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According to the Association of Mathematics Teacher Educators (AMTE, 
2017), teachers should first try to see problems through their students’ 
eyes, anticipate, understand, and analyze students’ varied ways of 
thinking, and respond appropriately. In this study, we engaged preservice 
teachers (PTs) in planning to implement problem-solving tasks; explored 
how they identified problem-solving tasks; and characterized their 
anticipated responses to those tasks. PTs’ competencies and deficiencies 
in selecting problem-solving tasks and anticipating solutions were 
described. The results inform the design of more effective interventions in 
math methods courses to help PTs to plan for implementation of problem-
solving in their future teaching.    

The National Council of Teachers of Mathematics (NCTM, 
2014) and Common Core State Standards for Mathematics 
(CCSSM; Common Core State Standards Initiative, 2010) 
recommended problem solving as part of effective classroom 
planning and instruction. The NCTM published Principles to 
Actions in 2014 with the goal “to fill the gap between the 
development and adoption of CCSSM and other standards, and 
the enactment of practices, policies, programs, and actions 
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required for their widespread and successful implementation” 
(p. 4). Engaging students in challenging tasks that involve active 
meaning making and support meaningful learning is identified 
as one of the foundational principles of effective teaching by 
NCTM. The eight effective mathematics teaching practices 
stipulated in the Principles to Actions represent essential 
teaching skills and a core set of high-leverage practices that are 
necessary for deep learning of mathematics. One of the eight 
practices is implementing tasks that promote reasoning and 
problem solving by allowing students access to the mathematics 
through multiple entry points, including the use of different 
representations and tools, and fostering the solving of problems 
through varied solution strategies. Beyond the policy documents 
and standards, problem solving has always been a goal of 
mathematics instruction as a means to encourage high-level 
student thinking and reasoning, and hence maximize student 
learning (Boaler & Staples, 2008). 

Nevertheless, problem-solving tasks are the most difficult to 
implement well, and are often transformed into procedural 
exercises during instruction, particularly in the U.S. classrooms 
(Stigler & Hiebert, 2004). In this respect, the Association of 
Mathematics Teacher Educators (AMTE, 2017) and NCTM 
(2014) recommended writing lesson plans that include 
anticipated student responses to assigned tasks along with the 
teacher’s own responses. They explained that such practice 
allows teachers to tentatively plan follow-up questions and 
instructional moves, instead of supplying students with the 
answers to the problems. Anticipating student responses was 
included in the first-ever comprehensive Standards for Preparing 
Teachers of Mathematics put forth by the AMTE in 2017. 
According to the AMTE (2017) standard, instead of 
demonstrating their approaches to a problem or correcting error, 
teachers should try to see problems through their students’ eyes, 
anticipate, understand, and analyze students’ varied ways of 
thinking, and respond appropriately. 

We have explored the importance of anticipating student 
answers in teaching and learning of mathematics, and found that 
preservice teachers (PTs) and beginning teachers have difficulty 
anticipating student solutions (e.g., Ball & Bass, 2000; Hill et 
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al., 2008; Thompson et al., 2011). Hallman-Thrasher (2017) 
further reported that PTs experienced difficulty in helping and 
responding to students when they encounter unanticipated 
solutions to problem-solving tasks. Bruun (2013) specified that 
elementary teachers’ preferred problem-solving strategies to 
teach were identifying key information (e.g., circle the 
numbers), looking for clue words (to choose an operation), and 
drawing a picture. Researchers, hence, emphasized the need to 
focus on a wide range of problem-solving strategies when 
educating mathematics teachers. For example, Bruun suggested 
that both in-service and PTs need to be trained on heuristic 
problem-solving methods. Hallman-Thrasher suggested that 
more research is needed to understand how teacher education 
can support PTs’ enactment of problem-solving tasks. Although 
much research has been done on the importance of problem 
solving, best practices for teacher educators in enabling PTs to 
enact problem solving in their classrooms are still being 
investigated. Particularly, research focused on methods for the 
development of PTs’ abilities to anticipate a variety of student 
solutions is needed as it is one of the important skills for 
preparing teachers of mathematics; and one of the difficulties for 
beginning teachers and PTs. The following research questions 
guided this study: 

• How do preservice elementary teachers identify 
problem-solving tasks in the context of a mathematics 
methods course? 

• In what ways do preservice elementary teachers 
anticipate student solutions when planning to implement 
a mathematical problem-solving task? 

Literature Review 

Quality of mathematics instruction begins with the quality 
of mathematical tasks. Student performance gains are greater 
where tasks are both set up and implemented to encourage the 
use of multiple solution strategies, multiple representations, and 
explanations (Stein & Lane, 1996). Students learn more, enjoy 
mathematics more, and progress to higher mathematics levels in 
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classrooms in which teachers consistently implement tasks 
encouraging high-level student thinking and reasoning, as 
compared to classrooms in which the tasks are routinely 
procedural in nature (Boaler & Staples, 2008). Moreover, tasks 
that promote problem solving and reasoning are effective tools 
for identification of mathematical creativity by means of 
multiple solutions and multiple representations (Leikin & Lev, 
2007). Particularly in the context of solving problems, students 
better comprehend, retain, and transfer knowledge (Jonassen, 
2011). 

Nevertheless, it is often challenging for teachers to 
implement high-quality tasks. Literature identified difficulties 
associated with the implementation of these tasks such as the 
amount of allocated time for the task (either too little or too 
much), classroom management, and teachers’ experience, 
knowledge, and beliefs (e.g., Henningsen & Stein, 1997; 
Remillard, 2005; Stein et al., 1996; Watson & Mason, 2007). 
One difficulty is that teachers are comfortable with the processes 
they experienced as learners of math, and thus are challenged by 
giving up control and becoming a facilitator of student learning 
(Borko et al., 2000; Crespo & Featherstone, 2006; Kersaint & 
Chappell, 2001; Smith, 2000). Another difficulty is that teachers 
are asked to teach content they did not learn in school and to use 
pedagogy they did not experience as learners due to changes in 
the mathematics curriculum (Sakshaug & Wohlhuter, 2010). 
Teachers’ knowledge and confidence in mathematics are 
important factors in whether they adopt a problem-solving 
approach to teaching the subject matter (Anderson, 2003). For 
example, in Sakshaug and Wohlhuter’s (2010) study, teachers 
were not comfortable with the mathematics in problem-solving 
activities, wishing for an answer key or unsure if their work was 
correct. According to Guberman and Gorev (2015), teachers 
should have a deep understanding of mathematics to be able to 
choose or create suitable problem-solving tasks and effectively 
react to various solution strategies undertaken by their students. 
Only then, they can conduct meaningful mathematical 
conversations that help students connect new material to 
previously learned concepts (Guberman & Gorev). Stylianides 
and Stylianides (2008) observed a decline in cognitive demands 
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during implementation of high-quality tasks in some seventh 
grade mathematics classrooms. They associated the decline with 
teachers’ weak content knowledge, or teachers’ use of textbooks 
that did not support them to understand the mathematical goals 
of tasks and to appreciate the different levels of mathematical 
appropriateness associated with possible student solutions. 
However, Stylianides and Stylianides reported that strong 
mathematical knowledge was not sufficient for successful 
implementation of those tasks. They advised that teacher 
preparation and professional development programs have a 
critical role in equipping teachers with the necessary 
mathematical and pedagogical knowledge to successfully 
implement such tasks. 

As noted by Bailey and Taylor (2015), participating in 
problem-solving activities and reflecting on the experience is an 
important aspect of developing PTs’ positive dispositions 
towards teaching through problem solving. They argued that this 
is a first step, and recognized a next step to be PTs’ enactment 
of a problem-solving approach in the classroom. Yet, for 
addressing the issues related to enactment phase, it is crucial to 
initially investigate how PTs identify problem-solving tasks, 
because whether they can successfully enact a problem-solving 
approach depends on their selection of appropriate tasks. 
Although, problem solving and problem-solving tasks are well 
elaborated in the standards, teachers have difficulty identifying 
tasks that promote problem solving. For example, in Kartal’s 
(2015) study, teachers considered any word/contextual 
problems, or application problems as problem-solving tasks in 
an effort to support CCSSM practice⎯make sense of problems 
and persevere in solving them. However, based on the most 
recent standards and recommendations by the NCTM and 
CCSSM, as well as on historical (Hiebert et al., 1997) and 
relatively recent (Van de Walle, 2007) views, for a task to lend 
to problem solving: it should not have a prescribed approach, 
rules, or methods to solve (i.e., problematic); it should allow for 
multiple entry and exit points; it must include high-level 
cognitive demand; and it must include a relevant context. Van 
de Walle (2007) defined relevant context as a context that 
reflects the cultures and interests of the students in the classroom 
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or uses everyday situations. Relevant context can increase 
student participation and student’s use of different problem-
solving strategies, and help students develop a productive 
disposition toward mathematics (Tomaz & David, 2015). To this 
end, relevant context allows problem solvers to make 
connections with prior knowledge and engages and motivates 
students to a greater degree (e.g., Jacobs & Ambrose, 2008; 
Woodward et al., 2012). 

To sum up, selecting and identifying problem-solving tasks 
and anticipating a variety of student solutions are critical for a 
successful implementation of problem solving (AMTE, 2017; 
Bailey & Taylor, 2015; Guberman & Gorev, 2015; NCTM, 
2014). Therefore, in this study, we investigated how elementary 
PTs identify problem-solving tasks, and explored and 
characterized their anticipated student solutions in an attempt to 
equip PTs with the necessary mathematical and pedagogical 
knowledge to successfully implement such tasks. We provided 
suggestions for how to structure a mathematics methods course 
to position PTs to consider opportunities to learn how to plan for 
and use problem-solving tasks. 

Theoretical Framework 

We adopted Van de Walle’s (2007) definition of problem-
solving tasks as being problematic, allowing for multiple entry 
and exit points, high-level in cognitive demand, and involving a 
relevant context. A task being problematic is closely related to 
students’ prior knowledge and prior exposure. For example, a 
simple addition/subtraction word problem can be problematic 
for students, if they were not exposed to such problem before. 
Therefore, the role of students’ prior knowledge and experience 
was considered in determining whether a task is problematic or 
not for the purpose of this study. Multiple entry points include 
the use of different representations, tools (e.g., picture, table, 
graph, manipulatives, etc.), and varied solution strategies that 
reveal a range of mathematical sophistication (e.g., finding a 
pattern, working backwards, using representations or 
demonstrations with manipulatives, acting out a problem, or 
using algorithms, etc.). Relevant context is defined as a context 
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that reflects the cultures and interests of the students in the 
classroom or uses everyday situations. 

We adopted Smith and Stein’s (1998) taxonomy of 
mathematical tasks to classify mathematical tasks into lower- 
and higher-level cognitive demands, and each level is further 
categorized into two groups as shown in Figure 1. For example: 

Billy is making pies for a picnic at school. He wants to make 
12 pies. According to his recipe, Billy needs 2 cans of cherry 
filling for one pie. How many cans of filling does Billy need 
to buy from the store? 

This allows for multiple entry and exit points (e.g., can draw a 
picture to represent the situation, create a table, write an 
equation), and has relevant context (i.e., school picnic). 
Nevertheless, the level of cognitive demand depends on 
students’ prior knowledge and exposure to multiplication. It 
requires a lower-level demand, procedures without connections, 
based on Figure 1, at the third-grade level; whereas it is a higher-
level demand task at lower grade levels. 

Methods of Inquiry 

Sample and Context 

The sample of the study consisted of 88 PTs enrolled in a 
math methods course. The setting for this study was a mid-sized, 
regional, Midwestern university teacher education program in 
the United States. Participating PTs were members of the 
elementary/middle (K–8) or special education (K–12) programs. 
Each PT was enrolled in a math methods course taught by one 
of the researchers. The math methods course focused on 
effective math teaching practices, inductive and developmental 
ways of teaching math, as well as inclusive methods. This course 
was the only math methods course the PTs took in their program, 
typically the semester before their student teaching experience. 

During the course, PTs were presented with the definition of 
a problem-solving task: It involves higher-level cognitive 
demands—procedures with connections and/or doing 
mathematics as characterized by Smith and Stein (1998)—has 
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multiple solution pathways that are not immediately known by 
the students, and has relevant contexts. PTs learned how to 
distinguish a problem-solving task from an exercise, identified 
given tasks as problem-solving tasks or exercises, and modified 
given exercises into problem-solving tasks. PTs were shown and 
discussed lesson plans for a planned problem-solving task that 
included an array of anticipated student responses. For example, 
they were engaged in the “candy jar” task (Smith et al., 2005): 

A candy jar contains 5 Jolly Ranchers and 13 Jawbreakers. 
Suppose that you have a new candy jar with the same ratio 
of Jolly Ranchers to Jawbreakers that Ms. Pascal had but it 
contains 100 Jolly Ranchers. How many Jawbreakers would 
you have? 

Figure 1 

The Task Analysis Guide 
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Memorization 

• Involve either reproducing previously learned facts, rules, 
formulae or definitions OR committing facts, rules, formulae or 
definitions to memory. 

• Cannot be solved using procedures because a procedure does not 
exist or the time frame in which the task is being completed is 
too short to use a procedure. 

• Are not ambiguous. Such tasks involve exact reproduction of 
previously seen material and what is to be reproduced is clearly 
and directly stated. 

• Have no connection to the concepts or meaning that underlie the 
facts, rules, formulae or definitions being learned or reproduced. 

Procedures Without Connections 

• Are algorithmic. Use of the procedure is either specifically 
called for or its use is evident based on prior instruction, 
experience, or placement of the task. 

• Require limited cognitive demand for successful completion. 
There is little ambiguity about what needs to be done and how to 
do it. 

• Have no connection to the concepts or meaning that underlie the 
procedure being used. 

• Are focused on producing correct answers rather than 
developing mathematical understanding. 

• Require no explanations or explanations that focus solely on 
describing the procedure that was used. 
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Procedures With Connections 

• Focus students’ attention on the use of procedures for the 
purpose of developing deeper levels of understanding of 
mathematical concepts and ideas. 

• Suggest pathways to follow (explicitly or implicitly) that are 
broad general procedures that have close connections to 
underlying conceptual ideas as opposed to narrow algorithms 
that are opaque with respect to underlying concepts. 

• Usually are represented in multiple ways (e.g., visual diagrams, 
manipulatives, symbols, problem situations). Making 
connections among multiple representations helps develop 
meaning. 

• Require some degree of cognitive effort. Although general 
procedures may be followed, they cannot be followed 
mindlessly. 

• Students need to engage with the conceptual ideas that underlie 
the procedures in order to successfully complete the task and 
develop understanding. 

Doing Mathematics 

• Require complex and non-algorithmic thinking (i.e., there is not 
a predictable, well-rehearsed approach or pathway explicitly 
suggested by the task, task instructions, or a worked-out 
example). 

• Require students to explore and understand the nature of 
mathematical concepts, processes, or relationships. 

• Demand self-monitoring or self-regulation of one’s own 
cognitive processes.  

• Require students to access relevant knowledge and experiences 
and make appropriate use of them in working through the task. 

• Require students to analyze the task and actively examine task 
constraints that may limit possible solution strategies and 
solutions. 

• Require considerable cognitive effort and may involve some 
level of anxiety for the student due to the unpredictable nature of 
the solution process required.  

Note. Adapted from “Selecting and Creating Mathematical Tasks: 
From Research to Practice,” by M. S. Smith and M. K. Stein, 1998, 
Mathematics Teaching in the Middle School, 3(5), p. 348. Copyright 
1998 by the National Council of Teachers of Mathematics, Inc. 
Reprinted with permission. 

First, PTs were asked to work on the problem in groups and 
anticipate as many different student solutions as possible. 
Second, one group shared their anticipated solutions on the 
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board, and other groups added their solutions if different than 
the presented ones. In this way, PTs discussed an array of 
possible solutions that emerged from the class, such as cross 
multiplication, factor of change, and scaling up in tables. Then, 
the instructor presented all other possible solutions that were not 
anticipated by any of the groups, such as unit rate and incorrect 
additive. Hence, for the candy jar problem, a total of five 
different anticipated solutions were discussed, which were 
incorrect additive, factor of change, unit rate, cross 
multiplication, and scaling up using a table of values. All 
anticipated solutions are based on “The Case of Mr. Donnelly 
and the Candy Jar Task” (NCTM, n.d.). The PTs were then given 
other problem-solving tasks and asked to anticipate an array of 
solution strategies. This was followed by an assignment entitled 
Problem-Solving Task (PSTask) in which PTs were asked to 
select a problem-solving task as defined in the course, anticipate 
at least two different student solution approaches, identify 
difficulties students may have, and plan questions to help 
students overcome those difficulties. PSTask also asked for 
other information such as instructional objectives, related 
CCSSM standards, grade level, and prior knowledge. The 
information on grade level and prior knowledge was used in 
determining whether the task is problematic for the targeted 
student group. For example, PTs were told that if they claim a 
simple fraction subtraction/addition word problem to be a 
problem-solving task given that students do not have prior 
knowledge or experience, then they cannot anticipate any 
algorithmic and standard solution approaches to the problem 
(i.e., common denominator algorithm); rather, they should 
anticipate approaches that use demonstrations with 
manipulatives or pictures. 

Data Collection and Analysis 

In this study, we explored the tasks that were identified by 
PTs as problem-solving tasks; and the ways they anticipated 
student responses to the tasks in the PSTask assignment. First, 
whether each selected task was qualified for being a problem-
solving task was determined by referring to Van de Walle’s 
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(2007) definition of the problem-solving task⎯as being 
problematic, allowing for multiple entry and exit points, high-
level in cognitive demand, and involving a relative context. 
Then, using constant comparative analysis (Corbin & Strauss, 
1990), we categorized problem-solving tasks. In order to 
establish interrater reliability, two researchers coded the data 
collaboratively, and the third researcher coded the data 
independently, with an agreement of 95%. 

Each PT’s anticipated student responses were first coded as 
representing related, contrasting, or the same strategies as 
recommended by Stein et al. (2008). Then, characteristics of 
anticipated student responses were further explored using 
constant comparative analysis. One researcher analyzed the data 
on anticipated student responses, developed codes while 
examining the work of the PTs, and adjusted codes accordingly 
as new characteristics were noticed. This iterative process 
continued until all data were coded consistently by all three 
researchers. 

Results 

Each of the 88 PTs selected or designed one problem solving 
task, and anticipated two student solutions for their task. As 
displayed in Figure 2, 36% (32/88) of the PTs selected or 
designed tasks that involve high cognitive demands, have 
relevant context, and allow for multiple approaches, and hence 
are problem-solving tasks. However, 64% (56/88) of the PTs’ 
tasks were not problem-solving tasks because they lacked one or 
more of the required features. 

Six of the 56 tasks⎯that were not problem-solving⎯had 
relevant context, but failed to involve high cognitive demands 
according to Smith and Stein’s (1998) task analysis guide. Also, 
these six tasks did not allow for multiple approaches by 
requiring students to use a specific representation and/or strategy 
(e.g., create an equation, use your making 10 strategies, etc.). 
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Figure 2 

Venn Diagram for PTs’ Tasks in Relation to Three Components of 
Problem-Solving Tasks 

 
 
There were 43 tasks that had relevant context and allowed 

for multiple approaches, yet required lower cognitive demands. 
In 40 of those low-cognitive-demand tasks, the required level 
was procedures without connections, which required an 
algorithmic thinking and/or use of procedures that were evident 
from prior instruction or experience. In 29 cases, these low-
cognitive-demand tasks required students to practice basic 
addition, subtraction, multiplication, or division facts. For 
example, one PT proposed Item 3 in Table 1, which is a typical 
word problem requiring a known procedure (multiplication) to 
solve at the targeted grade level. Three of the 43 low-cognitive 
tasks involved memorization level. 

 
Table 1 
Examples of Tasks with Various Components of Problem-Solving 
Tasks 

Item 

Components of 
problem-solving 
tasks evidenced PTsa Example 

1 High cognitive 
demand, 
multiple 
approaches and 
relevant context 

32 “I have two types of boxes one hold 
10 cookies and one box holds 5 
cookies. If I have 75 cookies total 
how many boxes of 10 cookies do I 
have and how many boxes of 5 
cookies do I have?” (Grade 2) 
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2 High cognitive 
demand and 
multiple 
approaches 

1 “1. Group these shapes together in 
like categories.  
2. Visually recognize which shapes 
are the same.” 
(Students are given a diagram of 
various shapes: 2 triangles, a 
rhombus, a trapezoid, a square, a 
regular pentagon, a concave 
pentagon, a regular hexagon, a 
hexagon, and two cubes; Grade 2) 

3 Relevant context 
and multiple 
approaches 

43 “Billy is making pies for a picnic at 
school. He wants to make 12 pies. 
According to his recipe, Billy needs 
2 cans of cherry filling for one pie. 
How many cans of filling does Billy 
need to buy from the store?”  
(Grade 3) 

4 Multiple 
approaches only 

3 “What factors make up the number 
56? Show your work and explain 
your answer.” (Grade 4) 

5 Relevant context 
only 

6 “The school library started with 63 
books. In the morning, 28 books 
were checked out and, in the 
afternoon, 10 more were checked 
out. How many books (b) did the 
library have at the end of the day? 
Write the equation as shown in the 
first two problems and write your 
answer.” (Grade 2) 

6 None 3 “Draw two different shapes that have 
areas of 8. Label the measurement of 
each side. Draw two different shapes 
that have perimeters of 8. Label the 
measurement of each side.” 
(Students are given gridlines to guide 
their drawings; Grade 3) 

aNumber of PTs with these tasks  
 
As depicted in Figure 2, three of the PTs selected tasks that 

lacked both context and high cognitive demand. These tasks 
were simply exercises, such as “15 – 11 = ?” which can be 
answered in a variety of ways (i.e., there was not any specified 
strategy). A student could use mental math, counting on, or use 
manipulatives to model decomposing. There was only one task 
(see Item 2 in Table 1) that involved high cognitive demand, and 
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allowed for multiple approaches, yet identified as “not a 
problem-solving task” for lack of relevant context. 

As shown in Figure 2, three tasks failed to satisfy any of the 
three components of a problem-solving task. Figure 2 also 
indicated that 60% (52/88) of the PTs selected tasks that 
involved relevant context and or allowed for multiple 
approaches, yet failed to be a problem-solving task, because of 
lack of high cognitive demand. These results show that PTs had 
difficulty with selecting tasks that involve higher levels of 
cognitive demands—procedures with connections or doing 
mathematics. 

Another pattern that emerged from coding of the tasks was 
that 36% (32/88) of the PTs’ selected tasks were typical word 
problems (i.e., exercises presented in context, which required 
using basic skills, procedures, or rules). Furthermore, four major 
categories emerged for the types of tasks: (a) calculating, (b) 
making decisions, (c) identifying, and (d) generating. 
Calculating tasks represented 68% (60/88) of the total; students 
were required to perform calculation(s) from a given situation, 
or symbolic or pictorial representation. The following is an 
example of such a problem-solving task: 

Sarah is planning her day. This morning, she can meet with 
a teacher, clean the gutters, or get a haircut. For lunch, she 
can have a sandwich or pizza. This afternoon, she can shop 
for groceries or volunteer at the library. Given these choices, 
how many different combinations does Sarah have to choose 
from? 

Only 15% (13/88) of the tasks presented options and asked 
students to make a decision. For example, one problem asked 
students to decide which of the two strings of lights of the same 
length was untangled for the longest length, deciding between 
one with a knot 11/12 of the way and another with a knot 7/8 of 
the way. Another problem asked students to decide “which pair 
of jeans is the better deal? How do you know?” based on a given 
price and sale information. Identifying tasks represented 13% 
(11/88) of the total; students were asked to identify a pattern and 
then calculate a value for the pattern, to list possible 
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combinations of numbers or objects to reach a certain sum, or to 
categorize shapes. Only 3% (3/88) of the tasks were generating 
tasks. For example, one task asked students to create a word 
problem, as well as a solution method, with a real-life context 
for a given equation. Another task asked students to generate a 
method for finding volume in the given problem context. 

Anticipated responses were coded in two different ways. 
First, each PT’s anticipated responses were coded in relation to 
each other into three categories: same, related, and contrasting 
strategies (Stein et al., 2008). Second, all anticipated solutions 
were coded by the type of required understanding into two 
categories: procedural and conceptual. Figure 3 shows an 
example of anticipated responses that were coded as the same 
strategies. Both anticipated responses used the process of 
carrying the ones and tens values to the next column to the left. 

 
Figure 3 

Anticipated Responses Coded as the Same Strategies 

 
 
For a task that required addition/subtraction, the two 

anticipated responses given in Figure 4 were coded as related 
strategies. The two strategies were somewhat different, as one 
utilized symbolic representation and the other one utilized 
pictorial representation along with counting, yet the underlying 
mathematical idea was subtracting 18 and 3 from 24 in both. 
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Figure 4 

Anticipated Responses Coded as Related Strategies 

 
 
On the other hand, Figure 5 shows contrasting strategies to 

a problem-solving task. One strategy used equations to represent 
the situation (i.e., algebraic thinking); another strategy used table 
of values and counting. The results showed that 23% (20/88) of 
the PTs provided strategies that were essentially the same, 48% 
(42/88) provided related strategies, and only 29% (26/88) 
provided contrasting strategies.  

Another characteristic of anticipated solutions was that a 
solution could exhibit procedural fluency or conceptual 
understanding, or neither, or both. An anticipated procedural 
solution makes use of general procedures, prescribed rules and 
or formulas, and standard algorithms with no connections to the 
meanings in context that underlie the procedure that was used. 
An anticipated solution that exhibits conceptual understanding 
involves representations of the problem situation and/or non-
algorithmic thinking. These definitions were based on NCTM’s 
(2014) assertion of procedural fluency as “the meaningful and 
flexible use of procedures to solve problems” and conceptual 
understanding as “the comprehension and connection of 
concepts, operations, and relations” (p. 7). For example, 
anticipated responses in Figure 3 were coded as procedural only, 
as both solutions only make use of standard algorithms. 
 
  

a. Students could solve the problem by making it into an equation. The 
equation should be 24-18-3=? The question mark indicates that the 
unknown is in the results position. The other way students could solve 
the equation would be by drawing pictures. Students could draw 24 
pictures, first crossing out 18 and then crossing off 3 more, leaving the 
remaining pictures as their answer. Both approaches should result in the 
answer being 3. 
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Figure 5 

Anticipated Responses Coded as Contrasting Strategies 

 
 
Figure 6 contains an example of a task and anticipated 

solutions that show conceptual understanding with no 
procedural fluency. Both counting fingers or pictures involve 
use of representations, and hence connections to the meanings in 
the M&M context. Using representations along with the 
procedure of counting is not considered as a procedural solution 
in this problem, because PTs’ emphasis was on the procedure of 
addition operation as evident in the Task 2 statement which 
includes words such as “plus,” “plus another,” and “sum.” 
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Figure 6 

Anticipated Responses Coded as Conceptual Understanding  
Problem-Solving Task: 
Task 1: Carter had 7 M&Ms, Mandy had 6 M&Ms, and Carly had 4 
M&Ms. How many M&Ms did they have all together? Can you show me 
using the M&Ms on your table? 
Task 2: Can you add 3 green M&Ms plus 6 red M&Ms plus another 5 
blue M&Ms, and read the sum for me? 
Task 3: Can you write the number of M&Ms you see here? 
Anticipated Solutions: 

One approach children could use to solve this problem is just by using 
their fingers to count. Another approach would be to draw pictures. These 
approaches are both similar in the way that the student can have a visual 
of something being added. 

The task shown in Figure 7 included an anticipated solution 
using the formulas that displayed both procedural fluency and 
conceptual understanding, and a solution of drawing on grid 
paper and counting the squares and borders that displayed 
conceptual understanding only. The majority (76%) of the PTs 
were able to anticipate solutions that involved both conceptual 
and procedural understanding, 19% of the anticipated solutions 
involved only conceptual, and 5% involved only procedural 
understanding. 

 
Figure 7 

Anticipated Responses Coded as both Procedural Fluency and 
Conceptual Understanding 

Problem-Solving Task: 

Part A. Ms. Kressin wants to build a pool in her back yard. She has three 
different options to choose from, but does not know which is the biggest 
one to choose from. The options are: 20 feet by 12 feet (Option A), 10 feet 
by 2 feet (Option B), and 20 feet by 6 feet (Option C). Find the area of 
each option using your own method. Show your work. Which would be 
the best option and why? 
Part B. Ms. Kressin forgot that she needs a fence to go around the pool. 
The fence will cost $1.50 per foot. Which option would be the cheapest? 
Show your own using your own method. 
Anticipated solutions: 

Solution 1: Student 1 uses the area formula length times width using 
drawings of each and labeling each side of the square as what it was in the 
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problem, which is a = l x w. They labeled each length and width as 
needed. They found that Option A was 240 feet, Option B was 20 feet, 
and Option C was 120 feet. The best option would be Option A. For the 
next part, they used the formula for perimeter, which is p = 2(l + w). The 
perimeter was 64 feet for Option A, 24 feet for Option B, and 52 feet for 
Option C. After, they multiplied each of the feet by $1.50 to see how 
much it would cost. Option A would cost $96, Option B would cost $36, 
and Option C would cost $78. They wrote that the least expensive option 
would be $36 dollars. They used the picture below each time to write out 
the length and width. 
Solution 2: Student 2 is given grid paper. The student knows that 
anything inside the rectangle is the area. He counts however many boxes 
needed to for each and finds the area by counting inside of the boxes. He 
comes to the same answers as Student 
1. For the perimeter, the student 
knows that the sides around the 
rectangle are the same. For Option A, 
he decides to add 20 + 20 + 12 + 12. 
He can do this with each option. He 
then takes each perimeter and 
multiples it by $1.50 to get the same 
answer.  
 

 
Finally, we noticed that anticipated solutions may 

correspond to processes recommended in the related standard 
cited by the PTs for the PSTask. For example, the task in Figure 
6 had anticipated solutions that aligned with processes suggested 
in the relevant standard in the operations and algebraic thinking 
domain (see Figure 8). Note that the standard suggested using 
objects (the student’s fingers) or drawings to solve the problem; 
therefore, such actions are related to the standard. The area and 
perimeter problem presented in Figure 7 referenced the standard 
in the measurement and data domain that is provided in Figure 
8. This standard in Figure 8 requires a process, namely the 
application of formulas. The application of formulas is seen in 
the first anticipated student solution (using perimeter and area 
formulas) but not in the second solution (drawing on a grid). 

A particular process or a selection of processes were 
recommended by the standards for 56% (49/88) of the PTs’ 
tasks. The process from the relevant standard was used by 51% 
(45/88) of the PTs; 30 of those 45 PTs submitted anticipated 
solutions that displayed both procedural fluency and conceptual 
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understanding. Responses that were related strategies were 
anticipated by 20 PTs who used a suggested process from the 
standards, 12 PTs anticipated responses that were the same 
strategy, and 13 PTs anticipated responses that were of 
contrasting strategies. In summary, the resulted types of tasks 
and anticipated solutions are illustrated in Figure 9. 

 
Figure 8 

Sample CCSSM Standards Guided PTs’ Anticipated Solution 
Strategies  

CCSS.MATH.CONTENT.1.OA.A.2. Use addition and subtraction within 
20 to solve word problems involving situations of adding to, taking from, 
putting together, taking apart, and comparing, with unknowns in all 
positions, e.g., by using objects, drawings, and equations with a symbol 
for the unknown number to represent the problem.  
 
CCSS.MATH.CONTENT.4.MD.A.3. Apply the area and perimeter 
formulas for rectangles in real world and mathematical problems. For 
example, find the width of a rectangular room given the area of the 
flooring and the length, by viewing the area formula as a multiplication 
equation with an unknown factor. (Common Core State Standards 
Initiative, 2010) 

Figure 9 

Summary of the Types of Tasks and Anticipated Solutions that Emerged 
from PTs  
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Discussion 

The majority (60%) of the PTs had difficulty with selecting 
tasks that involve higher cognitive demands and they struggled 
to move beyond the familiar concept of “problem” as a word 
problem. Word problems often require limited cognitive demand 
with little ambiguity, and hence are at the procedures-without-
connections level (i.e., one of the lower-level demands). In 
contrast, it seems that the PTs conceived word problems as real-
life problems, and hence believed that they required deeper 
levels of understanding and higher cognitive demands. Their 
difficulty with selecting tasks that involve higher cognitive 
demands, as well as their vision of problem-solving tasks as 
typical word problems explains the high frequency (68%) of 
calculating problems rather than those involving making 
decisions, identifying, or generating. Especially, the scarcity 
(15%) of decision-making problems is concerning, as decision 
making in everyday life, in the workplace, and in our democratic 
society have been championed in recent mathematics education 
reform documents as a core component of teaching and learning 
mathematics. 

As evidenced by PTs’ proposed problem-solving tasks, 
many PTs in this study believed that word problems should be 
used to practice procedures that have been learned previously, 
rather than seeing word problems as potential problem-solving 
tasks in which the students do not already know, but determine 
themselves, the solution pathways that will lead to success. For 
example, one student proposed for the problem-solving task at 
the second-grade level: 

The school library started with 63 books. In the morning, 28 
books were checked out and, in the afternoon, 10 more were 
checked out. How many books (b) did the library have at the 
end of the day? Write the equation as shown in the first two 
problems and write your answer. 

This problem could be modified to be a problem-solving task 
with two changes: removal of the directions to write an equation, 
and use of the problem before students had developed 
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subtraction skills. If the students had not encountered 
subtraction, this could be seen as a higher-level cognitive task 
with an unknown solution path, and students could have solved 
this using manipulatives, drawing diagrams, or any other 
solution path they could envision. But, because this was intended 
for students who know how to subtract, and refers to two 
previous problems that model equation writing, students were 
applying a known procedure to the problem, which is a lower 
cognitive demand. Many of the PTs (58% or 51/88) provided 
tasks that required students to practice previously learned 
procedures. And 12 of the 51 cases included the solution path in 
the problem instructions. This result might suggest that the PTs 
were reluctant to or did not know how to engage their students 
in productive struggle, so they made sure their students had a 
clear path to the problem solution. 

It is important to note that 23% of the PTs provided 
anticipated strategies that were essentially the same strategies. 
More specifically, the PTs considered that carrying out the same 
procedures in different order or in a somewhat different way 
made up different strategies. The majority of the PTs came up 
with related strategies, which involved the same mathematical 
idea using different representations. Only 30% of the PTs 
provided contrasting strategies for their task. These results 
indicate that PTs need to engage in activities, in methods 
courses, in which they discuss what makes two strategies 
different, the underlying mathematical idea that is depicted in a 
given strategy, and what other mathematical ideas could be used 
for the task being discussed. 

Our results showed that only four PTs anticipated solutions 
that did not display conceptual understanding. Solutions that 
displayed only conceptual understanding were anticipated by 17 
PTs, while the remaining PTs provided at least one anticipated 
solution that displayed both procedural fluency and conceptual 
understanding. PTs who attempted to create problem-solving 
tasks, whether they were successful or not, realized that 
developing a solution strategy relied on having a conceptual 
understanding of the problem being posed. This conclusion is 
supported by Jonassen (2000), who surveyed the literature and 
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found that knowledge of how concepts in a domain are 
interrelated is essential to success in problem solving. 

CCSSM content standards that included the suggestion for a 
process or processes were used by 56% (49/88) of the PTs. 
Interestingly, in most cases (45/49), the selected standards 
suggestions influenced the PTs and hence anticipated solutions 
that are outlined in the standard. Given that standards require 
both procedural and conceptual ways by means of variety of 
representations, as exemplified in Figure 8, PTs who used such 
standards anticipated both procedural and conceptual solutions. 
The results suggest that discussion about a process or processes 
outlined in the CCSSM content standard corresponding to a 
particular problem-solving task might provide a foundation for 
developing elementary school PTs’ ability to anticipate student 
responses that display both procedural fluency and conceptual 
understanding. Therefore, we recommend that mathematics 
educators include such practice into mathematics methods 
courses. 

Future Directions 

Results seen in this study will orient future data gathering 
and analysis. Noting the weaknesses of problem-solving tasks 
proposed by PTs guides future research on the current project, 
as well as other researchers and teacher educators. Realizing 
what PTs understand and where they struggle to identify 
appropriate problem-solving tasks allows researchers to plan 
next steps more purposefully. Exploring PTs’ competencies and 
deficiencies in anticipating solutions may inform the design of 
more effective interventions in methods courses to better help 
PTs improve their collection of anticipated solutions. 

In the next phase of the larger study, PTs in this study will 
receive peer feedback on their selected PSTask and they will 
undertake the problem-solving task assignment a second time 
during each semester. The results of those assignments will be 
analyzed to determine how the PTs’ identification of problem-
solving tasks changes over time with re-designed interventions 
based on the findings of the current study, and after feedback 
from the instructor. In addition to collected assignments, PTs 
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will be interviewed about how they see their chosen task as 
fitting the definition of a problem-solving task. Researchers will 
attempt to relate instruction and feedback received by the PTs to 
changes in problem-solving task identification and array of 
anticipated solutions. In addition, PTs’ anticipated erroneous 
solutions and their ways to plan for questions to help students 
overcome those faulty reasonings will be investigated. Ongoing 
analysis of PTs’ attempts at anticipating a variety of student 
solutions as well as difficulties will provide a deeper 
understanding of PTs’ ability to anticipate what students know 
and what misconceptions students have. Researchers will also 
make plans to integrate the effective mathematics teaching 
practice “support productive struggle” into the problem-solving 
module of the methods course, to address PTs’ tendency to 
provide practice problems and direct instructions that leads to a 
decrease in the required level of the cognitive demand. 
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