

MOOC Quality Design Criteria for Programming

and Non-Programming Students

Aniza Sabjan1*, Alawiyah Abd Wahab2*, Azizah Ahmad2,
Rahayu Ahmad2, Syahida Hassan2, Juliana Wahid2

1Research and Innovation Management Centre, Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia
aniza@uum.edu.my

2School of Computing, Universiti Utara Malaysia,
06010 Sintok, Kedah, Malaysia

alawiyah@uum.edu.my
azie@uum.edu.my

rahayu@uum.edu.my
syahida@uum.edu.my

w.juliana@uum.edu.my

*Corresponding Author

https://doi.org/10.24191/ajue.v16i4.11941

Received: 15 November 2020
Accepted: 11 December 2020

Date Published Online: 24 January 2021
Published: 25 January 2021

Abstract: The purpose of this study is to investigate the quality design criteria for developing a Massive
Open Online Course (MOOC). Currently, there are limited studies that highlight the required design
criteria for the MOOC programming courses. A descriptive analysis was conducted to examine the
characteristics of the three important quality design criteria which are (i) Instructional Design Criteria
involving Lecture Organization and Culture; (ii) Technical Criteria involving User Interface, Video
Content, Learning and Social Tools, and Learning Analytics; and (iii) E-Assessment. The data were
collected from 306 respondents, representing the UUM MOOC students of 2018 class, were further
analyzed using the T-Test hypothesis testing to determine whether both the programming and non-
programming students require the same quality design criteria. The questionnaire used in this study
consists of 46 items related to the MOOC quality design criteria that were adapted from previous
studies. The results indicate that out of the nine constructs, four have obtained significant differences
in the mean scores, namely the Video Content, Instructional Design, Culture, and E-assessment. This
signifies that different quality design criteria are needed for both the programming and non-
programming students. The outcome of this study may assist the developers in designing the MOOC
by providing the required criteria according to its importance.

Keywords: Instructional Design, MOOC, non-Programming, Programming, Quality Design

1. Introduction

 Recently, MOOC has become one of the most prominent trends in open education as it allows
a large number of global learners to attend respective online courses by engaging with a community of
instructors from elite universities through videos and online presentations. A statistic published by the
Class Central MOOC Report (2019) reveals the involvement of 110 million students, more than 900
universities and 13.5 thousand courses in December 2019. The number of participation indicates that

mailto:alawiyah@uum.edu.my
mailto:azie@uum.edu.my
mailto:rahayu@uum.edu.my
mailto:syahida@uum.edu.my

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

62

the MOOC implementation provides quality and best practices in meeting students’ intentions and
needs.

1.1 Important Quality Design Criteria in Developing a MOOC

According to Creelman, Ehlers, & Ossiannilsson (2014), the quality of MOOC is a prerequisite
for an effective and successful learning in the MOOC environment. To deliver a quality MOOC course,
a competent-based design approach is used to ensure active participation among the learners. Most
importantly, the approach is appropriate in attracting (Wanli, 2019) the involvement of more diverse
students as it focuses on the learning outcomes and addresses the tasks to be performed by learners.
This eventually helps to empower the students by providing strategies that will change the perception
of learners towards achieving their learning goals. It also provides clear learning orientation plans, joint
learning design to include teamwork and discussion forums, social networks, peer-to-peer assistance
and support for creating and generating students’ knowledge. Other essential features include
opportunities for having small groups’ discussion and information exchange, offering assessment and
colleagues’ feedback, as well as using the enhanced learning technology media (Patru & Balaji, 2016).

Yousef, Chatti, Shroeder & Wosnitza (2014) present specific criteria that need to be considered
in designing and implementing MOOCs due to their unique features. The quality criteria are classified
into two dimensions and six categories. The pedagogical dimension includes the Instructional Design
criteria (Lecture Organization and Culture) and the Assessment criteria (E-Assessment and Peer
Assessment). On the other hand, the Technical dimension includes the User Interface, Video Content,
Learning and Social Tools and Learning Analytics criteria. Their results show that assessment and
learning analytics earn the highest average mean score. However, usability, content, collaboration, and
instructional design, which play the key role in achieving effective MOOC, are identified as less
important as compared to the learning analytics and assessment (Yousef et al., 2014).

According to Wetzinger, Standl, B, & Futschek (2018), there are three main elements that need
to be focused on when developing a computer programming MOOC. First, the learning platform
element should provide a well-maintained technical infrastructure and support. Second, the video
lectures should be short and cover live programming examples while the handouts could consist of
reading materials in PDF format that explains the content of the videos and additional programming
examples. Third, course materials and activities could consist of exercises and quizzes, programming
examples, glossaries, graphical visualizations, reference of common processing error messages,
discussion forums, online office hours, and course emails.

Some studies on programming MOOCs (Vihavainen, Luukkainen, & Kurhila 2012; Ruiz, 2015;
Dale & Singer, 2019; Abeer & Miri, 2014) have started to look at instructional design features in-depth.
For example, Ruiz (2015) conducted a case study on six MOOCs for Introduction to Programming
using Python subject. He concludes that instructional strategies associated with teaching presence were
leveraged more than instructional strategies for cognitive and social presences. A survey done by Dale
& Singer (2019) reveals that students mostly valued the programming exercises, quizzes and
instructional videos, while the follow-up focus group highlighted the flexibility of the MOOC,
usefulness of the videos, drop-in sessions and programming exercises. The overall mix of activities
was regarded as particularly useful. A study by Abeer & Miri (2014) presents that the learner shows the
motivation of engagement when the MOOC courses focus on presenting multimedia features, pictures,
animations and simulations as part of the learning materials. It is crucial that the course content is
technically organized, the videos are rich and the lecturer uses many 3D visualizations, pictures, as well
as animations. This is to ensure that the students feel like they are experiencing the real thing from the
learning materials.

On the other hand, some studies focus more on the assessment aspect (Ullah, 2018; Lepp, Palts,
Luik, Papli, Suviste, Säde, & Tõnisson, 2018) of programming MOOCs. According to Ullah (2018), a
student needs continuous feedback on their progress, which can obviously be provided through
assessment. Novice students have to learn new syntax and semantics by practicing more programming
exercises. Hence, feedback from educators on students' errors is essential to enhance their knowledge.
Lepp et al. (2018) developed an integrated help system called Troubleshooters (similar to IT support
services) that provides clues and coding examples to help students with their programming tasks. To

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

63

evaluate Troubleshooter, they collected feedback from 792 students attending About Programming
MOOC. They found that 40.8% of those indicated that they used Troubleshooter, claiming that it was
very useful.

While there is a growing literature on MOOC quality, existing studies suffer from some
limitations. In particular, there is a paucity of research that looks into the differences in requirements of
MOOC quality design criteria from the perspective of programming and non-programming students.
Therefore, the main aim of this study is to explore whether these two categories of students require
similar quality design criteria to effectively engage in MOOCs.

2. Research Methodology

A self-administered questionnaire was distributed online to the 1,183 students enrolled on

various MOOCs offered in UUM. Of 1,183 students enrolled, 306 students responded (a response rate
of 26%) with no cases of missing data. The low response rate can be partially explained by our usage
of UUM email to distribute the questionnaires. We later learned that the students did not use UUM
emails as their primary email. The MOOC, which was categorized under the Programming subject
refers to the Introduction to Object-Oriented Programming, while the MOOCs categorized under non-
programming subjects are Islamic Banking Management, Export Management, International Business,
Accounting System Analysis and Design, Technology Planning and Management in Education, Islamic
Bank Operation, Human Lifespan Development, Foundations of Banking and Fundamental of
Entrepreneurship. The information regarding the student enrollment was provided by the UUM
University Teaching and Learning Centre (UTLC).

Of 74 criteria, 46 were selected from Yousef et al. (2014) because the rest of the features were
not implemented in the UUM MOOC. For example, the peer assessment was omitted since it was not
included in the UUM MOOC. The final selected criteria to be adapted in this study are (i) the Lecture
Organization (5 items) and Culture (5 items) that represents the Instructional Design Criteria; (ii) User
Interface (8 items), Video Content (9 items), Learning and Social Tools (8 items) and Learning
Analytics (5 items) criteria of the Technical Criteria and finally (iii) the E-Assessment criteria (6 items).
The lecture organization construct addresses the way in which MOOC courses are organized in terms
of the course objectives, course outline and course timeline among others. Meanwhile, the culture
construct evaluates how cultural issues are being implemented in MOOC courses. Furthermore, the user
interface construct covers layout issues such as availability of help system and features to control the
lecture videos. On the other hand, the video content concerns the quality of video lectures that are
produced, such as video sound and video length. Moreover, the learning and social tools construct refers
to the availability of academic session and work deadline notifications, while the learning analytic
construct measures the importance of performance reports and course activity statistics. Lastly, the e-
assessment construct looks at how assessment features such as types of questions, feedback on
assessments are implemented in MOOC courses. The questionnaire for this research is available upon
request.

Initially, at the early stage of the study, a descriptive analysis was performed on all the 306
respondents based on the assumptions made from the findings of Yousef et al. (2014). Then, to further
investigate whether the students are in favor of the same design quality criteria for their MOOCs,
another descriptive analysis was run according to two categories, namely programming (155
respondents) and non-programming (151 respondents) students. From the second analysis, the results
reveal different mean scores for some of the constructs which led to the development of null hypothesis
for each of the pre-defined criteria adapted from Yousef et al. (2014). The hypotheses are listed as
follows:

H1. There is no difference in importance between non-programming (NP) and programming (P)
students category towards e-assessment (EA) criteria.
H2. There is no difference in importance between non-programming and programming students
category towards instructional design (ID) criteria.
H3. There is no difference in importance between non-programming and programming students
category towards technical design (TD) criteria.

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

64

H4. There is no difference in importance between non-programming and programming students
category towards user interface (UI) criteria.
H5. There is no difference in importance between non-programming and programming students
category towards video content (VC) criteria.
H6. There is no difference in importance between non-programming and programming students
category towards learning and social tools (LST) criteria.
H7. There is no difference in importance between non-programming and programming students
category towards learning analytics (LA) criteria.
H8. There is no difference in importance between non-programming and programming students
category towards lecture organization (LO) criteria.
H9. There is no difference in importance between non-programming and programming students
category towards culture (C) criteria.

3. Results

3.1 Descriptive Analysis Results

3.1.1 Instructional Design Criteria

The Instructional Design criteria are presented as a set of learning design principles. Table 1
summarizes the comparison of the statistical results for the Instructional Design which has been
analyzed three times involving all respondents, non-programming and programming students to
investigate whether they share the same mean score.

The Lecture Organization criteria is rated as more important than the Culture by both the
programming and non-programming students. However, there are differences in the mean score
between the programming and non programming students. For example, the programming students
achieve high mean score for the LO1 (have clear objectives defined at the beginning of each lecture),
LO3 (offer course outline that contains objective, subject list and time schedule) and LO5 (offer the
course progress timeline in visualization graphs) items with values of 4.34, 4.12 and 3.99, whilst the
non-programming students achieve the values of 4.15, 4.13 and 4.15 for item LO1, LO3 and LO4
(provide opportunities for learners to become more self-organized). This implies that all students agree
that their MOOCs should have clear objectives at the beginning of each lecture, offer course outline,
provide opportunities for learners to become more self-organized and offer the course progress timeline.
For the culture criteria, both the programming and non-programming students denote the importance of
providing samples that can be accepted by everyone regardless of their diverse cultural backgrounds
(C1). Moreover, they also suggested having at least two distinctive times for learners to join video
conference meetings (C2). It is also noted that programming students favour the use of English language
(C3), while the non-programming students prefer to consider cultural diversity values in the lecture
videos (C4).

Table 1. Descriptive Results for the Lecture Organization and Culture Criteria
I

n

st

r

u

ct

io

n

al

D

es

ig

 Items m (All)

(N=306

)

SD (All)

(N=306)

m (P)

(N=155)

SD (P)

(N=155

)

m (NP)

(N=151)

SD (NP)

(N=151)

Lectu

re

Orga

nizati

on

Crite

ria

LO1 4.25 0.70 4.34 0.59 4.15 0.80
LO2 3.87 0.82 3.68 0.84 4.05 0.77
LO3 4.12 0.67 4.12 0.57 4.13 0.76
LO4 4.06 0.69 3.97 0.60 4.15 0.76
LO5 4.05 0.68 3.99 0.55 4.11 0.79

 Average 4.07 0.71 4.02 0.63 4.12 0.78

C1 4.25 0.72 4.25 0.66 4.24 0.77

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

65

n

C

ri

te

ri

a

Cultu

re

Crite

ria

C2 3.95 0.79 3.90 0.76 4.00 0.82
C3 4.06 0.84 4.09 0.77 4.03 0.90
C4 4.00 0.81 3.85 0.85 4.16 0.72
C5 3.76 0.89 3.53 0.89 4.00 0.83

 Average 4.00 0.81 3.92 0.79 4.08 0.81

m mean, SD standard deviation, N sample size, P programming, NP non-programming students

3.1.2 E-Assessment Criteria

Table 2 summarizes the comparison of the statistical results for the e-assessment, which was first
analyzed on all participants, followed by the non-programming students, and finally the programming
students to investigate whether they share the same mean score.

The analysis results show that items EA1 (provide feedback or show the correct answers for each quiz),
EA4 (identify the maximum number of marks for a question) and EA2 (use different types of questions)
obtain a high mean score of 4.42, 4.10 and 4.05 for the programming students, whilst the non-
programming students scores high mean value of 4.40, 4.29 and 4.26 for items EA1, EA4 and EA6
(have hints for each assignment) respectively. This indicates that the assessment and feedback features
are important to ensure that the students are aware of their performances.

Table 2. Descriptive Results for the E-Assessment Criteria

E-

A

ss

es

s

m

en

t

C

ri

te

ri

a

Items m (All)

(N=306)

SD (All)

(N=306)

m (P)

(N=155)

SD (P)

(N=155

)

m (NP)

(N=151

)

SD (NP)

(N=151)

EA1 4.41 0.67 4.42 0.57 4.40 0.76
EA2 4.13 0.66 4.05 0.57 4.21 0.73
EA3 4.07 0.83 3.99 0.70 4.15 0.94
EA4 4.20 0.66 4.10 0.56 4.29 0.74
EA5 3.86 0.84 3.72 0.84 3.99 0.83
EA6 4.10 0.83 3.95 0.79 4.26 0.85
Average 4.13 0.75 4.04 0.67 4.22 0.81

m mean, SD standard deviation, N sample size, P programming, NP non-programming students

3.1.3 Technical Criteria

Table 3 summarizes the comparison of the statistical results for the Technical category. In this
category, the programming students rate the User Interface as the most important, followed by the Video
Content, Learning Analytics, and Learning and Social Tools. As for the non-programming students,
Video Content is rated as the most important followed by User Interface, Learning Analytics, and
Learning and Social Tools. It is also found that there are differences in the mean score between the
programming and non-programming students for the Technical criteria.

For the User Interface criteria, both the programming and non-programming students are in
consensus that it is vital to provide a search box function to help learners find different learning
materials (UI2) and control features for video clips when appropriate. The programming students prefer
to have a help system that should focus on user errors (UI4) while the non-programming students opt
for the ability to download the lecture videos to their devices (UI3). For the video content criteria, items
VC1 (provide clear sound), VC6 (synchronize of video and lecture notes and programming examples)

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

66

and VC2 (offer references for facts) are rated as the most significant by the programming students with
the mean values of 4.38, 4.28 and 4.26 respectively, whilst for the non-programming students, items
VC1, VC2 and VC4 (use short video clips, no more than 20-minute clips) are rated as the most
important. This signifies that both the programming and non-programming students choose the video
contents with clear sounds that offer references for facts and information in the lectures.

For the Learning and Social Tools criteria, both student categories agree that it is important to
offer notification tools for important news and deadlines (LST3). The programming students prefer
MOOC to provide email notifications (LST2) and use video-conference tools to allow students from
various locations to communicate with the teachers (LST4). On the other hand, the non-programming
students prefer collaborative discussion tools (LST1) and online participants list to help in synchronous
discussions (LST6).

As for the Learning Analytics criteria, all students rate providing recommendations and
feedback to improve their performance (LA1) as the most important item. The programming students
prefer to be provided with analytic tools for self-reflection (LA3) and performance reports (LA2) whilst
the non-programming opt for the statistics on the course activities (LA4) and performance predictions
(LA5).

Table 3. Descriptive Results for the Technical Criteria

T

e

c

h

n

i

c

a

l

C

r

i

t

e

r

i

a

User

Inte

rfac

e

Crit

eria

Items m (All)

(N=306)

SD (All)

(N=306)

m (P)

(N=155

)

SD (P)

(N=155

)

m (NP)

(N=151

)

SD (NP)

(N=151)

UI1 4.30 0.72 4.29 0.69 4.31 0.75
UI2 4.37 0.69 4.39 0.64 4.35 0.74
UI3 4.22 0.71 4.13 0.66 4.32 0.75
UI4 4.24 0.75 4.21 0.75 4.28 0.75
 UI5 4.19 0.79 4.13 0.84 4.26 0.73
UI6 4.21 0.76 4.17 0.77 4.25 0.75
UI7 4.10 0.75 4.10 0.75 4.11 0.76
UI8 3.90 0.80 3.77 0.81 4.03 0.80
Average 4.19 0.75 4.15 0.67 4.24 0.81

Vide

o

Cont

ent

Crit

eria

VC1 4.35 0.68 4.38 0.62 4.32 0.74
VC2 4.28 0.68 4.26 0.64 4.31 0.72
VC3 4.25 0.68 4.22 0.63 4.28 0.73
VC4 4.18 0.73 4.06 0.64 4.29 0.80
VC5 4.15 0.72 4.10 0.71 4.21 0.73
VC6 4.27 0.65 4.28 0.62 4.26 0.69
VC7 4.16 0.65 4.06 0.52 4.26 0.75
VC8 3.95 0.84 3.75 0.84 4.15 0.79
VC9 4.07 0.66 3.99 0.58 4.16 0.73
Average 4.18 0.70 4.12 0.64 4.25 0.74

Lear

ning

and

Socia

l

Tool

Crite

ria

LST1 4.08 0.61 4.01 0.46 4.16 0.73
LST2 4.04 0.77 4.14 0.56 3.95 0.94
LST3 4.24 0.69 4.20 0.59 4.27 0.78
LST4 4.07 0.73 4.03 0.66 4.10 0.79
LST5 4.01 0.65 3.98 0.43 4.04 0.81
LST6 4.08 0.60 4.01 0.43 4.15 0.72
LST7 3.86 0.78 3.75 0.62 3.97 0.90
LST8 3.85 0.79 3.73 0.65 3.97 0.90
Average 4.03 0.70 3.98 0.55 4.07 0.82

Lear

ning

Anal

LA1 4.12 0.67 4.12 0.50 4.13 0.81
LA2 4.08 0.71 4.05 0.50 4.11 0.88
LA3 4.08 0.65 4.06 0.46 4.09 0.80

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

67

ytics

Crite

ria

LA4 4.04 0.70 3.95 0.54 4.13 0.83
LA5 4.05 0.74 3.97 0.61 4.13 0.85
Average 4.07 0.70 4.03 0.52 4.12 0.84

m mean, SD standard deviation, N sample size, P programming, NP non-programming students

The order of the criteria according to their importance as reflected by the mean score of the
programming students begins with User Interface, followed by Video Content, Technical criteria, E-
assessment, Learning Analytic, Lecture Organization, Learning and Social Tool, Instructional Design
and Culture. The positioning of the criteria is slightly different for the non-programming students, which
indicate the following; Video Content, User Interface, E-assessment, Technical criteria, Lecture
Organization, Learning Analytics, Instructional Design, Culture, and Learning and Social Tool. The
ordering is shown in Table 4.

Table 4. Mean Score Value According to the Importance of Constructs

Constructs Programming Non-
Programming

 Construct

 m SD m SD
User interface 4.15 0.56 4.25 0.61 Video content
Video content 4.12 0.47 4.24 0.61 User interface
Technical criteria 4.07 0.32 4.22 0.61 E-Assessment
E-Assessment 4.04 0.45 4.17 0.60 Technical criteria
Learning analytics 4.03 0.41 4.12 0.67 Lecture organization
Lecture organization 4.02 0.46 4.12 0.77 Learning analytics
Learning & social
tool

3.98 0.34 4.10 0.60 Instructional design

Instructional design 3.97 0.45 4.08 0.62 Culture
Culture 3.92 0.60 4.07 0.68 Learning & social

tool
m mean, SD standard deviation

The findings show that both the Video Content and User Interface scored the highest mean

values for both the programming and non-programming students. The results differ to those of the
previous survey done by Yousef et al. (2014) where Learning Analytic and Assessment scored the
highest mean score of 4.25 and 4.21 respectively.

3.2 Hypothesis Testing Results

The T-Test was utilized for testing the hypothesis of all the nine constructs. According to Pallant
(2007), T-tests are used when there are two groups or sets of data. For the context of this study, the
students are categorized into two categories representing the programming and non-programming
students. The T-test enables the estimation regarding the means differences between the two categories
(Lavrakas, 2008). Results show that H1, H2, H5 and H7 were rejected meanwhile H3, H4, H6, H8 and
H9 were accepted. The details of the results are presented in Table 5.

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

68

Table 5. Hypothesis Testing Results

Constructs Sig. (2-tailed)

p value

Results

H1: P & NP 🡪 ID 0.033*** Not supported
H2: P & NP 🡪 EA 0.003*** Not supported
H3: P & NP 🡪 TD 0.068 Supported
H4: P & NP 🡪 LO 0.145 Supported
H5: P & NP 🡪 C 0.021*** Not supported
H6: P & NP 🡪 UI 0.175 Supported
H7: P & NP 🡪 VC 0.045*** Not supported
H8: P & NP 🡪 LST 0.122 Supported
H9: P & NP 🡪 LA 0.211 Supported

 ***p <0.05, significant, (two-tailed test)

The results indicate that there are differences in terms of the required criteria in developing an
effective MOOC for the programming and non-programming students pertaining to the video content,
instructional design, e-assessment and culture. In contrast, similar criteria relating to the technical,
lecture organization, user interface, learning and social tools and learning analytics are needed in
developing MOOC for all the students.

For the programming students, the developer may focus more on synchronizing the video,
lecture notes, and programming examples as well as embedding an integrated development environment
(IDE). IDE is a graphical software application that combines all of the features and tools needed by a
software developer. The application uses windows and controls such as buttons to display information
and accept input from the users. Among the examples of the tools are source code editor, project editor,
toolbar and output viewer or debugger (IDE in Software: Definition & Examples, 2019). The
programming students may prefer their Lecture Organization to be in the form of exercises as these
exercises could help them to become familiar with programming languages syntax and programming
errors. The relevance of exercises has had some support in previous programming MOOCs literature,
for example, Vihavainen et al. (2012) found that rigorous exercises MOOC could enhance learners’
programming expertise. Pertaining to the cultural perspective, the developer should ensure that the
overall programming course to be taught in the most understandable form for all, regardless of the
cultural background. This is important as the programming language itself is a new form of language
for every programming student. In the assessment category, the programming students should be given
the opportunity of getting feedback on the attempted quizzes, particularly on the correct answers.
Furthermore, there should be a mechanism in MOOC to assist learners by providing hints to assigned
tasks. Previous work in programming MOOCs similarly found the importance of providing a self-
assessment feature that could provide sample answers and clues to common programming errors (Lepp
et al., 2018; Vihavainen et al., 2012). The current work, therefore, supports previous MOOC research,
reinforcing the importance of exercises and feedback on assessments in programming MOOCs.

The non-programming students, on the other hand, prefer a short lecture with not more than 20
clips of video content. In addition, they would like to have references and facts to be included in the
video lectures so that they can discover further if needed. In terms of the Lecture Organization for the
Instructional Design criteria, the focus should be given more on providing the chance for the non-
programming students to be more self-coordinated by clearly stating the course guideline to promote
engagement. On the cultural perspective of the Instructional Design category, the developers may
consider the diversity of the cultural values in the content of the video lectures. For the assessment
category, the non-programming students may prefer each test or quiz to have hints as their lectures may
focus on theories or facts.

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

69

4. Conclusion

The purpose of this study is to identify whether the programming and non-programming
students require different quality design criteria to maintain engagement in MOOC. The results of this
study are based on the small scope of the UUM MOOC students, class of 2018. The students were
divided into two categories of programming and non-programming students. The results show that the
Video Content, E-assessment, Instructional Design and Culture criteria have significantly different
mean scores for both categories of students. This indicates that the programming and non-programming
students may require different features implementations regarding the quality design of MOOC related
to the four criteria mentioned above. Furthermore, future MOOC developers could focus more on User
Interface, Video Content, Technical criteria and E-assessment criteria to design MOOC courses that
could engage and offer meaningful learning experiences (Norliza, Mohd Sahari, Arnida & Ahmad
Fauzi, 2020). Future studies could further explore other factors such as the respondents’ demographic
that could contribute to the differences in preference towards MOOC quality design criteria.
Furthermore, a bigger scope is particularly recommended to provide more holistic and comprehensive
results. The quality design of MOOC is an important research agenda that needs to be further researched
as MOOC has the potential to change and improve future learning experiences.

5. Acknowledgements

This research was partially supported by the School Centre of Excellence (SCoE) research grant,
Universiti Utara Malaysia (SO CODE: 13722).

6. References

Abeer, W., Miri, B. (2014). Students' preferences and views about learning in a MOOC, Procedia –
Social and Behavioral Sciences 152, 318 – 323.

Dhawal, S., (2019). By the numbers: MOOC in 2019. [Website]. Retrieved from
https://www.classcentral.com/report/mooc-stats-2019/, 2019.

Creelman, A., Ehlers, U., & Ossiannilsson, E. (2014). Perspectives on MOOC quality-an account of the
EFQUEL MOOC quality project. International Journal for Innovation and Quality in Learning,
2(3), 78–87.

Dale, V.H.M, , Singers, J. (2019). Learner experiences of a blended course incorporating a MOOC on
Haskell functional programming, Smart Learning Environments.

IDE in Software: definition & examples. (2019). Retrieved from https://study.com/academy/ lesson/ide-
in-software-definition- examples.html.

Lavrakas, P.J. (2008). Encyclopedia of survey research methods (Vols. 1-0). Thousand Oaks, CA: Sage
Publications, Inc. doi: 10.4135/9781412963947

Lepp, M., Palts, T., Luik, P., Papli, K., Suviste, R., Säde, M., & Tõnisson, E. (2018). Troubleshooters
for Tasks of Introductory Programming MOOCs. International Review of Research in Open and
Distributed Learning, 19(4).

Norliza, G., Mohamad Sahari, N., Arnida, A., & Ahmad Fauzi, M.A. (2020). The relationship
between students’ MOOC-efficacy and meaningful learning. Asian Journal of University
Education, 16(3), 89-101.

Pallant, J.F. (2007), SPSS Survival Manual: A step by step guide to data analysis using SPSS for
Windows version 15. [Online] Retrieved from:
https://www.researchgate.net/publication/234812476_SPSS_Survival_Manual_A_Step_by_Ste
p_Guide_to_Data_Analysis_Using_ SPSS_for_Windows_Version_15

Patru M., & Balaji V. (2016). Making Sense of MOOCs: A guide for policy makers in developing
countries, United Nations Educational, Scientific and Cultural Organizations (UNESCO) &
Commonwealth of Learning.

Ruiz, M.A.J (2015). A case study of introductory programming with MOOCS. Open Access Theses.
604. https://docs.lib.purdue.edu/open_access_theses/604.

https://www.classcentral.com/report/mooc-stats-2019/
https://docs.lib.purdue.edu/open_access_theses/604

Asian Journal of University Education (AJUE)
Volume 16, Number 4, December 2020 (Special Issue)

70

Ullah., Z., Lajis, A., Jamjoom, M., Altalhi, A. (2018). The effect of automatic assessment on novice
programming: Strengths and limitations of existing systems, Computer Applications in Engi-
neering Education, Wiley, DOI:10.1002/cae.21974.

Wanli, X. (2019). Exploring the influences of MOOC design features on student performance and
persistence, Distance Education, 40:1, 98-113, doi: 10.1080/01587919.2018.1553560.

Wetzinger, E., Standl, B., Futschek, G. (2018). Developing a MOOC on introductory programming as
additional preparation course for CS (Computer Science) freshmen, Proceeding of EdMedia +
Innovate Learning 2018 – Amsterdam, Netherlands.

Vihavainen, A., Luukkainen, M., & Kurhila, J. (2012). Multi-faceted support for MOOC in
programming. In Proceedings of the 13th annual conference on Information technology
education (pp. 171-176).

Yousef, A.M.F., Chatti, M.A., Shroeder, U., Wosnitza, M. (2014). What drives a successful MOOC?
An empirical examination of criteria to assure design quality of MOOCs. IEEE 14th International
Conference on Advanced Learning Technologies.

