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Abstract: This paper reports on a study designed to investigate 
preservice teachers’ understanding of factorisation, a topic not 
explicitly taught within their teacher education programme, but one 
they will be required to teach when they graduate. We query if the 
knowledge they bring from secondary school, prepares them 
sufficiently to teach their future students for understanding. 83 
preservice secondary school mathematics teachers’ procedural and 
conceptual understanding of quadratic factorisation were assessed 
using Usiskin’s Framework for understanding mathematics (2012) 
which identifies several dimensions of understanding. The study 
provides evidence that the preservice mathematics teachers have a 
strong procedural understanding, and while some conceptual 
understanding does exist, there was very limited conceptual 
understanding within most of the dimensions of the framework 
(Usiskin, 2012).  We conclude the paper by considering how teacher 
educators can address the issues of preservice teacher knowledge and 
understanding of content not formally covered within their teacher 
education programmes. 

 
 
Background to Research 

There is widespread consensus on the need for a teaching for understanding approach 
to mathematics (Blumenfeld, Marx, Patrick, Krajcik, & Soloway, 1997; Eisenhart et al., 
1993) and this has resulted in a growing demand on the mathematical knowledge and 
understanding of teachers (Selling, Garcia, & Ball, 2016).  Students frequently depend on 
algebraic procedures (Dufour-Janvier, Bednarz, & Belanger, 1987), yet conceptual 
understanding can be achieved only through multiple representations and making connections 
to other concepts (Kotsopoulos, 2007; O’Meara, 2011; Hourigan and Leavy, 2019). 
Mathematics teachers therefore require sufficient understanding in order to foster this level of 
understanding in their students, but the findings of Ball (1990b), Hannigan et al. (2013), and 
Fitzmaurice et al. (2019) indicate that the conceptual understanding of preservice teachers is 
inadequate for this approach to teaching mathematics. Borko et al. (1992) and Slattery and 
Fitzmaurice (2014) suggest that this has implications for their teacher education programs.  A 
significant amount of the literature examining teacher understanding focuses on 
primary/elementary teachers’ understanding (Borko et al., 1992; Crespo & Nicol, 2006; Holm 
& Kajander, 2012; Tirosh, 2000; Hourigan and Leavy, 2017; Hourigan and Leavy, 2019) 
rather than preservice secondary school mathematics teachers which are the focus of this 
research.  There further exists a considerable cleft in the literature on the concept of 
factorising and understanding of factorisation, a topic that almost all preservice teachers will 
subsequently teach. 
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Mathematical Understanding and Preservice Teachers 

An analysis of mathematical understanding from the perspective of the learner was 
first developed by Skemp (1976) who categorised it into two distinct types: relational 
understanding, the ability to deduce specific rules and procedures from more general 
mathematical relations, and instrumental understanding, the ability to apply a rule to the 
solution of a problem without necessarily understanding how it works (Long, Dunne, & 
Kock, 2014). Relatedly, a decade later, Hiebert and Lefevre (1986) articulated the difference 
between conceptual and procedural knowledge and understanding.  Conceptual understanding 
is generally defined as the development of links between existing knowledge and new 
knowledge (Hibert & Lefevre, 1986) whereby these links provide a source of meaning to 
mathematical procedures (Eisenhart et al., 1993), that may be applied in diverse contexts 
(Bale, 2006). This conceptual understanding aligns closely with Skemp’s (1978) relational 
understanding, sometimes referred to as knowing ‘why’. Procedural understanding refers to 
the mastery of computational skills (Eisenhart et al., 1993), knowledge of the algorithms, 
procedures and mathematical strategies, the use of the correct language and symbols (Hibert 
& Lefevre, 1986). This understanding aligns with Skemp’s instrumental understanding, 
knowing ‘how’ to complete a mathematical skill or operation, but not necessarily ‘why’ it 
works. For the purpose of this research these definitions of conceptual and procedural 
understanding will be applied. 

Both procedural and conceptual understanding are considered necessary dimensions 
of mathematical understanding (Eisenhart et al., 1993). Usiskin (2012) further subdivides a 
comprehensive understanding of mathematics into five dimensions of understanding: skill 
algorithm (how to complete a mathematical procedure or algorithm e.g. multiplication of two 
fractions), property proof (knowing why, e.g. when we multiply two fractions, an 
understanding why we multiply numerators together and denominators together);  use 
application (knowing when and where to apply this algorithm or skill); representation-
metaphor (being able to accurately represent a concept visually), and history-culture (a 
knowledge of the development of a mathematical concept over time, or perhaps its use in 
modern culture). Usiskin stated that all dimensions, with the exception of history-culture are 
important in the teaching and assessment of mathematical learning. It is this framework of 
mathematical understanding which is used in this research. While Skemp (1978) stated that 
procedural and relational understanding were often distinct, Usiskin emphasized that the 
dimensions are interconnected and they should be developed as such, simultaneously.  

The widespread reform of problem-based mathematics teaching and learning has 
increased demands on teachers, requiring an even deeper mathematical knowledge, which 
extends further than simply knowledge of the syllabus (Silverman & Thompson, 2008). 
Silverman and Thompson acknowledged the broad aim for all teachers of mathematics to 
develop ‘deep personally powerful mathematical understandings’ (2008, p. 507), which could 
be aligned with the concept of ‘conceptual knowledge’. It is this conceptual knowledge that is 
needed by teachers to foster the classroom experiences and models, pose higher-order 
questions (Bloom, 1956) and diagnose student strategies and misconceptions (Holm & 
Kajander, 2012) however US research has indicated that many teachers lack the deep, 
specialized mathematical knowledge needed for effective teaching (Selling et al., 2016), and 
this is also reflected internationally (Hill & Ball, 2004; Ma, 2010; Tatto, 2013).  

Ball (1990a) asserts that the mathematical understandings that primary level 
preservice teachers bring to the classroom are inadequate for teaching for understanding. 
Previous research on preservice teacher understanding have revealed a reliance on procedural 
understanding and exposed insufficient conceptual understanding(Ball, 1990b; Borko et al., 
1992; Marchionda, 2006; Slattery & Fitzmaurice, 2014), with some participants indicating 
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that they were relying on their mathematical understanding from school (Marchionda, 2006; 
Slattery & Fitzmaurice, 2014). Novotná and Hoch (2008) emphasise the danger of assuming 
prospective teachers know certain concepts just because they encountered them when they 
were in secondary school.  The increased demand on mathematics teachers to foster problem-
based learning requires teacher education programs to have accurate means of assessing this 
deeper level of mathematical knowledge for teaching (Selling et al., 2016).  Eisenhart et al 
(1993) found that prospective teachers expressed teaching for conceptual understanding as a 
goal of their mathematical pedagogy, but felt the means to achieving this goal to be abstract 
rather than concrete.  

 
 

Factorisation 

Zhu and Simon (1987) define algebraic factorisation as the inverse of multiplication 
and outline the following procedure for factorising quadratics of quadratic coefficient 1, (i.e. 
quadratics in the form  𝑥2 + 𝑏𝑥 + 𝑐).  The procedure begins by finding all pairs of positive 
integers that factor the constant term c of the quadratic.  The procedure is now dependent on 
the linear and constant terms. From the pairs of factors, select the pair whose algebraic sum 
equals the coefficient of the linear term, and assign the appropriate signs. If the constant term 
is positive, then the factors are both negative or both positive as the coefficient of the linear 
term is negative or positive, respectively.  If the constant term is negative, then the two 
factors will have different signs (Zhu & Simon, 1987). 

One procedure for factorising quadratics in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 begins by first 
finding two numbers that multiply to give ac, by listing the factors of ac, and from these 
numbers choosing a pair that add to give b.  The expression must now be rewritten to replace 
the middle term with this two numbers as coefficients of x.  Now the procedure is essentially 
factorising by grouping in that the first two and last two terms should be factorised 
separately, to reveal a common factor.  Others emphasise the use of an array model which 
promotes student understanding of representing multiplication and factorising as a portioning 
of numbers (Day & Hurrell, 2015). 

There is general consensus that students find quadratic relations conceptually 
challenging (Kotsopoulos, 2007; Leong et al., 2010).  As identified by Leong et al. (2010) the 
possible barriers to understanding include students’ view of factorisation as completely 
abstract, a lack of sufficient algebraic skills and the conception of factorisation as a purely 
examinable skill without a broader context for which it may be used.  To counteract the 
barriers to student understanding, Leong et al. (2010)  suggest a new approach to the teaching 
of factorisation that would appear concrete and sensible to students and encourage a broader 
context of factorisation as reverse expansion.  They found AlgeCards proficient in 
encouraging the concept of “factorisation as forming rectangle and finding length/breadth” 
(Leong et al., 2010, p. 21). AlgeCards, also called Algebra tiles, are mathematical 
manipulatives used to model integers and variables. These tiles are helpful in the modeling of 
multiplication and factorisation as their dimensions are based on the concept of area, thus 
providing a visual representation for students.  

Hoch and Dreyfus (2004) supported the work of Linchevski and Livneh (1999) in 
emphasising the importance of structure sense in algebra.  They present the writing of a 
quadratic expression as the product of two linear factors, identifying this as simply different 
interpretations of the same structure, and emphasise the importance of students seeing 
algebraic structure as an expression or equation before applying algebraic transformations 
(Hoch & Dreyfus, 2004).  Kotsopoulos (2007) identified that the source of her students’ 
difficulty lay in recognising and understanding varied representations of the same quadratic 
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relationship. As the factorisation of quadratics requires students to be able to quickly find 
factors of one number that also add to find another, the way students, and therefore 
prospective mathematics teachers, learn multiplication facts impacts their conceptual 
understanding of factorisation (Kotsopoulos, 2007). 

Factorising is a compulsory part of most mathematics curricula, and therefore is 
something almost all preservice teachers will go on to teach. It is a topic that is typically 
taught in the earlier years in secondary school and not necessarily taught in a formal sense 
during degree programmes, though it is a concept that is embedded within other concepts e.g. 
simplifying algebraic fractions. It would normally be assumed knowledge at degree level 
stage of mathematics education. 

 

Methodology 
 
The aim of this research is to assess preservice mathematics teachers’ understanding 

of quadratic factorisation by answering two specific research questions: 
1. What Procedural Understanding do preservice teachers have of quadratic 

factorisation? 
2. What Conceptual Understanding do preservice teacher have of quadratic 

factorisation? 
Ethical approval was granted from the local research ethics committee. Participants 

(n=83) were drawn from first to fourth year of an undergraduate programme in physical 
education and mathematics teacher education, and both first and second year of a two-year 
professional master’s in education for trainee mathematics teachers at one Irish university.  
Both programs involve two (one six-week and one ten-week) school placements. Information 
sheets and consent forms were distributed and all potential participants were informed that 
participation was voluntary and, if they did decide to participate, they could withdraw at any 
later point, if they wished. The response rate was 91.2% and participants were given one hour 
to complete the questionnaire.  

The researchers used a single instrument (appendix A) to assess preservice teacher 
understanding, and categorise the understanding as either conceptual or procedural. Zhu and 
Simon (1987) proposed several tests that when used together could assess understanding of 
quadratic factorisation.  From those suggested, the tests of solving factorization problems, 
outlining a definition of factorising as the inverse of multiplication, and testing the verbal 
explanation of the procedures for factoring have been selected for use in our questionnaire. 
Our questionnaire is consciously aligned with Usiskin’s Framework, which identifies several 
dimensions to conceptual understanding; skill algorithm, the property-proof, use-application 
and representation-metaphor (Usiskin, 2012), and is comprised of sixteen questions, each 
aligned with a dimension of understanding that when analysed together provide an insight 
into the procedural and conceptual understanding of the participants.   

The undergraduate preservice teachers in this study complete 11 modules of 
mathematics and two modules of mathematics pedagogy over the four-year degree. The 
postgraduate preservice teachers have completed a level 8 degree, with mathematics as a 
major subject, prior to participation in this teacher education programme. In addition, on the 
programme they complete 2 modules of mathematics, one module of mathematics pedagogy, 
a short module on Mathematics Knowledge for Teaching, and a module on Statistics and 
Probability Knowledge for Teaching. Factorisation appears on the secondary school 
mathematics syllabus, however the preservice teachers in this study do not formally study 
factorisation within the mathematics modules in their teacher education programmes. It is 
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considered assumed knowledge on entry to these programmes so is therefore not taught 
explicitly, but would appear within modules e.g. solving equations in algebra.  

 
 

Instrument Design and Marking 
Skill- Algorithm 

 

Question four, five and ten require the participants to demonstrate their procedural 
understanding of factorising quadratic expressions. Question four is a quadratic expression 
with 𝑥2 of coefficient 1, taken from a local secondary textbook. Question five is a quadratic 
expression with 𝑥2 of coefficient 2, taken from the same textbook to assess participant ability 
to move beyond a simple trial and error method, and demonstrate their approach to 
factorising with negatives. 

As proposed by Knuth et al. (2006) participant responses are analysed under the 
context of correctness.  Responses are coded as correct, incorrect, no response or 
misconception.  Responses that are coded as misinterpretation are those where the participant 
may have factorised the expression correctly, but mistakenly treated the expression as an 
equation and solved for x.  Responses where the quadratic formula was used will also be 
coded as misconception.   

 
 

Property- Proof 

 

Question two, three and six require participants to provide definitions and explain 
their approach in their own words.  The written and spoken vocabulary of a concept has often 
been seen to be indicative of depth of conceptual understanding (Usiskin, 2012).  
Kannemeyer (2005) adopted this approach to assess depth of understanding by examining 
how successful students are in presenting their explanations, and by examining the coherence 
of their explanations to the mathematical solution.  For this reason, question two and three are 
included to provide an indication of preservice teacher fluency and understanding of the noun 
‘factors’ and the verb ‘factorise’, while question six will assess their ability to provide a 
coherent explanation to a previously implemented procedure.  In question seven the 
participants are required to demonstrate they have factorised the expression in question five 
correctly, which in essence is requiring them to prove their method of factorisation.  The 
participants should expand the expression in order to display a conceptual approach to 
factorisation as the inverse of multiplication (Zhu & Simon, 1987).   

Question two and three focus on the definitions of ‘factors’ and ‘factorise’.  Similar to 
the work of Knuth et al. (2006), responses here will be coded as procedural, conceptual, no 
response, inappropriate.  For the purpose of this research, a conceptual definition of “factors” 
is proposed as any of the numbers or symbols in mathematics that when multiplied 
together form a product.  A conceptual definition of “factorise” is one that relates to 
the concept of factorising as the inverse of the operation of multiplying (Zhu & Simon, 
1987) or to find two or more values whose product equals the original value. 

Question six responses are coded as relational (conceptual), operational (procedural) 
and no response (Knuth et al., 2006).  Relational responses are those that refer to the 
procedure of factorising as the inverse of multiplication, and that are easily generalizable 
(Selling et al., 2016).  Operational responses are those that focus on the numerical operations, 
with little focus on the appropriate mathematical terminology or reasoning behind the 
method. 

 Question seven, following the conceptual understanding of factorising as the 
inverse of multiplying (Zhu & Simon, 1987), a response is coded as correct only if the 
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participant has expanded their previously factorised expression.  Responses are therefore 
coded as correct, incorrect and no response. 

 
 

Use- Application 

 

Question nine requires the participants to provide a justification of studying 
factorisation that would be appropriate for their students.  This prompts the participant to 
identify an everyday example relevant to the students’ lives, or some justification within the 
study of mathematics, assessing their understanding of the application of quadratic 
factorisation. 

A thematic analysis will be conducted to identify common themes amongst participant 
responses to question nine, the justification of factorising.  Similar responses are grouped 
together. 

 
 

Representation- Metaphor 

There is a considerable body of research to suggest the benefit of multiple 
representations in developing mathematical thinking (Brenner et al., 1997; Pape & 
Tchoshanov, 2001).  Question eight requires the participants to represent the process of 
factorisation of the expression 2𝑥2 − 7𝑥 − 15 in any way they feel is appropriate.  
Representations such as the area model (see figure 1) are considered to convey relational 
(conceptual) understanding (Leong et al., 2010). Responses here are coded as appropriate, 
inappropriate or no response (Ball, 1990a).   

 
Figure 1: Hoong & Fwe (2010) Algebra tiles and rectangle diagram to represent factorising 

 
Zhu and Simon (1987) suggest applying factorising to broader contexts, such as 

geometric representations, as a method of probing understanding.  Question ten will assess 
participant understanding of the relationship of area to the problem, and ability to implement 
factorising as a solution method.  Their ability to identify the correct solution through 
interpretation of the circumstances of the problem will provide an indication of both 
procedural and conceptual understanding. The responses to this question are coded as correct, 
if the response returns the dimensions of the frame as 3cm and 10cm, slip, if a numerical 
error is made and blunder, if a mistake indicative of misunderstanding is made. 
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Results 
 
In this section the authors categorise the questionnaire responses of the 83 preservice 

secondary mathematics teachers who participated in this research, in a bid to address the 
research questions stated earlier. To provide a comprehensive assessment of mathematical 
understanding, this section has been categorised under the headings skill-algorithm, property-
proof, use-application and representation-metaphor, the four dimensions of understanding as 
outlined by Usiskin’s Framework (2012).  Where relevant, examples of participant responses 
are included.  

  
 
Skill-Algorithm: 

 
Skill-Algorithm refers to procedural knowledge, knowing ‘how’ to perform a 

mathematical procedure, without necessarily understanding the underlying mechanics or 
reasoning behind it. Questions 4 and 5 were included to assess the participants’ competency 
in this area. The results for questions four and five reveal high procedural knowledge with 
many participants factorising the expressions in both questions correctly (56.6% and 55.1% 
respectively).  Responses that were factorised correctly, but the participant mistakenly solved 
for x were coded as ‘misconception’. This occurred in 33.7% of responses to question four 
(table 1) and 39.8% of responses to question five (table 2).  Responses where the students 
made use of the quadratic formula were also coded as misconception, with approximately 
15.7% of participants doing so. 

 
 Frequency Percent 

Correct 
Incorrect 
Misconception 
Total 

54 
1 
28 
83 

65.1 
1.2 
33.7 
100.0 

Table 1: Q4 Factorise x2 + 5x + 6 
 

 Frequency Percent 

Correct 
Incorrect 
Misconception 
Total 

47 
3 
33 
83 

56.6 
3.6 
39.8 
100.0 

Table 2: Q5 Factorise 2x2 - 7x – 15 
 

The breakdown of responses by year of study are detailed in tables 3 and 4 below. The 
majority of First Year Undergraduate students mistakenly treated the expression as an 
equation in both question four and five (64.3%).  Of note, 72.2% of First Year Postgraduate 
responses were coded as misconception in question five, with only 54.5% of responses coded 
as misconception in question four.   
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     First 
year 

Second 
year 

Third 
year 

Fourth 
year 

First 
year 
PME 

Second 
year PME 

Total 

Correct  Count 
% within 
year 

5 
35.7% 

11 
68.8% 

12 
80.0% 

15 
71.4% 

5 
45.5% 

6 
100.0% 

54 
65.1% 

Incorrect Count 
% within 
year 

0 
0.0% 

0 
0.0% 

0 
0.0% 

1 
4.8% 

0 
0.0% 

0 
0.0% 

1 
1.2% 

Misconception Count 
% within 
year 

9 
64.3% 

5 
31.3% 

3 
20.0% 

5 
23.8% 

6 
54.5% 

0 
0.0% 

28 
33.7% 

 Count 
% within 
year 

14 
100.0% 

16 
100.0% 

15 
100.0% 

21 
100.0% 

11 
100.0% 

6 
100.0% 

83 
100.0% 

Table 3: Q4 Factorise x2 + 5x + 6 
 

     First 
year 

Second 
year 

Third 
year 

Fourth 
year 

First 
year 
PME 

Second 
year PME 

Total 

Correct  Count 
% within 
year 

3 
21.4% 

12 
75.0% 

11 
73.3% 

13 
61.9% 

3 
27.3% 

5 
83.3% 

47 
56.6% 

Incorrect Count 
% within 
year 

2 
14.3% 

0 
0.0% 

0 
0.0% 

1 
4.8% 

0 
0.0% 

0 
0.0% 

3 
3.6% 

Misconception Count 
% within 
year 

9 
64.3% 

4 
25.0% 

4 
26.7% 

7 
33.3% 

8 
72.7% 

1 
16.7% 

33 
39.8% 

 Count 
% within 
year 

14 
100.0% 

16 
100.0% 

15 
100.0% 

21 
100.0% 

11 
100.0% 

6 
100.0% 

83 
100.0% 

Table 4: Q5 Factorise 2x2 - 7x - 15 
 

 
Question ten was a word problem relating to area. The types and number of responses 

are displayed in Table 5 below..  The participants were largely successful in this question 
(80.7%).  Responses coded as blunder (14.5%) were mainly cases where the participant 
struggled to interpret the information from the question and so could not form the correct 
equation.  

 
 Frequency Percent 

No response 
Incorrect 
Slip 
Blunder 
Total 

2 
67 
2 
12 
83 

2.4 
80.7 
2.4 
14.5 
100.0 

Table 5: Q10 Word Problem 
 
 

Property-Proof: 
 

The Property-Proof category refers to participants’ relational understanding, their 
ability to explain the ‘why’ or the reasoning behind a procedure of operation, in this case 
factorising. For the questions selected for this purpose, the preservice teachers were required 
to explain what factors and factorising meant, and the mathematical justification for the 
process they carried out. In questions two and three a definition was coded as inappropriate if 
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it did not convey the concept of factors as numbers that divide evenly into a larger number, or 
factorisation as the inverse of multiplication.  Examples of this include “put the notation in its 
simplest form” and “factors are multiples of the numbers”.  The majority (45%) of definitions 
of ‘factors’ were conceptual in nature, for example:   

‘smaller divisors of a larger number” 
“terms that divide equally into another expression”  
“numbers that multiply together to give you that number”  

55%, however provided procedural, inappropriate or blank responses (see Table 6). 
 

 Frequency Percent 

No response 
Conceptual 
Procedural 
Inappropriate 
Total 

6 
45 
8 
24 
83 

7.2 
54.2 
9.6 
28.9 
100.0 

Table 6: Q2 Define ‘Factors’ 
 

In defining the verb ‘factorise’, the responses became more procedural in nature (35%) for 
example, ‘what a term can be broken into’ and ‘splitting it up’.  
 

 Frequency Percent 

No response 
Conceptual 
Procedural 
Inappropriate 
Total 

1 
13 
35 
34 
83 

1.2 
15.7 
42.2 
41.0 
100.0 

Table 7: Q3 Define ‘Factorise’ 
 

Question six required the participants to explain their procedure/approach to the 
factorisation of 2𝑥2 − 7𝑥 − 15 in question five.  Responses here were coded as relational, 
operational or no response.  Only 22.9% provided a relational response that could be 
generalizable, for example  

“factors of the constant term multiplied by 𝑥2 term coefficient, that add together to 
give back the x coefficient, but also when multiplied back give the constant value back 
correctly”.   

69.9% of responses were considered operational, focusing on the procedure to the specific 
problem.  Examples of this include:  

“opened brackets and put in the x values, found factors of 15 that together with x 
values would give the middle number”  
“rules that I learnt in school” 
“I multiplied potentially correct factors in my head until I came up with the correct 
ones”.  
Approximately 7.2% did not provide a response. 
Question seven required participants to demonstrate that they had factorised the 

expression 2𝑥2 − 7𝑥 − 15 correctly.  A response was only coded ‘correct’ if the participant 
expanded the factorised expression to return to the original expression, and 45.8% of 
participants did so.  A total of 53% were incorrect.  Cross-tabulation tests reveal that 81.8% 
of the participants who factorised 2𝑥2 − 7𝑥 − 15 correctly, but mistakenly carried on to 
solve for x (misconception), also provided an incorrect response to the demonstration that 
they factorised the expression correctly (see table 8). 
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              Factorise 2x2 - 7x – 15 
      Correct Incorrect Misconception Total 
Demonstrate 
you have 
factorised Q5 
correctly 

No response Count 
% within 
‘Factorise  
2x2 - 7x – 
15’ 

0 
0.0% 

0 
0.0% 

1 
3.0% 

1 
1.2% 

Correct Count 
% within 
‘Factorise  
2x2 - 7x - 
15’ 

33 
70.2% 

0 
0.0% 

5 
15.2% 

38 
45.8% 

Incorrect Count 
% within 
‘Factorise  
2x2 - 7x - 
15’ 

14 
29.8% 

3 
100.0% 

27 
81.8% 

44 
53.0% 

Total Count 
% within 
‘Factorise  
2x2 - 7x - 
15’ 

47 
100.0% 

3 
100.0% 

33 
100.0% 

83 
100.0% 

Table 8: Crosstabulation-  Demonstrate you have factorised Q5 correctly * Factorise 2x2 - 7x – 15 
 
Table 8 above shows how 29.8% of participants who were able to correctly factorise 

2x2 – 7x – 15, were unable to demonstrate that they had factorised correctly.  
 
 

Use-Application 
 

The Use-Application questions assess participants’ knowledge of where the 
skill/concept of factorising can be applied. For question nine, where participants were asked 
how they would justify the teaching of factorising to a group of students, a thematic analysis 
was conducted resulting in several predominant themes: no response (24%), solving 
equations (26%), other mathematical applications (30%), everyday example (10%) and area 
(7%) (see figure 2).  The theme of mathematical applications was quite broad, however there 
were repeated responses of improving algebra skills (9.7%) and graphing (8.4%).  The 10% 
everyday examples of the use of factorising were also quite vague and have been noted in 
table 9. 
 
 
 
 
 
 
 
 
 
 
 

Table 9: Everyday examples 
 

  

Everyday Examples 

Building bridges/stadiums 

Real life problems with some unknown 

Animators- points on a plane 

Modelling real-life situations-projectile motions 

Engineering 
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Representation-Metaphor 
 

The final category of the Usiskin framework refers to a person’s ability to represent a 
mathematical concept in some pictorial or graphical way. It indicates an additional dimension 
of understanding if a person can represent a concept in addition to being able to complete and 
explain a procedure and state where it is applicable. For question eight only 10.8% of the 
research participants provided an appropriate representation of the factorised expression, with 
44.6% providing an inappropriate response, and 44.6% not responding. From table 10 we can 
see that the majority (78.6%) of First Year Undergraduates did not attempt any 
representation. 81.8% of First Year Postgraduate students provided an inappropriate response 
of a graphical representation.  This result may have been impacted by their examination of 
graphical representations of quadratic equations immediately prior to their completion of the 
questionnaire. Worryingly 66.7% of Fourth years did not provide a response, and almost 29% 
provided incorrect representations. This particular cohort of preservice teachers are mere 
months from qualifying as secondary school mathematics teachers.  

 
     First 

year 
Second 
year 

Third 
year 

Fourth 
year 

First 
year 
PME 

Second 
year PME 

Total 

No response Count 
% within 
year 

11 
78.6% 

3 
18.8% 

6 
40.0% 

14 
66.7% 

2 
18.2% 

1 
16.7% 

37 
44.6% 

Appropriate Count 
% within 
year 

1 
7.1% 

2 
12.5% 

3 
20.0% 

1 
4.8% 

0 
0.0% 

2 
33.3% 

9 
10.8% 

Inappropriate Count 
% within 
year 

2 
14.3% 

11 
68.8% 

6 
40.0% 

6 
28.6% 

9 
81.8% 

3 
50.0% 

37 
44.6% 

 Count 
% within 
year 

14 
100.0% 

16 
100.0% 

15 
100.0% 

21 
100.0% 

11 
100.0% 

6 
100.0% 

83 
100.0% 

Table 10: Cross-tab tests on visual representation 
 
 
Other relevant findings 

 
Of the 83 participants of the study, only 13.3% have previously taught factorisation.  

Participant responses about the sources of their knowledge to complete their questionnaire are 
shown below in table 11, revealing that participants largely relied on their secondary school 
experience of the concept.  
 

 Frequency Percent 

Secondary Education 
Teacher Education 
program 
School Placement 
Other 
Total 

72 
6 
3 
2 
83 

86.7 
7.2 
3.6 
2.4 
100.0 

Table 11: Source of Understanding 
 

When asked if they had ever been taught factorisation using any concrete or visual 
method, 19.3% said yes, 54.2% said no and 26.5% were unsure.  Question fourteen 
questioned the participants as to whether they believe it would be of benefit to study the 
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concept of factorisation during their teacher education degree, and the majority said yes 
(68%).   

 

Discussion 
 
In this section we discuss the findings of this study under the lens of the research 

questions.  
 
 

What procedural understanding do preservice teachers have of quadratic factorisation? 
Skill-Algorithm 

 

The dimension of skill-algorithm directly refers to procedural understanding.  The 
preservice teachers surveyed in this research displayed a strong procedural understanding of 
quadratic factorisation with only 1.2% and 3.6% answering question four and five 
respectively incorrect.  An example of correctly implemented procedure is shown in figure 3. 
Barmby et al.  (2007) acknowledge that often correct calculation of a problem reveals quite 
little about understanding, however a mistake may indicate the limitations of their 
understanding.  The significance of this will be discussed later in this paper. 
 

 

Figure 3: Example of correct procedure 
 
The high number of successful responses to the word problem indicate that the 

preservice teachers had sufficient procedural understanding to accurately interpret the 
information from the problem, form an equation and factorise it appropriately to find an 
unknown value.  There is often a focus in school and in examinations to interpret a word 
problem and form a mathematical equation around it (Lindvall & Ibarra, 1980; Nathan & 
Koedinger, 2000).  This may explain the high number of correct responses to the word 
problem presented in question ten. 

 
 

Property-Proof 

 

In defining ‘factors’, only 9.6% of participants provided a procedural response, 
however many definitions of ‘factorise’ became significantly more procedural (42.2%), with 
some participants providing inappropriate responses that were mathematically incoherent, for 
example: 

‘to break up an equation’   
Examples such as this may be founded on a procedural understanding, but have been 

poorly verbalised.  Selling et al. (2016) suggested that explanations could be critiqued based 
on validity, generalizability and completeness.  Operational responses did not provide a 
generalizable response that indicated why they were performing specific numerical 
operations, but simply listed steps.  The written explanations of the process of factorisation 
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were in the majority operational (69.9%), further indicating a strong procedural 
understanding of the concept.   

 
 

Use- Application 

 

The ability to provide an accurate suggestion of justification or use of factorising may 
indicate a deep level of understanding of the concept.  Significantly, 26% of responses 
identify solving equations as a use or justification for factorising and this demonstrates a 
highly procedural understanding.  Although some participants suggested everyday examples 
such as building bridges, budgeting, engineering and projectile motions, many responses 
were coded as vague.  Examples of this include:  

‘identifying something common in an expression’ 
 ‘breaking down an equation’ 
 ‘for representing roots of an equation on a graph’.   
There were many responses entirely focused on factorisation in relation to equations, 

as evidenced by the second and third example above. 
 
 

Representation-Metaphor 

Any representation of an area/array model was deemed an appropriate representation 
of the process of factorisation (Leong et al., 2010).  Of the 44.6% of responses deemed 
inappropriate, many participants made use of a graph to represent the roots of the factorised 
expression (see figure 4).  As will be discussed later, the decision to use a graph is based on 
the incorrect interpretation of 2𝑥2 − 7𝑥 − 15 as an equation rather than an expression.  This 
reflects a strong procedural understanding of how to factorise and what the roots of an 
equation visually represent, but is a procedurally incorrect response in the context of the 
questionnaire which focuses on the factorisation of an expression.  

 

 
Figure 4: Inappropriate use of graph to represent factorised expression 

 
In summary, across the four dimensions of understanding: skill-algorithm; property-

proof; use-application and metaphor-representation, participants displayed a strong 
procedural understanding of the concept of quadratic factorisation.  Questions involving 
factorisation procedure were implemented correctly and without any evident difficulty.  
Within representation-metaphor the use of a graph, together with the frequent responses to 
the use of factorisation provide a highly procedural perspective of factorisation as a method 
of solving quadratic equations. 
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What Conceptual Understanding do Preservice Teachers have of Quadratic Factorisation? 
Skill-Algorithm 

 

Although participants displayed a strong procedural understanding in their factorising 
performance, several participants treated the expressions in question four and five as 
equations and solved for x.  This led to the use of misconception to code responses that were 
factorised correctly, demonstrating a strong procedural understanding, but were mistakenly 
solved for x.  Misconception responses therefore accounted for 33.7% and 39.8% of 
responses to question four and five respectively.   

 

 
Figure 5: Example of “misconception” response 

 
Powell (2012, p. 1) defined an expression as a combination of numbers and operations 

without an equal sign, while an equation is a ‘mathematical statement where the equal sign is 
used to show equivalence between a number or expression on one side of the equal sign to 
the number or expression’.  Students in school often misinterpret the equal sign (=) as an 
operational symbol, prompting them to find the answer, even though the equal sign should be 
viewed as a relational symbol (Sherman & Bisanz, 2009).  With 86.7% of participants 
identifying that they were relying on their understanding from secondary school to complete 
the questionnaire, it is clear this misconception may have developed as students.   The 
participants have not simply misinterpreted an equal sign, but have inserted an equal sign 
where one did not exist.  They then begin the solving procedure accurately, but this procedure 
should not have been implemented to begin with.  Usiskin (2012) considered blindly 
responding to the prompts of a problem as indicative of a lack of understanding.  The 
responses coded as misconception indicate a blind action of trying to solve for x, rather than 
identifying that the question was simply asking to factorise an expression.   

The high percentage of correct responses to question four suggest a procedural 
understanding of trial and error, an appropriate method for 𝑥2 of coefficient 1.  However, 
when the 𝑥2  coefficient was greater than 1, as seen in question five, considerably more 
students struggled. The use of the quadratic formula by thirteen participants (15.7%) presents 
a considerable lack of conceptual understanding.  The significance of this is that although 
directed to factorise, the participants are not in fact factorising, therefore procedurally 
incorrect, and are incorrectly assuming the existence of an equation (see figure 6).   
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                          Figure 6: Example of misuse of the quadratic formula 
 

Although factorising is often used as a method of solving equations, this quickness to 
solve an equation suggests a lack of conceptual understanding, and a procedural focus on 
‘getting an answer’.  Kieran (1981) suggests that the common misconceptions about the 
meaning of the equal sign might be the origin of students’ difficulties in dealing with 
polynomial expressions (Knuth et al., 2006).  From the description of Thompson et al. (1994) 
a calculational orientation focuses on procedures as a means of getting answers.  In this 
research, misconception responses were therefore evidence of a calculation rather than 
conceptual orientation, as the procedure of factorising was viewed only for finding “an 
answer” and not as the answer itself.  

 
 

Property-Proof 

 

Due to the mistreatment of the expression 2𝑥2 − 7𝑥 − 15 as an equation, 45.8% 
provided an incorrect response by subbing in their values for x back into the ‘equation’ to 
demonstrate that it will equal zero, as can be seen in the example below (see figure 7).   

 

 
Figure 7: Inappropriate demonstration of correct factorisation 

 
Usiskin proposed that something can only be understood if you identify the 

mathematical properties that underlie the method you have chosen, suggesting that in fact 
‘understanding is contrasted by doing’ (2012, p. 6).  Although 54.2% of the definitions of 
‘factors’ were considered conceptual, many of these used terminologies which are not 
requisite of the definition, for example, ‘breaking an equation up’. A minority of responses 
made both procedurally and conceptually incorrect reference to ‘multiples’.   In explaining 
their approach to factorising the expression, 22.9% provided a relational response that could 
be generalizable, referring to the act of finding numbers that when multiplied together 
provide the correct term in the expression. This was suggestive of a conceptual understanding 
of the procedure they previously implemented.  
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Application- Use 

 

Approximately 7% of the responses that indicated area as a potential use of quadratic 
factorising represent a conceptual understanding.  Approximately 10% of participants 
attempted to provide a real-life example or justification for the study of factorisation, 
suggestive of an appreciation of the applications of the concept.  The authors acknowledge 
however that these responses were quite vague and the precise function of factorisation 
within the application was usually unclear.  Usiskin (2012) acknowledge that performance in 
the use-application dimension is generally lower than the performance in the skill-algorithm 
dimension, and attributes this to the little amount of time dedicated to teaching applications 
of a skill. 

 
 

Representation-Metaphor 

 

Only 10.8% of participants provided an appropriate representation of the factorisation 
of the expression, with many instead drawing a graph due to the interpretation of the 
expression as an equation.  Although the area/array model is now commonly used for 
expanding brackets, few participants could identify that as factorisation is the inverse of 
multiplication, the array model could be used to find the factors of the expression.  Any 
reference to an area/array model suggested conceptual understanding of factorisation as 
finding length and breadth when given area (Leong et al., 2010), further reinstating the 
concept of factorisation as the inverse of expansion (Zhu & Simon, 1987) (see figure 8).  
Only a minority (19.3%) of participants could recall being taught factorisation using some 
form of visual representation, therefore the requirement on participants to provide a visual 
representation as part of the questionnaire could be considered as a new context.  Inability to 
apply mathematical understanding and logic in unfamiliar contexts is generally the result of a 
procedurally focused instruction in isolation of the conceptual meaning behind it (Hiebert & 
Grouws, 2007; Hiebert et al., 2005). 

 

 
Figure 8: Appropriate visual representation of factorisation 

 
 

Conclusion 

In summary, responses provided for definitions and implementation of factorising 
procedure (skill-algorithm) indicate a majority conceptual understanding of the concept of 
factorisation.  However, few appropriate responses to the visual representation of 
factorisation, a majority incorrect response rate to the demonstration of correct factorisation 
and few relational explanations of approach to factorising indicate a low level of conceptual 
understanding within the context of representation-metaphor and property-proof.   
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The results of this research indicate that prospective mathematics teachers have a 
strong procedural understanding of the concept of quadratic factorisation.  However, although 
the relationship between procedural and conceptual knowledge is viewed as bidirectional, 
with mathematical competence depending on both (Rittle-Johnson, Schneider, & Star, 2015), 
there was evidence of a lower level of conceptual understanding across Usiskin’s dimensions 
of understanding (2012).  Skill-Algorithm, although by its nature procedurally focused, 
revealed some conceptual misunderstanding in the quickness to interpret an expression as an 
equation and solve for x, and considerable conceptual misunderstanding in the use of the 
quadratic formula.  The results of this research therefore suggest that although prospective 
mathematics teachers have strong apparent procedural understanding of quadratic 
factorisation, it appears for many participants, their procedural understanding may not be 
connected to a greater conceptual understanding.  

The suggestion of Ball (1990b) that prospective teachers are relying on their 
knowledge from school rather than their teacher preparation program was reinforced by this 
research where 86.7% were relying on their understanding from secondary school to 
complete the questionnaire.  Bloom et al. (1956) and Holm and Kajander (2012) described 
the importance of conceptual knowledge for fostering significant classroom learning 
experiences and higher-order questions.  Following the perspective of Hiebert (1999) that 
teacher understanding is the most significant factor in the reform of mathematics teaching, 
the procedural focus may be a cause for concern.  The understanding of the teacher impacts 
the understanding of the student and so the need for conceptual understanding on the part of 
the teacher cannot be over-emphasised (Novotná & Hoch, 2008). 

Eisenhart et al.(1993) suggest that prospective teachers express a desire for teaching 
for conceptual understanding.  In this research study 68% of participants indicate that they 
would like to have examined the concept of factorisation during their teacher education 
program.  In their explanation of their rationale for wanting to study factorisation more in-
depth, 22% of participants describe an interest in improving understanding while 18% are 
eager to learn different approaches for teaching for understanding.   These findings support 
the perspective of Eisenhart et al. (1993) and potentially indicate that these prospective 
mathematics teachers are not convinced of their conceptual understanding.   

The literature emphasises the importance of both procedural and conceptual 
understanding of teachers if they are to teach for understanding, as is the aim of international 
reform.  The findings of this research indicate that conceptual understanding should not be 
assumed, as misconceptions within some dimensions of understanding may lead to 
misconceptions in other dimensions.  The authors do not suggest that procedural 
understanding should be ignored, but rather concepts should be considered in a way that links 
procedures to their conceptual meaning (Hiebert & Grouws, 2007).  The assessment 
framework developed in this research may be used to assess either student or preservice 
teacher conceptual understanding of other mathematical concepts, allowing gaps in 
understanding to be addressed.   

The data collection instrument used in this research provides a framework for 
assessing understanding that could be applied to any concept, at both secondary and tertiary 
level.  Selling et al. (2016) argued that the growing demands on teacher mathematical 
knowledge for teaching require accurate methods of assessing this knowledge.  The use of 
Usiskin’s Framework (2012) to assess prospective teacher mathematical understanding as 
demonstrated in this research may be used to assess understanding of other concepts, so that 
misconceptions may be rectified during the teacher education program, and to ensure design 
of modules that address widespread misunderstanding.  

While there is not sufficient time to cover all secondary school topics that preservice 
teachers will teach, it is important to demonstrate to them that understanding is multi-faceted. 



Australian Journal of Teacher Education 

 Vol 45, 10, October 2020    90 

Introducing them to Usiskin’s framework of understanding within their pedagogy modules 
alerts these teachers to the fact that procedural understanding alone does not constitute 
sufficient understanding to teach mathematics in a comprehensive way. 
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Appendix 

Algebraic Factorisation Questionnaire 
(Spaces for answers were provided when distributed) 
1. Tick the appropriate box. 
Undergraduate   1st Year 
2nd Year 
3rd Year 
4th Year 
Postgraduate   1st Year 
2nd Year 
2. What does the term “factors” mean? 
3. What does ‘factorise’ mean?  
4. Factorise 𝒙𝟐 + 𝟓𝒙 + 𝟔 
5. Factorise 𝟐𝒙𝟐 − 𝟕𝒙 − 𝟏𝟓. 
6. Describe in words how you factorised the expression in question 5 above. 
7. Prove that you have factorised question 5 correctly  
8. Represent question 5 and the process of factorisation visually.  
9. If a student were to ask you why they have to study factorisation, how would you 

justify it? 
10. The area of a rectangle frame is 30cm2.  The frame is 7cm longer than it is wide. 

Find the dimensions of the frame. 
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11. Did you teach factorisation during School Placement 1 or 2? 
Yes   No 
12. Where do you feel you gained the knowledge to fill in the questionnaire? 
When you were in secondary school  
Your Teacher Education Program 
School Placement 
Other       
Please state: ____________________ 
13. Can you recall ever being taught factorisation with any concrete/visual method? 
  Yes      No     Unsure 
14. Would you have found it of benefit to have examined the concept of factorisation 

during your teacher education degree? 
Yes    No   Maybe 
15. Please explain your answer briefly:  
16. Please rate your level of confidence in teaching factorisation for understanding. 

No confidence high confidence 
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