exhibit most of the codes pertaining to 
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F1e, it was exhibited by the most Grade 6 students compared to 
other grade levels. 

Subcategories F1i (composite figures), and F1a (0-
dimensional objects) and F1g (non-geometrical tool for creating 
geometrical objects) were mentioned by the fewest students, 
namely by 13.2% (n = 15) and 7% (n = 8) of students, 
respectively (see Table 4), which are mostly dealt with in early 
grades of primary education (Senatsverwaltung für Bildung, 
Jugend und Wissenschaft Berlin, 2015). 

Fundamental idea “operation with forms” (F2) does not 
show an increase from Grades 3 to 6, as this fundamental idea 
was most frequently coded in Grade 3 (4.3%) and least coded in 
Grade 4 (2.2%; see Table 3). From another perspective, 24% of 
Grade 3, 15.2% of Grade 4, 32.1% of Grade 5, and 28.6% of 
Grade 6 students drew an aspect attributed to this fundamental 
idea (see Table 5). Line symmetry (F2e), and folding and 
unfolding (F2h) were two aspects mentioned by the most 
students with 12.3% (n = 14) and 7.9% (n = 9) of drawings, 
respectively (see Table 5). The former (F2e) was mainly present 
in Grade 3 (20% of drawings), whereas the latter (F2h) in Grade 
5 (17.9% of drawings). Furthermore, both aspects were 
exhibited in the data regardless of the grade level. All other 
transformations were not mentioned very often (once or twice), 
or not at all. For instance, translation (F2a) and tessellation (F2i) 
were only present in one Grade 4 and point symmetry (F2d) in 
one Grade 6 students’ drawings each (see Table 5). Rotation 
(F2b) was mentioned both in Grade 5 and Grade 6 by one student 
each (see Table 5). No student drew an aspect pertaining to 
dilation (F2c), congruence (F2f), and composition and 
decomposition (F2g; see Table 5). 

With respect to fundamental idea of coordinates, spatial 
relationships, and reasoning (F3), a decrease from the lower 
(6.4% in Grade 3) to the higher grades is observable (2.3% in 
Grade 5), but increasing again in Grade 6 (4.1%; see Table 3). 
Additionally, the drawings qualitatively differed. Lower grade 
students used prepositions only (e.g., right, left, or below) to 
describe the position of geometric forms (F3b), while upper 
grade students used in addition a coordinate system (F3a) for it, 
which is aligned with the mathematics curriculum 



Making Sense of Geometry Education 

34 

 
  

T
ab

le
 5

 
Su

bc
at

eg
or

ie
s o

f t
he

 F
un

da
m

en
ta

l I
de

a 
“O

pe
ra

tio
ns

 W
ith

 F
or

m
s”

 Il
lu

st
ra

te
d 

by
 th

e 
M

os
t/F

ew
es

t S
tu

de
nt

s 
 

 
Fu

nd
am

en
ta

l i
de

a 
“o

pe
ra

tio
ns

 w
ith

 fo
rm

s”
 

G
ra

de
 

N
 

F2
a 

F2
b 

F2
c 

F2
d 

F2
e 

F2
f 

F2
g 

F2
h 

F2
i 

3 
25

 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
5 

(2
0%

) 
0 

(0
%

) 
0 

(0
%

) 
1 

(4
%

) 
0 

(0
%

) 
4 

33
 

1 
(3

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

2 
(6

.1
%

) 
0 

(0
%

) 
0 

(0
%

) 
1 

(3
%

) 
1 

(3
%

) 
5 

28
 

0 
(0

%
) 

1 
(3

.6
%

) 
0 

(0
%

) 
0 

(0
%

) 
3 

(1
0.

7%
) 

0 
(0

%
) 

0 
(0

%
) 

5 
(1

7.
9%

) 
0 

(0
%

) 
6 

28
 

0 
(0

%
) 

1 
(3

.6
%

) 
0 

(0
%

) 
1 

(3
.6

%
) 

4 
(1

4.
3%

) 
0 

(0
%

) 
0 

(0
%

) 
2 

(7
.1

%
) 

0 
(0

%
) 

To
ta

l 
11

4 
1 

(0
.9

%
) 

2 
(1

.8
%

) 
0 

(0
%

) 
1 

(0
.9

%
) 

14
 

(1
2.

3%
) 

0 
(0

%
) 

0 
(0

%
) 

9 
(7

.9
%

) 
1 

(0
.9

%
) 

  



Ana Kuzle and Dubravka Glasnović Gracin 

35 

(Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015). Furthermore, regardless of the grade level, using 
prepositions to describe the position of geometric forms (F3b) 
was the most often coded aspect pertaining to this fundamental 
idea. Very few students mentioned an aspect pertaining to spatial 
visualization, relation, and orientation (F3d), which was only 
seen in Grade 4 students’ drawings. A tool for orientation (F3c; 
i.e., compass rose) was drawn by one Grade 6 student. 

With respect to fundamental idea of measurement (F4), the 
students’ drawings show an increase of codes from the lower 
grades (1.4%) to the higher grades (8.5%; see Table 3). All 
aspects of this fundamental idea were exhibited (see Table 6). In 
Grade 3, only length (F4a) and estimation (F4g) were addressed, 
and each by one student only (4%; see Table 6). In Grade 4, in 
addition to length (F4a), which was illustrated by four students 
(12.1%), three other aspects appeared in the data, namely angle 
measurement (F4e; 3%), measuring tools (F4f; 9.1%), and 
scaling (F4i; 3; see Table 6). These were, however, illustrated by 
a few students. Similarly, in Grade 5 in addition to length (F4a; 
7.1% of drawings) and measuring tools (F4f; 3.6% of drawings), 
perimeter (F4b) and surface area (F4c) were illustrated in 7.1% 
and 10.7% of drawings, respectively (see Table 6). Lastly, Grade 
6 students’ drawings depicted seven out of nine different 
measurement aspects. Only estimation (F4g) and scaling (F4i) 
were not present in the data. Here, measuring tools (F4f) were 
illustrated by most students (25%; see Table 6). Additionally, 
F4f was dominant in the students’ drawings with 30.4% of all 
measurement codes. Whilst in earlier grades a protractor was 
presented as a tool for measuring lengths, in Grade 6 the 
protractor was assigned another role, namely as a tool to measure 
angles. Furthermore, perimeter (F4b), and (surface) area (F4c) 
were only present in Grade 5 and 6 students’ drawings, whereas 
volume (F4d), and conversion of measuring units (F4h) in Grade 
6 students’ drawings only. Thus, a more comprehensive picture 
of this fundamental idea appeared in the data as students 
progressed from lower to higher grades and different aspects win 
on their relevance (see Table 6). Most notably was the length 
aspect (F4a), which was seen in all drawings independent of the 
grade level, and together with measuring tools (F4f) the most 



Making Sense of Geometry Education 

36 

 
  

T
ab

le
 6

 
Su

bc
at

eg
or

ie
s o

f t
he

 F
un

da
m

en
ta

l I
de

a 
“M

ea
su

re
m

en
t”

 Il
lu

st
ra

te
d 

by
 th

e 
M

os
t/F

ew
es

t S
tu

de
nt

s 
 

 
Fu

nd
am

en
ta

l i
de

a 
“m

ea
su

re
m

en
t”

 
G

ra
de

 
N

 
F4

a 
F4

b 
F4

c 
F4

d 
F4

e 
F4

f 
F4

g 
F4

h 
F4

i 
3 

25
 

1 
(4

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

1 
(4

%
) 

0 
(0

%
) 

0 
(0

%
) 

4 
33

 
4 

(1
2.

1%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

1 
(3

%
) 

3 
(9

.1
%

) 
0 

(0
%

) 
0 

(0
%

) 
1 

(3
%

) 
5 

28
 

2 
(7

.1
%

) 
2 

(7
.1

%
) 

3 
(1

0.
7%

) 
0 

(0
%

) 
0 

(0
%

) 
1 

(3
.6

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

6 
28

 
4 

(1
4.

3%
) 

2 
(7

.1
%

) 
4 

(1
4.

3%
) 

2 
(7

.1
%

) 
3 

(1
0.

7%
) 

7 
(2

5%
) 

0 
(0

%
) 

1 
(3

.6
%

) 
0 

(0
%

) 
To

ta
l 

11
4 

11
 

(9
.7

%
) 

4 
(3

.5
%

) 
7 

(6
.1

%
) 

2 
(1

.8
%

) 
4 

(3
.5

%
) 

11
 

(9
.7

%
) 

1 
(0

.9
%

) 
1 

(0
.9

%
) 

1 
(0

.9
%

) 
  



Ana Kuzle and Dubravka Glasnović Gracin 

37 

dominant aspect of measurement idea (9.7% of all drawings). 
Three measurement aspects, namely estimation (F4g), 
conversion of measuring units (F4h), and scaling (F4i) were the 
least coded aspect with 0.9% of all drawings (n = 1; see Table 
6). 

The fundamental idea of geometric patterns (F5) was the 
second least coded fundamental idea with 1.3% of all codes (see 
Table 3). Thus, very few students think of this fundamental idea 
when thinking about geometry. Apart from Grade 4 and Grade 
5, where four and three students’ drawings or written data, 
respectively, revealed geometric patterns, only one student in 
Grade 3 and Grade 6 depicted this aspect. In these instances, 
different patterns were drawn, such as patterns using basic 
geometric forms (Grades 3 and 4), frieze patterns (Grade 5), and 
the six-petal rosette pattern (Grade 6). 

As illustrated in Table 3, fundamental idea “geometric forms 
in the environment” (F6) was the second most often coded 
fundamental idea. Data revealed an increase from Grade 3 to 
Grade 5 (from 7.8% to 14.1%), but a decrease in Grade 6 (5.2%). 
Something pertaining to F6 was illustrated by almost every 
fourth Grade 3 student (24% of drawings), almost every fifth 
Grade 4 student (21.2% of drawings), almost every second 
Grade 5 student (42.9% of drawings), and every fourth Grade 6 
student (25% of drawings). 

Geometrization (F7) refers to the most abstract fundamental 
idea, which may explain the small number of codes (1.2%) 
assigned to it as well as no codes in Grades 3 and 4 (see Table 
3). Yet, an increase from the lower to the higher grades is 
evident, reaching a maximum of 3.7% codes in Grade 6 (see 
Table 3). Here, all subcategories were elicited apart from 
figurate numbers (F7d). In Grade 5, one aspect pertaining to F7 
was elicited, namely geometrical facts (F7a). Concretely, one 
student illustrated the sum of the interior angles of a triangle. 
Drawings and written data of six Grade 6 students (21.4%) 
showed three different aspects: geometrical facts (F7a), 
specifically sum of interior angles of a triangle, Euler’s line, 
triangle congruence theorems; parallel projection of a cube and 
a rectangular prism (F7b); and geometrical problems concerning 
angle measurements (F7c). 
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Discussion and Conclusions 

In the last section, the key aspects of geometry education 
through the lens of fundamental ideas we proposed are 
discussed. Lastly, the limitations of the study are considered, and 
some possible future research directions are provided. 

Educational Classroom Practices in Primary Grade 
Geometry 

In our study, we used participant-produced drawings as a 
data source for researching primary grade students’ images of 
geometry. We framed our study around fundamental ideas, 
which have been advocated by many researchers as a means for 
curriculum development (e.g., Mammana & Villani, 1998; 
Rezat et al., 2014; Schweiger, 1992, 2000; Van de Walle & 
Lovin, 2006; Wittmann, 1999). As it was not obvious whether 
Wittmann’s framework worked for the approach of using 
participant-produced drawings, in the first step we were 
concerned with clarifying whether and how this framework can 
be understood in this context. Since the framework turned out to 
be suitable, it was used as a basis for developing a multi-faceted 
inventory which both refined and expanded Wittmann’s (1999) 
theoretical framework of fundamental ideas of geometry. 
Concretely, on the basis of produced data, we developed 
subcategories of each fundamental idea illustrating its different 
aspects in order to get a more detailed and rich insight into 
current educational practices in primary school geometry. Also, 
we took different expression forms into consideration. The 
developed inventory was then used for classifying the students’ 
images of geometry encoded in the participant-produced 
drawings. 

Independent of the grade level, the fundamental idea of 
geometric forms and their construction (F1) dominated in 
students’ drawings. This focus is not surprising as this 
fundamental idea predominates throughout the mathematics 
curriculum (Senatsverwaltung für Bildung, Jugend und 
Wissenschaft Berlin, 2015). Moreover, there was no noticeable 
increase from Grade 3 to Grade 6. This is possibly due to the fact 



Ana Kuzle and Dubravka Glasnović Gracin 

39 

that geometric forms are already covered before Grade 3. 
Naturally, with each grade level, students learn new geometric 
shapes and solids, and their properties; however, all Grade 3 
students were able to make statements in this area. Though 
properties of 2- and 3-dimensional objects are already covered 
in the first two grades of primary education, the data of Grade 3 
students did not reflect this (see Table 4). This may be due to the 
limited linguistic abilities of young students. Nevertheless, it is 
surprising that students mainly associated geometric forms with 
plane surfaces and solids (see Table 4), even though 0- (F1a) and 
1-dimensional objects (F1b) are covered in each grade in the 
mathematics curriculum (Senatsverwaltung für Bildung, Jugend 
und Wissenschaft Berlin, 2015). The results showed that these 
aspects increased from lower to higher grades. This might mean 
that with time students associate geometry with 2- and 3-
dimensional forms, which may be due to the fact that (surface) 
area and volume calculations are added to the measurement of 
distances in the higher grades (Senatsverwaltung für Bildung, 
Jugend und Wissenschaft Berlin, 2015). Additionally, great 
attention is given to 2- and 3-dimensional forms in the 
mathematics curriculum (Senatsverwaltung für Bildung, Jugend 
und Wissenschaft Berlin, 2015), and students develop different 
ideas of these forms in every grade. Hence, the existing 
mathematics curriculum may be crucial in developing learners’ 
understanding of geometry and the geometrical concepts. 

Interestingly, students associated geometry more with 
geometric forms in the environment (F6; 8.7% of codes), which 
is addressed only once per grade level in the curriculum, than 
with measurement (F4; 4.8% of codes; see Table 3), which 
dominates throughout the curriculum (Senatsverwaltung für 
Bildung, Jugend und Wissenschaft Berlin, 2015) as it is a 
separate mathematics standard. An initial increase from Grade 3 
to Grade 4 was expected as this content is explicitly dealt with 
in Grades 1 to 4. In Grade 5, this content was still highly present, 
even though this fundamental idea is no longer primarily part of 
the curriculum (Senatsverwaltung für Bildung, Jugend und 
Wissenschaft Berlin, 2015). It may be that this content was 
carried over from Grade 4 or was covered in Grade 5, and thus 
still present. Similarly, in Grade 6 this content is no longer 
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primarily part of the curriculum (Senatsverwaltung für Bildung, 
Jugend und Wissenschaft Berlin, 2015), which may explain its 
low frequency (see Table 3). Rather, in Grade 6 the focus shifts 
onto a more deductive approach to geometry. This may also 
explain an increase in drawings addressing the fundamental idea 
of geometrization (F7), especially with regard to geometrical 
facts (F7a), parallel projection (F7b), and geometrical problems 
(F7c). Considering that this fundamental idea is relatively well 
represented in the curriculum in the upper grades 
(Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015), only 3.6% of Grade 5 (n = 1) and 21.4% of Grade 
6 students (n = 6) mentioned or illustrated this aspect. This may 
be due to teachers who perceive geometry rather as 
entertainment than important mathematical content (Backe-
Neuwald, 2000). In that manner, the development of deductive 
and logical thinking plays a subsidiary role. 

With respect to the fundamental idea of measurement (F4), 
an increase from lower to higher grades was observable, 
reaching its peak in Grade 6 (see Table 3). This may be due to 
the fact that in the higher grades (surface) area (F4c), volume 
calculations (F4d), and angle measurement (F4e) are added to 
the measurement of lengths (F4a; Senatsverwaltung für Bildung, 
Jugend und Wissenschaft Berlin, 2015). Even though Grade 6 
students’ drawings depicted almost all geometry measures, on 
average just one aspect was drawn per student. Only four 
drawings depicted three or more different measures. Since this 
fundamental idea illustrates the connection between geometry 
and number and operations, it may be that not many students 
perceived this fundamental idea as a part of geometry or were 
not sure if that was the case. The fundamental idea of 
coordinates, spatial relationships, and reasoning (F3) was not 
frequently found in the students’ drawings, even though this 
topic and its different aspects are well-covered in the 
mathematics curriculum (Senatsverwaltung für Bildung, Jugend 
und Wissenschaft Berlin, 2015), and are recognized as one of the 
most important goals of school geometry (Franke & Reinhold, 
2016; Senatsverwaltung für Bildung, Jugend und Wissenschaft 
Berlin, 2015; Van de Walle & Lovin, 2006). Furthermore, it is 
very surprising that this content was primarily addressed by 
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Grade 3 students at a basic level by using prepositions (F3b), 
even though in Grades 5 and 6 the topic of coordinate systems 
(F3a), and spatial visualization, relation, and orientation (F3d) 
are intensively covered. However, there was no increase in 
Grades 5 and 6. The low results with respect to the fundamental 
idea of geometric patterns (F5) may suggest that this content is 
either rarely discussed (Backe-Neuwald, 2000) or does not seem 
to be directly linked to geometry lessons, but rather to algebra 
lessons. As a consequence, the students might not have 
established the connection between geometry and algebra, 
which is the core idea of this fundamental idea. 

Similar to the results of Glasnović Gracin and Kuzle (2018), 
this study shows that primary grade students’ drawings revealed 
a relatively narrow understanding of geometry with respect to 
the diversity of fundamental ideas. Concretely, the majority of 
the students drew aspects pertaining to either one (n = 37, 
32.5%) or two fundamental ideas (n = 48, 42.1%). Only rarely 
did students’ drawings present an image containing three or 
more fundamental ideas of geometry (three ideas, n = 17; four, 
n = 11; five, n = 1). Although all of the fundamental ideas were 
depicted in the students’ drawings or mentioned in other data 
sources, the fundamental ideas of geometric objects and their 
construction (F1), and geometric forms in the environment (F6) 
were most frequently exhibited. These, however, are just two of 
the fundamental ideas, and solely focusing on them may result 
in students developing a narrow understanding of geometry, 
instead of facilitating the diversity and richness geometry has to 
offer (Hansen, 1998). Also, placing little or no emphasis on 
fundamental ideas (i.e., F4, F5, and F7) that connect geometry 
to other content areas (i.e., measurement, algebra, number, and 
operations) will resolve in developing a fragmented 
understanding of geometry. 

Limitations of the Study and Future Research Directions 

This study was an exploratory qualitative study using 
purposive sampling. A sample of 114 cases was used, but the 
results may be limited to the curriculum of two German federal 
states (i.e., Berlin and Brandenburg), and for that reason may not 
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be widely generalized. These limitations suggest a possible next 
step in research, namely to conduct a study with a larger data 
sample in a wider variety of settings (e.g., federal states or 
countries), so that a researcher could create a more thorough 
description of the images students have of geometry. In addition, 
drawings from entire classrooms across different grades and 
schools may reveal a more complete picture of primary grade 
students’ images of geometry. This would in addition allow for 
comparisons between different grades and schools. Also, we 
cannot assume that the drawings offered a complete picture of 
the development of reasoning ability, so that in future studies 
connection to van Hiele (1959/1984) levels could be explored. 
Moreover, a longitudinal study would show whether students’ 
images of geometry change over time and how. Lastly, the study 
design does not allow us to make direct inferences between 
students’ images of geometry and their classroom practices. This 
may be a path to explore in our future work by using other data 
sources, such as observations of geometry lessons. This would 
not only give researchers a better insight into current educational 
practices in geometry, but would also provide practitioners a 
window into their students’ thinking and learning (e.g., Anning, 
1997; Pehkonen et al., 2016), providing teachers with ideas for 
modifying their teaching practices with respect to the multi-
dimensionality of geometry. Future studies could also evaluate 
the possibilities for classroom implementation of the inventory, 
and the practicability of it as a classroom-tool for discussing 
images of geometry. 

Drawings and the processes by which they are made have 
opened up a new way of gaining insight into students’ cognitive 
processes pertaining to geometry. Nevertheless, there were some 
drawbacks: some students had difficulties drawing, some did not 
like to draw, some drew the objects which they found easy to 
illustrate, and some aspects can be expressed by drawing in a 
limited way. Concretely, students most often expanded on their 
image of geometry pertaining to 3-dimensional figures (F1d), 
geometric properties (F1e), and drawing/construction tools (F1f) 
in the semi-structured interview, as they found those aspects 
hard to draw. It is certainly plausible that the students have 
knowledge of properties of geometric figures which was not 
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elicited in their drawings. Additionally, aspects pertaining to 
operations with forms (F2), measurement (F4), and 
geometrization (F7) also proved to be hard to draw. This may 
also explain very few or no codes are pertaining to different 
aspects of these fundamental ideas (e.g., F2c, F2f, F2g, F4a, F4b, 
F4c, F4d, F4g, F7c, and F7d). Here again, additional data 
sources (e.g., written questions and a semi-structured interview) 
were necessary. Despite the inventory, the analysis of the 
drawings has proven to be a challenging task. As Blumer (1969) 
noted, the analysis of drawings is understood as interpreting the 
meanings that the students had given to the situations and objects 
they had presented. Thus, in order to avoid the coder’s own 
interpretation, not only analyst triangulation is needed, but also 
methodological triangulation such as participant-produced 
drawings (Kearney & Hyle, 2004), allowing each student to 
interpret his or her own drawing, which consequently allowed 
an in-depth understanding of what the student had drawn. 

By relating the study results to teaching practice, some 
implications for geometry teaching can be drawn. In terms of 
Brunner’s spiral curriculum, it seems to make sense to build the 
children’s knowledge successively. It is important to pick up the 
children from where they stand. The framework curriculum can 
be an orientation for this (Senatsverwaltung für Bildung, Jugend 
und Wissenschaft Berlin, 2015). In addition, the school’s 
internal curriculum may be used to help plan lessons. 
Furthermore, it may be concluded that the fundamental ideas of 
geometry that occurred less frequently have also played a 
subordinate role in classroom instruction. Consequently, since 
teachers are the most significant influencing factor in students’ 
learning of geometry, their attitude and willingness to teach 
determine the development of students’ content-related and 
process-related competencies. Further training courses could 
remedy a lack of didactic knowledge and ensure professional 
confidence in teaching. 

Last but not least, we strongly believe that the new 
framework of fundamental ideas of geometry presented in this 
article, and the method, namely drawings, employed in this 
research, will provide a basis not only for further study of 
students’ images of geometry, but also impact educational 
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classroom practices in school geometry. With the help of the 
inventory, both researchers and practitioners have the possibility 
of identifying practices in geometry as seen through their 
students’ lenses. Thus, the inventory may be used as a classroom 
tool for discussing students’ learning in the context of geometry 
lessons. In that manner, the tool could make students’ images of 
geometry more visible, allowing students as well as teachers to 
gain insight into geometry thinking in the classroom. If children 
are allowed to draw, it makes sense to talk to them afterwards 
(e.g., narrative interviews [Krüger, 2006]) to get an insight into 
their thinking. On the other hand, it may provide teachers a 
window into their teaching to see through their students’ eyes. 
Especially the fundamental ideas or the subcategories of these 
that were not often illustrated by the students, but are part of the 
mathematics curriculum and were taught by the teacher, may 
provide the teachers with paramount feedback (e.g., paying more 
attention to the idea in question, revising the content) and allow 
the teacher to reflect on his teaching practices (e.g., Why did not 
the students perceive the idea in question as important?). As 
such, students’ drawings and their interpretations of drawings 
are productive ways of promoting dialogue about learning 
between young people and their teachers (Anning, 1997). 
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Appendix 

Analytical Tool for Analyzing the Fundamental Ideas of 
Geometry 

Code Title Comments and/or examples 
F1 Geometric 

forms and their 
construction 

Basic and composite geometric forms of 
different dimensions, their properties and 
construction/creation fall into this 
category. 

F1a 0-dimensional 
objects 

A point as a separate object has been drawn. 
It can be, but it does not need to be, labeled.  

F1b 1-dimensional 
objects 

A segment, a ray and/or a line have been 
drawn as a separate object or written down. 
The object can be, but it does not need to be, 
labeled. 

F1c 2-dimensional 
objects 

A geometrical shape (e.g., square, circle, 
rectangle, triangle) has been drawn as a 
separate object or written down. The object 
can be, but it does not need to be, labeled. 
Other data (e.g., written, oral) is needed to 
confirm that the child did not draw a 3-
dimensional object in 2-D. 

F1d 3-dimensional 
objects 

A geometrical solid (e.g., cube, pyramid) has 
been drawn as a separate object or written 
down. The object can be, but it does not need 
to be labeled. The object can also be drawn 
as a 2-dimensional object. Here, either 
shading or written/oral data confirms 
classification.  

F1e geometric 
properties 

A property of a geometrical object is 
described or illustrated in the drawing. For 
instance, a child wrote “A square has 4 right 
angles” or four right angles are illustrated in 
the drawing of a square. 

F1f drawing and 
drawing/ 
construction 
tools 

Drawing/constructing as an activity was 
mentioned. A drawing/construction tool (e.g., 
ruler, protractor, compass) has been drawn. 
The function of the tool has to be explicitly 
mentioned. E.g., a ruler is explained as a 
drawing tool rather than as a measuring tool. 
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F1g non-geometrical 
tools for 
creating 
geometrical 
objects 

Material, such as inchworms, wooden 3-
dimensional shapes, modeling clay, is 
illustrated or mentioned as a way of creating 
geometric objects. 

F1h angles Angle stands for planar objects that can be 
created by means of concrete representations. 
The figurative angle aspect is emphasized 
here. For example, angle as a wedge, angle as 
a turn. 

F1i composite 
figures 

A composite figure without any reference to 
real word object(s) (e.g., cube building, net 
of a cube) made out geometry manipulatives 
(e.g., wooden cubes, polydron material) or 
material (e.g., modeling clay) is illustrated or 
mentioned. Here different techniques are 
possible (e.g., building, kneading, covering, 
printing). 

F2  Operations 
with forms 

Geometric mappings and other 
manipulations with forms, and the 
properties influenced or changed by these, 
fall into this category. 

F2a translation A figure with translational symmetry or a 
translation of an object with a translational 
vector is drawn. Properties of translation are 
documented. 

F2b rotation A figure with rotational symmetry or a 
rotation of an object with an angle and a 
point of rotation is drawn. Properties of 
rotation are documented. 

F2c dilation A given geometrical object is either enlarged 
or compressed. Properties of dilation are 
documented. 

F2d point symmetry A figure with point symmetry or a point 
symmetry of an object is drawn. Properties of 
point symmetry are documented. 

F2e line symmetry A figure with line symmetry or a reflected 
figure of an object with a given line of 
symmetry is drawn. Properties of line 
symmetry are documented. 

F2f congruence Two figures overlap. Properties of 
congruence are documented. 

F2g composing & 
decomposing 

A figure is decomposed into simpler forms or 
composed into a larger simpler form. 
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F2h folding & 
unfolding 

The activity of folding or unfolding is 
illustrated. For instance, the activity of 
folding and/or unfolding a paper is illustrated 
(e.g., origami). A net of a shape is drawn 
with an explanation that by folding it one 
gets a cube or arrows illustrating folding are 
drawn. 

F2i tessellation A tessellation of a plane is drawn (e.g., fish 
tessellation). Properties of tessellation are 
documented. 

F3  Coordinates, 
spatial 
relationships, 
and reasoning 

Position and location of geometric forms 
in the plane or space as well as spatial 
reasoning about them fall into this 
category. 

F3a coordinate 
system 

A coordinate system with x- and y axis or a 
map grid is drawn. An object is placed in a 
coordinate system or in a map grid with 
coordinates given to its constituent parts. 

F3b positional 
relationships 

The subcategory refers to specifying 
positions and describing relations to other 
objects. A positional adverb (e.g., above, 
below, left from) or positional relationship of 
an object or between object is described (e.g., 
a square lies right from a circle, two lines are 
parallel to each other). 

F3c orientation and 
orientation tools 

Mathematical conventions (e.g., labelling 
vertices in a polygon, labelling an angle) 
with respect to orientation are illustrated in a 
drawing (e.g., arrow showing a 
(counter)clockwise labelling of vertices in a 
square). A tool for orientation (e.g., a 
compass rose) is drawn. 

F3d spatial 
visualization, 
relation and 
orientation 

The subcategory refers to tasks dealing with 
different aspects of mental manipulation 
(e.g., folding a net of a solid mentally, 
making a view plan of a geometrical 
composite figure or of a cube building). 

F4  Measurement Qualitative and quantitative properties 
used to describe geometric forms as well 
as calculation of these using formulae fall 
into this category. 

F4a length A geometrical object is drawn and the length 
of at least one constituent part is illustrated. 
For example, the length of the sides of a 
parallelogram or the radius of a circle are 
measured. Units of length are illustrated. 
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F4b perimeter A geometrical object is drawn and its 
perimeter is illustrated. A formula for a 
perimeter of an arbitrary figure is written. 
Perimeter of a figure is calculated. 

F4c surface area A geometrical object is drawn and its surface 
area is illustrated. A formula for a surface 
area of an arbitrary figure is written. Area of 
a figure is calculated. Units of surface area 
are illustrated. 

F4d volume A geometrical object is drawn and its volume 
is illustrated. A formula for a volume of an 
arbitrary figure is written. Volume of a solid 
is calculated. Units of volume are illustrated. 

F4e angle measure The size of the drawn angle is illustrated 
(e.g., quarter of a circle with a dot in the 
middle for a right angle). Size of an angle is 
measured. 

F4f measuring tools A measuring tool (e.g., ruler, set square) has 
been drawn. The function of the tool has to 
be explicitly mentioned. For example,, a ruler 
is explained as a measuring tool rather than 
as a drawing tool. 

F4g estimation Estimation as an activity is illustrated. For 
example, a child draws a benchmark for a 
particular geometrical measure (e.g., 1 cm = 
1 small finger width, 
10 cm = a hand’s width with thumb). 

F4h conversion of 
measuring units 

Conversion of 1-, 2-, or 3-dimensional units 
is illustrated.  

F4i scaling A scale drawing of a geometrical object (e.g., 
a house) has been illustrated with a given 
scale. 

F5  Geometric 
patterns 

Geometric patterns created by using 
simple geometric forms fall into this 
category. For example, a frieze pattern, 
six-petal rosette is drawn. 

F6  Geometric 
forms in the 
environment 

Description of real-world objects, and 
operations on and with them by using 
geometric forms fall into this category. 

F7  Geometrization Plane and spatial geometric theorems and 
problems, relationships between numbers 
(e.g., triangular numbers), and abstract 
relationships, which can be translated into 
the language of geometry and then 
translated again into practical solutions, 
fall into this category. 
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F7a geometrical 
facts 

A particular geometrical fact (e.g., the sum of 
interior angles in a triangle, S-S-S theorem) 
is documented. 

F7b parallel 
projection 

A parallel projection of a particular solid is 
drawn. 

F7c geometrical 
problems 

A geometrical problem is illustrated (e.g., 
computing a missing angle measurement in a 
complex task, computing volume of a 
composite solid). 

F7d figurate 
numbers 

An example of a figurate number (e.g., 
triangular, numbers, cubic numbers) is 
illustrated. 

 
 
 

 


