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Variance Estimation With Complex Data and Finite
Population Correction—A Paradigm for Comparing Jackknife
and Formula-Based Methods for Variance Estimation

Jiahe Qian

Educational Testing Service, Princeton, NJ

The finite population correction (FPC) factor is often used to adjust variance estimators for survey data sampled from a finite population
without replacement. As a replicated resampling approach, the jackknife approach is usually implemented without the FPC factor
incorporated in its variance estimates. A paradigm is proposed to compare the jackknifed variance estimates with those yielded by
the delta method because the delta method has the effect of the FPC factor implicitly integrated. The goal is to examine whether the
grouped jackknife approach properly estimates the variance of complex samples without incorporating the FPC effect, in particular for
data sampled from a finite population with a high sampling rate. The investigation focuses on the data drawn by two-stage sampling
with probability proportional to size of schools and with simple random sampling of students. Moreover, the Hájek approximation of
the joint probabilities is used in the delta method for a Horvitz–Thompson (H–T) estimator. Samples of the National Assessment of
Educational Progress (NAEP) state science assessments are used in the analysis.

Keywords Finite population sampling; two-stage PPS sampling; Horvitz–Thompson estimator; jackknife approach; delta method;
joint inclusion probability; Hájek approximation
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The finite population correction (FPC) factor is often used to adjust a variance estimator for surveys sampled from a
finite population without replacement (Cochran, 1977; Kish, 1965). The variance formula incorporating the FPC factor
for simple random sampling without replacement (SRS/wor) is provided in Cochran (1977, p. 24) and in the Methods
section of this paper. Because the FPC factor is less than 1, the variance estimates adjusted by multiplying the FPC fac-
tor are thus smaller than those without incorporating the factor. In educational surveys, to ensure efficient and practical
implementation, most assessment survey data are collected through complex sampling designs, such as two-stage sam-
pling with probability proportional to size (PPS) selection of schools and with SRS of students. Some examples are the
National Assessment of Educational Progress (NAEP; Allen et al., 2001; Rust, 1985) and the Programme for International
Student Assessment (Neidorf et al., 2006; Nohara, 2001).

For complex data, variance estimation is often based on the delta method and resampling techniques, such as jackknife
repeated replication (JRR) and balanced repeated replication (BRR; Cochran, 1977; Hájek, 1981; Kish, 1965; Rust, 1985;
Wolter, 2007). Failure to incorporate the effect of the FPC factor, also called the FPC effect, is one issue that should concern
statisticians in estimating variances using resampling techniques (Rizzo & Rust, 2011). When the size of a finite population
is small, variances can be appreciably overestimated if the FPC effect is omitted (Fay, 1989; Rizzo & Rust, 2011; Wolter,
2007).

The delta method estimates the variance based on a Taylor series expansion (Cochran, 1977). For two-stage PPS sam-
pling, the variance formula consists of two terms: the errors between the first-stage sample units and the errors within
the sampled units. The delta method takes into account a primary feature of finite population sampling, namely, incorpo-
rating the FPC effect (see the Horvitz–Thompson Estimators and the Delta Method section of this paper and Cochran,
1977, Chapters 9A and 11). Although the delta method is an efficient and robust approach for variance estimation (Fuller,
1996; Wolter, 2007), applying the delta method requires the joint inclusion probabilities for each pair of sample units,
whereas most of the data sets for analysis lack such information. Hájek (1964) solved this issue by approximating the joint
inclusion probabilities. Hájek (1964, 1981) also derived the properties of the inclusion probabilities and variance formulas
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for the estimates yielded by Poisson sampling. He further refined these results for estimates related to rejective sampling
(Hájek, 1964). Särndal et al. (1992) used rejective sampling in model-assisted survey sampling. Berger (2004) applied the
Hájek estimator to weighted least squares regressions for complex data.

Many statisticians have discussed the oversight of not incorporating the FPC effect in variance estimation in resam-
pling techniques (Fay, 1989; Kalton, 2002; Lee et al., 1995; Rao & Shao, 1992; Rao & Sitter, 1995; Rizzo & Judkins, 2004;
Rizzo & Rust, 2011; Steel & Fay, 1995). For SRS without replacement and stratified sampling, Kalton (1979) proposed an
approximate design to solve the issue within first-stage sample units. Fay (1984, 1989) developed an eigenvalue-matching
approach to adjust the replicate weights for the first-stage sample units. Rizzo and Judkins (2004) applied Fay’s approach to
the jackknife procedure in analyzing the National Survey of Parents and Youth, and Fuller (1998) applied this approach to
regression estimators in two-stage samples. Rao and Wu (1988) used consistent bootstrap estimators for multistage sam-
ples that were subject to nontrivial FPCs. For each replicate at each stage, Wolter (2007) introduced the appropriate scaling
factors to resolve the issues arising from JRR or BRR procedures. For a two-stage PPS sampling without replacement, such
as the NAEP state samples, Rizzo and Rust (2011) proposed an approximate method to incorporate the FPC effect into the
replicate weights of the first-stage sampling units. Kali et al. (2011) evaluated the approximate method proposed by Rizzo
and Rust in the grouped jackknifing procedure for the NAEP 2009 reading state samples. Although as a classic approach,
the delta method can be adequately applied in variance estimation for cosmplex data including the two-stage PPS samples
of the NAEP state assessments (Cochran, 1977; Qian, 2017; Wolter, 2007), there has been no literature on assessing the
consequences of failing to incorporate the FPC effect in the jackknifing procedure by comparing the jackknifed variances
with the delta variances.

In this study, a paradigm is proposed to compare the jackknifed variance estimates with those yielded by the delta
method that applies adequate Hájek joint probability approximations and then evaluates the consequences of omitting the
incorporation of the FPC effect in the jackknifing procedure. The goal is to investigate the impact of neglecting the FPC
effect in the jackknifed variance estimation with complex data, in particular for two-stage PPS samples such as the NAEP
state samples. The proposed paradigm is to examine changes in the delta variance estimates as the Hájek approximation
of joint inclusion probabilities varies and compare the delta estimates with the jackknifed estimates. Instead of presenting
the comparison at one point, the paradigm is designed to provide an overall picture of comparisons at all possible values
of the Hájek approximation. Then the jackknifed variances without the FPC effect were examined against those of the
delta method and against related results in literature. In the study, real data from the eighth-grade NAEP state science
assessment samples were used.

Although the empirical results are based on data from a two-stage PPS sampling without replacement, the application
of the paradigm can be extended to other complex data such as one-stage unequal sampling with unequal probabilities
without replacement. Furthermore, the paradigm can also be used in comparisons involving other resampling methods
of variance estimation with or without FPC: for example, BRR and bootstrap (Wolter, 2007).

The next section provides a review of the method applied in the study, including PPS sampling without replacement
for a two-stage sampling design, the grouped jackknife procedure, the Horvitz–Thompson (H–T) estimator, the delta
methods, and the Hájek approximation of joint probability. The third section consists of the comparison results: the jack-
knifed variance estimates versus the delta variance estimate with different Hájek approximations. The final section offers
a summary and conclusions.

Method

Data

The data used in the analysis were the samples of the NAEP 2009 state science assessments (National Center for Education
Statistics, 2011), which were selected based on a two-stage systematic PPS sample design for schools and SRS for students
(Allen et al., 2001). There were three subscales (Physical Science, Life Science, and Earth and Space Sciences) for the NAEP
science assessment. The NAEP proficiency scores were reported by using plausible values (Allen et al., 2001; National
Center for Education Statistics, 2011). In selecting the state samples, the first step was to partition the states into three
categories based on the sizes of their school populations: small, middle, and large, with cut-points of 1,100 and 2,200. Then,
I randomly selected 1, 2, and 2 states from the categories, respectively. Table 1 presents the sampling rates of schools, the
mean subscale scores, and composite scores for the five state samples. For the QC purpose, Table 1 also included the male
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Table 1 The School Population Sizes, Sampling Rate of Schools, and the Weighted Means of Subscale Scores and Composite Scores for
the Five State Samples

State
School

population size

Sampling
rate of

schools (%)

Mean of
physical
science

Mean of
Earth

science
Mean of life

science
Mean of

composite

All
1 Middle 6.62 138.35 138.86 139.71 139.05
2 Small 10.11 143.03 145.23 143.54 143.89
3 Middle 6.10 155.76 155.09 154.84 155.19
4 Large 3.53 147.31 145.62 145.77 146.19
5 Large 4.92 148.17 145.04 146.16 146.43

Male
1 Middle 6.62 143.91 146.29 143.57 144.49
2 Small 10.11 147.40 151.42 148.12 148.89
3 Middle 6.10 163.86 163.50 161.03 162.62
4 Large 3.53 151.74 149.40 147.97 149.53
5 Large 4.92 153.83 150.32 149.73 151.14

Female
1 Middle 6.62 136.40 134.99 139.55 137.23
2 Small 10.11 142.44 143.37 143.12 142.99
3 Middle 6.10 156.93 155.89 157.92 157.01
4 Large 3.53 145.74 144.69 146.42 145.70
5 Large 4.92 146.15 143.32 146.23 145.33

Note. The composite results in the far-right column were created by combining Physical Science, Life Science, and Earth Science subscale
scores with weights of .3, .3, and .4, respectively. The allocation was consistent with the distribution of items by content area in NAEP
science assessments before 2009. However, the results in The Nation’s Report Card for 2009 were based on a univariate scale including
all items (National Center for Education Statistics, 2011). Therefore, the tabled results may differ from those reported.

and female scores. For each state in Table 1, male students scored higher on average than female students, which was
consistent with those scores reported by NAEP.

To avoid outlier effects in the computation, the schools with extremely small inclusion probabilities were excluded
from the analysis because, for these kinds of schools, δArith, ij and δRR, ij can have excessive values, and d̂Arith,ij and d̂RR,ij
might have excessive estimates. The exclusion criterion was based on the interquartile range (IQR). A school j with small
inclusion probability pj was treated as an outlier when it was 3 IQR away from the median, i.e., |pj − pmedian|≥ 3IQR
(Hoaglin et al., 1983). For a symmetric distribution, this criterion is similar to that of 3SD (Mosteller & Tukey, 1977). The
actual exclusion rate is less than 2%.

Simple Random Sampling Without-Replacement and Finite Population Correction

A special case of complex sample design is SRS/wor. For a finite population consisting of N sample units, SRS/wor selects
a sample of n sample units without replacement from the population; in each selection, all units retained in the pop-
ulation will have the same probability for selection. This selection procedure continues until n units are drawn. For
SRS/wor, it is straightforward to verify that every unit in the sample has the same inclusion probability of n/N to be
selected.

Let Y = N−1 ∑N
i=1 yi be the population mean of interest, and let y = n−1 ∑n

i=1 yi be the sample mean. For SRS/wor, the
expectation of y equals Y (i.e., y is an unbiased estimator of Y), and the variance of y is equal to

V
(

y
)
=

1 − f
n

S2,

(Cochran, 1977, p. 24), where f = n/N, and

S2 = 1
N − 1

N∑
i=1

(
yi − y

)2
.
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The term 1− f = (N − n)/N is the FPC factor for the variance, and
√
(N − n) ∕N is the FPC factor for standard errors

(Cochran, 1977, p. 24). Clearly, the FPC factor is less than 1; with the increase of the sampling rate n/N as n→N, the
impact of the FPC factor can be enormous.

The Grouped Jackknifing Procedure and Variance Estimation

In variance estimation for complex data, the grouped JRR (GJRR) method is widely used because GJRR is easy to be
implemented and yields robust results. The complete GJRR method (CGJRR; Haberman et al., 2009) can be applied to
estimating the standard errors of all steps for a whole statistical procedure (e.g., the linking procedure used in analyzing
assessment data includes several steps such as item response theory [IRT] calibration, item parameter scaling, and IRT
linking, all of which are amenable to CGJRR use).

For GJRR, a replicate sample is formed by randomly dropping one group of cases from the sample and mak-
ing adjustment to weights based on statistical techniques such as minimum discriminant information adjustment
(Haberman, 2015), raking, and poststratification (Qian et al., 2013). Let J be the number of total replicate samples.
For NAEP, J is usually set to 62. For the whole sample and each jackknife replicate sample, we first compute the
parameter estimate of interest. Then we derive the jackknifed SEs of the parameters of interest. Let μ be the parameter
estimated from the whole sample and μ(j) be the estimate from the jth jackknife replicate sample. The variance of μ was
estimated by

v (μ) = J − 1
J

J∑
j=1

[
μ(j) − μ(.)

]2
, (1)

where μ(.) is the mean of all μ(j) (Wolter, 2007). A special GJRR is paired grouped jackknifing (PGJRR; Allen et al., 2001), in
which two or several balanced groups are aggregated into one stratum. For example, NAEP creates a jackknifing stratum
by aggregating a pair of groups (e.g., primary sampling units or schools) in one stratum, and then a replicate sample is
formed by randomly dropping one school and doubling the weights for cases in the remaining school. The variance of μ
is estimated by the same formula in Equation 1.

The efficacy of the JRR procedure is based on its large-sample property that the distribution of the estimates yielded
by the replicate samples approximates the distribution of the population parameter of interest. Nonetheless, the jackknif-
ing procedure disregards an important feature of finite population sampling: namely, the aforementioned FPC effect in
estimation.

Horvitz–Thompson Estimators and the Delta Method

The variance formula of the delta method (Cochran, 1977, p. 308) discussed in this section is derived based on a two-stage
PPS sampling without replacement because, in assessment surveys, the first step is to sample schools and the next is to
draw students from the sampled schools.

Horvitz–Thompson Estimators

For a population of N schools, a population total of interest is Ỹ =
∑N

i=1 Ỹi, a sum of all school totals in the population.
The school total is Ỹi =

∑Mi
k=1 yik, a sum of all students yik in school i, and let πi be the inclusion probability of school i. For

a school sample of size n, the weight for school i (i = 1, 2, … , n) is equal to the inverse of πi, i.e., wi = 1/πi (Allen et al.,
2001). Let Mi and mi be the school size and its sample size for school i, respectively. Let yik be the value of a variable of
interest for student k in school i. Let wik be the case weight for student k in school i (Allen et al., 2001). The total for school
i can be estimated by ỹi =

Mi
mi

∑mi
k=1 wikyik, and the H–T estimator (Cochran, 1977; Horvitz & Thompson, 1952) for the

total is defined as

ỹHT =
n∑

i=1
wiỹi, (2)

which is an unbiased estimator of the population total Ỹ .
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The H–T estimator of the mean is a ratio estimator yHT = ỹHT∕w̃, where w̃ =
∑n

i=1
∑mi

k=1 wik is the total of weights.
Let the school weights be wi. =

1
πi

(i = 1, 2, … , n), the reciprocal of πi. Although yHT is biased, this bias vanishes with
increasing sample size n to the order O (1∕n) (Cochran, 1977).

The Variance of a Horvitz–Thompson Estimator of Total

The variance formula of ỹHT :

V
(

ỹHT
)
=

N∑
i=1

N∑
j>i

(
πiπj − πij

)(
Ỹi

πi
−

Ỹj

πj

)2

+
N∑

i=1

V
(

w̃i
)

πi
, (3)

where

V
(

w̃i
)
=

M2
i

(
1 − f2i

)
mi

S2
2i,

and the variance S2
2i =

(
Mi − 1

)−1 ∑Mi
k=1

(
yik − Yi.

)2
with Yi. = M−1

i
∑Mi

k=1 yik. The expression is in the Sen-Yates-
Grundy (SYG) form of the variance of ỹHT (Cochran, 1977, p. 308; Sen, 1953; Yates & Grundy, 1953). The estimate of
V
(

ỹHT
)

is

v
(

ỹHT
)
=

n∑
i=1

n∑
j>i

(
πiπj − πij

)
πij

(
ỹi

πi
−

ỹj

πj

)2

+
n∑

i=1

v
(

w̃i
)

πi
, (4)

where

v
(

w̃i
)
=

M2
i

(
1 − f2i

)
mi

s2.
2i,

and the weighted variance is s2
2i =

(
m−1

i

(
mi − 1

)∑mi
k=1 wik

)−1 ∑mi
k=1 wik

(
yik − yi.

)2 with yi. =
∑mi

k=1 wikyik∕
∑mi

k=1 wik
(Cochran, 1977, p. 301). The computation of the formula v

(
ỹHT

)
in Equation 4 requires knowledge of the joint inclusion

probabilities πij in n× n matrix of the πij’s. Because πij (i & j = 1, 2, … , n) are usually unavailable, Hájek approximations
are used to approximate these probabilities in this analysis. Several Hájek approximations are introduced in the next
section. Note that the term πiπj −πij in the variance estimates of the H–T estimator can be negative because of the
variability in its values.

The Variance of a Horvitz–Thompson Estimator of the Mean

The variance of the mean estimator can be estimated with a Taylor approximation. Using vector symbols, let ξ =
(

ỹHT , w̃
)′

and 𝚵 =
(

Ỹ, W̃
)′

, g (ξ) = ỹHT∕w̃, and g (𝚵) = Ỹ∕w̃. Let

∂g (𝚵)
∂ξ

=
(
∂g (𝚵)
∂ỹHT

,
∂g (𝚵)
∂w̃

)
=
(

1
w̃
,−

ỹHT

w̃2

)
. (5)

Let symbols ξ̇ =
(

ẏHT , ẇ
)

be a point between 𝛏 and 𝚵. The first-order Taylor expansion of g(𝛏) with the mean value
form of the remainder is

g (ξ) − g (𝚵) = (ξ − 𝚵)′
∂g (𝚵)
∂ξ

+ 1
2!

(ξ − 𝚵)′
∂2g

(
𝚵̇
)

∂ξ2 (ξ − 𝚵) . (6)

Then the mean square error of 𝛏 is

E
(

g (ξ) − g (𝚵)
)2 =

(
∂g (𝚵)
∂ξ

)′
V (ξ)

∂g (𝚵)
∂ξ

= Y
2
HT

(
V
(

yHT
)

Ỹ2
HT

− 2
Cov

(
yHT , w̃

)
ỸHTW̃

+
V
(

w̃
)

W̃2

)
+ O

(
n−2) . (7)
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Thus, the derived formula of V
(

yHT
)

will be consistent with those provided by Cochran (1977, p. 155)

V
(

yHT
)
≈ Y

2
HT

(
V
(

yHT
)

Ỹ2
HT

− 2
Cov

(
yHT , w̃

)
ỸHTW̃

+
V
(

w̃
)

W̃2

)
, (8)

which has order O(n−1). The variance of V
(

yHT
)

can be estimated by

v
(

yHT
)
= y2

HT

(
v
(

ỹHT
)

ỹ2
HT

− 2
cov

(
ỹHT

)
ỹHTw̃

+
v
(

w̃
)

w̃2

)
, (9)

in which the variance terms v
(

ỹHT
)

and v
(

w̃
)

are the same as in Equation 4. The derivation of the delta method is based
on the Taylor series expansion with FPC factored in. Therefore, the variance estimates yielded by the delta method are
used as the criterion in comparison with those yielded by the jackknifed approach for complex data drawn from a finite
population.

The Joint Inclusion Probabilities and Hájek Approximation

In application of the delta method, the computation of the formula v
(

ỹHT
)

in Equation 4 requires knowledge of the
joint inclusion probabilities πij in n× n matrix of the πij’s. As mentioned, these probabilities are often unavailable. Hájek
(1964) proposed an approximation of the joint inclusion probabilities of πij. Let ci = πi(1−πi) and c =

∑N
i=1 ci. Hájek’s

approximation is defined as

π̂H,ij = πiπj

⎛⎜⎜⎜⎝1 −

(
1 − πi

) (
1 − πj

)
c

⎞⎟⎟⎟⎠ . (10)

The c in Equation 10 can be estimated by using the H–T estimator

ĉ1 =
n∑

i=1

ci

πi
=

n∑
i=1

(
1 − πi

)
= n −

n∑
i=1

πi. (11)

Another form of approximation is Hájek’s d:

d̂Hájek,ij =
(
πiπj − π̂H,ij

)
∕π̂H,ij

(
i&j = 1, 2, … , n

)
.

Based on the large-sample properties of (πiπj −πij)/πiπj, the Hájek lower bound (HB) of the estimator of d̂Hájek,ij is

d̂HB,ij =
1 − δ
n − 1

(12)

(see Appendix for details), and δ is the function of πi, πj, and πij with value range (0, 1). Based on Equation 12, we can
examine how variance estimation changes correspondingly when the variable δ changes. Clearly, if the school inclusion
probabilities are close to each other, for example equal to c0, by Equation 12, then d̂HB,ij ≈

(
1 − c0

)
∕ (n − 1).

There are three proposed estimators of δ: the arithmetic mean δArith, ij = (πi +πj)/2, the geometric mean δGeo,ij =
√πiπj,

and δRR, ij = min(πi, πj).See Qian (2017) and Rizzo and Rust (2011). Therefore, there are three estimators:

d̂Arith,ij =
1 −

(
πi + πj

)
∕2

n − 1
, (13)

d̂Geo,ij =
1 −√πiπj

n − 1
, (14)

d̂RR,ij =
1 − min

(
πi,πj

)
n − 1

. (15)

Compared with d̂Arith,ij, d̂Geo,ij is smaller; d̂RR,ij is the least among three.
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Results

The Empirical Curve of the Variance Estimates Yielded by the Delta Method

For the five state samples of the NAEP 2009 state science assessments, both the delta method and the jackknife approach
were used to estimate the variance of the subscale scores for the same sets of complex data. The focus was on whether the
grouped jackknife approach yielded larger variance estimates than those of the delta method due to absence of the FPC
effect. In applying the delta method, three different joint probability approximations, such as the δ estimators represented
in Equations 13–15, were employed. The variance of the composite scores, a weighted average of three subscale means,
was derived based on the variance formula for a stratified sample (Cochran, 1977, p. 92). Table 2 presents the means
and standard deviations of the three types of δ estimators for the five state samples. The overall means of d̂Arith,ij, d̂Geo,ij,
and d̂RR,ij were 0.431, 0.388, and 0.284, respectively. Obviously, d̂Geo,ij was smaller than d̂Arith,ij, and d̂RR,ij was the least.
Although the range of δ is (0, 1), based on Table 2, the empirical range of δ should be between 0.15 and 0.55.

Based on Equation 12, the examination was focused on how the variance estimated by the delta method changes corre-
spondingly when the variable δ changes. The delta standard error estimates were then compared with those yielded by the
jackknife approach and examined as to whether the jackknifed variances were larger. Figure 1 presents the standard error
curves estimated by the delta method with δ increased from 0 to 1 in Equation 12 and the horizontal lines of the jack-
knifed standard errors for the five state samples. When δ = 1, the approximation d̂HB,ij = (1 − δ ) ∕ (n − 1) in Equation 12
is at its minimum, which implies that the standard error estimate contains only the term of within-school errors. On the
contrary, when δ = 0, d̂HB,ij reaches its maximum. There is a total of 21 estimates of standard errors on each curve as δ
takes the values from 0 to 1 with an interval of .05.

The sampling rates of schools for States 1–3 were all above 6%, higher than those for States 4 and 5. Their standard
error lines of the jackknife approach were above the standard error curves of the delta method, meaning all jackknifed
standard errors were larger than the standard error estimates yielded by the delta method in the entire range of δ. These
standard errors without the FPC effect for States 1–3 were consistent with those reported in the literature (Bellhouse,
1985; Kali et al., 2011; Wolter, 2007). The comparisons in this study were conducted using empirical analyses, and the
true variance is unknown. The trend of these results can be assessed together with those of the delta method to illustrate
how the variance estimation changes corresponding to the levels of the Hájek approximation. In this study, the cutoff
points were determined based on a 6% sampling rate; however, this is not a golden criterion that can be generalized to
populations with different characteristics. It is necessary to adjust the cutoff points according to the specific conditions of
a population. For example, the cutoff points for a population of primary schools must differ from those for a population
of colleges.

However, for State 4, the standard error line of the jackknife approach was below the delta standard error curve; that is,
the jackknifed standard error was smaller than the delta standard errors. The school sampling rate for State 4 was small,
3.53%, and its school population size was large, so the FPC effects were small. This can be one of the main reasons for the
small jackknifed standard error for State 4, and homogeneity among school clusters can be another one. For State 5, the
standard error curve of the delta method was slightly above the line of the jackknifed standard error on the left segment
and was below the line on the right. Similar to State 4, State 5 also had a large school population and a small sampling rate
of 4.92%. By the empirical results of this educational assessment survey, 6% or less can be treated as a threshold of a small
sampling rate.

Table 2 The Mean and Standard Deviation (SD) of the Three Types of δ Estimators for the Five State Samples

δArith δGeo δRR

State Mean SD Mean SD Mean SD

1 0.3400 0.1407 0.3134 0.1306 0.2319 0.1184
2 0.5533 0.1937 0.5177 0.1937 0.3971 0.2016
3 0.4112 0.1587 0.3792 0.1577 0.2842 0.1567
4 0.4516 0.2673 0.3724 0.2537 0.2525 0.2593
5 0.4003 0.2007 0.3584 0.1763 0.2561 0.1535

Average 0.4313 0.3882 0.2843
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Figure 1 The standard errors of mean estimated by the delta method and jackknife approach, States 1–5.

In Figure 1, the average ratios of the jackknifed standard error to the delta standard error were 1.03, 1.05, and 1.09 at
three δ value points of 0.2, 0.3, and 0.4, respectively. These comparisons showed that the jackknifing procedure without
a built-in FPC effect tended to yield standard errors that were about 6% larger than those produced by the delta method.
The findings, in average across the states, suggest that for a sample from a finite population with a high sampling rate, it
is necessary to incorporate the FPC effect into the jackknife approach. There are several approaches to incorporating the
FPC effects in the jackknifing procedure, such as applying the scaling factor (Wolter, 2007) or using the adapted replicate
weights proposed by Kali et al. (2011) and Rizzo and Rust (2011).

The Paired Jackknife Approach for Variance Estimation With Adjusted Group Weights

For some grouped jackknifing procedures, the group weights used in forming replicate samples can be adapted to incor-
porate the FPC effect. Beginning in 2011, the NAEP paired grouped jackknife approach has incorporated the FPC effect
(Kali et al., 2011; Rizzo & Rust, 2011). For a two-stage PPS sampling without replacement, the details of forming replicate
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Table 3 The Standard Error (SE) of the Mean of Subscales and Mean Score Yielded by the Delta Method and the Jackknife Approach
Based on Different Hájek’s d*ij Estimates for the Five State Samples

State
Sampling rate
of schools (%)

SE of physical
science

SE of earth
science

SE of life
science

SE of mean
composite

d̂Arith,ij
1 6.62 1.501 1.493 1.572 0.894
2 10.11 1.419 1.396 1.400 0.819
3 6.10 1.422 1.338 1.353 0.798
4 3.53 3.832 3.691 3.755 2.192
5 4.92 2.241 2.251 2.220 1.305

d̂Geo,ij
1 6.62 1.681 1.666 1.766 1.002
2 10.11 1.744 1.714 1.702 1.001
3 6.10 1.575 1.481 1.494 0.882
4 3.53 3.860 3.721 3.789 2.210
5 4.92 2.260 2.279 2.249 1.319

d̂RR,ij
1 6.62 1.820 1.802 1.915 1.085
2 10.11 1.913 1.879 1.858 1.095
3 6.10 1.685 1.580 1.591 0.941
4 3.53 3.895 3.758 3.829 2.232
5 4.92 2.388 2.414 2.384 1.396

sample r from school pairs can be found in the Grouped Jackknifing Procedure and Variance Estimation section. Let Ar
be the set of retained students and Dr be the set of deleted students for replicate sample r (r = 1, 2, … , R). The replicate
weight for school i is

wi (r) =

⎧⎪⎪⎨⎪⎪⎩
wi

(
1 +

√
d̂Hájek,ij

)
i ∈ Ar

wi

(
1 −

√
d̂Hájek,ij

)
i ∈ Dr

wi otherwise

, (16)

where d̂Hájek,ij is following Equation 11 and j refers to the dropped school in forming a replicate sample (Rizzo & Rust,
2011). Note that, without considering FPC effects, the school replicate weight wi(r) would be 2 ·wi.

In the proposed paradigm, the delta method approximates the standard error based on a Taylor series expansion.
Although the approximation can offset the accuracy of the results to a certain degree, its variance formula has the order
O(1/n).See Cochran (1977, p. 155); the error is usually much smaller than the sampling rate n/N.

In addition, there can be other factors confounding the results. For example, the schools in a sample frame are usually
sorted, either explicitly or implicitly. Although the sorting effects on variance estimation have been discussed (Cochran,
1977; Kish, 1965), such sorting effects on FPC are unknown and remain to be explored. For the paired grouped jackknife,
because the schools in a pair are similar and the pairs of similar schools are treated as strata, the sorting effects on paired
JRR are expected to be very limited.

Impact of Different Approximations of the Joint Probability on the Delta Method

Table 3 presents the standard errors of mean scores yielded by the delta method and the standard errors of the composite
scores based on the above d̂ij estimates in Equations 13–15. As expected, the standard errors estimated with H–T estima-
tors and the delta method d̂Arith,ij were the smallest, and those with d̂RR,ij were the largest. Compared with those estimated
with d̂RR,ij, measured by relative absolute errors, the standard errors estimated using d̂Geo,ij were about 5.5, 3.5, and 3.8%
smaller, whereas those using d̂Arith,ij were about 13.3, 9.0, and 9.5% smaller.

The results confirmed that the approximation d̂Arith,ij is the smallest among the three. Thus, using d̂Arith,ij can underes-
timate the standard errors because the Hájek approximation δArith, ij would overestimate the joint inclusion probabilities,
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in particular when there are large differences between two school sizes (Qian, 2017). In contrast, the approximation d̂RR,ij
can cause overestimation in the standard error under the same circumstances. These can also be observed from the plots
in Figure 1. Because the value of d̂Geo,ij is always between d̂Arith,ij and d̂RR,ij, the delta standard errors yielded by the approx-
imation d̂Geo,ij were larger than those by d̂Arith,ij but smaller than those by d̂RR,ij, as shown in Table 3. However, to validate
the true adequacy and robustness of the standard errors, we would need to conduct a simulation study, which is beyond
the scope of the current study.

Summary

The proposed paradigm is to study the effects of ignoring the FPC effect on the jackknife approach. The jackknifed vari-
ance estimates were compared with those estimated by the delta method. Based on the large-sample properties of the
Hájek approximation, the examination was focused on how variance estimation changes correspondingly when the vari-
able δ (in Equation 12) changes. Although this study employed the jackknife approach, the proposed paradigm can be
readily extended to comparisons using other resampling methods such as BRR and bootstrap. Moreover, the paradigm
can be applied to other types of complex data, such as one-stage unequal sampling with unequal probabilities without
replacement. Correspondingly, instead of using Equation 4 in the Variance of a Horwitz–Thompson Estimator of Total
section, the formula used in the delta method needs to be replaced with the equations in 9A.43 and 9A.44 in Cochran
(1977, p. 261).

The empirical results showed that the jackknifing procedure, with a missing FPC effect, tends to yield larger standard
errors than those yielded by the delta method. For three samples with the school sampling rate greater than 6%, as shown
in the plots of States 1–3 in Figure 1, the jackknifed variances were evidently larger than those of the delta method. For two
states with the school sampling rates less than 6%, mixed results of the jackknifed variances showed no clear tendency. In
general, compared with the delta standard errors, the average of the jackknifed standard erros for means was also greater.
The empirical results revealed the relationship between the school sampling rate and the FPC effect. Other factors can also
have an impact on variance estimation—for example, clustering effects (Cochran, 1977). The impact of clustering effects
is beyond the scope of this study because clustering effects have no direct relationship with FPC, as the FPC effect is due
to the sampling without replacement from a finite population.

The empirical results revealed that the delta method can be used to yield appropriate standard error estimates if the
joint inclusion probabilities are estimated by proper Hájek approximation. In this study, the H–T estimator was proposed
to estimate the c in Equation 11 and A2; the variance of the estimator ĉ1 was also derived (see Appendix). For three
approximations, d̂Arith,ij, d̂Geo,ij, and d̂RR,ij in Equations 13–15, d̂Arith,ij tended to yield smaller SEs because δArith, ij would
overestimate the joint inclusion probabilities when there is a huge discrepancy between school sizes (i.e., difference in
school inclusion probabilities). On the contrary, when there are large differences between two school sizes, d̂RR,ij tends
to yield larger standard errors because δRR, ij would underestimate the joint inclusion probabilities. The results show that
the delta method provides robust results when applying approximation d̂Geo,ij, even if the school size differences in school
pairs are large in the sample.

The results suggest that the delta method is certainly a proper method for variance estimation in analyzing complex data
without replacement. The jackknife approach can also be used, in particular for samples with a small sampling rate. For
samples with a large sampling rate, to avoid overestimation for the jackknife approach, it is necessary to consider methods
including certain scaling factors related to FPC, as discussed in the the Empirical Curve of the Variance Estimates Yielded
by the Delta Method section.

To validate the findings in the current study, a more exhaustive simulation is needed for future studies: in particular, a
simulation to aid in choosing the appropriate Hájek approximation in applying the delta method and finding the empirical
formula of scaling factors for the jackknife approach. In a future simulation study, it would be interesting to apply the
paradigm to compare the jackknifed standard errors using the adapted school weights (in Equation 16) with those using
the original weights and to further evaluate whether the jackknifed standard errors with the adapted weights or the delta
standard errors are better aligned with true standard errors.

In addition, this study is based on the NAEP state data drawn with systematic PPS sampling. Nevertheless, the vari-
ance formula (in Equation 3) for the delta method was derived based on a strict two-stage PPS sampling. Although the
PPS sample without replacement and the systematic PPS sample are equivalent (Kish, 1965; Rust et al., 2001), to obtain

10 ETS Research Report No. RR-20-11. © 2020 Educational Testing Service



J. Qian Variance Estimation With Finite Population Correction

theoretically accurate results for the delta method requires a reconfirmation of the findings based on strict PPS samples
without replacement, which can be drawn by the rejective sampling approach (Hájek, 1964). This is a demanding task that
needs vast resources to accomplish.
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Appendix

Hájek Approximation of the Joint Inclusion Probabilities

The formula v
(

ỹHT
)

, in Equation 4, requires knowledge of the joint inclusion probabilities πij, (i.e., an n× n matrix of the
πij’s). Let ci = πi(1−πi) and c =

∑N
i=1 ci. Based on rejective sampling, Hájek (1981, p. 75) provided an asymptotically valid

approximation of πij :

π̂H,ij ≈ πiπj

⎛⎜⎜⎜⎝1 −

(
1 − πi

) (
1 − πj

)
c

⎞⎟⎟⎟⎠ . (A1)

Hájek also showed the following large-sample property:

c
(
πiπj − πij

)
πi
(

1 − πi
)
πj

(
1 − πj

) → 1,

when n→∞, (N − n)→∞, and c→∞ (Hájek, 1964, p. 1496). Under this Hájek setup, the term πiπj − π̂H,ij approximates
πiπj −πij.

Estimators of Hájek’s c

The application of c requires information on all the inclusion probabilities π1, π2, … , and πN ; however, most of the assess-
ment data sets contain only π1, π2, … , and πn. Thus, the parameter c cannot be computed directly and must be estimated.
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One method of estimation uses the H–T estimator:

ĉ1 =
n∑

i=1

ci

πi
=

n∑
i=1

(
1 − πi

)
= n −

n∑
i=1

πi. (A2)

For unequal probability sampling without replacement, the estimator ĉ1 is an unbiased estimator of c, and the variance
of ĉ1,

V
(̂

c1
)
=

N∑
i=1

N∑
j>i

(
πiπj − πij

)(
ci

πi
−

cj

πj

)2

,

(Cochran, 1977, p. 260), can be estimated by

v
(̂

c1
)
=

n∑
i=1

n∑
j>i

(
πiπj − πij

)
πij

(
ci

πi
−

cj

πj

)2

=
n∑

i=1

n∑
j>i

(
1 − πi

) (
1 − πj

)
ĉ1 −

(
1 − πi

) (
1 − πj

) (
πi − πj

)2
.

Based on ĉ1, π̂ij (i and j = 1, 2, … , n) can be estimated by

π̂ĉ1,ij = πiπj

⎡⎢⎢⎢⎣1 −

(
1 − πi

) (
1 − πj

)
ĉ1

⎤⎥⎥⎥⎦ . (A3)

Hájek’s c, that is,
∑N

i=1 ci, can also be estimated by

ĉ2 = N
n

n∑
i=1

ci; (A4)

thus

π̂ĉ2,ij = πiπj

⎡⎢⎢⎢⎣1 −

(
1 − πi

) (
1 − πj

)
ĉ2

⎤⎥⎥⎥⎦ . (A5)

Estimators of Hájek’s d

Define Hájek’s d as

dHájek,ij =
πiπj − πij

πij
,

(i and j = 1, 2, … , n). Then, based on π̂ĉ1,ij and π̂ĉ2,ij in Equation A3 and Equation A5, Hájek’s d can be estimated:

d̂ĉ1,ij =
πiπj − π̂ĉ1,ij

π̂ĉ1,ij
=

(
1 − πi

) (
1 − πj

)
ĉ1 −

(
1 − πi

) (
1 − πj

) ,
and

d̂ĉ2,ij =
πiπj − π̂ĉ2,ij

π̂ĉ2,ij
=

(
1 − πi

) (
1 − πj

)
ĉ2 −

(
1 − πi

) (
1 − πj

) .
Moreover, instead of estimating πij, we can estimate d̂Hájek,ij directly. For the unequal probability sampling without

replacement, one of the large-sample properties of (πiπj −πij)/πiπj is that

n
(
πiπj − πij

)
πiπj

→ 1, (A6)
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when N →∞ while n is fixed, and there is one set of the Hartley–Rao conditions (Hájek, 1964, p. 1495; Hartley & Rao,
1962). The property in Equation A6 is false if

∑N
i=1 πi

(
1 − πi

)
→ ∞; the formulae based on Equation A6 are applicable if

N is much larger than n (Hájek, 1964, p. 1496). The large-sample property (in Equation A6) implies(
πiπj − πij

)
πij

→
1

n − 1
.

Therefore, the form
d̂HB,ij =

1 − δ
n − 1

, (A7)

(Rizzo & Rust, 2011) can be treated as the lower bound of the estimator of d̂Hájek,ij, where δ is a small positive number and
can be a function of πi, πj, and πij. Although d̂Hájek,ij can also be expressed in the form 1/(γ− 1) with γ having a value range
(n,∞), it is more straightforward to discuss modified estimators in the form of Equation A7. Note that, in application,
Equation A7 is applicable only if N is much larger than n, which may not be true for a sample drawn from a small state.

The empirical results in the Results section show that δ can be estimated adequately by the geometric mean and the
arithmetic mean of πi and πj:

d̂Arith,ij =
1 −

(
πi + πj

)
∕2

n − 1
, (A8)

and

d̂Geo,ij =
1 −√πiπj

n − 1
. (A9)

Compared with d̂Arith,ij, the estimator d̂Geo,ij is smaller. The approximation of d̂HR,ij with η = min(πi,πj) is

d̂RR,ij =
1 − min

(
πi,πj

)
n − 1

, (A10)

(Rizzo & Rust, 2011). Compared with school inclusion probabilities, if the joint inclusion probabilities are very small, the
estimation of d̂RR,ij can be conservative and have variance overestimated. Clearly, if the probabilities of school inclusion
are close to each other, perhaps equal to c0,then d̂HB,ij ≈

(
1 − c0

)
∕ (n − 1). Because the NAEP school selection was based

on systematic sampling, the joint inclusion probabilities can be very small, and thus d̂RR,ij can be overestimated.
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